linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60        const char *node_name;
  61        size_t len;
  62
  63        if (!np)
  64                return false;
  65
  66        node_name = kbasename(np->full_name);
  67        len = strchrnul(node_name, '@') - node_name;
  68
  69        return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75        if (!np)
  76                return false;
  77
  78        return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84        const char *match = __of_get_property(np, "device_type", NULL);
  85
  86        return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_n_addr_cells(struct device_node *np)
  90{
  91        u32 cells;
  92
  93        do {
  94                if (np->parent)
  95                        np = np->parent;
  96                if (!of_property_read_u32(np, "#address-cells", &cells))
  97                        return cells;
  98        } while (np->parent);
  99        /* No #address-cells property for the root node */
 100        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 101}
 102EXPORT_SYMBOL(of_n_addr_cells);
 103
 104int of_n_size_cells(struct device_node *np)
 105{
 106        u32 cells;
 107
 108        do {
 109                if (np->parent)
 110                        np = np->parent;
 111                if (!of_property_read_u32(np, "#size-cells", &cells))
 112                        return cells;
 113        } while (np->parent);
 114        /* No #size-cells property for the root node */
 115        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 116}
 117EXPORT_SYMBOL(of_n_size_cells);
 118
 119#ifdef CONFIG_NUMA
 120int __weak of_node_to_nid(struct device_node *np)
 121{
 122        return NUMA_NO_NODE;
 123}
 124#endif
 125
 126/*
 127 * Assumptions behind phandle_cache implementation:
 128 *   - phandle property values are in a contiguous range of 1..n
 129 *
 130 * If the assumptions do not hold, then
 131 *   - the phandle lookup overhead reduction provided by the cache
 132 *     will likely be less
 133 */
 134
 135static struct device_node **phandle_cache;
 136static u32 phandle_cache_mask;
 137
 138/*
 139 * Caller must hold devtree_lock.
 140 */
 141static void __of_free_phandle_cache(void)
 142{
 143        u32 cache_entries = phandle_cache_mask + 1;
 144        u32 k;
 145
 146        if (!phandle_cache)
 147                return;
 148
 149        for (k = 0; k < cache_entries; k++)
 150                of_node_put(phandle_cache[k]);
 151
 152        kfree(phandle_cache);
 153        phandle_cache = NULL;
 154}
 155
 156int of_free_phandle_cache(void)
 157{
 158        unsigned long flags;
 159
 160        raw_spin_lock_irqsave(&devtree_lock, flags);
 161
 162        __of_free_phandle_cache();
 163
 164        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 165
 166        return 0;
 167}
 168#if !defined(CONFIG_MODULES)
 169late_initcall_sync(of_free_phandle_cache);
 170#endif
 171
 172/*
 173 * Caller must hold devtree_lock.
 174 */
 175void __of_free_phandle_cache_entry(phandle handle)
 176{
 177        phandle masked_handle;
 178        struct device_node *np;
 179
 180        if (!handle)
 181                return;
 182
 183        masked_handle = handle & phandle_cache_mask;
 184
 185        if (phandle_cache) {
 186                np = phandle_cache[masked_handle];
 187                if (np && handle == np->phandle) {
 188                        of_node_put(np);
 189                        phandle_cache[masked_handle] = NULL;
 190                }
 191        }
 192}
 193
 194void of_populate_phandle_cache(void)
 195{
 196        unsigned long flags;
 197        u32 cache_entries;
 198        struct device_node *np;
 199        u32 phandles = 0;
 200
 201        raw_spin_lock_irqsave(&devtree_lock, flags);
 202
 203        __of_free_phandle_cache();
 204
 205        for_each_of_allnodes(np)
 206                if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 207                        phandles++;
 208
 209        if (!phandles)
 210                goto out;
 211
 212        cache_entries = roundup_pow_of_two(phandles);
 213        phandle_cache_mask = cache_entries - 1;
 214
 215        phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 216                                GFP_ATOMIC);
 217        if (!phandle_cache)
 218                goto out;
 219
 220        for_each_of_allnodes(np)
 221                if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
 222                        of_node_get(np);
 223                        phandle_cache[np->phandle & phandle_cache_mask] = np;
 224                }
 225
 226out:
 227        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 228}
 229
 230void __init of_core_init(void)
 231{
 232        struct device_node *np;
 233
 234        of_populate_phandle_cache();
 235
 236        /* Create the kset, and register existing nodes */
 237        mutex_lock(&of_mutex);
 238        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 239        if (!of_kset) {
 240                mutex_unlock(&of_mutex);
 241                pr_err("failed to register existing nodes\n");
 242                return;
 243        }
 244        for_each_of_allnodes(np)
 245                __of_attach_node_sysfs(np);
 246        mutex_unlock(&of_mutex);
 247
 248        /* Symlink in /proc as required by userspace ABI */
 249        if (of_root)
 250                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 251}
 252
 253static struct property *__of_find_property(const struct device_node *np,
 254                                           const char *name, int *lenp)
 255{
 256        struct property *pp;
 257
 258        if (!np)
 259                return NULL;
 260
 261        for (pp = np->properties; pp; pp = pp->next) {
 262                if (of_prop_cmp(pp->name, name) == 0) {
 263                        if (lenp)
 264                                *lenp = pp->length;
 265                        break;
 266                }
 267        }
 268
 269        return pp;
 270}
 271
 272struct property *of_find_property(const struct device_node *np,
 273                                  const char *name,
 274                                  int *lenp)
 275{
 276        struct property *pp;
 277        unsigned long flags;
 278
 279        raw_spin_lock_irqsave(&devtree_lock, flags);
 280        pp = __of_find_property(np, name, lenp);
 281        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 282
 283        return pp;
 284}
 285EXPORT_SYMBOL(of_find_property);
 286
 287struct device_node *__of_find_all_nodes(struct device_node *prev)
 288{
 289        struct device_node *np;
 290        if (!prev) {
 291                np = of_root;
 292        } else if (prev->child) {
 293                np = prev->child;
 294        } else {
 295                /* Walk back up looking for a sibling, or the end of the structure */
 296                np = prev;
 297                while (np->parent && !np->sibling)
 298                        np = np->parent;
 299                np = np->sibling; /* Might be null at the end of the tree */
 300        }
 301        return np;
 302}
 303
 304/**
 305 * of_find_all_nodes - Get next node in global list
 306 * @prev:       Previous node or NULL to start iteration
 307 *              of_node_put() will be called on it
 308 *
 309 * Returns a node pointer with refcount incremented, use
 310 * of_node_put() on it when done.
 311 */
 312struct device_node *of_find_all_nodes(struct device_node *prev)
 313{
 314        struct device_node *np;
 315        unsigned long flags;
 316
 317        raw_spin_lock_irqsave(&devtree_lock, flags);
 318        np = __of_find_all_nodes(prev);
 319        of_node_get(np);
 320        of_node_put(prev);
 321        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 322        return np;
 323}
 324EXPORT_SYMBOL(of_find_all_nodes);
 325
 326/*
 327 * Find a property with a given name for a given node
 328 * and return the value.
 329 */
 330const void *__of_get_property(const struct device_node *np,
 331                              const char *name, int *lenp)
 332{
 333        struct property *pp = __of_find_property(np, name, lenp);
 334
 335        return pp ? pp->value : NULL;
 336}
 337
 338/*
 339 * Find a property with a given name for a given node
 340 * and return the value.
 341 */
 342const void *of_get_property(const struct device_node *np, const char *name,
 343                            int *lenp)
 344{
 345        struct property *pp = of_find_property(np, name, lenp);
 346
 347        return pp ? pp->value : NULL;
 348}
 349EXPORT_SYMBOL(of_get_property);
 350
 351/*
 352 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 353 *
 354 * @cpu: logical cpu index of a core/thread
 355 * @phys_id: physical identifier of a core/thread
 356 *
 357 * CPU logical to physical index mapping is architecture specific.
 358 * However this __weak function provides a default match of physical
 359 * id to logical cpu index. phys_id provided here is usually values read
 360 * from the device tree which must match the hardware internal registers.
 361 *
 362 * Returns true if the physical identifier and the logical cpu index
 363 * correspond to the same core/thread, false otherwise.
 364 */
 365bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 366{
 367        return (u32)phys_id == cpu;
 368}
 369
 370/**
 371 * Checks if the given "prop_name" property holds the physical id of the
 372 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 373 * NULL, local thread number within the core is returned in it.
 374 */
 375static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 376                        const char *prop_name, int cpu, unsigned int *thread)
 377{
 378        const __be32 *cell;
 379        int ac, prop_len, tid;
 380        u64 hwid;
 381
 382        ac = of_n_addr_cells(cpun);
 383        cell = of_get_property(cpun, prop_name, &prop_len);
 384        if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 385                return true;
 386        if (!cell || !ac)
 387                return false;
 388        prop_len /= sizeof(*cell) * ac;
 389        for (tid = 0; tid < prop_len; tid++) {
 390                hwid = of_read_number(cell, ac);
 391                if (arch_match_cpu_phys_id(cpu, hwid)) {
 392                        if (thread)
 393                                *thread = tid;
 394                        return true;
 395                }
 396                cell += ac;
 397        }
 398        return false;
 399}
 400
 401/*
 402 * arch_find_n_match_cpu_physical_id - See if the given device node is
 403 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 404 * else false.  If 'thread' is non-NULL, the local thread number within the
 405 * core is returned in it.
 406 */
 407bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 408                                              int cpu, unsigned int *thread)
 409{
 410        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 411         * for thread ids on PowerPC. If it doesn't exist fallback to
 412         * standard "reg" property.
 413         */
 414        if (IS_ENABLED(CONFIG_PPC) &&
 415            __of_find_n_match_cpu_property(cpun,
 416                                           "ibm,ppc-interrupt-server#s",
 417                                           cpu, thread))
 418                return true;
 419
 420        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 421}
 422
 423/**
 424 * of_get_cpu_node - Get device node associated with the given logical CPU
 425 *
 426 * @cpu: CPU number(logical index) for which device node is required
 427 * @thread: if not NULL, local thread number within the physical core is
 428 *          returned
 429 *
 430 * The main purpose of this function is to retrieve the device node for the
 431 * given logical CPU index. It should be used to initialize the of_node in
 432 * cpu device. Once of_node in cpu device is populated, all the further
 433 * references can use that instead.
 434 *
 435 * CPU logical to physical index mapping is architecture specific and is built
 436 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 437 * which can be overridden by architecture specific implementation.
 438 *
 439 * Returns a node pointer for the logical cpu with refcount incremented, use
 440 * of_node_put() on it when done. Returns NULL if not found.
 441 */
 442struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 443{
 444        struct device_node *cpun;
 445
 446        for_each_of_cpu_node(cpun) {
 447                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 448                        return cpun;
 449        }
 450        return NULL;
 451}
 452EXPORT_SYMBOL(of_get_cpu_node);
 453
 454/**
 455 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 456 *
 457 * @cpu_node: Pointer to the device_node for CPU.
 458 *
 459 * Returns the logical CPU number of the given CPU device_node.
 460 * Returns -ENODEV if the CPU is not found.
 461 */
 462int of_cpu_node_to_id(struct device_node *cpu_node)
 463{
 464        int cpu;
 465        bool found = false;
 466        struct device_node *np;
 467
 468        for_each_possible_cpu(cpu) {
 469                np = of_cpu_device_node_get(cpu);
 470                found = (cpu_node == np);
 471                of_node_put(np);
 472                if (found)
 473                        return cpu;
 474        }
 475
 476        return -ENODEV;
 477}
 478EXPORT_SYMBOL(of_cpu_node_to_id);
 479
 480/**
 481 * __of_device_is_compatible() - Check if the node matches given constraints
 482 * @device: pointer to node
 483 * @compat: required compatible string, NULL or "" for any match
 484 * @type: required device_type value, NULL or "" for any match
 485 * @name: required node name, NULL or "" for any match
 486 *
 487 * Checks if the given @compat, @type and @name strings match the
 488 * properties of the given @device. A constraints can be skipped by
 489 * passing NULL or an empty string as the constraint.
 490 *
 491 * Returns 0 for no match, and a positive integer on match. The return
 492 * value is a relative score with larger values indicating better
 493 * matches. The score is weighted for the most specific compatible value
 494 * to get the highest score. Matching type is next, followed by matching
 495 * name. Practically speaking, this results in the following priority
 496 * order for matches:
 497 *
 498 * 1. specific compatible && type && name
 499 * 2. specific compatible && type
 500 * 3. specific compatible && name
 501 * 4. specific compatible
 502 * 5. general compatible && type && name
 503 * 6. general compatible && type
 504 * 7. general compatible && name
 505 * 8. general compatible
 506 * 9. type && name
 507 * 10. type
 508 * 11. name
 509 */
 510static int __of_device_is_compatible(const struct device_node *device,
 511                                     const char *compat, const char *type, const char *name)
 512{
 513        struct property *prop;
 514        const char *cp;
 515        int index = 0, score = 0;
 516
 517        /* Compatible match has highest priority */
 518        if (compat && compat[0]) {
 519                prop = __of_find_property(device, "compatible", NULL);
 520                for (cp = of_prop_next_string(prop, NULL); cp;
 521                     cp = of_prop_next_string(prop, cp), index++) {
 522                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 523                                score = INT_MAX/2 - (index << 2);
 524                                break;
 525                        }
 526                }
 527                if (!score)
 528                        return 0;
 529        }
 530
 531        /* Matching type is better than matching name */
 532        if (type && type[0]) {
 533                if (!__of_node_is_type(device, type))
 534                        return 0;
 535                score += 2;
 536        }
 537
 538        /* Matching name is a bit better than not */
 539        if (name && name[0]) {
 540                if (!of_node_name_eq(device, name))
 541                        return 0;
 542                score++;
 543        }
 544
 545        return score;
 546}
 547
 548/** Checks if the given "compat" string matches one of the strings in
 549 * the device's "compatible" property
 550 */
 551int of_device_is_compatible(const struct device_node *device,
 552                const char *compat)
 553{
 554        unsigned long flags;
 555        int res;
 556
 557        raw_spin_lock_irqsave(&devtree_lock, flags);
 558        res = __of_device_is_compatible(device, compat, NULL, NULL);
 559        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 560        return res;
 561}
 562EXPORT_SYMBOL(of_device_is_compatible);
 563
 564/** Checks if the device is compatible with any of the entries in
 565 *  a NULL terminated array of strings. Returns the best match
 566 *  score or 0.
 567 */
 568int of_device_compatible_match(struct device_node *device,
 569                               const char *const *compat)
 570{
 571        unsigned int tmp, score = 0;
 572
 573        if (!compat)
 574                return 0;
 575
 576        while (*compat) {
 577                tmp = of_device_is_compatible(device, *compat);
 578                if (tmp > score)
 579                        score = tmp;
 580                compat++;
 581        }
 582
 583        return score;
 584}
 585
 586/**
 587 * of_machine_is_compatible - Test root of device tree for a given compatible value
 588 * @compat: compatible string to look for in root node's compatible property.
 589 *
 590 * Returns a positive integer if the root node has the given value in its
 591 * compatible property.
 592 */
 593int of_machine_is_compatible(const char *compat)
 594{
 595        struct device_node *root;
 596        int rc = 0;
 597
 598        root = of_find_node_by_path("/");
 599        if (root) {
 600                rc = of_device_is_compatible(root, compat);
 601                of_node_put(root);
 602        }
 603        return rc;
 604}
 605EXPORT_SYMBOL(of_machine_is_compatible);
 606
 607/**
 608 *  __of_device_is_available - check if a device is available for use
 609 *
 610 *  @device: Node to check for availability, with locks already held
 611 *
 612 *  Returns true if the status property is absent or set to "okay" or "ok",
 613 *  false otherwise
 614 */
 615static bool __of_device_is_available(const struct device_node *device)
 616{
 617        const char *status;
 618        int statlen;
 619
 620        if (!device)
 621                return false;
 622
 623        status = __of_get_property(device, "status", &statlen);
 624        if (status == NULL)
 625                return true;
 626
 627        if (statlen > 0) {
 628                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 629                        return true;
 630        }
 631
 632        return false;
 633}
 634
 635/**
 636 *  of_device_is_available - check if a device is available for use
 637 *
 638 *  @device: Node to check for availability
 639 *
 640 *  Returns true if the status property is absent or set to "okay" or "ok",
 641 *  false otherwise
 642 */
 643bool of_device_is_available(const struct device_node *device)
 644{
 645        unsigned long flags;
 646        bool res;
 647
 648        raw_spin_lock_irqsave(&devtree_lock, flags);
 649        res = __of_device_is_available(device);
 650        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 651        return res;
 652
 653}
 654EXPORT_SYMBOL(of_device_is_available);
 655
 656/**
 657 *  of_device_is_big_endian - check if a device has BE registers
 658 *
 659 *  @device: Node to check for endianness
 660 *
 661 *  Returns true if the device has a "big-endian" property, or if the kernel
 662 *  was compiled for BE *and* the device has a "native-endian" property.
 663 *  Returns false otherwise.
 664 *
 665 *  Callers would nominally use ioread32be/iowrite32be if
 666 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 667 */
 668bool of_device_is_big_endian(const struct device_node *device)
 669{
 670        if (of_property_read_bool(device, "big-endian"))
 671                return true;
 672        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 673            of_property_read_bool(device, "native-endian"))
 674                return true;
 675        return false;
 676}
 677EXPORT_SYMBOL(of_device_is_big_endian);
 678
 679/**
 680 *      of_get_parent - Get a node's parent if any
 681 *      @node:  Node to get parent
 682 *
 683 *      Returns a node pointer with refcount incremented, use
 684 *      of_node_put() on it when done.
 685 */
 686struct device_node *of_get_parent(const struct device_node *node)
 687{
 688        struct device_node *np;
 689        unsigned long flags;
 690
 691        if (!node)
 692                return NULL;
 693
 694        raw_spin_lock_irqsave(&devtree_lock, flags);
 695        np = of_node_get(node->parent);
 696        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 697        return np;
 698}
 699EXPORT_SYMBOL(of_get_parent);
 700
 701/**
 702 *      of_get_next_parent - Iterate to a node's parent
 703 *      @node:  Node to get parent of
 704 *
 705 *      This is like of_get_parent() except that it drops the
 706 *      refcount on the passed node, making it suitable for iterating
 707 *      through a node's parents.
 708 *
 709 *      Returns a node pointer with refcount incremented, use
 710 *      of_node_put() on it when done.
 711 */
 712struct device_node *of_get_next_parent(struct device_node *node)
 713{
 714        struct device_node *parent;
 715        unsigned long flags;
 716
 717        if (!node)
 718                return NULL;
 719
 720        raw_spin_lock_irqsave(&devtree_lock, flags);
 721        parent = of_node_get(node->parent);
 722        of_node_put(node);
 723        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 724        return parent;
 725}
 726EXPORT_SYMBOL(of_get_next_parent);
 727
 728static struct device_node *__of_get_next_child(const struct device_node *node,
 729                                                struct device_node *prev)
 730{
 731        struct device_node *next;
 732
 733        if (!node)
 734                return NULL;
 735
 736        next = prev ? prev->sibling : node->child;
 737        for (; next; next = next->sibling)
 738                if (of_node_get(next))
 739                        break;
 740        of_node_put(prev);
 741        return next;
 742}
 743#define __for_each_child_of_node(parent, child) \
 744        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 745             child = __of_get_next_child(parent, child))
 746
 747/**
 748 *      of_get_next_child - Iterate a node childs
 749 *      @node:  parent node
 750 *      @prev:  previous child of the parent node, or NULL to get first
 751 *
 752 *      Returns a node pointer with refcount incremented, use of_node_put() on
 753 *      it when done. Returns NULL when prev is the last child. Decrements the
 754 *      refcount of prev.
 755 */
 756struct device_node *of_get_next_child(const struct device_node *node,
 757        struct device_node *prev)
 758{
 759        struct device_node *next;
 760        unsigned long flags;
 761
 762        raw_spin_lock_irqsave(&devtree_lock, flags);
 763        next = __of_get_next_child(node, prev);
 764        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 765        return next;
 766}
 767EXPORT_SYMBOL(of_get_next_child);
 768
 769/**
 770 *      of_get_next_available_child - Find the next available child node
 771 *      @node:  parent node
 772 *      @prev:  previous child of the parent node, or NULL to get first
 773 *
 774 *      This function is like of_get_next_child(), except that it
 775 *      automatically skips any disabled nodes (i.e. status = "disabled").
 776 */
 777struct device_node *of_get_next_available_child(const struct device_node *node,
 778        struct device_node *prev)
 779{
 780        struct device_node *next;
 781        unsigned long flags;
 782
 783        if (!node)
 784                return NULL;
 785
 786        raw_spin_lock_irqsave(&devtree_lock, flags);
 787        next = prev ? prev->sibling : node->child;
 788        for (; next; next = next->sibling) {
 789                if (!__of_device_is_available(next))
 790                        continue;
 791                if (of_node_get(next))
 792                        break;
 793        }
 794        of_node_put(prev);
 795        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 796        return next;
 797}
 798EXPORT_SYMBOL(of_get_next_available_child);
 799
 800/**
 801 *      of_get_next_cpu_node - Iterate on cpu nodes
 802 *      @prev:  previous child of the /cpus node, or NULL to get first
 803 *
 804 *      Returns a cpu node pointer with refcount incremented, use of_node_put()
 805 *      on it when done. Returns NULL when prev is the last child. Decrements
 806 *      the refcount of prev.
 807 */
 808struct device_node *of_get_next_cpu_node(struct device_node *prev)
 809{
 810        struct device_node *next = NULL;
 811        unsigned long flags;
 812        struct device_node *node;
 813
 814        if (!prev)
 815                node = of_find_node_by_path("/cpus");
 816
 817        raw_spin_lock_irqsave(&devtree_lock, flags);
 818        if (prev)
 819                next = prev->sibling;
 820        else if (node) {
 821                next = node->child;
 822                of_node_put(node);
 823        }
 824        for (; next; next = next->sibling) {
 825                if (!(of_node_name_eq(next, "cpu") ||
 826                      __of_node_is_type(next, "cpu")))
 827                        continue;
 828                if (of_node_get(next))
 829                        break;
 830        }
 831        of_node_put(prev);
 832        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 833        return next;
 834}
 835EXPORT_SYMBOL(of_get_next_cpu_node);
 836
 837/**
 838 * of_get_compatible_child - Find compatible child node
 839 * @parent:     parent node
 840 * @compatible: compatible string
 841 *
 842 * Lookup child node whose compatible property contains the given compatible
 843 * string.
 844 *
 845 * Returns a node pointer with refcount incremented, use of_node_put() on it
 846 * when done; or NULL if not found.
 847 */
 848struct device_node *of_get_compatible_child(const struct device_node *parent,
 849                                const char *compatible)
 850{
 851        struct device_node *child;
 852
 853        for_each_child_of_node(parent, child) {
 854                if (of_device_is_compatible(child, compatible))
 855                        break;
 856        }
 857
 858        return child;
 859}
 860EXPORT_SYMBOL(of_get_compatible_child);
 861
 862/**
 863 *      of_get_child_by_name - Find the child node by name for a given parent
 864 *      @node:  parent node
 865 *      @name:  child name to look for.
 866 *
 867 *      This function looks for child node for given matching name
 868 *
 869 *      Returns a node pointer if found, with refcount incremented, use
 870 *      of_node_put() on it when done.
 871 *      Returns NULL if node is not found.
 872 */
 873struct device_node *of_get_child_by_name(const struct device_node *node,
 874                                const char *name)
 875{
 876        struct device_node *child;
 877
 878        for_each_child_of_node(node, child)
 879                if (of_node_name_eq(child, name))
 880                        break;
 881        return child;
 882}
 883EXPORT_SYMBOL(of_get_child_by_name);
 884
 885struct device_node *__of_find_node_by_path(struct device_node *parent,
 886                                                const char *path)
 887{
 888        struct device_node *child;
 889        int len;
 890
 891        len = strcspn(path, "/:");
 892        if (!len)
 893                return NULL;
 894
 895        __for_each_child_of_node(parent, child) {
 896                const char *name = kbasename(child->full_name);
 897                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 898                        return child;
 899        }
 900        return NULL;
 901}
 902
 903struct device_node *__of_find_node_by_full_path(struct device_node *node,
 904                                                const char *path)
 905{
 906        const char *separator = strchr(path, ':');
 907
 908        while (node && *path == '/') {
 909                struct device_node *tmp = node;
 910
 911                path++; /* Increment past '/' delimiter */
 912                node = __of_find_node_by_path(node, path);
 913                of_node_put(tmp);
 914                path = strchrnul(path, '/');
 915                if (separator && separator < path)
 916                        break;
 917        }
 918        return node;
 919}
 920
 921/**
 922 *      of_find_node_opts_by_path - Find a node matching a full OF path
 923 *      @path: Either the full path to match, or if the path does not
 924 *             start with '/', the name of a property of the /aliases
 925 *             node (an alias).  In the case of an alias, the node
 926 *             matching the alias' value will be returned.
 927 *      @opts: Address of a pointer into which to store the start of
 928 *             an options string appended to the end of the path with
 929 *             a ':' separator.
 930 *
 931 *      Valid paths:
 932 *              /foo/bar        Full path
 933 *              foo             Valid alias
 934 *              foo/bar         Valid alias + relative path
 935 *
 936 *      Returns a node pointer with refcount incremented, use
 937 *      of_node_put() on it when done.
 938 */
 939struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 940{
 941        struct device_node *np = NULL;
 942        struct property *pp;
 943        unsigned long flags;
 944        const char *separator = strchr(path, ':');
 945
 946        if (opts)
 947                *opts = separator ? separator + 1 : NULL;
 948
 949        if (strcmp(path, "/") == 0)
 950                return of_node_get(of_root);
 951
 952        /* The path could begin with an alias */
 953        if (*path != '/') {
 954                int len;
 955                const char *p = separator;
 956
 957                if (!p)
 958                        p = strchrnul(path, '/');
 959                len = p - path;
 960
 961                /* of_aliases must not be NULL */
 962                if (!of_aliases)
 963                        return NULL;
 964
 965                for_each_property_of_node(of_aliases, pp) {
 966                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 967                                np = of_find_node_by_path(pp->value);
 968                                break;
 969                        }
 970                }
 971                if (!np)
 972                        return NULL;
 973                path = p;
 974        }
 975
 976        /* Step down the tree matching path components */
 977        raw_spin_lock_irqsave(&devtree_lock, flags);
 978        if (!np)
 979                np = of_node_get(of_root);
 980        np = __of_find_node_by_full_path(np, path);
 981        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 982        return np;
 983}
 984EXPORT_SYMBOL(of_find_node_opts_by_path);
 985
 986/**
 987 *      of_find_node_by_name - Find a node by its "name" property
 988 *      @from:  The node to start searching from or NULL; the node
 989 *              you pass will not be searched, only the next one
 990 *              will. Typically, you pass what the previous call
 991 *              returned. of_node_put() will be called on @from.
 992 *      @name:  The name string to match against
 993 *
 994 *      Returns a node pointer with refcount incremented, use
 995 *      of_node_put() on it when done.
 996 */
 997struct device_node *of_find_node_by_name(struct device_node *from,
 998        const char *name)
 999{
1000        struct device_node *np;
1001        unsigned long flags;
1002
1003        raw_spin_lock_irqsave(&devtree_lock, flags);
1004        for_each_of_allnodes_from(from, np)
1005                if (of_node_name_eq(np, name) && of_node_get(np))
1006                        break;
1007        of_node_put(from);
1008        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1009        return np;
1010}
1011EXPORT_SYMBOL(of_find_node_by_name);
1012
1013/**
1014 *      of_find_node_by_type - Find a node by its "device_type" property
1015 *      @from:  The node to start searching from, or NULL to start searching
1016 *              the entire device tree. The node you pass will not be
1017 *              searched, only the next one will; typically, you pass
1018 *              what the previous call returned. of_node_put() will be
1019 *              called on from for you.
1020 *      @type:  The type string to match against
1021 *
1022 *      Returns a node pointer with refcount incremented, use
1023 *      of_node_put() on it when done.
1024 */
1025struct device_node *of_find_node_by_type(struct device_node *from,
1026        const char *type)
1027{
1028        struct device_node *np;
1029        unsigned long flags;
1030
1031        raw_spin_lock_irqsave(&devtree_lock, flags);
1032        for_each_of_allnodes_from(from, np)
1033                if (__of_node_is_type(np, type) && of_node_get(np))
1034                        break;
1035        of_node_put(from);
1036        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1037        return np;
1038}
1039EXPORT_SYMBOL(of_find_node_by_type);
1040
1041/**
1042 *      of_find_compatible_node - Find a node based on type and one of the
1043 *                                tokens in its "compatible" property
1044 *      @from:          The node to start searching from or NULL, the node
1045 *                      you pass will not be searched, only the next one
1046 *                      will; typically, you pass what the previous call
1047 *                      returned. of_node_put() will be called on it
1048 *      @type:          The type string to match "device_type" or NULL to ignore
1049 *      @compatible:    The string to match to one of the tokens in the device
1050 *                      "compatible" list.
1051 *
1052 *      Returns a node pointer with refcount incremented, use
1053 *      of_node_put() on it when done.
1054 */
1055struct device_node *of_find_compatible_node(struct device_node *from,
1056        const char *type, const char *compatible)
1057{
1058        struct device_node *np;
1059        unsigned long flags;
1060
1061        raw_spin_lock_irqsave(&devtree_lock, flags);
1062        for_each_of_allnodes_from(from, np)
1063                if (__of_device_is_compatible(np, compatible, type, NULL) &&
1064                    of_node_get(np))
1065                        break;
1066        of_node_put(from);
1067        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1068        return np;
1069}
1070EXPORT_SYMBOL(of_find_compatible_node);
1071
1072/**
1073 *      of_find_node_with_property - Find a node which has a property with
1074 *                                   the given name.
1075 *      @from:          The node to start searching from or NULL, the node
1076 *                      you pass will not be searched, only the next one
1077 *                      will; typically, you pass what the previous call
1078 *                      returned. of_node_put() will be called on it
1079 *      @prop_name:     The name of the property to look for.
1080 *
1081 *      Returns a node pointer with refcount incremented, use
1082 *      of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_with_property(struct device_node *from,
1085        const char *prop_name)
1086{
1087        struct device_node *np;
1088        struct property *pp;
1089        unsigned long flags;
1090
1091        raw_spin_lock_irqsave(&devtree_lock, flags);
1092        for_each_of_allnodes_from(from, np) {
1093                for (pp = np->properties; pp; pp = pp->next) {
1094                        if (of_prop_cmp(pp->name, prop_name) == 0) {
1095                                of_node_get(np);
1096                                goto out;
1097                        }
1098                }
1099        }
1100out:
1101        of_node_put(from);
1102        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1103        return np;
1104}
1105EXPORT_SYMBOL(of_find_node_with_property);
1106
1107static
1108const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1109                                           const struct device_node *node)
1110{
1111        const struct of_device_id *best_match = NULL;
1112        int score, best_score = 0;
1113
1114        if (!matches)
1115                return NULL;
1116
1117        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1118                score = __of_device_is_compatible(node, matches->compatible,
1119                                                  matches->type, matches->name);
1120                if (score > best_score) {
1121                        best_match = matches;
1122                        best_score = score;
1123                }
1124        }
1125
1126        return best_match;
1127}
1128
1129/**
1130 * of_match_node - Tell if a device_node has a matching of_match structure
1131 *      @matches:       array of of device match structures to search in
1132 *      @node:          the of device structure to match against
1133 *
1134 *      Low level utility function used by device matching.
1135 */
1136const struct of_device_id *of_match_node(const struct of_device_id *matches,
1137                                         const struct device_node *node)
1138{
1139        const struct of_device_id *match;
1140        unsigned long flags;
1141
1142        raw_spin_lock_irqsave(&devtree_lock, flags);
1143        match = __of_match_node(matches, node);
1144        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1145        return match;
1146}
1147EXPORT_SYMBOL(of_match_node);
1148
1149/**
1150 *      of_find_matching_node_and_match - Find a node based on an of_device_id
1151 *                                        match table.
1152 *      @from:          The node to start searching from or NULL, the node
1153 *                      you pass will not be searched, only the next one
1154 *                      will; typically, you pass what the previous call
1155 *                      returned. of_node_put() will be called on it
1156 *      @matches:       array of of device match structures to search in
1157 *      @match          Updated to point at the matches entry which matched
1158 *
1159 *      Returns a node pointer with refcount incremented, use
1160 *      of_node_put() on it when done.
1161 */
1162struct device_node *of_find_matching_node_and_match(struct device_node *from,
1163                                        const struct of_device_id *matches,
1164                                        const struct of_device_id **match)
1165{
1166        struct device_node *np;
1167        const struct of_device_id *m;
1168        unsigned long flags;
1169
1170        if (match)
1171                *match = NULL;
1172
1173        raw_spin_lock_irqsave(&devtree_lock, flags);
1174        for_each_of_allnodes_from(from, np) {
1175                m = __of_match_node(matches, np);
1176                if (m && of_node_get(np)) {
1177                        if (match)
1178                                *match = m;
1179                        break;
1180                }
1181        }
1182        of_node_put(from);
1183        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1184        return np;
1185}
1186EXPORT_SYMBOL(of_find_matching_node_and_match);
1187
1188/**
1189 * of_modalias_node - Lookup appropriate modalias for a device node
1190 * @node:       pointer to a device tree node
1191 * @modalias:   Pointer to buffer that modalias value will be copied into
1192 * @len:        Length of modalias value
1193 *
1194 * Based on the value of the compatible property, this routine will attempt
1195 * to choose an appropriate modalias value for a particular device tree node.
1196 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1197 * from the first entry in the compatible list property.
1198 *
1199 * This routine returns 0 on success, <0 on failure.
1200 */
1201int of_modalias_node(struct device_node *node, char *modalias, int len)
1202{
1203        const char *compatible, *p;
1204        int cplen;
1205
1206        compatible = of_get_property(node, "compatible", &cplen);
1207        if (!compatible || strlen(compatible) > cplen)
1208                return -ENODEV;
1209        p = strchr(compatible, ',');
1210        strlcpy(modalias, p ? p + 1 : compatible, len);
1211        return 0;
1212}
1213EXPORT_SYMBOL_GPL(of_modalias_node);
1214
1215/**
1216 * of_find_node_by_phandle - Find a node given a phandle
1217 * @handle:     phandle of the node to find
1218 *
1219 * Returns a node pointer with refcount incremented, use
1220 * of_node_put() on it when done.
1221 */
1222struct device_node *of_find_node_by_phandle(phandle handle)
1223{
1224        struct device_node *np = NULL;
1225        unsigned long flags;
1226        phandle masked_handle;
1227
1228        if (!handle)
1229                return NULL;
1230
1231        raw_spin_lock_irqsave(&devtree_lock, flags);
1232
1233        masked_handle = handle & phandle_cache_mask;
1234
1235        if (phandle_cache) {
1236                if (phandle_cache[masked_handle] &&
1237                    handle == phandle_cache[masked_handle]->phandle)
1238                        np = phandle_cache[masked_handle];
1239                if (np && of_node_check_flag(np, OF_DETACHED)) {
1240                        WARN_ON(1); /* did not uncache np on node removal */
1241                        of_node_put(np);
1242                        phandle_cache[masked_handle] = NULL;
1243                        np = NULL;
1244                }
1245        }
1246
1247        if (!np) {
1248                for_each_of_allnodes(np)
1249                        if (np->phandle == handle &&
1250                            !of_node_check_flag(np, OF_DETACHED)) {
1251                                if (phandle_cache) {
1252                                        /* will put when removed from cache */
1253                                        of_node_get(np);
1254                                        phandle_cache[masked_handle] = np;
1255                                }
1256                                break;
1257                        }
1258        }
1259
1260        of_node_get(np);
1261        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1262        return np;
1263}
1264EXPORT_SYMBOL(of_find_node_by_phandle);
1265
1266void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1267{
1268        int i;
1269        printk("%s %pOF", msg, args->np);
1270        for (i = 0; i < args->args_count; i++) {
1271                const char delim = i ? ',' : ':';
1272
1273                pr_cont("%c%08x", delim, args->args[i]);
1274        }
1275        pr_cont("\n");
1276}
1277
1278int of_phandle_iterator_init(struct of_phandle_iterator *it,
1279                const struct device_node *np,
1280                const char *list_name,
1281                const char *cells_name,
1282                int cell_count)
1283{
1284        const __be32 *list;
1285        int size;
1286
1287        memset(it, 0, sizeof(*it));
1288
1289        list = of_get_property(np, list_name, &size);
1290        if (!list)
1291                return -ENOENT;
1292
1293        it->cells_name = cells_name;
1294        it->cell_count = cell_count;
1295        it->parent = np;
1296        it->list_end = list + size / sizeof(*list);
1297        it->phandle_end = list;
1298        it->cur = list;
1299
1300        return 0;
1301}
1302EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1303
1304int of_phandle_iterator_next(struct of_phandle_iterator *it)
1305{
1306        uint32_t count = 0;
1307
1308        if (it->node) {
1309                of_node_put(it->node);
1310                it->node = NULL;
1311        }
1312
1313        if (!it->cur || it->phandle_end >= it->list_end)
1314                return -ENOENT;
1315
1316        it->cur = it->phandle_end;
1317
1318        /* If phandle is 0, then it is an empty entry with no arguments. */
1319        it->phandle = be32_to_cpup(it->cur++);
1320
1321        if (it->phandle) {
1322
1323                /*
1324                 * Find the provider node and parse the #*-cells property to
1325                 * determine the argument length.
1326                 */
1327                it->node = of_find_node_by_phandle(it->phandle);
1328
1329                if (it->cells_name) {
1330                        if (!it->node) {
1331                                pr_err("%pOF: could not find phandle\n",
1332                                       it->parent);
1333                                goto err;
1334                        }
1335
1336                        if (of_property_read_u32(it->node, it->cells_name,
1337                                                 &count)) {
1338                                pr_err("%pOF: could not get %s for %pOF\n",
1339                                       it->parent,
1340                                       it->cells_name,
1341                                       it->node);
1342                                goto err;
1343                        }
1344                } else {
1345                        count = it->cell_count;
1346                }
1347
1348                /*
1349                 * Make sure that the arguments actually fit in the remaining
1350                 * property data length
1351                 */
1352                if (it->cur + count > it->list_end) {
1353                        pr_err("%pOF: %s = %d found %d\n",
1354                               it->parent, it->cells_name,
1355                               count, it->cell_count);
1356                        goto err;
1357                }
1358        }
1359
1360        it->phandle_end = it->cur + count;
1361        it->cur_count = count;
1362
1363        return 0;
1364
1365err:
1366        if (it->node) {
1367                of_node_put(it->node);
1368                it->node = NULL;
1369        }
1370
1371        return -EINVAL;
1372}
1373EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1374
1375int of_phandle_iterator_args(struct of_phandle_iterator *it,
1376                             uint32_t *args,
1377                             int size)
1378{
1379        int i, count;
1380
1381        count = it->cur_count;
1382
1383        if (WARN_ON(size < count))
1384                count = size;
1385
1386        for (i = 0; i < count; i++)
1387                args[i] = be32_to_cpup(it->cur++);
1388
1389        return count;
1390}
1391
1392static int __of_parse_phandle_with_args(const struct device_node *np,
1393                                        const char *list_name,
1394                                        const char *cells_name,
1395                                        int cell_count, int index,
1396                                        struct of_phandle_args *out_args)
1397{
1398        struct of_phandle_iterator it;
1399        int rc, cur_index = 0;
1400
1401        /* Loop over the phandles until all the requested entry is found */
1402        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1403                /*
1404                 * All of the error cases bail out of the loop, so at
1405                 * this point, the parsing is successful. If the requested
1406                 * index matches, then fill the out_args structure and return,
1407                 * or return -ENOENT for an empty entry.
1408                 */
1409                rc = -ENOENT;
1410                if (cur_index == index) {
1411                        if (!it.phandle)
1412                                goto err;
1413
1414                        if (out_args) {
1415                                int c;
1416
1417                                c = of_phandle_iterator_args(&it,
1418                                                             out_args->args,
1419                                                             MAX_PHANDLE_ARGS);
1420                                out_args->np = it.node;
1421                                out_args->args_count = c;
1422                        } else {
1423                                of_node_put(it.node);
1424                        }
1425
1426                        /* Found it! return success */
1427                        return 0;
1428                }
1429
1430                cur_index++;
1431        }
1432
1433        /*
1434         * Unlock node before returning result; will be one of:
1435         * -ENOENT : index is for empty phandle
1436         * -EINVAL : parsing error on data
1437         */
1438
1439 err:
1440        of_node_put(it.node);
1441        return rc;
1442}
1443
1444/**
1445 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1446 * @np: Pointer to device node holding phandle property
1447 * @phandle_name: Name of property holding a phandle value
1448 * @index: For properties holding a table of phandles, this is the index into
1449 *         the table
1450 *
1451 * Returns the device_node pointer with refcount incremented.  Use
1452 * of_node_put() on it when done.
1453 */
1454struct device_node *of_parse_phandle(const struct device_node *np,
1455                                     const char *phandle_name, int index)
1456{
1457        struct of_phandle_args args;
1458
1459        if (index < 0)
1460                return NULL;
1461
1462        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1463                                         index, &args))
1464                return NULL;
1465
1466        return args.np;
1467}
1468EXPORT_SYMBOL(of_parse_phandle);
1469
1470/**
1471 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1472 * @np:         pointer to a device tree node containing a list
1473 * @list_name:  property name that contains a list
1474 * @cells_name: property name that specifies phandles' arguments count
1475 * @index:      index of a phandle to parse out
1476 * @out_args:   optional pointer to output arguments structure (will be filled)
1477 *
1478 * This function is useful to parse lists of phandles and their arguments.
1479 * Returns 0 on success and fills out_args, on error returns appropriate
1480 * errno value.
1481 *
1482 * Caller is responsible to call of_node_put() on the returned out_args->np
1483 * pointer.
1484 *
1485 * Example:
1486 *
1487 * phandle1: node1 {
1488 *      #list-cells = <2>;
1489 * }
1490 *
1491 * phandle2: node2 {
1492 *      #list-cells = <1>;
1493 * }
1494 *
1495 * node3 {
1496 *      list = <&phandle1 1 2 &phandle2 3>;
1497 * }
1498 *
1499 * To get a device_node of the `node2' node you may call this:
1500 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1501 */
1502int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1503                                const char *cells_name, int index,
1504                                struct of_phandle_args *out_args)
1505{
1506        if (index < 0)
1507                return -EINVAL;
1508        return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1509                                            index, out_args);
1510}
1511EXPORT_SYMBOL(of_parse_phandle_with_args);
1512
1513/**
1514 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1515 * @np:         pointer to a device tree node containing a list
1516 * @list_name:  property name that contains a list
1517 * @stem_name:  stem of property names that specify phandles' arguments count
1518 * @index:      index of a phandle to parse out
1519 * @out_args:   optional pointer to output arguments structure (will be filled)
1520 *
1521 * This function is useful to parse lists of phandles and their arguments.
1522 * Returns 0 on success and fills out_args, on error returns appropriate errno
1523 * value. The difference between this function and of_parse_phandle_with_args()
1524 * is that this API remaps a phandle if the node the phandle points to has
1525 * a <@stem_name>-map property.
1526 *
1527 * Caller is responsible to call of_node_put() on the returned out_args->np
1528 * pointer.
1529 *
1530 * Example:
1531 *
1532 * phandle1: node1 {
1533 *      #list-cells = <2>;
1534 * }
1535 *
1536 * phandle2: node2 {
1537 *      #list-cells = <1>;
1538 * }
1539 *
1540 * phandle3: node3 {
1541 *      #list-cells = <1>;
1542 *      list-map = <0 &phandle2 3>,
1543 *                 <1 &phandle2 2>,
1544 *                 <2 &phandle1 5 1>;
1545 *      list-map-mask = <0x3>;
1546 * };
1547 *
1548 * node4 {
1549 *      list = <&phandle1 1 2 &phandle3 0>;
1550 * }
1551 *
1552 * To get a device_node of the `node2' node you may call this:
1553 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1554 */
1555int of_parse_phandle_with_args_map(const struct device_node *np,
1556                                   const char *list_name,
1557                                   const char *stem_name,
1558                                   int index, struct of_phandle_args *out_args)
1559{
1560        char *cells_name, *map_name = NULL, *mask_name = NULL;
1561        char *pass_name = NULL;
1562        struct device_node *cur, *new = NULL;
1563        const __be32 *map, *mask, *pass;
1564        static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1565        static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1566        __be32 initial_match_array[MAX_PHANDLE_ARGS];
1567        const __be32 *match_array = initial_match_array;
1568        int i, ret, map_len, match;
1569        u32 list_size, new_size;
1570
1571        if (index < 0)
1572                return -EINVAL;
1573
1574        cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1575        if (!cells_name)
1576                return -ENOMEM;
1577
1578        ret = -ENOMEM;
1579        map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1580        if (!map_name)
1581                goto free;
1582
1583        mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1584        if (!mask_name)
1585                goto free;
1586
1587        pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1588        if (!pass_name)
1589                goto free;
1590
1591        ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1592                                           out_args);
1593        if (ret)
1594                goto free;
1595
1596        /* Get the #<list>-cells property */
1597        cur = out_args->np;
1598        ret = of_property_read_u32(cur, cells_name, &list_size);
1599        if (ret < 0)
1600                goto put;
1601
1602        /* Precalculate the match array - this simplifies match loop */
1603        for (i = 0; i < list_size; i++)
1604                initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1605
1606        ret = -EINVAL;
1607        while (cur) {
1608                /* Get the <list>-map property */
1609                map = of_get_property(cur, map_name, &map_len);
1610                if (!map) {
1611                        ret = 0;
1612                        goto free;
1613                }
1614                map_len /= sizeof(u32);
1615
1616                /* Get the <list>-map-mask property (optional) */
1617                mask = of_get_property(cur, mask_name, NULL);
1618                if (!mask)
1619                        mask = dummy_mask;
1620                /* Iterate through <list>-map property */
1621                match = 0;
1622                while (map_len > (list_size + 1) && !match) {
1623                        /* Compare specifiers */
1624                        match = 1;
1625                        for (i = 0; i < list_size; i++, map_len--)
1626                                match &= !((match_array[i] ^ *map++) & mask[i]);
1627
1628                        of_node_put(new);
1629                        new = of_find_node_by_phandle(be32_to_cpup(map));
1630                        map++;
1631                        map_len--;
1632
1633                        /* Check if not found */
1634                        if (!new)
1635                                goto put;
1636
1637                        if (!of_device_is_available(new))
1638                                match = 0;
1639
1640                        ret = of_property_read_u32(new, cells_name, &new_size);
1641                        if (ret)
1642                                goto put;
1643
1644                        /* Check for malformed properties */
1645                        if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1646                                goto put;
1647                        if (map_len < new_size)
1648                                goto put;
1649
1650                        /* Move forward by new node's #<list>-cells amount */
1651                        map += new_size;
1652                        map_len -= new_size;
1653                }
1654                if (!match)
1655                        goto put;
1656
1657                /* Get the <list>-map-pass-thru property (optional) */
1658                pass = of_get_property(cur, pass_name, NULL);
1659                if (!pass)
1660                        pass = dummy_pass;
1661
1662                /*
1663                 * Successfully parsed a <list>-map translation; copy new
1664                 * specifier into the out_args structure, keeping the
1665                 * bits specified in <list>-map-pass-thru.
1666                 */
1667                match_array = map - new_size;
1668                for (i = 0; i < new_size; i++) {
1669                        __be32 val = *(map - new_size + i);
1670
1671                        if (i < list_size) {
1672                                val &= ~pass[i];
1673                                val |= cpu_to_be32(out_args->args[i]) & pass[i];
1674                        }
1675
1676                        out_args->args[i] = be32_to_cpu(val);
1677                }
1678                out_args->args_count = list_size = new_size;
1679                /* Iterate again with new provider */
1680                out_args->np = new;
1681                of_node_put(cur);
1682                cur = new;
1683        }
1684put:
1685        of_node_put(cur);
1686        of_node_put(new);
1687free:
1688        kfree(mask_name);
1689        kfree(map_name);
1690        kfree(cells_name);
1691        kfree(pass_name);
1692
1693        return ret;
1694}
1695EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1696
1697/**
1698 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1699 * @np:         pointer to a device tree node containing a list
1700 * @list_name:  property name that contains a list
1701 * @cell_count: number of argument cells following the phandle
1702 * @index:      index of a phandle to parse out
1703 * @out_args:   optional pointer to output arguments structure (will be filled)
1704 *
1705 * This function is useful to parse lists of phandles and their arguments.
1706 * Returns 0 on success and fills out_args, on error returns appropriate
1707 * errno value.
1708 *
1709 * Caller is responsible to call of_node_put() on the returned out_args->np
1710 * pointer.
1711 *
1712 * Example:
1713 *
1714 * phandle1: node1 {
1715 * }
1716 *
1717 * phandle2: node2 {
1718 * }
1719 *
1720 * node3 {
1721 *      list = <&phandle1 0 2 &phandle2 2 3>;
1722 * }
1723 *
1724 * To get a device_node of the `node2' node you may call this:
1725 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1726 */
1727int of_parse_phandle_with_fixed_args(const struct device_node *np,
1728                                const char *list_name, int cell_count,
1729                                int index, struct of_phandle_args *out_args)
1730{
1731        if (index < 0)
1732                return -EINVAL;
1733        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1734                                           index, out_args);
1735}
1736EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1737
1738/**
1739 * of_count_phandle_with_args() - Find the number of phandles references in a property
1740 * @np:         pointer to a device tree node containing a list
1741 * @list_name:  property name that contains a list
1742 * @cells_name: property name that specifies phandles' arguments count
1743 *
1744 * Returns the number of phandle + argument tuples within a property. It
1745 * is a typical pattern to encode a list of phandle and variable
1746 * arguments into a single property. The number of arguments is encoded
1747 * by a property in the phandle-target node. For example, a gpios
1748 * property would contain a list of GPIO specifies consisting of a
1749 * phandle and 1 or more arguments. The number of arguments are
1750 * determined by the #gpio-cells property in the node pointed to by the
1751 * phandle.
1752 */
1753int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1754                                const char *cells_name)
1755{
1756        struct of_phandle_iterator it;
1757        int rc, cur_index = 0;
1758
1759        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1760        if (rc)
1761                return rc;
1762
1763        while ((rc = of_phandle_iterator_next(&it)) == 0)
1764                cur_index += 1;
1765
1766        if (rc != -ENOENT)
1767                return rc;
1768
1769        return cur_index;
1770}
1771EXPORT_SYMBOL(of_count_phandle_with_args);
1772
1773/**
1774 * __of_add_property - Add a property to a node without lock operations
1775 */
1776int __of_add_property(struct device_node *np, struct property *prop)
1777{
1778        struct property **next;
1779
1780        prop->next = NULL;
1781        next = &np->properties;
1782        while (*next) {
1783                if (strcmp(prop->name, (*next)->name) == 0)
1784                        /* duplicate ! don't insert it */
1785                        return -EEXIST;
1786
1787                next = &(*next)->next;
1788        }
1789        *next = prop;
1790
1791        return 0;
1792}
1793
1794/**
1795 * of_add_property - Add a property to a node
1796 */
1797int of_add_property(struct device_node *np, struct property *prop)
1798{
1799        unsigned long flags;
1800        int rc;
1801
1802        mutex_lock(&of_mutex);
1803
1804        raw_spin_lock_irqsave(&devtree_lock, flags);
1805        rc = __of_add_property(np, prop);
1806        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1807
1808        if (!rc)
1809                __of_add_property_sysfs(np, prop);
1810
1811        mutex_unlock(&of_mutex);
1812
1813        if (!rc)
1814                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1815
1816        return rc;
1817}
1818
1819int __of_remove_property(struct device_node *np, struct property *prop)
1820{
1821        struct property **next;
1822
1823        for (next = &np->properties; *next; next = &(*next)->next) {
1824                if (*next == prop)
1825                        break;
1826        }
1827        if (*next == NULL)
1828                return -ENODEV;
1829
1830        /* found the node */
1831        *next = prop->next;
1832        prop->next = np->deadprops;
1833        np->deadprops = prop;
1834
1835        return 0;
1836}
1837
1838/**
1839 * of_remove_property - Remove a property from a node.
1840 *
1841 * Note that we don't actually remove it, since we have given out
1842 * who-knows-how-many pointers to the data using get-property.
1843 * Instead we just move the property to the "dead properties"
1844 * list, so it won't be found any more.
1845 */
1846int of_remove_property(struct device_node *np, struct property *prop)
1847{
1848        unsigned long flags;
1849        int rc;
1850
1851        if (!prop)
1852                return -ENODEV;
1853
1854        mutex_lock(&of_mutex);
1855
1856        raw_spin_lock_irqsave(&devtree_lock, flags);
1857        rc = __of_remove_property(np, prop);
1858        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1859
1860        if (!rc)
1861                __of_remove_property_sysfs(np, prop);
1862
1863        mutex_unlock(&of_mutex);
1864
1865        if (!rc)
1866                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1867
1868        return rc;
1869}
1870
1871int __of_update_property(struct device_node *np, struct property *newprop,
1872                struct property **oldpropp)
1873{
1874        struct property **next, *oldprop;
1875
1876        for (next = &np->properties; *next; next = &(*next)->next) {
1877                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1878                        break;
1879        }
1880        *oldpropp = oldprop = *next;
1881
1882        if (oldprop) {
1883                /* replace the node */
1884                newprop->next = oldprop->next;
1885                *next = newprop;
1886                oldprop->next = np->deadprops;
1887                np->deadprops = oldprop;
1888        } else {
1889                /* new node */
1890                newprop->next = NULL;
1891                *next = newprop;
1892        }
1893
1894        return 0;
1895}
1896
1897/*
1898 * of_update_property - Update a property in a node, if the property does
1899 * not exist, add it.
1900 *
1901 * Note that we don't actually remove it, since we have given out
1902 * who-knows-how-many pointers to the data using get-property.
1903 * Instead we just move the property to the "dead properties" list,
1904 * and add the new property to the property list
1905 */
1906int of_update_property(struct device_node *np, struct property *newprop)
1907{
1908        struct property *oldprop;
1909        unsigned long flags;
1910        int rc;
1911
1912        if (!newprop->name)
1913                return -EINVAL;
1914
1915        mutex_lock(&of_mutex);
1916
1917        raw_spin_lock_irqsave(&devtree_lock, flags);
1918        rc = __of_update_property(np, newprop, &oldprop);
1919        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1920
1921        if (!rc)
1922                __of_update_property_sysfs(np, newprop, oldprop);
1923
1924        mutex_unlock(&of_mutex);
1925
1926        if (!rc)
1927                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1928
1929        return rc;
1930}
1931
1932static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1933                         int id, const char *stem, int stem_len)
1934{
1935        ap->np = np;
1936        ap->id = id;
1937        strncpy(ap->stem, stem, stem_len);
1938        ap->stem[stem_len] = 0;
1939        list_add_tail(&ap->link, &aliases_lookup);
1940        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1941                 ap->alias, ap->stem, ap->id, np);
1942}
1943
1944/**
1945 * of_alias_scan - Scan all properties of the 'aliases' node
1946 *
1947 * The function scans all the properties of the 'aliases' node and populates
1948 * the global lookup table with the properties.  It returns the
1949 * number of alias properties found, or an error code in case of failure.
1950 *
1951 * @dt_alloc:   An allocator that provides a virtual address to memory
1952 *              for storing the resulting tree
1953 */
1954void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1955{
1956        struct property *pp;
1957
1958        of_aliases = of_find_node_by_path("/aliases");
1959        of_chosen = of_find_node_by_path("/chosen");
1960        if (of_chosen == NULL)
1961                of_chosen = of_find_node_by_path("/chosen@0");
1962
1963        if (of_chosen) {
1964                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1965                const char *name = NULL;
1966
1967                if (of_property_read_string(of_chosen, "stdout-path", &name))
1968                        of_property_read_string(of_chosen, "linux,stdout-path",
1969                                                &name);
1970                if (IS_ENABLED(CONFIG_PPC) && !name)
1971                        of_property_read_string(of_aliases, "stdout", &name);
1972                if (name)
1973                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1974        }
1975
1976        if (!of_aliases)
1977                return;
1978
1979        for_each_property_of_node(of_aliases, pp) {
1980                const char *start = pp->name;
1981                const char *end = start + strlen(start);
1982                struct device_node *np;
1983                struct alias_prop *ap;
1984                int id, len;
1985
1986                /* Skip those we do not want to proceed */
1987                if (!strcmp(pp->name, "name") ||
1988                    !strcmp(pp->name, "phandle") ||
1989                    !strcmp(pp->name, "linux,phandle"))
1990                        continue;
1991
1992                np = of_find_node_by_path(pp->value);
1993                if (!np)
1994                        continue;
1995
1996                /* walk the alias backwards to extract the id and work out
1997                 * the 'stem' string */
1998                while (isdigit(*(end-1)) && end > start)
1999                        end--;
2000                len = end - start;
2001
2002                if (kstrtoint(end, 10, &id) < 0)
2003                        continue;
2004
2005                /* Allocate an alias_prop with enough space for the stem */
2006                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2007                if (!ap)
2008                        continue;
2009                memset(ap, 0, sizeof(*ap) + len + 1);
2010                ap->alias = start;
2011                of_alias_add(ap, np, id, start, len);
2012        }
2013}
2014
2015/**
2016 * of_alias_get_id - Get alias id for the given device_node
2017 * @np:         Pointer to the given device_node
2018 * @stem:       Alias stem of the given device_node
2019 *
2020 * The function travels the lookup table to get the alias id for the given
2021 * device_node and alias stem.  It returns the alias id if found.
2022 */
2023int of_alias_get_id(struct device_node *np, const char *stem)
2024{
2025        struct alias_prop *app;
2026        int id = -ENODEV;
2027
2028        mutex_lock(&of_mutex);
2029        list_for_each_entry(app, &aliases_lookup, link) {
2030                if (strcmp(app->stem, stem) != 0)
2031                        continue;
2032
2033                if (np == app->np) {
2034                        id = app->id;
2035                        break;
2036                }
2037        }
2038        mutex_unlock(&of_mutex);
2039
2040        return id;
2041}
2042EXPORT_SYMBOL_GPL(of_alias_get_id);
2043
2044/**
2045 * of_alias_get_alias_list - Get alias list for the given device driver
2046 * @matches:    Array of OF device match structures to search in
2047 * @stem:       Alias stem of the given device_node
2048 * @bitmap:     Bitmap field pointer
2049 * @nbits:      Maximum number of alias IDs which can be recorded in bitmap
2050 *
2051 * The function travels the lookup table to record alias ids for the given
2052 * device match structures and alias stem.
2053 *
2054 * Return:      0 or -ENOSYS when !CONFIG_OF or
2055 *              -EOVERFLOW if alias ID is greater then allocated nbits
2056 */
2057int of_alias_get_alias_list(const struct of_device_id *matches,
2058                             const char *stem, unsigned long *bitmap,
2059                             unsigned int nbits)
2060{
2061        struct alias_prop *app;
2062        int ret = 0;
2063
2064        /* Zero bitmap field to make sure that all the time it is clean */
2065        bitmap_zero(bitmap, nbits);
2066
2067        mutex_lock(&of_mutex);
2068        pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2069        list_for_each_entry(app, &aliases_lookup, link) {
2070                pr_debug("%s: stem: %s, id: %d\n",
2071                         __func__, app->stem, app->id);
2072
2073                if (strcmp(app->stem, stem) != 0) {
2074                        pr_debug("%s: stem comparison didn't pass %s\n",
2075                                 __func__, app->stem);
2076                        continue;
2077                }
2078
2079                if (of_match_node(matches, app->np)) {
2080                        pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2081
2082                        if (app->id >= nbits) {
2083                                pr_warn("%s: ID %d >= than bitmap field %d\n",
2084                                        __func__, app->id, nbits);
2085                                ret = -EOVERFLOW;
2086                        } else {
2087                                set_bit(app->id, bitmap);
2088                        }
2089                }
2090        }
2091        mutex_unlock(&of_mutex);
2092
2093        return ret;
2094}
2095EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2096
2097/**
2098 * of_alias_get_highest_id - Get highest alias id for the given stem
2099 * @stem:       Alias stem to be examined
2100 *
2101 * The function travels the lookup table to get the highest alias id for the
2102 * given alias stem.  It returns the alias id if found.
2103 */
2104int of_alias_get_highest_id(const char *stem)
2105{
2106        struct alias_prop *app;
2107        int id = -ENODEV;
2108
2109        mutex_lock(&of_mutex);
2110        list_for_each_entry(app, &aliases_lookup, link) {
2111                if (strcmp(app->stem, stem) != 0)
2112                        continue;
2113
2114                if (app->id > id)
2115                        id = app->id;
2116        }
2117        mutex_unlock(&of_mutex);
2118
2119        return id;
2120}
2121EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2122
2123/**
2124 * of_console_check() - Test and setup console for DT setup
2125 * @dn - Pointer to device node
2126 * @name - Name to use for preferred console without index. ex. "ttyS"
2127 * @index - Index to use for preferred console.
2128 *
2129 * Check if the given device node matches the stdout-path property in the
2130 * /chosen node. If it does then register it as the preferred console and return
2131 * TRUE. Otherwise return FALSE.
2132 */
2133bool of_console_check(struct device_node *dn, char *name, int index)
2134{
2135        if (!dn || dn != of_stdout || console_set_on_cmdline)
2136                return false;
2137
2138        /*
2139         * XXX: cast `options' to char pointer to suppress complication
2140         * warnings: printk, UART and console drivers expect char pointer.
2141         */
2142        return !add_preferred_console(name, index, (char *)of_stdout_options);
2143}
2144EXPORT_SYMBOL_GPL(of_console_check);
2145
2146/**
2147 *      of_find_next_cache_node - Find a node's subsidiary cache
2148 *      @np:    node of type "cpu" or "cache"
2149 *
2150 *      Returns a node pointer with refcount incremented, use
2151 *      of_node_put() on it when done.  Caller should hold a reference
2152 *      to np.
2153 */
2154struct device_node *of_find_next_cache_node(const struct device_node *np)
2155{
2156        struct device_node *child, *cache_node;
2157
2158        cache_node = of_parse_phandle(np, "l2-cache", 0);
2159        if (!cache_node)
2160                cache_node = of_parse_phandle(np, "next-level-cache", 0);
2161
2162        if (cache_node)
2163                return cache_node;
2164
2165        /* OF on pmac has nodes instead of properties named "l2-cache"
2166         * beneath CPU nodes.
2167         */
2168        if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2169                for_each_child_of_node(np, child)
2170                        if (of_node_is_type(child, "cache"))
2171                                return child;
2172
2173        return NULL;
2174}
2175
2176/**
2177 * of_find_last_cache_level - Find the level at which the last cache is
2178 *              present for the given logical cpu
2179 *
2180 * @cpu: cpu number(logical index) for which the last cache level is needed
2181 *
2182 * Returns the the level at which the last cache is present. It is exactly
2183 * same as  the total number of cache levels for the given logical cpu.
2184 */
2185int of_find_last_cache_level(unsigned int cpu)
2186{
2187        u32 cache_level = 0;
2188        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2189
2190        while (np) {
2191                prev = np;
2192                of_node_put(np);
2193                np = of_find_next_cache_node(np);
2194        }
2195
2196        of_property_read_u32(prev, "cache-level", &cache_level);
2197
2198        return cache_level;
2199}
2200
2201/**
2202 * of_map_rid - Translate a requester ID through a downstream mapping.
2203 * @np: root complex device node.
2204 * @rid: device requester ID to map.
2205 * @map_name: property name of the map to use.
2206 * @map_mask_name: optional property name of the mask to use.
2207 * @target: optional pointer to a target device node.
2208 * @id_out: optional pointer to receive the translated ID.
2209 *
2210 * Given a device requester ID, look up the appropriate implementation-defined
2211 * platform ID and/or the target device which receives transactions on that
2212 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2213 * @id_out may be NULL if only the other is required. If @target points to
2214 * a non-NULL device node pointer, only entries targeting that node will be
2215 * matched; if it points to a NULL value, it will receive the device node of
2216 * the first matching target phandle, with a reference held.
2217 *
2218 * Return: 0 on success or a standard error code on failure.
2219 */
2220int of_map_rid(struct device_node *np, u32 rid,
2221               const char *map_name, const char *map_mask_name,
2222               struct device_node **target, u32 *id_out)
2223{
2224        u32 map_mask, masked_rid;
2225        int map_len;
2226        const __be32 *map = NULL;
2227
2228        if (!np || !map_name || (!target && !id_out))
2229                return -EINVAL;
2230
2231        map = of_get_property(np, map_name, &map_len);
2232        if (!map) {
2233                if (target)
2234                        return -ENODEV;
2235                /* Otherwise, no map implies no translation */
2236                *id_out = rid;
2237                return 0;
2238        }
2239
2240        if (!map_len || map_len % (4 * sizeof(*map))) {
2241                pr_err("%pOF: Error: Bad %s length: %d\n", np,
2242                        map_name, map_len);
2243                return -EINVAL;
2244        }
2245
2246        /* The default is to select all bits. */
2247        map_mask = 0xffffffff;
2248
2249        /*
2250         * Can be overridden by "{iommu,msi}-map-mask" property.
2251         * If of_property_read_u32() fails, the default is used.
2252         */
2253        if (map_mask_name)
2254                of_property_read_u32(np, map_mask_name, &map_mask);
2255
2256        masked_rid = map_mask & rid;
2257        for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2258                struct device_node *phandle_node;
2259                u32 rid_base = be32_to_cpup(map + 0);
2260                u32 phandle = be32_to_cpup(map + 1);
2261                u32 out_base = be32_to_cpup(map + 2);
2262                u32 rid_len = be32_to_cpup(map + 3);
2263
2264                if (rid_base & ~map_mask) {
2265                        pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores rid-base (0x%x)\n",
2266                                np, map_name, map_name,
2267                                map_mask, rid_base);
2268                        return -EFAULT;
2269                }
2270
2271                if (masked_rid < rid_base || masked_rid >= rid_base + rid_len)
2272                        continue;
2273
2274                phandle_node = of_find_node_by_phandle(phandle);
2275                if (!phandle_node)
2276                        return -ENODEV;
2277
2278                if (target) {
2279                        if (*target)
2280                                of_node_put(phandle_node);
2281                        else
2282                                *target = phandle_node;
2283
2284                        if (*target != phandle_node)
2285                                continue;
2286                }
2287
2288                if (id_out)
2289                        *id_out = masked_rid - rid_base + out_base;
2290
2291                pr_debug("%pOF: %s, using mask %08x, rid-base: %08x, out-base: %08x, length: %08x, rid: %08x -> %08x\n",
2292                        np, map_name, map_mask, rid_base, out_base,
2293                        rid_len, rid, masked_rid - rid_base + out_base);
2294                return 0;
2295        }
2296
2297        pr_info("%pOF: no %s translation for rid 0x%x on %pOF\n", np, map_name,
2298                rid, target && *target ? *target : NULL);
2299
2300        /* Bypasses translation */
2301        if (id_out)
2302                *id_out = rid;
2303        return 0;
2304}
2305EXPORT_SYMBOL_GPL(of_map_rid);
2306