linux/drivers/of/address.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)     "OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16
  17/* Max address size we deal with */
  18#define OF_MAX_ADDR_CELLS       4
  19#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  20#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  21
  22static struct of_bus *of_match_bus(struct device_node *np);
  23static int __of_address_to_resource(struct device_node *dev,
  24                const __be32 *addrp, u64 size, unsigned int flags,
  25                const char *name, struct resource *r);
  26
  27/* Debug utility */
  28#ifdef DEBUG
  29static void of_dump_addr(const char *s, const __be32 *addr, int na)
  30{
  31        pr_debug("%s", s);
  32        while (na--)
  33                pr_cont(" %08x", be32_to_cpu(*(addr++)));
  34        pr_cont("\n");
  35}
  36#else
  37static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  38#endif
  39
  40/* Callbacks for bus specific translators */
  41struct of_bus {
  42        const char      *name;
  43        const char      *addresses;
  44        int             (*match)(struct device_node *parent);
  45        void            (*count_cells)(struct device_node *child,
  46                                       int *addrc, int *sizec);
  47        u64             (*map)(__be32 *addr, const __be32 *range,
  48                                int na, int ns, int pna);
  49        int             (*translate)(__be32 *addr, u64 offset, int na);
  50        unsigned int    (*get_flags)(const __be32 *addr);
  51};
  52
  53/*
  54 * Default translator (generic bus)
  55 */
  56
  57static void of_bus_default_count_cells(struct device_node *dev,
  58                                       int *addrc, int *sizec)
  59{
  60        if (addrc)
  61                *addrc = of_n_addr_cells(dev);
  62        if (sizec)
  63                *sizec = of_n_size_cells(dev);
  64}
  65
  66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  67                int na, int ns, int pna)
  68{
  69        u64 cp, s, da;
  70
  71        cp = of_read_number(range, na);
  72        s  = of_read_number(range + na + pna, ns);
  73        da = of_read_number(addr, na);
  74
  75        pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
  76                 (unsigned long long)cp, (unsigned long long)s,
  77                 (unsigned long long)da);
  78
  79        if (da < cp || da >= (cp + s))
  80                return OF_BAD_ADDR;
  81        return da - cp;
  82}
  83
  84static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  85{
  86        u64 a = of_read_number(addr, na);
  87        memset(addr, 0, na * 4);
  88        a += offset;
  89        if (na > 1)
  90                addr[na - 2] = cpu_to_be32(a >> 32);
  91        addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  92
  93        return 0;
  94}
  95
  96static unsigned int of_bus_default_get_flags(const __be32 *addr)
  97{
  98        return IORESOURCE_MEM;
  99}
 100
 101#ifdef CONFIG_PCI
 102/*
 103 * PCI bus specific translator
 104 */
 105
 106static int of_bus_pci_match(struct device_node *np)
 107{
 108        /*
 109         * "pciex" is PCI Express
 110         * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 111         * "ht" is hypertransport
 112         */
 113        return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 114                of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
 115}
 116
 117static void of_bus_pci_count_cells(struct device_node *np,
 118                                   int *addrc, int *sizec)
 119{
 120        if (addrc)
 121                *addrc = 3;
 122        if (sizec)
 123                *sizec = 2;
 124}
 125
 126static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 127{
 128        unsigned int flags = 0;
 129        u32 w = be32_to_cpup(addr);
 130
 131        switch((w >> 24) & 0x03) {
 132        case 0x01:
 133                flags |= IORESOURCE_IO;
 134                break;
 135        case 0x02: /* 32 bits */
 136        case 0x03: /* 64 bits */
 137                flags |= IORESOURCE_MEM;
 138                break;
 139        }
 140        if (w & 0x40000000)
 141                flags |= IORESOURCE_PREFETCH;
 142        return flags;
 143}
 144
 145static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 146                int pna)
 147{
 148        u64 cp, s, da;
 149        unsigned int af, rf;
 150
 151        af = of_bus_pci_get_flags(addr);
 152        rf = of_bus_pci_get_flags(range);
 153
 154        /* Check address type match */
 155        if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 156                return OF_BAD_ADDR;
 157
 158        /* Read address values, skipping high cell */
 159        cp = of_read_number(range + 1, na - 1);
 160        s  = of_read_number(range + na + pna, ns);
 161        da = of_read_number(addr + 1, na - 1);
 162
 163        pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
 164                 (unsigned long long)cp, (unsigned long long)s,
 165                 (unsigned long long)da);
 166
 167        if (da < cp || da >= (cp + s))
 168                return OF_BAD_ADDR;
 169        return da - cp;
 170}
 171
 172static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 173{
 174        return of_bus_default_translate(addr + 1, offset, na - 1);
 175}
 176
 177const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 178                        unsigned int *flags)
 179{
 180        const __be32 *prop;
 181        unsigned int psize;
 182        struct device_node *parent;
 183        struct of_bus *bus;
 184        int onesize, i, na, ns;
 185
 186        /* Get parent & match bus type */
 187        parent = of_get_parent(dev);
 188        if (parent == NULL)
 189                return NULL;
 190        bus = of_match_bus(parent);
 191        if (strcmp(bus->name, "pci")) {
 192                of_node_put(parent);
 193                return NULL;
 194        }
 195        bus->count_cells(dev, &na, &ns);
 196        of_node_put(parent);
 197        if (!OF_CHECK_ADDR_COUNT(na))
 198                return NULL;
 199
 200        /* Get "reg" or "assigned-addresses" property */
 201        prop = of_get_property(dev, bus->addresses, &psize);
 202        if (prop == NULL)
 203                return NULL;
 204        psize /= 4;
 205
 206        onesize = na + ns;
 207        for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 208                u32 val = be32_to_cpu(prop[0]);
 209                if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 210                        if (size)
 211                                *size = of_read_number(prop + na, ns);
 212                        if (flags)
 213                                *flags = bus->get_flags(prop);
 214                        return prop;
 215                }
 216        }
 217        return NULL;
 218}
 219EXPORT_SYMBOL(of_get_pci_address);
 220
 221int of_pci_address_to_resource(struct device_node *dev, int bar,
 222                               struct resource *r)
 223{
 224        const __be32    *addrp;
 225        u64             size;
 226        unsigned int    flags;
 227
 228        addrp = of_get_pci_address(dev, bar, &size, &flags);
 229        if (addrp == NULL)
 230                return -EINVAL;
 231        return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 232}
 233EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 234
 235static int parser_init(struct of_pci_range_parser *parser,
 236                        struct device_node *node, const char *name)
 237{
 238        const int na = 3, ns = 2;
 239        int rlen;
 240
 241        parser->node = node;
 242        parser->pna = of_n_addr_cells(node);
 243        parser->np = parser->pna + na + ns;
 244
 245        parser->range = of_get_property(node, name, &rlen);
 246        if (parser->range == NULL)
 247                return -ENOENT;
 248
 249        parser->end = parser->range + rlen / sizeof(__be32);
 250
 251        return 0;
 252}
 253
 254int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 255                                struct device_node *node)
 256{
 257        return parser_init(parser, node, "ranges");
 258}
 259EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 260
 261int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 262                                struct device_node *node)
 263{
 264        return parser_init(parser, node, "dma-ranges");
 265}
 266EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 267
 268struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 269                                                struct of_pci_range *range)
 270{
 271        const int na = 3, ns = 2;
 272
 273        if (!range)
 274                return NULL;
 275
 276        if (!parser->range || parser->range + parser->np > parser->end)
 277                return NULL;
 278
 279        range->pci_space = be32_to_cpup(parser->range);
 280        range->flags = of_bus_pci_get_flags(parser->range);
 281        range->pci_addr = of_read_number(parser->range + 1, ns);
 282        range->cpu_addr = of_translate_address(parser->node,
 283                                parser->range + na);
 284        range->size = of_read_number(parser->range + parser->pna + na, ns);
 285
 286        parser->range += parser->np;
 287
 288        /* Now consume following elements while they are contiguous */
 289        while (parser->range + parser->np <= parser->end) {
 290                u32 flags;
 291                u64 pci_addr, cpu_addr, size;
 292
 293                flags = of_bus_pci_get_flags(parser->range);
 294                pci_addr = of_read_number(parser->range + 1, ns);
 295                cpu_addr = of_translate_address(parser->node,
 296                                parser->range + na);
 297                size = of_read_number(parser->range + parser->pna + na, ns);
 298
 299                if (flags != range->flags)
 300                        break;
 301                if (pci_addr != range->pci_addr + range->size ||
 302                    cpu_addr != range->cpu_addr + range->size)
 303                        break;
 304
 305                range->size += size;
 306                parser->range += parser->np;
 307        }
 308
 309        return range;
 310}
 311EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 312
 313/*
 314 * of_pci_range_to_resource - Create a resource from an of_pci_range
 315 * @range:      the PCI range that describes the resource
 316 * @np:         device node where the range belongs to
 317 * @res:        pointer to a valid resource that will be updated to
 318 *              reflect the values contained in the range.
 319 *
 320 * Returns EINVAL if the range cannot be converted to resource.
 321 *
 322 * Note that if the range is an IO range, the resource will be converted
 323 * using pci_address_to_pio() which can fail if it is called too early or
 324 * if the range cannot be matched to any host bridge IO space (our case here).
 325 * To guard against that we try to register the IO range first.
 326 * If that fails we know that pci_address_to_pio() will do too.
 327 */
 328int of_pci_range_to_resource(struct of_pci_range *range,
 329                             struct device_node *np, struct resource *res)
 330{
 331        int err;
 332        res->flags = range->flags;
 333        res->parent = res->child = res->sibling = NULL;
 334        res->name = np->full_name;
 335
 336        if (res->flags & IORESOURCE_IO) {
 337                unsigned long port;
 338                err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 339                                range->size);
 340                if (err)
 341                        goto invalid_range;
 342                port = pci_address_to_pio(range->cpu_addr);
 343                if (port == (unsigned long)-1) {
 344                        err = -EINVAL;
 345                        goto invalid_range;
 346                }
 347                res->start = port;
 348        } else {
 349                if ((sizeof(resource_size_t) < 8) &&
 350                    upper_32_bits(range->cpu_addr)) {
 351                        err = -EINVAL;
 352                        goto invalid_range;
 353                }
 354
 355                res->start = range->cpu_addr;
 356        }
 357        res->end = res->start + range->size - 1;
 358        return 0;
 359
 360invalid_range:
 361        res->start = (resource_size_t)OF_BAD_ADDR;
 362        res->end = (resource_size_t)OF_BAD_ADDR;
 363        return err;
 364}
 365EXPORT_SYMBOL(of_pci_range_to_resource);
 366#endif /* CONFIG_PCI */
 367
 368/*
 369 * ISA bus specific translator
 370 */
 371
 372static int of_bus_isa_match(struct device_node *np)
 373{
 374        return of_node_name_eq(np, "isa");
 375}
 376
 377static void of_bus_isa_count_cells(struct device_node *child,
 378                                   int *addrc, int *sizec)
 379{
 380        if (addrc)
 381                *addrc = 2;
 382        if (sizec)
 383                *sizec = 1;
 384}
 385
 386static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 387                int pna)
 388{
 389        u64 cp, s, da;
 390
 391        /* Check address type match */
 392        if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 393                return OF_BAD_ADDR;
 394
 395        /* Read address values, skipping high cell */
 396        cp = of_read_number(range + 1, na - 1);
 397        s  = of_read_number(range + na + pna, ns);
 398        da = of_read_number(addr + 1, na - 1);
 399
 400        pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
 401                 (unsigned long long)cp, (unsigned long long)s,
 402                 (unsigned long long)da);
 403
 404        if (da < cp || da >= (cp + s))
 405                return OF_BAD_ADDR;
 406        return da - cp;
 407}
 408
 409static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 410{
 411        return of_bus_default_translate(addr + 1, offset, na - 1);
 412}
 413
 414static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 415{
 416        unsigned int flags = 0;
 417        u32 w = be32_to_cpup(addr);
 418
 419        if (w & 1)
 420                flags |= IORESOURCE_IO;
 421        else
 422                flags |= IORESOURCE_MEM;
 423        return flags;
 424}
 425
 426/*
 427 * Array of bus specific translators
 428 */
 429
 430static struct of_bus of_busses[] = {
 431#ifdef CONFIG_PCI
 432        /* PCI */
 433        {
 434                .name = "pci",
 435                .addresses = "assigned-addresses",
 436                .match = of_bus_pci_match,
 437                .count_cells = of_bus_pci_count_cells,
 438                .map = of_bus_pci_map,
 439                .translate = of_bus_pci_translate,
 440                .get_flags = of_bus_pci_get_flags,
 441        },
 442#endif /* CONFIG_PCI */
 443        /* ISA */
 444        {
 445                .name = "isa",
 446                .addresses = "reg",
 447                .match = of_bus_isa_match,
 448                .count_cells = of_bus_isa_count_cells,
 449                .map = of_bus_isa_map,
 450                .translate = of_bus_isa_translate,
 451                .get_flags = of_bus_isa_get_flags,
 452        },
 453        /* Default */
 454        {
 455                .name = "default",
 456                .addresses = "reg",
 457                .match = NULL,
 458                .count_cells = of_bus_default_count_cells,
 459                .map = of_bus_default_map,
 460                .translate = of_bus_default_translate,
 461                .get_flags = of_bus_default_get_flags,
 462        },
 463};
 464
 465static struct of_bus *of_match_bus(struct device_node *np)
 466{
 467        int i;
 468
 469        for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 470                if (!of_busses[i].match || of_busses[i].match(np))
 471                        return &of_busses[i];
 472        BUG();
 473        return NULL;
 474}
 475
 476static int of_empty_ranges_quirk(struct device_node *np)
 477{
 478        if (IS_ENABLED(CONFIG_PPC)) {
 479                /* To save cycles, we cache the result for global "Mac" setting */
 480                static int quirk_state = -1;
 481
 482                /* PA-SEMI sdc DT bug */
 483                if (of_device_is_compatible(np, "1682m-sdc"))
 484                        return true;
 485
 486                /* Make quirk cached */
 487                if (quirk_state < 0)
 488                        quirk_state =
 489                                of_machine_is_compatible("Power Macintosh") ||
 490                                of_machine_is_compatible("MacRISC");
 491                return quirk_state;
 492        }
 493        return false;
 494}
 495
 496static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 497                            struct of_bus *pbus, __be32 *addr,
 498                            int na, int ns, int pna, const char *rprop)
 499{
 500        const __be32 *ranges;
 501        unsigned int rlen;
 502        int rone;
 503        u64 offset = OF_BAD_ADDR;
 504
 505        /*
 506         * Normally, an absence of a "ranges" property means we are
 507         * crossing a non-translatable boundary, and thus the addresses
 508         * below the current cannot be converted to CPU physical ones.
 509         * Unfortunately, while this is very clear in the spec, it's not
 510         * what Apple understood, and they do have things like /uni-n or
 511         * /ht nodes with no "ranges" property and a lot of perfectly
 512         * useable mapped devices below them. Thus we treat the absence of
 513         * "ranges" as equivalent to an empty "ranges" property which means
 514         * a 1:1 translation at that level. It's up to the caller not to try
 515         * to translate addresses that aren't supposed to be translated in
 516         * the first place. --BenH.
 517         *
 518         * As far as we know, this damage only exists on Apple machines, so
 519         * This code is only enabled on powerpc. --gcl
 520         */
 521        ranges = of_get_property(parent, rprop, &rlen);
 522        if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 523                pr_debug("no ranges; cannot translate\n");
 524                return 1;
 525        }
 526        if (ranges == NULL || rlen == 0) {
 527                offset = of_read_number(addr, na);
 528                memset(addr, 0, pna * 4);
 529                pr_debug("empty ranges; 1:1 translation\n");
 530                goto finish;
 531        }
 532
 533        pr_debug("walking ranges...\n");
 534
 535        /* Now walk through the ranges */
 536        rlen /= 4;
 537        rone = na + pna + ns;
 538        for (; rlen >= rone; rlen -= rone, ranges += rone) {
 539                offset = bus->map(addr, ranges, na, ns, pna);
 540                if (offset != OF_BAD_ADDR)
 541                        break;
 542        }
 543        if (offset == OF_BAD_ADDR) {
 544                pr_debug("not found !\n");
 545                return 1;
 546        }
 547        memcpy(addr, ranges + na, 4 * pna);
 548
 549 finish:
 550        of_dump_addr("parent translation for:", addr, pna);
 551        pr_debug("with offset: %llx\n", (unsigned long long)offset);
 552
 553        /* Translate it into parent bus space */
 554        return pbus->translate(addr, offset, pna);
 555}
 556
 557/*
 558 * Translate an address from the device-tree into a CPU physical address,
 559 * this walks up the tree and applies the various bus mappings on the
 560 * way.
 561 *
 562 * Note: We consider that crossing any level with #size-cells == 0 to mean
 563 * that translation is impossible (that is we are not dealing with a value
 564 * that can be mapped to a cpu physical address). This is not really specified
 565 * that way, but this is traditionally the way IBM at least do things
 566 *
 567 * Whenever the translation fails, the *host pointer will be set to the
 568 * device that had registered logical PIO mapping, and the return code is
 569 * relative to that node.
 570 */
 571static u64 __of_translate_address(struct device_node *dev,
 572                                  struct device_node *(*get_parent)(const struct device_node *),
 573                                  const __be32 *in_addr, const char *rprop,
 574                                  struct device_node **host)
 575{
 576        struct device_node *parent = NULL;
 577        struct of_bus *bus, *pbus;
 578        __be32 addr[OF_MAX_ADDR_CELLS];
 579        int na, ns, pna, pns;
 580        u64 result = OF_BAD_ADDR;
 581
 582        pr_debug("** translation for device %pOF **\n", dev);
 583
 584        /* Increase refcount at current level */
 585        of_node_get(dev);
 586
 587        *host = NULL;
 588        /* Get parent & match bus type */
 589        parent = get_parent(dev);
 590        if (parent == NULL)
 591                goto bail;
 592        bus = of_match_bus(parent);
 593
 594        /* Count address cells & copy address locally */
 595        bus->count_cells(dev, &na, &ns);
 596        if (!OF_CHECK_COUNTS(na, ns)) {
 597                pr_debug("Bad cell count for %pOF\n", dev);
 598                goto bail;
 599        }
 600        memcpy(addr, in_addr, na * 4);
 601
 602        pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 603            bus->name, na, ns, parent);
 604        of_dump_addr("translating address:", addr, na);
 605
 606        /* Translate */
 607        for (;;) {
 608                struct logic_pio_hwaddr *iorange;
 609
 610                /* Switch to parent bus */
 611                of_node_put(dev);
 612                dev = parent;
 613                parent = get_parent(dev);
 614
 615                /* If root, we have finished */
 616                if (parent == NULL) {
 617                        pr_debug("reached root node\n");
 618                        result = of_read_number(addr, na);
 619                        break;
 620                }
 621
 622                /*
 623                 * For indirectIO device which has no ranges property, get
 624                 * the address from reg directly.
 625                 */
 626                iorange = find_io_range_by_fwnode(&dev->fwnode);
 627                if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 628                        result = of_read_number(addr + 1, na - 1);
 629                        pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 630                                 dev, result);
 631                        *host = of_node_get(dev);
 632                        break;
 633                }
 634
 635                /* Get new parent bus and counts */
 636                pbus = of_match_bus(parent);
 637                pbus->count_cells(dev, &pna, &pns);
 638                if (!OF_CHECK_COUNTS(pna, pns)) {
 639                        pr_err("Bad cell count for %pOF\n", dev);
 640                        break;
 641                }
 642
 643                pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 644                    pbus->name, pna, pns, parent);
 645
 646                /* Apply bus translation */
 647                if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 648                        break;
 649
 650                /* Complete the move up one level */
 651                na = pna;
 652                ns = pns;
 653                bus = pbus;
 654
 655                of_dump_addr("one level translation:", addr, na);
 656        }
 657 bail:
 658        of_node_put(parent);
 659        of_node_put(dev);
 660
 661        return result;
 662}
 663
 664u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 665{
 666        struct device_node *host;
 667        u64 ret;
 668
 669        ret = __of_translate_address(dev, of_get_parent,
 670                                     in_addr, "ranges", &host);
 671        if (host) {
 672                of_node_put(host);
 673                return OF_BAD_ADDR;
 674        }
 675
 676        return ret;
 677}
 678EXPORT_SYMBOL(of_translate_address);
 679
 680static struct device_node *__of_get_dma_parent(const struct device_node *np)
 681{
 682        struct of_phandle_args args;
 683        int ret, index;
 684
 685        index = of_property_match_string(np, "interconnect-names", "dma-mem");
 686        if (index < 0)
 687                return of_get_parent(np);
 688
 689        ret = of_parse_phandle_with_args(np, "interconnects",
 690                                         "#interconnect-cells",
 691                                         index, &args);
 692        if (ret < 0)
 693                return of_get_parent(np);
 694
 695        return of_node_get(args.np);
 696}
 697
 698u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 699{
 700        struct device_node *host;
 701        u64 ret;
 702
 703        ret = __of_translate_address(dev, __of_get_dma_parent,
 704                                     in_addr, "dma-ranges", &host);
 705
 706        if (host) {
 707                of_node_put(host);
 708                return OF_BAD_ADDR;
 709        }
 710
 711        return ret;
 712}
 713EXPORT_SYMBOL(of_translate_dma_address);
 714
 715const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 716                    unsigned int *flags)
 717{
 718        const __be32 *prop;
 719        unsigned int psize;
 720        struct device_node *parent;
 721        struct of_bus *bus;
 722        int onesize, i, na, ns;
 723
 724        /* Get parent & match bus type */
 725        parent = of_get_parent(dev);
 726        if (parent == NULL)
 727                return NULL;
 728        bus = of_match_bus(parent);
 729        bus->count_cells(dev, &na, &ns);
 730        of_node_put(parent);
 731        if (!OF_CHECK_ADDR_COUNT(na))
 732                return NULL;
 733
 734        /* Get "reg" or "assigned-addresses" property */
 735        prop = of_get_property(dev, bus->addresses, &psize);
 736        if (prop == NULL)
 737                return NULL;
 738        psize /= 4;
 739
 740        onesize = na + ns;
 741        for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 742                if (i == index) {
 743                        if (size)
 744                                *size = of_read_number(prop + na, ns);
 745                        if (flags)
 746                                *flags = bus->get_flags(prop);
 747                        return prop;
 748                }
 749        return NULL;
 750}
 751EXPORT_SYMBOL(of_get_address);
 752
 753static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 754                        u64 size)
 755{
 756        u64 taddr;
 757        unsigned long port;
 758        struct device_node *host;
 759
 760        taddr = __of_translate_address(dev, of_get_parent,
 761                                       in_addr, "ranges", &host);
 762        if (host) {
 763                /* host-specific port access */
 764                port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 765                of_node_put(host);
 766        } else {
 767                /* memory-mapped I/O range */
 768                port = pci_address_to_pio(taddr);
 769        }
 770
 771        if (port == (unsigned long)-1)
 772                return OF_BAD_ADDR;
 773
 774        return port;
 775}
 776
 777static int __of_address_to_resource(struct device_node *dev,
 778                const __be32 *addrp, u64 size, unsigned int flags,
 779                const char *name, struct resource *r)
 780{
 781        u64 taddr;
 782
 783        if (flags & IORESOURCE_MEM)
 784                taddr = of_translate_address(dev, addrp);
 785        else if (flags & IORESOURCE_IO)
 786                taddr = of_translate_ioport(dev, addrp, size);
 787        else
 788                return -EINVAL;
 789
 790        if (taddr == OF_BAD_ADDR)
 791                return -EINVAL;
 792        memset(r, 0, sizeof(struct resource));
 793
 794        r->start = taddr;
 795        r->end = taddr + size - 1;
 796        r->flags = flags;
 797        r->name = name ? name : dev->full_name;
 798
 799        return 0;
 800}
 801
 802/**
 803 * of_address_to_resource - Translate device tree address and return as resource
 804 *
 805 * Note that if your address is a PIO address, the conversion will fail if
 806 * the physical address can't be internally converted to an IO token with
 807 * pci_address_to_pio(), that is because it's either called too early or it
 808 * can't be matched to any host bridge IO space
 809 */
 810int of_address_to_resource(struct device_node *dev, int index,
 811                           struct resource *r)
 812{
 813        const __be32    *addrp;
 814        u64             size;
 815        unsigned int    flags;
 816        const char      *name = NULL;
 817
 818        addrp = of_get_address(dev, index, &size, &flags);
 819        if (addrp == NULL)
 820                return -EINVAL;
 821
 822        /* Get optional "reg-names" property to add a name to a resource */
 823        of_property_read_string_index(dev, "reg-names", index, &name);
 824
 825        return __of_address_to_resource(dev, addrp, size, flags, name, r);
 826}
 827EXPORT_SYMBOL_GPL(of_address_to_resource);
 828
 829struct device_node *of_find_matching_node_by_address(struct device_node *from,
 830                                        const struct of_device_id *matches,
 831                                        u64 base_address)
 832{
 833        struct device_node *dn = of_find_matching_node(from, matches);
 834        struct resource res;
 835
 836        while (dn) {
 837                if (!of_address_to_resource(dn, 0, &res) &&
 838                    res.start == base_address)
 839                        return dn;
 840
 841                dn = of_find_matching_node(dn, matches);
 842        }
 843
 844        return NULL;
 845}
 846
 847
 848/**
 849 * of_iomap - Maps the memory mapped IO for a given device_node
 850 * @device:     the device whose io range will be mapped
 851 * @index:      index of the io range
 852 *
 853 * Returns a pointer to the mapped memory
 854 */
 855void __iomem *of_iomap(struct device_node *np, int index)
 856{
 857        struct resource res;
 858
 859        if (of_address_to_resource(np, index, &res))
 860                return NULL;
 861
 862        return ioremap(res.start, resource_size(&res));
 863}
 864EXPORT_SYMBOL(of_iomap);
 865
 866/*
 867 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 868 *                         for a given device_node
 869 * @device:     the device whose io range will be mapped
 870 * @index:      index of the io range
 871 * @name:       name "override" for the memory region request or NULL
 872 *
 873 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 874 * error code on failure. Usage example:
 875 *
 876 *      base = of_io_request_and_map(node, 0, "foo");
 877 *      if (IS_ERR(base))
 878 *              return PTR_ERR(base);
 879 */
 880void __iomem *of_io_request_and_map(struct device_node *np, int index,
 881                                    const char *name)
 882{
 883        struct resource res;
 884        void __iomem *mem;
 885
 886        if (of_address_to_resource(np, index, &res))
 887                return IOMEM_ERR_PTR(-EINVAL);
 888
 889        if (!name)
 890                name = res.name;
 891        if (!request_mem_region(res.start, resource_size(&res), name))
 892                return IOMEM_ERR_PTR(-EBUSY);
 893
 894        mem = ioremap(res.start, resource_size(&res));
 895        if (!mem) {
 896                release_mem_region(res.start, resource_size(&res));
 897                return IOMEM_ERR_PTR(-ENOMEM);
 898        }
 899
 900        return mem;
 901}
 902EXPORT_SYMBOL(of_io_request_and_map);
 903
 904/**
 905 * of_dma_get_range - Get DMA range info
 906 * @np:         device node to get DMA range info
 907 * @dma_addr:   pointer to store initial DMA address of DMA range
 908 * @paddr:      pointer to store initial CPU address of DMA range
 909 * @size:       pointer to store size of DMA range
 910 *
 911 * Look in bottom up direction for the first "dma-ranges" property
 912 * and parse it.
 913 *  dma-ranges format:
 914 *      DMA addr (dma_addr)     : naddr cells
 915 *      CPU addr (phys_addr_t)  : pna cells
 916 *      size                    : nsize cells
 917 *
 918 * It returns -ENODEV if "dma-ranges" property was not found
 919 * for this device in DT.
 920 */
 921int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 922{
 923        struct device_node *node = of_node_get(np);
 924        const __be32 *ranges = NULL;
 925        int len, naddr, nsize, pna;
 926        int ret = 0;
 927        u64 dmaaddr;
 928
 929        if (!node)
 930                return -EINVAL;
 931
 932        while (1) {
 933                struct device_node *parent;
 934
 935                naddr = of_n_addr_cells(node);
 936                nsize = of_n_size_cells(node);
 937
 938                parent = __of_get_dma_parent(node);
 939                of_node_put(node);
 940
 941                node = parent;
 942                if (!node)
 943                        break;
 944
 945                ranges = of_get_property(node, "dma-ranges", &len);
 946
 947                /* Ignore empty ranges, they imply no translation required */
 948                if (ranges && len > 0)
 949                        break;
 950
 951                /*
 952                 * At least empty ranges has to be defined for parent node if
 953                 * DMA is supported
 954                 */
 955                if (!ranges)
 956                        break;
 957        }
 958
 959        if (!ranges) {
 960                pr_debug("no dma-ranges found for node(%pOF)\n", np);
 961                ret = -ENODEV;
 962                goto out;
 963        }
 964
 965        len /= sizeof(u32);
 966
 967        pna = of_n_addr_cells(node);
 968
 969        /* dma-ranges format:
 970         * DMA addr     : naddr cells
 971         * CPU addr     : pna cells
 972         * size         : nsize cells
 973         */
 974        dmaaddr = of_read_number(ranges, naddr);
 975        *paddr = of_translate_dma_address(np, ranges);
 976        if (*paddr == OF_BAD_ADDR) {
 977                pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
 978                       dma_addr, np);
 979                ret = -EINVAL;
 980                goto out;
 981        }
 982        *dma_addr = dmaaddr;
 983
 984        *size = of_read_number(ranges + naddr + pna, nsize);
 985
 986        pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 987                 *dma_addr, *paddr, *size);
 988
 989out:
 990        of_node_put(node);
 991
 992        return ret;
 993}
 994EXPORT_SYMBOL_GPL(of_dma_get_range);
 995
 996/**
 997 * of_dma_is_coherent - Check if device is coherent
 998 * @np: device node
 999 *
1000 * It returns true if "dma-coherent" property was found
1001 * for this device in DT.
1002 */
1003bool of_dma_is_coherent(struct device_node *np)
1004{
1005        struct device_node *node = of_node_get(np);
1006
1007        while (node) {
1008                if (of_property_read_bool(node, "dma-coherent")) {
1009                        of_node_put(node);
1010                        return true;
1011                }
1012                node = of_get_next_parent(node);
1013        }
1014        of_node_put(node);
1015        return false;
1016}
1017EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1018