linux/drivers/nvme/target/io-cmd-bdev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe I/O command implementation.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/blkdev.h>
   8#include <linux/module.h>
   9#include "nvmet.h"
  10
  11void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
  12{
  13        const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
  14        /* Number of physical blocks per logical block. */
  15        const u32 ppl = ql->physical_block_size / ql->logical_block_size;
  16        /* Physical blocks per logical block, 0's based. */
  17        const __le16 ppl0b = to0based(ppl);
  18
  19        /*
  20         * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
  21         * NAWUPF, and NACWU are defined for this namespace and should be
  22         * used by the host for this namespace instead of the AWUN, AWUPF,
  23         * and ACWU fields in the Identify Controller data structure. If
  24         * any of these fields are zero that means that the corresponding
  25         * field from the identify controller data structure should be used.
  26         */
  27        id->nsfeat |= 1 << 1;
  28        id->nawun = ppl0b;
  29        id->nawupf = ppl0b;
  30        id->nacwu = ppl0b;
  31
  32        /*
  33         * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
  34         * NOWS are defined for this namespace and should be used by
  35         * the host for I/O optimization.
  36         */
  37        id->nsfeat |= 1 << 4;
  38        /* NPWG = Namespace Preferred Write Granularity. 0's based */
  39        id->npwg = ppl0b;
  40        /* NPWA = Namespace Preferred Write Alignment. 0's based */
  41        id->npwa = id->npwg;
  42        /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
  43        id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
  44        /* NPDG = Namespace Preferred Deallocate Alignment */
  45        id->npda = id->npdg;
  46        /* NOWS = Namespace Optimal Write Size */
  47        id->nows = to0based(ql->io_opt / ql->logical_block_size);
  48}
  49
  50int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
  51{
  52        int ret;
  53
  54        ns->bdev = blkdev_get_by_path(ns->device_path,
  55                        FMODE_READ | FMODE_WRITE, NULL);
  56        if (IS_ERR(ns->bdev)) {
  57                ret = PTR_ERR(ns->bdev);
  58                if (ret != -ENOTBLK) {
  59                        pr_err("failed to open block device %s: (%ld)\n",
  60                                        ns->device_path, PTR_ERR(ns->bdev));
  61                }
  62                ns->bdev = NULL;
  63                return ret;
  64        }
  65        ns->size = i_size_read(ns->bdev->bd_inode);
  66        ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
  67        return 0;
  68}
  69
  70void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
  71{
  72        if (ns->bdev) {
  73                blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
  74                ns->bdev = NULL;
  75        }
  76}
  77
  78static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
  79{
  80        u16 status = NVME_SC_SUCCESS;
  81
  82        if (likely(blk_sts == BLK_STS_OK))
  83                return status;
  84        /*
  85         * Right now there exists M : 1 mapping between block layer error
  86         * to the NVMe status code (see nvme_error_status()). For consistency,
  87         * when we reverse map we use most appropriate NVMe Status code from
  88         * the group of the NVMe staus codes used in the nvme_error_status().
  89         */
  90        switch (blk_sts) {
  91        case BLK_STS_NOSPC:
  92                status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
  93                req->error_loc = offsetof(struct nvme_rw_command, length);
  94                break;
  95        case BLK_STS_TARGET:
  96                status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
  97                req->error_loc = offsetof(struct nvme_rw_command, slba);
  98                break;
  99        case BLK_STS_NOTSUPP:
 100                req->error_loc = offsetof(struct nvme_common_command, opcode);
 101                switch (req->cmd->common.opcode) {
 102                case nvme_cmd_dsm:
 103                case nvme_cmd_write_zeroes:
 104                        status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
 105                        break;
 106                default:
 107                        status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
 108                }
 109                break;
 110        case BLK_STS_MEDIUM:
 111                status = NVME_SC_ACCESS_DENIED;
 112                req->error_loc = offsetof(struct nvme_rw_command, nsid);
 113                break;
 114        case BLK_STS_IOERR:
 115                /* fallthru */
 116        default:
 117                status = NVME_SC_INTERNAL | NVME_SC_DNR;
 118                req->error_loc = offsetof(struct nvme_common_command, opcode);
 119        }
 120
 121        switch (req->cmd->common.opcode) {
 122        case nvme_cmd_read:
 123        case nvme_cmd_write:
 124                req->error_slba = le64_to_cpu(req->cmd->rw.slba);
 125                break;
 126        case nvme_cmd_write_zeroes:
 127                req->error_slba =
 128                        le64_to_cpu(req->cmd->write_zeroes.slba);
 129                break;
 130        default:
 131                req->error_slba = 0;
 132        }
 133        return status;
 134}
 135
 136static void nvmet_bio_done(struct bio *bio)
 137{
 138        struct nvmet_req *req = bio->bi_private;
 139
 140        nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
 141        if (bio != &req->b.inline_bio)
 142                bio_put(bio);
 143}
 144
 145static void nvmet_bdev_execute_rw(struct nvmet_req *req)
 146{
 147        int sg_cnt = req->sg_cnt;
 148        struct bio *bio;
 149        struct scatterlist *sg;
 150        sector_t sector;
 151        int op, op_flags = 0, i;
 152
 153        if (!req->sg_cnt) {
 154                nvmet_req_complete(req, 0);
 155                return;
 156        }
 157
 158        if (req->cmd->rw.opcode == nvme_cmd_write) {
 159                op = REQ_OP_WRITE;
 160                op_flags = REQ_SYNC | REQ_IDLE;
 161                if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
 162                        op_flags |= REQ_FUA;
 163        } else {
 164                op = REQ_OP_READ;
 165        }
 166
 167        if (is_pci_p2pdma_page(sg_page(req->sg)))
 168                op_flags |= REQ_NOMERGE;
 169
 170        sector = le64_to_cpu(req->cmd->rw.slba);
 171        sector <<= (req->ns->blksize_shift - 9);
 172
 173        if (req->data_len <= NVMET_MAX_INLINE_DATA_LEN) {
 174                bio = &req->b.inline_bio;
 175                bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
 176        } else {
 177                bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
 178        }
 179        bio_set_dev(bio, req->ns->bdev);
 180        bio->bi_iter.bi_sector = sector;
 181        bio->bi_private = req;
 182        bio->bi_end_io = nvmet_bio_done;
 183        bio_set_op_attrs(bio, op, op_flags);
 184
 185        for_each_sg(req->sg, sg, req->sg_cnt, i) {
 186                while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
 187                                != sg->length) {
 188                        struct bio *prev = bio;
 189
 190                        bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
 191                        bio_set_dev(bio, req->ns->bdev);
 192                        bio->bi_iter.bi_sector = sector;
 193                        bio_set_op_attrs(bio, op, op_flags);
 194
 195                        bio_chain(bio, prev);
 196                        submit_bio(prev);
 197                }
 198
 199                sector += sg->length >> 9;
 200                sg_cnt--;
 201        }
 202
 203        submit_bio(bio);
 204}
 205
 206static void nvmet_bdev_execute_flush(struct nvmet_req *req)
 207{
 208        struct bio *bio = &req->b.inline_bio;
 209
 210        bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
 211        bio_set_dev(bio, req->ns->bdev);
 212        bio->bi_private = req;
 213        bio->bi_end_io = nvmet_bio_done;
 214        bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 215
 216        submit_bio(bio);
 217}
 218
 219u16 nvmet_bdev_flush(struct nvmet_req *req)
 220{
 221        if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL))
 222                return NVME_SC_INTERNAL | NVME_SC_DNR;
 223        return 0;
 224}
 225
 226static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
 227                struct nvme_dsm_range *range, struct bio **bio)
 228{
 229        struct nvmet_ns *ns = req->ns;
 230        int ret;
 231
 232        ret = __blkdev_issue_discard(ns->bdev,
 233                        le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
 234                        le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
 235                        GFP_KERNEL, 0, bio);
 236        if (ret && ret != -EOPNOTSUPP) {
 237                req->error_slba = le64_to_cpu(range->slba);
 238                return errno_to_nvme_status(req, ret);
 239        }
 240        return NVME_SC_SUCCESS;
 241}
 242
 243static void nvmet_bdev_execute_discard(struct nvmet_req *req)
 244{
 245        struct nvme_dsm_range range;
 246        struct bio *bio = NULL;
 247        int i;
 248        u16 status;
 249
 250        for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
 251                status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
 252                                sizeof(range));
 253                if (status)
 254                        break;
 255
 256                status = nvmet_bdev_discard_range(req, &range, &bio);
 257                if (status)
 258                        break;
 259        }
 260
 261        if (bio) {
 262                bio->bi_private = req;
 263                bio->bi_end_io = nvmet_bio_done;
 264                if (status) {
 265                        bio->bi_status = BLK_STS_IOERR;
 266                        bio_endio(bio);
 267                } else {
 268                        submit_bio(bio);
 269                }
 270        } else {
 271                nvmet_req_complete(req, status);
 272        }
 273}
 274
 275static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
 276{
 277        switch (le32_to_cpu(req->cmd->dsm.attributes)) {
 278        case NVME_DSMGMT_AD:
 279                nvmet_bdev_execute_discard(req);
 280                return;
 281        case NVME_DSMGMT_IDR:
 282        case NVME_DSMGMT_IDW:
 283        default:
 284                /* Not supported yet */
 285                nvmet_req_complete(req, 0);
 286                return;
 287        }
 288}
 289
 290static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
 291{
 292        struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
 293        struct bio *bio = NULL;
 294        sector_t sector;
 295        sector_t nr_sector;
 296        int ret;
 297
 298        sector = le64_to_cpu(write_zeroes->slba) <<
 299                (req->ns->blksize_shift - 9);
 300        nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
 301                (req->ns->blksize_shift - 9));
 302
 303        ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
 304                        GFP_KERNEL, &bio, 0);
 305        if (bio) {
 306                bio->bi_private = req;
 307                bio->bi_end_io = nvmet_bio_done;
 308                submit_bio(bio);
 309        } else {
 310                nvmet_req_complete(req, errno_to_nvme_status(req, ret));
 311        }
 312}
 313
 314u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
 315{
 316        struct nvme_command *cmd = req->cmd;
 317
 318        switch (cmd->common.opcode) {
 319        case nvme_cmd_read:
 320        case nvme_cmd_write:
 321                req->execute = nvmet_bdev_execute_rw;
 322                req->data_len = nvmet_rw_len(req);
 323                return 0;
 324        case nvme_cmd_flush:
 325                req->execute = nvmet_bdev_execute_flush;
 326                req->data_len = 0;
 327                return 0;
 328        case nvme_cmd_dsm:
 329                req->execute = nvmet_bdev_execute_dsm;
 330                req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) *
 331                        sizeof(struct nvme_dsm_range);
 332                return 0;
 333        case nvme_cmd_write_zeroes:
 334                req->execute = nvmet_bdev_execute_write_zeroes;
 335                req->data_len = 0;
 336                return 0;
 337        default:
 338                pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
 339                       req->sq->qid);
 340                req->error_loc = offsetof(struct nvme_common_command, opcode);
 341                return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
 342        }
 343}
 344