linux/drivers/opp/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *      Nishanth Menon
   7 *      Romit Dasgupta
   8 *      Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/export.h>
  19#include <linux/pm_domain.h>
  20#include <linux/regulator/consumer.h>
  21
  22#include "opp.h"
  23
  24/*
  25 * The root of the list of all opp-tables. All opp_table structures branch off
  26 * from here, with each opp_table containing the list of opps it supports in
  27 * various states of availability.
  28 */
  29LIST_HEAD(opp_tables);
  30/* Lock to allow exclusive modification to the device and opp lists */
  31DEFINE_MUTEX(opp_table_lock);
  32
  33static struct opp_device *_find_opp_dev(const struct device *dev,
  34                                        struct opp_table *opp_table)
  35{
  36        struct opp_device *opp_dev;
  37
  38        list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  39                if (opp_dev->dev == dev)
  40                        return opp_dev;
  41
  42        return NULL;
  43}
  44
  45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  46{
  47        struct opp_table *opp_table;
  48        bool found;
  49
  50        list_for_each_entry(opp_table, &opp_tables, node) {
  51                mutex_lock(&opp_table->lock);
  52                found = !!_find_opp_dev(dev, opp_table);
  53                mutex_unlock(&opp_table->lock);
  54
  55                if (found) {
  56                        _get_opp_table_kref(opp_table);
  57
  58                        return opp_table;
  59                }
  60        }
  61
  62        return ERR_PTR(-ENODEV);
  63}
  64
  65/**
  66 * _find_opp_table() - find opp_table struct using device pointer
  67 * @dev:        device pointer used to lookup OPP table
  68 *
  69 * Search OPP table for one containing matching device.
  70 *
  71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  72 * -EINVAL based on type of error.
  73 *
  74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  75 */
  76struct opp_table *_find_opp_table(struct device *dev)
  77{
  78        struct opp_table *opp_table;
  79
  80        if (IS_ERR_OR_NULL(dev)) {
  81                pr_err("%s: Invalid parameters\n", __func__);
  82                return ERR_PTR(-EINVAL);
  83        }
  84
  85        mutex_lock(&opp_table_lock);
  86        opp_table = _find_opp_table_unlocked(dev);
  87        mutex_unlock(&opp_table_lock);
  88
  89        return opp_table;
  90}
  91
  92/**
  93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  94 * @opp:        opp for which voltage has to be returned for
  95 *
  96 * Return: voltage in micro volt corresponding to the opp, else
  97 * return 0
  98 *
  99 * This is useful only for devices with single power supply.
 100 */
 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 102{
 103        if (IS_ERR_OR_NULL(opp)) {
 104                pr_err("%s: Invalid parameters\n", __func__);
 105                return 0;
 106        }
 107
 108        return opp->supplies[0].u_volt;
 109}
 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 111
 112/**
 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 114 * @opp:        opp for which frequency has to be returned for
 115 *
 116 * Return: frequency in hertz corresponding to the opp, else
 117 * return 0
 118 */
 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 120{
 121        if (IS_ERR_OR_NULL(opp) || !opp->available) {
 122                pr_err("%s: Invalid parameters\n", __func__);
 123                return 0;
 124        }
 125
 126        return opp->rate;
 127}
 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 129
 130/**
 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 132 * @opp:        opp for which level value has to be returned for
 133 *
 134 * Return: level read from device tree corresponding to the opp, else
 135 * return 0.
 136 */
 137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 138{
 139        if (IS_ERR_OR_NULL(opp) || !opp->available) {
 140                pr_err("%s: Invalid parameters\n", __func__);
 141                return 0;
 142        }
 143
 144        return opp->level;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 147
 148/**
 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 150 * @opp: opp for which turbo mode is being verified
 151 *
 152 * Turbo OPPs are not for normal use, and can be enabled (under certain
 153 * conditions) for short duration of times to finish high throughput work
 154 * quickly. Running on them for longer times may overheat the chip.
 155 *
 156 * Return: true if opp is turbo opp, else false.
 157 */
 158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 159{
 160        if (IS_ERR_OR_NULL(opp) || !opp->available) {
 161                pr_err("%s: Invalid parameters\n", __func__);
 162                return false;
 163        }
 164
 165        return opp->turbo;
 166}
 167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 168
 169/**
 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 171 * @dev:        device for which we do this operation
 172 *
 173 * Return: This function returns the max clock latency in nanoseconds.
 174 */
 175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 176{
 177        struct opp_table *opp_table;
 178        unsigned long clock_latency_ns;
 179
 180        opp_table = _find_opp_table(dev);
 181        if (IS_ERR(opp_table))
 182                return 0;
 183
 184        clock_latency_ns = opp_table->clock_latency_ns_max;
 185
 186        dev_pm_opp_put_opp_table(opp_table);
 187
 188        return clock_latency_ns;
 189}
 190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 191
 192/**
 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 194 * @dev: device for which we do this operation
 195 *
 196 * Return: This function returns the max voltage latency in nanoseconds.
 197 */
 198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 199{
 200        struct opp_table *opp_table;
 201        struct dev_pm_opp *opp;
 202        struct regulator *reg;
 203        unsigned long latency_ns = 0;
 204        int ret, i, count;
 205        struct {
 206                unsigned long min;
 207                unsigned long max;
 208        } *uV;
 209
 210        opp_table = _find_opp_table(dev);
 211        if (IS_ERR(opp_table))
 212                return 0;
 213
 214        /* Regulator may not be required for the device */
 215        if (!opp_table->regulators)
 216                goto put_opp_table;
 217
 218        count = opp_table->regulator_count;
 219
 220        uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 221        if (!uV)
 222                goto put_opp_table;
 223
 224        mutex_lock(&opp_table->lock);
 225
 226        for (i = 0; i < count; i++) {
 227                uV[i].min = ~0;
 228                uV[i].max = 0;
 229
 230                list_for_each_entry(opp, &opp_table->opp_list, node) {
 231                        if (!opp->available)
 232                                continue;
 233
 234                        if (opp->supplies[i].u_volt_min < uV[i].min)
 235                                uV[i].min = opp->supplies[i].u_volt_min;
 236                        if (opp->supplies[i].u_volt_max > uV[i].max)
 237                                uV[i].max = opp->supplies[i].u_volt_max;
 238                }
 239        }
 240
 241        mutex_unlock(&opp_table->lock);
 242
 243        /*
 244         * The caller needs to ensure that opp_table (and hence the regulator)
 245         * isn't freed, while we are executing this routine.
 246         */
 247        for (i = 0; i < count; i++) {
 248                reg = opp_table->regulators[i];
 249                ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 250                if (ret > 0)
 251                        latency_ns += ret * 1000;
 252        }
 253
 254        kfree(uV);
 255put_opp_table:
 256        dev_pm_opp_put_opp_table(opp_table);
 257
 258        return latency_ns;
 259}
 260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 261
 262/**
 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 264 *                                           nanoseconds
 265 * @dev: device for which we do this operation
 266 *
 267 * Return: This function returns the max transition latency, in nanoseconds, to
 268 * switch from one OPP to other.
 269 */
 270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 271{
 272        return dev_pm_opp_get_max_volt_latency(dev) +
 273                dev_pm_opp_get_max_clock_latency(dev);
 274}
 275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 276
 277/**
 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 279 * @dev:        device for which we do this operation
 280 *
 281 * Return: This function returns the frequency of the OPP marked as suspend_opp
 282 * if one is available, else returns 0;
 283 */
 284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 285{
 286        struct opp_table *opp_table;
 287        unsigned long freq = 0;
 288
 289        opp_table = _find_opp_table(dev);
 290        if (IS_ERR(opp_table))
 291                return 0;
 292
 293        if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 294                freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 295
 296        dev_pm_opp_put_opp_table(opp_table);
 297
 298        return freq;
 299}
 300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 301
 302int _get_opp_count(struct opp_table *opp_table)
 303{
 304        struct dev_pm_opp *opp;
 305        int count = 0;
 306
 307        mutex_lock(&opp_table->lock);
 308
 309        list_for_each_entry(opp, &opp_table->opp_list, node) {
 310                if (opp->available)
 311                        count++;
 312        }
 313
 314        mutex_unlock(&opp_table->lock);
 315
 316        return count;
 317}
 318
 319/**
 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 321 * @dev:        device for which we do this operation
 322 *
 323 * Return: This function returns the number of available opps if there are any,
 324 * else returns 0 if none or the corresponding error value.
 325 */
 326int dev_pm_opp_get_opp_count(struct device *dev)
 327{
 328        struct opp_table *opp_table;
 329        int count;
 330
 331        opp_table = _find_opp_table(dev);
 332        if (IS_ERR(opp_table)) {
 333                count = PTR_ERR(opp_table);
 334                dev_dbg(dev, "%s: OPP table not found (%d)\n",
 335                        __func__, count);
 336                return count;
 337        }
 338
 339        count = _get_opp_count(opp_table);
 340        dev_pm_opp_put_opp_table(opp_table);
 341
 342        return count;
 343}
 344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 345
 346/**
 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 348 * @dev:                device for which we do this operation
 349 * @freq:               frequency to search for
 350 * @available:          true/false - match for available opp
 351 *
 352 * Return: Searches for exact match in the opp table and returns pointer to the
 353 * matching opp if found, else returns ERR_PTR in case of error and should
 354 * be handled using IS_ERR. Error return values can be:
 355 * EINVAL:      for bad pointer
 356 * ERANGE:      no match found for search
 357 * ENODEV:      if device not found in list of registered devices
 358 *
 359 * Note: available is a modifier for the search. if available=true, then the
 360 * match is for exact matching frequency and is available in the stored OPP
 361 * table. if false, the match is for exact frequency which is not available.
 362 *
 363 * This provides a mechanism to enable an opp which is not available currently
 364 * or the opposite as well.
 365 *
 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 367 * use.
 368 */
 369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 370                                              unsigned long freq,
 371                                              bool available)
 372{
 373        struct opp_table *opp_table;
 374        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 375
 376        opp_table = _find_opp_table(dev);
 377        if (IS_ERR(opp_table)) {
 378                int r = PTR_ERR(opp_table);
 379
 380                dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 381                return ERR_PTR(r);
 382        }
 383
 384        mutex_lock(&opp_table->lock);
 385
 386        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 387                if (temp_opp->available == available &&
 388                                temp_opp->rate == freq) {
 389                        opp = temp_opp;
 390
 391                        /* Increment the reference count of OPP */
 392                        dev_pm_opp_get(opp);
 393                        break;
 394                }
 395        }
 396
 397        mutex_unlock(&opp_table->lock);
 398        dev_pm_opp_put_opp_table(opp_table);
 399
 400        return opp;
 401}
 402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 403
 404static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 405                                                   unsigned long *freq)
 406{
 407        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 408
 409        mutex_lock(&opp_table->lock);
 410
 411        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 412                if (temp_opp->available && temp_opp->rate >= *freq) {
 413                        opp = temp_opp;
 414                        *freq = opp->rate;
 415
 416                        /* Increment the reference count of OPP */
 417                        dev_pm_opp_get(opp);
 418                        break;
 419                }
 420        }
 421
 422        mutex_unlock(&opp_table->lock);
 423
 424        return opp;
 425}
 426
 427/**
 428 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 429 * @dev:        device for which we do this operation
 430 * @freq:       Start frequency
 431 *
 432 * Search for the matching ceil *available* OPP from a starting freq
 433 * for a device.
 434 *
 435 * Return: matching *opp and refreshes *freq accordingly, else returns
 436 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 437 * values can be:
 438 * EINVAL:      for bad pointer
 439 * ERANGE:      no match found for search
 440 * ENODEV:      if device not found in list of registered devices
 441 *
 442 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 443 * use.
 444 */
 445struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 446                                             unsigned long *freq)
 447{
 448        struct opp_table *opp_table;
 449        struct dev_pm_opp *opp;
 450
 451        if (!dev || !freq) {
 452                dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 453                return ERR_PTR(-EINVAL);
 454        }
 455
 456        opp_table = _find_opp_table(dev);
 457        if (IS_ERR(opp_table))
 458                return ERR_CAST(opp_table);
 459
 460        opp = _find_freq_ceil(opp_table, freq);
 461
 462        dev_pm_opp_put_opp_table(opp_table);
 463
 464        return opp;
 465}
 466EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 467
 468/**
 469 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 470 * @dev:        device for which we do this operation
 471 * @freq:       Start frequency
 472 *
 473 * Search for the matching floor *available* OPP from a starting freq
 474 * for a device.
 475 *
 476 * Return: matching *opp and refreshes *freq accordingly, else returns
 477 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 478 * values can be:
 479 * EINVAL:      for bad pointer
 480 * ERANGE:      no match found for search
 481 * ENODEV:      if device not found in list of registered devices
 482 *
 483 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 484 * use.
 485 */
 486struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 487                                              unsigned long *freq)
 488{
 489        struct opp_table *opp_table;
 490        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 491
 492        if (!dev || !freq) {
 493                dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 494                return ERR_PTR(-EINVAL);
 495        }
 496
 497        opp_table = _find_opp_table(dev);
 498        if (IS_ERR(opp_table))
 499                return ERR_CAST(opp_table);
 500
 501        mutex_lock(&opp_table->lock);
 502
 503        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 504                if (temp_opp->available) {
 505                        /* go to the next node, before choosing prev */
 506                        if (temp_opp->rate > *freq)
 507                                break;
 508                        else
 509                                opp = temp_opp;
 510                }
 511        }
 512
 513        /* Increment the reference count of OPP */
 514        if (!IS_ERR(opp))
 515                dev_pm_opp_get(opp);
 516        mutex_unlock(&opp_table->lock);
 517        dev_pm_opp_put_opp_table(opp_table);
 518
 519        if (!IS_ERR(opp))
 520                *freq = opp->rate;
 521
 522        return opp;
 523}
 524EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 525
 526/**
 527 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
 528 *                                       target voltage.
 529 * @dev:        Device for which we do this operation.
 530 * @u_volt:     Target voltage.
 531 *
 532 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
 533 *
 534 * Return: matching *opp, else returns ERR_PTR in case of error which should be
 535 * handled using IS_ERR.
 536 *
 537 * Error return values can be:
 538 * EINVAL:      bad parameters
 539 *
 540 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 541 * use.
 542 */
 543struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
 544                                                     unsigned long u_volt)
 545{
 546        struct opp_table *opp_table;
 547        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 548
 549        if (!dev || !u_volt) {
 550                dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
 551                        u_volt);
 552                return ERR_PTR(-EINVAL);
 553        }
 554
 555        opp_table = _find_opp_table(dev);
 556        if (IS_ERR(opp_table))
 557                return ERR_CAST(opp_table);
 558
 559        mutex_lock(&opp_table->lock);
 560
 561        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 562                if (temp_opp->available) {
 563                        if (temp_opp->supplies[0].u_volt > u_volt)
 564                                break;
 565                        opp = temp_opp;
 566                }
 567        }
 568
 569        /* Increment the reference count of OPP */
 570        if (!IS_ERR(opp))
 571                dev_pm_opp_get(opp);
 572
 573        mutex_unlock(&opp_table->lock);
 574        dev_pm_opp_put_opp_table(opp_table);
 575
 576        return opp;
 577}
 578EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
 579
 580static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 581                            struct dev_pm_opp_supply *supply)
 582{
 583        int ret;
 584
 585        /* Regulator not available for device */
 586        if (IS_ERR(reg)) {
 587                dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 588                        PTR_ERR(reg));
 589                return 0;
 590        }
 591
 592        dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 593                supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 594
 595        ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 596                                            supply->u_volt, supply->u_volt_max);
 597        if (ret)
 598                dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 599                        __func__, supply->u_volt_min, supply->u_volt,
 600                        supply->u_volt_max, ret);
 601
 602        return ret;
 603}
 604
 605static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 606                                            unsigned long freq)
 607{
 608        int ret;
 609
 610        ret = clk_set_rate(clk, freq);
 611        if (ret) {
 612                dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 613                        ret);
 614        }
 615
 616        return ret;
 617}
 618
 619static int _generic_set_opp_regulator(const struct opp_table *opp_table,
 620                                      struct device *dev,
 621                                      unsigned long old_freq,
 622                                      unsigned long freq,
 623                                      struct dev_pm_opp_supply *old_supply,
 624                                      struct dev_pm_opp_supply *new_supply)
 625{
 626        struct regulator *reg = opp_table->regulators[0];
 627        int ret;
 628
 629        /* This function only supports single regulator per device */
 630        if (WARN_ON(opp_table->regulator_count > 1)) {
 631                dev_err(dev, "multiple regulators are not supported\n");
 632                return -EINVAL;
 633        }
 634
 635        /* Scaling up? Scale voltage before frequency */
 636        if (freq >= old_freq) {
 637                ret = _set_opp_voltage(dev, reg, new_supply);
 638                if (ret)
 639                        goto restore_voltage;
 640        }
 641
 642        /* Change frequency */
 643        ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
 644        if (ret)
 645                goto restore_voltage;
 646
 647        /* Scaling down? Scale voltage after frequency */
 648        if (freq < old_freq) {
 649                ret = _set_opp_voltage(dev, reg, new_supply);
 650                if (ret)
 651                        goto restore_freq;
 652        }
 653
 654        return 0;
 655
 656restore_freq:
 657        if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
 658                dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 659                        __func__, old_freq);
 660restore_voltage:
 661        /* This shouldn't harm even if the voltages weren't updated earlier */
 662        if (old_supply)
 663                _set_opp_voltage(dev, reg, old_supply);
 664
 665        return ret;
 666}
 667
 668static int _set_opp_custom(const struct opp_table *opp_table,
 669                           struct device *dev, unsigned long old_freq,
 670                           unsigned long freq,
 671                           struct dev_pm_opp_supply *old_supply,
 672                           struct dev_pm_opp_supply *new_supply)
 673{
 674        struct dev_pm_set_opp_data *data;
 675        int size;
 676
 677        data = opp_table->set_opp_data;
 678        data->regulators = opp_table->regulators;
 679        data->regulator_count = opp_table->regulator_count;
 680        data->clk = opp_table->clk;
 681        data->dev = dev;
 682
 683        data->old_opp.rate = old_freq;
 684        size = sizeof(*old_supply) * opp_table->regulator_count;
 685        if (!old_supply)
 686                memset(data->old_opp.supplies, 0, size);
 687        else
 688                memcpy(data->old_opp.supplies, old_supply, size);
 689
 690        data->new_opp.rate = freq;
 691        memcpy(data->new_opp.supplies, new_supply, size);
 692
 693        return opp_table->set_opp(data);
 694}
 695
 696/* This is only called for PM domain for now */
 697static int _set_required_opps(struct device *dev,
 698                              struct opp_table *opp_table,
 699                              struct dev_pm_opp *opp)
 700{
 701        struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 702        struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 703        unsigned int pstate;
 704        int i, ret = 0;
 705
 706        if (!required_opp_tables)
 707                return 0;
 708
 709        /* Single genpd case */
 710        if (!genpd_virt_devs) {
 711                pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
 712                ret = dev_pm_genpd_set_performance_state(dev, pstate);
 713                if (ret) {
 714                        dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 715                                dev_name(dev), pstate, ret);
 716                }
 717                return ret;
 718        }
 719
 720        /* Multiple genpd case */
 721
 722        /*
 723         * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 724         * after it is freed from another thread.
 725         */
 726        mutex_lock(&opp_table->genpd_virt_dev_lock);
 727
 728        for (i = 0; i < opp_table->required_opp_count; i++) {
 729                pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 730
 731                if (!genpd_virt_devs[i])
 732                        continue;
 733
 734                ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
 735                if (ret) {
 736                        dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
 737                                dev_name(genpd_virt_devs[i]), pstate, ret);
 738                        break;
 739                }
 740        }
 741        mutex_unlock(&opp_table->genpd_virt_dev_lock);
 742
 743        return ret;
 744}
 745
 746/**
 747 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 748 * @dev:         device for which we do this operation
 749 * @target_freq: frequency to achieve
 750 *
 751 * This configures the power-supplies to the levels specified by the OPP
 752 * corresponding to the target_freq, and programs the clock to a value <=
 753 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
 754 * provided by the opp, should have already rounded to the target OPP's
 755 * frequency.
 756 */
 757int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
 758{
 759        struct opp_table *opp_table;
 760        unsigned long freq, old_freq, temp_freq;
 761        struct dev_pm_opp *old_opp, *opp;
 762        struct clk *clk;
 763        int ret;
 764
 765        opp_table = _find_opp_table(dev);
 766        if (IS_ERR(opp_table)) {
 767                dev_err(dev, "%s: device opp doesn't exist\n", __func__);
 768                return PTR_ERR(opp_table);
 769        }
 770
 771        if (unlikely(!target_freq)) {
 772                if (opp_table->required_opp_tables) {
 773                        ret = _set_required_opps(dev, opp_table, NULL);
 774                } else {
 775                        dev_err(dev, "target frequency can't be 0\n");
 776                        ret = -EINVAL;
 777                }
 778
 779                goto put_opp_table;
 780        }
 781
 782        clk = opp_table->clk;
 783        if (IS_ERR(clk)) {
 784                dev_err(dev, "%s: No clock available for the device\n",
 785                        __func__);
 786                ret = PTR_ERR(clk);
 787                goto put_opp_table;
 788        }
 789
 790        freq = clk_round_rate(clk, target_freq);
 791        if ((long)freq <= 0)
 792                freq = target_freq;
 793
 794        old_freq = clk_get_rate(clk);
 795
 796        /* Return early if nothing to do */
 797        if (old_freq == freq) {
 798                dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
 799                        __func__, freq);
 800                ret = 0;
 801                goto put_opp_table;
 802        }
 803
 804        temp_freq = old_freq;
 805        old_opp = _find_freq_ceil(opp_table, &temp_freq);
 806        if (IS_ERR(old_opp)) {
 807                dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
 808                        __func__, old_freq, PTR_ERR(old_opp));
 809        }
 810
 811        temp_freq = freq;
 812        opp = _find_freq_ceil(opp_table, &temp_freq);
 813        if (IS_ERR(opp)) {
 814                ret = PTR_ERR(opp);
 815                dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
 816                        __func__, freq, ret);
 817                goto put_old_opp;
 818        }
 819
 820        dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
 821                old_freq, freq);
 822
 823        /* Scaling up? Configure required OPPs before frequency */
 824        if (freq >= old_freq) {
 825                ret = _set_required_opps(dev, opp_table, opp);
 826                if (ret)
 827                        goto put_opp;
 828        }
 829
 830        if (opp_table->set_opp) {
 831                ret = _set_opp_custom(opp_table, dev, old_freq, freq,
 832                                      IS_ERR(old_opp) ? NULL : old_opp->supplies,
 833                                      opp->supplies);
 834        } else if (opp_table->regulators) {
 835                ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
 836                                                 IS_ERR(old_opp) ? NULL : old_opp->supplies,
 837                                                 opp->supplies);
 838        } else {
 839                /* Only frequency scaling */
 840                ret = _generic_set_opp_clk_only(dev, clk, freq);
 841        }
 842
 843        /* Scaling down? Configure required OPPs after frequency */
 844        if (!ret && freq < old_freq) {
 845                ret = _set_required_opps(dev, opp_table, opp);
 846                if (ret)
 847                        dev_err(dev, "Failed to set required opps: %d\n", ret);
 848        }
 849
 850put_opp:
 851        dev_pm_opp_put(opp);
 852put_old_opp:
 853        if (!IS_ERR(old_opp))
 854                dev_pm_opp_put(old_opp);
 855put_opp_table:
 856        dev_pm_opp_put_opp_table(opp_table);
 857        return ret;
 858}
 859EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
 860
 861/* OPP-dev Helpers */
 862static void _remove_opp_dev(struct opp_device *opp_dev,
 863                            struct opp_table *opp_table)
 864{
 865        opp_debug_unregister(opp_dev, opp_table);
 866        list_del(&opp_dev->node);
 867        kfree(opp_dev);
 868}
 869
 870static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
 871                                                struct opp_table *opp_table)
 872{
 873        struct opp_device *opp_dev;
 874
 875        opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
 876        if (!opp_dev)
 877                return NULL;
 878
 879        /* Initialize opp-dev */
 880        opp_dev->dev = dev;
 881
 882        list_add(&opp_dev->node, &opp_table->dev_list);
 883
 884        /* Create debugfs entries for the opp_table */
 885        opp_debug_register(opp_dev, opp_table);
 886
 887        return opp_dev;
 888}
 889
 890struct opp_device *_add_opp_dev(const struct device *dev,
 891                                struct opp_table *opp_table)
 892{
 893        struct opp_device *opp_dev;
 894
 895        mutex_lock(&opp_table->lock);
 896        opp_dev = _add_opp_dev_unlocked(dev, opp_table);
 897        mutex_unlock(&opp_table->lock);
 898
 899        return opp_dev;
 900}
 901
 902static struct opp_table *_allocate_opp_table(struct device *dev, int index)
 903{
 904        struct opp_table *opp_table;
 905        struct opp_device *opp_dev;
 906        int ret;
 907
 908        /*
 909         * Allocate a new OPP table. In the infrequent case where a new
 910         * device is needed to be added, we pay this penalty.
 911         */
 912        opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
 913        if (!opp_table)
 914                return NULL;
 915
 916        mutex_init(&opp_table->lock);
 917        mutex_init(&opp_table->genpd_virt_dev_lock);
 918        INIT_LIST_HEAD(&opp_table->dev_list);
 919
 920        /* Mark regulator count uninitialized */
 921        opp_table->regulator_count = -1;
 922
 923        opp_dev = _add_opp_dev(dev, opp_table);
 924        if (!opp_dev) {
 925                kfree(opp_table);
 926                return NULL;
 927        }
 928
 929        _of_init_opp_table(opp_table, dev, index);
 930
 931        /* Find clk for the device */
 932        opp_table->clk = clk_get(dev, NULL);
 933        if (IS_ERR(opp_table->clk)) {
 934                ret = PTR_ERR(opp_table->clk);
 935                if (ret != -EPROBE_DEFER)
 936                        dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
 937                                ret);
 938        }
 939
 940        BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
 941        INIT_LIST_HEAD(&opp_table->opp_list);
 942        kref_init(&opp_table->kref);
 943
 944        /* Secure the device table modification */
 945        list_add(&opp_table->node, &opp_tables);
 946        return opp_table;
 947}
 948
 949void _get_opp_table_kref(struct opp_table *opp_table)
 950{
 951        kref_get(&opp_table->kref);
 952}
 953
 954static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
 955{
 956        struct opp_table *opp_table;
 957
 958        /* Hold our table modification lock here */
 959        mutex_lock(&opp_table_lock);
 960
 961        opp_table = _find_opp_table_unlocked(dev);
 962        if (!IS_ERR(opp_table))
 963                goto unlock;
 964
 965        opp_table = _managed_opp(dev, index);
 966        if (opp_table) {
 967                if (!_add_opp_dev_unlocked(dev, opp_table)) {
 968                        dev_pm_opp_put_opp_table(opp_table);
 969                        opp_table = NULL;
 970                }
 971                goto unlock;
 972        }
 973
 974        opp_table = _allocate_opp_table(dev, index);
 975
 976unlock:
 977        mutex_unlock(&opp_table_lock);
 978
 979        return opp_table;
 980}
 981
 982struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
 983{
 984        return _opp_get_opp_table(dev, 0);
 985}
 986EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
 987
 988struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
 989                                                   int index)
 990{
 991        return _opp_get_opp_table(dev, index);
 992}
 993
 994static void _opp_table_kref_release(struct kref *kref)
 995{
 996        struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
 997        struct opp_device *opp_dev, *temp;
 998
 999        _of_clear_opp_table(opp_table);
1000
1001        /* Release clk */
1002        if (!IS_ERR(opp_table->clk))
1003                clk_put(opp_table->clk);
1004
1005        WARN_ON(!list_empty(&opp_table->opp_list));
1006
1007        list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1008                /*
1009                 * The OPP table is getting removed, drop the performance state
1010                 * constraints.
1011                 */
1012                if (opp_table->genpd_performance_state)
1013                        dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1014
1015                _remove_opp_dev(opp_dev, opp_table);
1016        }
1017
1018        mutex_destroy(&opp_table->genpd_virt_dev_lock);
1019        mutex_destroy(&opp_table->lock);
1020        list_del(&opp_table->node);
1021        kfree(opp_table);
1022
1023        mutex_unlock(&opp_table_lock);
1024}
1025
1026void _opp_remove_all_static(struct opp_table *opp_table)
1027{
1028        struct dev_pm_opp *opp, *tmp;
1029
1030        list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1031                if (!opp->dynamic)
1032                        dev_pm_opp_put(opp);
1033        }
1034
1035        opp_table->parsed_static_opps = false;
1036}
1037
1038static void _opp_table_list_kref_release(struct kref *kref)
1039{
1040        struct opp_table *opp_table = container_of(kref, struct opp_table,
1041                                                   list_kref);
1042
1043        _opp_remove_all_static(opp_table);
1044        mutex_unlock(&opp_table_lock);
1045}
1046
1047void _put_opp_list_kref(struct opp_table *opp_table)
1048{
1049        kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1050                       &opp_table_lock);
1051}
1052
1053void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1054{
1055        kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1056                       &opp_table_lock);
1057}
1058EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1059
1060void _opp_free(struct dev_pm_opp *opp)
1061{
1062        kfree(opp);
1063}
1064
1065static void _opp_kref_release(struct dev_pm_opp *opp,
1066                              struct opp_table *opp_table)
1067{
1068        /*
1069         * Notify the changes in the availability of the operable
1070         * frequency/voltage list.
1071         */
1072        blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1073        _of_opp_free_required_opps(opp_table, opp);
1074        opp_debug_remove_one(opp);
1075        list_del(&opp->node);
1076        kfree(opp);
1077}
1078
1079static void _opp_kref_release_unlocked(struct kref *kref)
1080{
1081        struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1082        struct opp_table *opp_table = opp->opp_table;
1083
1084        _opp_kref_release(opp, opp_table);
1085}
1086
1087static void _opp_kref_release_locked(struct kref *kref)
1088{
1089        struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1090        struct opp_table *opp_table = opp->opp_table;
1091
1092        _opp_kref_release(opp, opp_table);
1093        mutex_unlock(&opp_table->lock);
1094}
1095
1096void dev_pm_opp_get(struct dev_pm_opp *opp)
1097{
1098        kref_get(&opp->kref);
1099}
1100
1101void dev_pm_opp_put(struct dev_pm_opp *opp)
1102{
1103        kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1104                       &opp->opp_table->lock);
1105}
1106EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1107
1108static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1109{
1110        kref_put(&opp->kref, _opp_kref_release_unlocked);
1111}
1112
1113/**
1114 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1115 * @dev:        device for which we do this operation
1116 * @freq:       OPP to remove with matching 'freq'
1117 *
1118 * This function removes an opp from the opp table.
1119 */
1120void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1121{
1122        struct dev_pm_opp *opp;
1123        struct opp_table *opp_table;
1124        bool found = false;
1125
1126        opp_table = _find_opp_table(dev);
1127        if (IS_ERR(opp_table))
1128                return;
1129
1130        mutex_lock(&opp_table->lock);
1131
1132        list_for_each_entry(opp, &opp_table->opp_list, node) {
1133                if (opp->rate == freq) {
1134                        found = true;
1135                        break;
1136                }
1137        }
1138
1139        mutex_unlock(&opp_table->lock);
1140
1141        if (found) {
1142                dev_pm_opp_put(opp);
1143
1144                /* Drop the reference taken by dev_pm_opp_add() */
1145                dev_pm_opp_put_opp_table(opp_table);
1146        } else {
1147                dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1148                         __func__, freq);
1149        }
1150
1151        /* Drop the reference taken by _find_opp_table() */
1152        dev_pm_opp_put_opp_table(opp_table);
1153}
1154EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1155
1156/**
1157 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1158 * @dev:        device for which we do this operation
1159 *
1160 * This function removes all dynamically created OPPs from the opp table.
1161 */
1162void dev_pm_opp_remove_all_dynamic(struct device *dev)
1163{
1164        struct opp_table *opp_table;
1165        struct dev_pm_opp *opp, *temp;
1166        int count = 0;
1167
1168        opp_table = _find_opp_table(dev);
1169        if (IS_ERR(opp_table))
1170                return;
1171
1172        mutex_lock(&opp_table->lock);
1173        list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1174                if (opp->dynamic) {
1175                        dev_pm_opp_put_unlocked(opp);
1176                        count++;
1177                }
1178        }
1179        mutex_unlock(&opp_table->lock);
1180
1181        /* Drop the references taken by dev_pm_opp_add() */
1182        while (count--)
1183                dev_pm_opp_put_opp_table(opp_table);
1184
1185        /* Drop the reference taken by _find_opp_table() */
1186        dev_pm_opp_put_opp_table(opp_table);
1187}
1188EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1189
1190struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1191{
1192        struct dev_pm_opp *opp;
1193        int count, supply_size;
1194
1195        /* Allocate space for at least one supply */
1196        count = table->regulator_count > 0 ? table->regulator_count : 1;
1197        supply_size = sizeof(*opp->supplies) * count;
1198
1199        /* allocate new OPP node and supplies structures */
1200        opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1201        if (!opp)
1202                return NULL;
1203
1204        /* Put the supplies at the end of the OPP structure as an empty array */
1205        opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1206        INIT_LIST_HEAD(&opp->node);
1207
1208        return opp;
1209}
1210
1211static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1212                                         struct opp_table *opp_table)
1213{
1214        struct regulator *reg;
1215        int i;
1216
1217        if (!opp_table->regulators)
1218                return true;
1219
1220        for (i = 0; i < opp_table->regulator_count; i++) {
1221                reg = opp_table->regulators[i];
1222
1223                if (!regulator_is_supported_voltage(reg,
1224                                        opp->supplies[i].u_volt_min,
1225                                        opp->supplies[i].u_volt_max)) {
1226                        pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1227                                __func__, opp->supplies[i].u_volt_min,
1228                                opp->supplies[i].u_volt_max);
1229                        return false;
1230                }
1231        }
1232
1233        return true;
1234}
1235
1236static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1237                             struct opp_table *opp_table,
1238                             struct list_head **head)
1239{
1240        struct dev_pm_opp *opp;
1241
1242        /*
1243         * Insert new OPP in order of increasing frequency and discard if
1244         * already present.
1245         *
1246         * Need to use &opp_table->opp_list in the condition part of the 'for'
1247         * loop, don't replace it with head otherwise it will become an infinite
1248         * loop.
1249         */
1250        list_for_each_entry(opp, &opp_table->opp_list, node) {
1251                if (new_opp->rate > opp->rate) {
1252                        *head = &opp->node;
1253                        continue;
1254                }
1255
1256                if (new_opp->rate < opp->rate)
1257                        return 0;
1258
1259                /* Duplicate OPPs */
1260                dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1261                         __func__, opp->rate, opp->supplies[0].u_volt,
1262                         opp->available, new_opp->rate,
1263                         new_opp->supplies[0].u_volt, new_opp->available);
1264
1265                /* Should we compare voltages for all regulators here ? */
1266                return opp->available &&
1267                       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1268        }
1269
1270        return 0;
1271}
1272
1273/*
1274 * Returns:
1275 * 0: On success. And appropriate error message for duplicate OPPs.
1276 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1277 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1278 *  sure we don't print error messages unnecessarily if different parts of
1279 *  kernel try to initialize the OPP table.
1280 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1281 *  should be considered an error by the callers of _opp_add().
1282 */
1283int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1284             struct opp_table *opp_table, bool rate_not_available)
1285{
1286        struct list_head *head;
1287        int ret;
1288
1289        mutex_lock(&opp_table->lock);
1290        head = &opp_table->opp_list;
1291
1292        if (likely(!rate_not_available)) {
1293                ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1294                if (ret) {
1295                        mutex_unlock(&opp_table->lock);
1296                        return ret;
1297                }
1298        }
1299
1300        list_add(&new_opp->node, head);
1301        mutex_unlock(&opp_table->lock);
1302
1303        new_opp->opp_table = opp_table;
1304        kref_init(&new_opp->kref);
1305
1306        opp_debug_create_one(new_opp, opp_table);
1307
1308        if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1309                new_opp->available = false;
1310                dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1311                         __func__, new_opp->rate);
1312        }
1313
1314        return 0;
1315}
1316
1317/**
1318 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1319 * @opp_table:  OPP table
1320 * @dev:        device for which we do this operation
1321 * @freq:       Frequency in Hz for this OPP
1322 * @u_volt:     Voltage in uVolts for this OPP
1323 * @dynamic:    Dynamically added OPPs.
1324 *
1325 * This function adds an opp definition to the opp table and returns status.
1326 * The opp is made available by default and it can be controlled using
1327 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1328 *
1329 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1330 * and freed by dev_pm_opp_of_remove_table.
1331 *
1332 * Return:
1333 * 0            On success OR
1334 *              Duplicate OPPs (both freq and volt are same) and opp->available
1335 * -EEXIST      Freq are same and volt are different OR
1336 *              Duplicate OPPs (both freq and volt are same) and !opp->available
1337 * -ENOMEM      Memory allocation failure
1338 */
1339int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1340                unsigned long freq, long u_volt, bool dynamic)
1341{
1342        struct dev_pm_opp *new_opp;
1343        unsigned long tol;
1344        int ret;
1345
1346        new_opp = _opp_allocate(opp_table);
1347        if (!new_opp)
1348                return -ENOMEM;
1349
1350        /* populate the opp table */
1351        new_opp->rate = freq;
1352        tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1353        new_opp->supplies[0].u_volt = u_volt;
1354        new_opp->supplies[0].u_volt_min = u_volt - tol;
1355        new_opp->supplies[0].u_volt_max = u_volt + tol;
1356        new_opp->available = true;
1357        new_opp->dynamic = dynamic;
1358
1359        ret = _opp_add(dev, new_opp, opp_table, false);
1360        if (ret) {
1361                /* Don't return error for duplicate OPPs */
1362                if (ret == -EBUSY)
1363                        ret = 0;
1364                goto free_opp;
1365        }
1366
1367        /*
1368         * Notify the changes in the availability of the operable
1369         * frequency/voltage list.
1370         */
1371        blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1372        return 0;
1373
1374free_opp:
1375        _opp_free(new_opp);
1376
1377        return ret;
1378}
1379
1380/**
1381 * dev_pm_opp_set_supported_hw() - Set supported platforms
1382 * @dev: Device for which supported-hw has to be set.
1383 * @versions: Array of hierarchy of versions to match.
1384 * @count: Number of elements in the array.
1385 *
1386 * This is required only for the V2 bindings, and it enables a platform to
1387 * specify the hierarchy of versions it supports. OPP layer will then enable
1388 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1389 * property.
1390 */
1391struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1392                        const u32 *versions, unsigned int count)
1393{
1394        struct opp_table *opp_table;
1395
1396        opp_table = dev_pm_opp_get_opp_table(dev);
1397        if (!opp_table)
1398                return ERR_PTR(-ENOMEM);
1399
1400        /* Make sure there are no concurrent readers while updating opp_table */
1401        WARN_ON(!list_empty(&opp_table->opp_list));
1402
1403        /* Another CPU that shares the OPP table has set the property ? */
1404        if (opp_table->supported_hw)
1405                return opp_table;
1406
1407        opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1408                                        GFP_KERNEL);
1409        if (!opp_table->supported_hw) {
1410                dev_pm_opp_put_opp_table(opp_table);
1411                return ERR_PTR(-ENOMEM);
1412        }
1413
1414        opp_table->supported_hw_count = count;
1415
1416        return opp_table;
1417}
1418EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1419
1420/**
1421 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1422 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1423 *
1424 * This is required only for the V2 bindings, and is called for a matching
1425 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1426 * will not be freed.
1427 */
1428void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1429{
1430        /* Make sure there are no concurrent readers while updating opp_table */
1431        WARN_ON(!list_empty(&opp_table->opp_list));
1432
1433        kfree(opp_table->supported_hw);
1434        opp_table->supported_hw = NULL;
1435        opp_table->supported_hw_count = 0;
1436
1437        dev_pm_opp_put_opp_table(opp_table);
1438}
1439EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1440
1441/**
1442 * dev_pm_opp_set_prop_name() - Set prop-extn name
1443 * @dev: Device for which the prop-name has to be set.
1444 * @name: name to postfix to properties.
1445 *
1446 * This is required only for the V2 bindings, and it enables a platform to
1447 * specify the extn to be used for certain property names. The properties to
1448 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1449 * should postfix the property name with -<name> while looking for them.
1450 */
1451struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1452{
1453        struct opp_table *opp_table;
1454
1455        opp_table = dev_pm_opp_get_opp_table(dev);
1456        if (!opp_table)
1457                return ERR_PTR(-ENOMEM);
1458
1459        /* Make sure there are no concurrent readers while updating opp_table */
1460        WARN_ON(!list_empty(&opp_table->opp_list));
1461
1462        /* Another CPU that shares the OPP table has set the property ? */
1463        if (opp_table->prop_name)
1464                return opp_table;
1465
1466        opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1467        if (!opp_table->prop_name) {
1468                dev_pm_opp_put_opp_table(opp_table);
1469                return ERR_PTR(-ENOMEM);
1470        }
1471
1472        return opp_table;
1473}
1474EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1475
1476/**
1477 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1478 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1479 *
1480 * This is required only for the V2 bindings, and is called for a matching
1481 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1482 * will not be freed.
1483 */
1484void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1485{
1486        /* Make sure there are no concurrent readers while updating opp_table */
1487        WARN_ON(!list_empty(&opp_table->opp_list));
1488
1489        kfree(opp_table->prop_name);
1490        opp_table->prop_name = NULL;
1491
1492        dev_pm_opp_put_opp_table(opp_table);
1493}
1494EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1495
1496static int _allocate_set_opp_data(struct opp_table *opp_table)
1497{
1498        struct dev_pm_set_opp_data *data;
1499        int len, count = opp_table->regulator_count;
1500
1501        if (WARN_ON(!opp_table->regulators))
1502                return -EINVAL;
1503
1504        /* space for set_opp_data */
1505        len = sizeof(*data);
1506
1507        /* space for old_opp.supplies and new_opp.supplies */
1508        len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1509
1510        data = kzalloc(len, GFP_KERNEL);
1511        if (!data)
1512                return -ENOMEM;
1513
1514        data->old_opp.supplies = (void *)(data + 1);
1515        data->new_opp.supplies = data->old_opp.supplies + count;
1516
1517        opp_table->set_opp_data = data;
1518
1519        return 0;
1520}
1521
1522static void _free_set_opp_data(struct opp_table *opp_table)
1523{
1524        kfree(opp_table->set_opp_data);
1525        opp_table->set_opp_data = NULL;
1526}
1527
1528/**
1529 * dev_pm_opp_set_regulators() - Set regulator names for the device
1530 * @dev: Device for which regulator name is being set.
1531 * @names: Array of pointers to the names of the regulator.
1532 * @count: Number of regulators.
1533 *
1534 * In order to support OPP switching, OPP layer needs to know the name of the
1535 * device's regulators, as the core would be required to switch voltages as
1536 * well.
1537 *
1538 * This must be called before any OPPs are initialized for the device.
1539 */
1540struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1541                                            const char * const names[],
1542                                            unsigned int count)
1543{
1544        struct opp_table *opp_table;
1545        struct regulator *reg;
1546        int ret, i;
1547
1548        opp_table = dev_pm_opp_get_opp_table(dev);
1549        if (!opp_table)
1550                return ERR_PTR(-ENOMEM);
1551
1552        /* This should be called before OPPs are initialized */
1553        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1554                ret = -EBUSY;
1555                goto err;
1556        }
1557
1558        /* Another CPU that shares the OPP table has set the regulators ? */
1559        if (opp_table->regulators)
1560                return opp_table;
1561
1562        opp_table->regulators = kmalloc_array(count,
1563                                              sizeof(*opp_table->regulators),
1564                                              GFP_KERNEL);
1565        if (!opp_table->regulators) {
1566                ret = -ENOMEM;
1567                goto err;
1568        }
1569
1570        for (i = 0; i < count; i++) {
1571                reg = regulator_get_optional(dev, names[i]);
1572                if (IS_ERR(reg)) {
1573                        ret = PTR_ERR(reg);
1574                        if (ret != -EPROBE_DEFER)
1575                                dev_err(dev, "%s: no regulator (%s) found: %d\n",
1576                                        __func__, names[i], ret);
1577                        goto free_regulators;
1578                }
1579
1580                opp_table->regulators[i] = reg;
1581        }
1582
1583        opp_table->regulator_count = count;
1584
1585        /* Allocate block only once to pass to set_opp() routines */
1586        ret = _allocate_set_opp_data(opp_table);
1587        if (ret)
1588                goto free_regulators;
1589
1590        return opp_table;
1591
1592free_regulators:
1593        while (i != 0)
1594                regulator_put(opp_table->regulators[--i]);
1595
1596        kfree(opp_table->regulators);
1597        opp_table->regulators = NULL;
1598        opp_table->regulator_count = -1;
1599err:
1600        dev_pm_opp_put_opp_table(opp_table);
1601
1602        return ERR_PTR(ret);
1603}
1604EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1605
1606/**
1607 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1608 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1609 */
1610void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1611{
1612        int i;
1613
1614        if (!opp_table->regulators)
1615                goto put_opp_table;
1616
1617        /* Make sure there are no concurrent readers while updating opp_table */
1618        WARN_ON(!list_empty(&opp_table->opp_list));
1619
1620        for (i = opp_table->regulator_count - 1; i >= 0; i--)
1621                regulator_put(opp_table->regulators[i]);
1622
1623        _free_set_opp_data(opp_table);
1624
1625        kfree(opp_table->regulators);
1626        opp_table->regulators = NULL;
1627        opp_table->regulator_count = -1;
1628
1629put_opp_table:
1630        dev_pm_opp_put_opp_table(opp_table);
1631}
1632EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1633
1634/**
1635 * dev_pm_opp_set_clkname() - Set clk name for the device
1636 * @dev: Device for which clk name is being set.
1637 * @name: Clk name.
1638 *
1639 * In order to support OPP switching, OPP layer needs to get pointer to the
1640 * clock for the device. Simple cases work fine without using this routine (i.e.
1641 * by passing connection-id as NULL), but for a device with multiple clocks
1642 * available, the OPP core needs to know the exact name of the clk to use.
1643 *
1644 * This must be called before any OPPs are initialized for the device.
1645 */
1646struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1647{
1648        struct opp_table *opp_table;
1649        int ret;
1650
1651        opp_table = dev_pm_opp_get_opp_table(dev);
1652        if (!opp_table)
1653                return ERR_PTR(-ENOMEM);
1654
1655        /* This should be called before OPPs are initialized */
1656        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1657                ret = -EBUSY;
1658                goto err;
1659        }
1660
1661        /* Already have default clk set, free it */
1662        if (!IS_ERR(opp_table->clk))
1663                clk_put(opp_table->clk);
1664
1665        /* Find clk for the device */
1666        opp_table->clk = clk_get(dev, name);
1667        if (IS_ERR(opp_table->clk)) {
1668                ret = PTR_ERR(opp_table->clk);
1669                if (ret != -EPROBE_DEFER) {
1670                        dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1671                                ret);
1672                }
1673                goto err;
1674        }
1675
1676        return opp_table;
1677
1678err:
1679        dev_pm_opp_put_opp_table(opp_table);
1680
1681        return ERR_PTR(ret);
1682}
1683EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1684
1685/**
1686 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1687 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1688 */
1689void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1690{
1691        /* Make sure there are no concurrent readers while updating opp_table */
1692        WARN_ON(!list_empty(&opp_table->opp_list));
1693
1694        clk_put(opp_table->clk);
1695        opp_table->clk = ERR_PTR(-EINVAL);
1696
1697        dev_pm_opp_put_opp_table(opp_table);
1698}
1699EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1700
1701/**
1702 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1703 * @dev: Device for which the helper is getting registered.
1704 * @set_opp: Custom set OPP helper.
1705 *
1706 * This is useful to support complex platforms (like platforms with multiple
1707 * regulators per device), instead of the generic OPP set rate helper.
1708 *
1709 * This must be called before any OPPs are initialized for the device.
1710 */
1711struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1712                        int (*set_opp)(struct dev_pm_set_opp_data *data))
1713{
1714        struct opp_table *opp_table;
1715
1716        if (!set_opp)
1717                return ERR_PTR(-EINVAL);
1718
1719        opp_table = dev_pm_opp_get_opp_table(dev);
1720        if (!opp_table)
1721                return ERR_PTR(-ENOMEM);
1722
1723        /* This should be called before OPPs are initialized */
1724        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1725                dev_pm_opp_put_opp_table(opp_table);
1726                return ERR_PTR(-EBUSY);
1727        }
1728
1729        /* Another CPU that shares the OPP table has set the helper ? */
1730        if (!opp_table->set_opp)
1731                opp_table->set_opp = set_opp;
1732
1733        return opp_table;
1734}
1735EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1736
1737/**
1738 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1739 *                                         set_opp helper
1740 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1741 *
1742 * Release resources blocked for platform specific set_opp helper.
1743 */
1744void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1745{
1746        /* Make sure there are no concurrent readers while updating opp_table */
1747        WARN_ON(!list_empty(&opp_table->opp_list));
1748
1749        opp_table->set_opp = NULL;
1750        dev_pm_opp_put_opp_table(opp_table);
1751}
1752EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1753
1754static void _opp_detach_genpd(struct opp_table *opp_table)
1755{
1756        int index;
1757
1758        for (index = 0; index < opp_table->required_opp_count; index++) {
1759                if (!opp_table->genpd_virt_devs[index])
1760                        continue;
1761
1762                dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1763                opp_table->genpd_virt_devs[index] = NULL;
1764        }
1765
1766        kfree(opp_table->genpd_virt_devs);
1767        opp_table->genpd_virt_devs = NULL;
1768}
1769
1770/**
1771 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1772 * @dev: Consumer device for which the genpd is getting attached.
1773 * @names: Null terminated array of pointers containing names of genpd to attach.
1774 *
1775 * Multiple generic power domains for a device are supported with the help of
1776 * virtual genpd devices, which are created for each consumer device - genpd
1777 * pair. These are the device structures which are attached to the power domain
1778 * and are required by the OPP core to set the performance state of the genpd.
1779 * The same API also works for the case where single genpd is available and so
1780 * we don't need to support that separately.
1781 *
1782 * This helper will normally be called by the consumer driver of the device
1783 * "dev", as only that has details of the genpd names.
1784 *
1785 * This helper needs to be called once with a list of all genpd to attach.
1786 * Otherwise the original device structure will be used instead by the OPP core.
1787 */
1788struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, const char **names)
1789{
1790        struct opp_table *opp_table;
1791        struct device *virt_dev;
1792        int index, ret = -EINVAL;
1793        const char **name = names;
1794
1795        opp_table = dev_pm_opp_get_opp_table(dev);
1796        if (!opp_table)
1797                return ERR_PTR(-ENOMEM);
1798
1799        /*
1800         * If the genpd's OPP table isn't already initialized, parsing of the
1801         * required-opps fail for dev. We should retry this after genpd's OPP
1802         * table is added.
1803         */
1804        if (!opp_table->required_opp_count) {
1805                ret = -EPROBE_DEFER;
1806                goto put_table;
1807        }
1808
1809        mutex_lock(&opp_table->genpd_virt_dev_lock);
1810
1811        opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1812                                             sizeof(*opp_table->genpd_virt_devs),
1813                                             GFP_KERNEL);
1814        if (!opp_table->genpd_virt_devs)
1815                goto unlock;
1816
1817        while (*name) {
1818                index = of_property_match_string(dev->of_node,
1819                                                 "power-domain-names", *name);
1820                if (index < 0) {
1821                        dev_err(dev, "Failed to find power domain: %s (%d)\n",
1822                                *name, index);
1823                        goto err;
1824                }
1825
1826                if (index >= opp_table->required_opp_count) {
1827                        dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1828                                *name, opp_table->required_opp_count, index);
1829                        goto err;
1830                }
1831
1832                if (opp_table->genpd_virt_devs[index]) {
1833                        dev_err(dev, "Genpd virtual device already set %s\n",
1834                                *name);
1835                        goto err;
1836                }
1837
1838                virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1839                if (IS_ERR(virt_dev)) {
1840                        ret = PTR_ERR(virt_dev);
1841                        dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1842                        goto err;
1843                }
1844
1845                opp_table->genpd_virt_devs[index] = virt_dev;
1846                name++;
1847        }
1848
1849        mutex_unlock(&opp_table->genpd_virt_dev_lock);
1850
1851        return opp_table;
1852
1853err:
1854        _opp_detach_genpd(opp_table);
1855unlock:
1856        mutex_unlock(&opp_table->genpd_virt_dev_lock);
1857
1858put_table:
1859        dev_pm_opp_put_opp_table(opp_table);
1860
1861        return ERR_PTR(ret);
1862}
1863EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1864
1865/**
1866 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1867 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1868 *
1869 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1870 * OPP table.
1871 */
1872void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1873{
1874        /*
1875         * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1876         * used in parallel.
1877         */
1878        mutex_lock(&opp_table->genpd_virt_dev_lock);
1879        _opp_detach_genpd(opp_table);
1880        mutex_unlock(&opp_table->genpd_virt_dev_lock);
1881
1882        dev_pm_opp_put_opp_table(opp_table);
1883}
1884EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1885
1886/**
1887 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1888 * @src_table: OPP table which has dst_table as one of its required OPP table.
1889 * @dst_table: Required OPP table of the src_table.
1890 * @pstate: Current performance state of the src_table.
1891 *
1892 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1893 * "required-opps" property of the OPP (present in @src_table) which has
1894 * performance state set to @pstate.
1895 *
1896 * Return: Zero or positive performance state on success, otherwise negative
1897 * value on errors.
1898 */
1899int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1900                                       struct opp_table *dst_table,
1901                                       unsigned int pstate)
1902{
1903        struct dev_pm_opp *opp;
1904        int dest_pstate = -EINVAL;
1905        int i;
1906
1907        if (!pstate)
1908                return 0;
1909
1910        /*
1911         * Normally the src_table will have the "required_opps" property set to
1912         * point to one of the OPPs in the dst_table, but in some cases the
1913         * genpd and its master have one to one mapping of performance states
1914         * and so none of them have the "required-opps" property set. Return the
1915         * pstate of the src_table as it is in such cases.
1916         */
1917        if (!src_table->required_opp_count)
1918                return pstate;
1919
1920        for (i = 0; i < src_table->required_opp_count; i++) {
1921                if (src_table->required_opp_tables[i]->np == dst_table->np)
1922                        break;
1923        }
1924
1925        if (unlikely(i == src_table->required_opp_count)) {
1926                pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1927                       __func__, src_table, dst_table);
1928                return -EINVAL;
1929        }
1930
1931        mutex_lock(&src_table->lock);
1932
1933        list_for_each_entry(opp, &src_table->opp_list, node) {
1934                if (opp->pstate == pstate) {
1935                        dest_pstate = opp->required_opps[i]->pstate;
1936                        goto unlock;
1937                }
1938        }
1939
1940        pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1941               dst_table);
1942
1943unlock:
1944        mutex_unlock(&src_table->lock);
1945
1946        return dest_pstate;
1947}
1948
1949/**
1950 * dev_pm_opp_add()  - Add an OPP table from a table definitions
1951 * @dev:        device for which we do this operation
1952 * @freq:       Frequency in Hz for this OPP
1953 * @u_volt:     Voltage in uVolts for this OPP
1954 *
1955 * This function adds an opp definition to the opp table and returns status.
1956 * The opp is made available by default and it can be controlled using
1957 * dev_pm_opp_enable/disable functions.
1958 *
1959 * Return:
1960 * 0            On success OR
1961 *              Duplicate OPPs (both freq and volt are same) and opp->available
1962 * -EEXIST      Freq are same and volt are different OR
1963 *              Duplicate OPPs (both freq and volt are same) and !opp->available
1964 * -ENOMEM      Memory allocation failure
1965 */
1966int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1967{
1968        struct opp_table *opp_table;
1969        int ret;
1970
1971        opp_table = dev_pm_opp_get_opp_table(dev);
1972        if (!opp_table)
1973                return -ENOMEM;
1974
1975        /* Fix regulator count for dynamic OPPs */
1976        opp_table->regulator_count = 1;
1977
1978        ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1979        if (ret)
1980                dev_pm_opp_put_opp_table(opp_table);
1981
1982        return ret;
1983}
1984EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1985
1986/**
1987 * _opp_set_availability() - helper to set the availability of an opp
1988 * @dev:                device for which we do this operation
1989 * @freq:               OPP frequency to modify availability
1990 * @availability_req:   availability status requested for this opp
1991 *
1992 * Set the availability of an OPP, opp_{enable,disable} share a common logic
1993 * which is isolated here.
1994 *
1995 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1996 * copy operation, returns 0 if no modification was done OR modification was
1997 * successful.
1998 */
1999static int _opp_set_availability(struct device *dev, unsigned long freq,
2000                                 bool availability_req)
2001{
2002        struct opp_table *opp_table;
2003        struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2004        int r = 0;
2005
2006        /* Find the opp_table */
2007        opp_table = _find_opp_table(dev);
2008        if (IS_ERR(opp_table)) {
2009                r = PTR_ERR(opp_table);
2010                dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2011                return r;
2012        }
2013
2014        mutex_lock(&opp_table->lock);
2015
2016        /* Do we have the frequency? */
2017        list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2018                if (tmp_opp->rate == freq) {
2019                        opp = tmp_opp;
2020                        break;
2021                }
2022        }
2023
2024        if (IS_ERR(opp)) {
2025                r = PTR_ERR(opp);
2026                goto unlock;
2027        }
2028
2029        /* Is update really needed? */
2030        if (opp->available == availability_req)
2031                goto unlock;
2032
2033        opp->available = availability_req;
2034
2035        dev_pm_opp_get(opp);
2036        mutex_unlock(&opp_table->lock);
2037
2038        /* Notify the change of the OPP availability */
2039        if (availability_req)
2040                blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2041                                             opp);
2042        else
2043                blocking_notifier_call_chain(&opp_table->head,
2044                                             OPP_EVENT_DISABLE, opp);
2045
2046        dev_pm_opp_put(opp);
2047        goto put_table;
2048
2049unlock:
2050        mutex_unlock(&opp_table->lock);
2051put_table:
2052        dev_pm_opp_put_opp_table(opp_table);
2053        return r;
2054}
2055
2056/**
2057 * dev_pm_opp_enable() - Enable a specific OPP
2058 * @dev:        device for which we do this operation
2059 * @freq:       OPP frequency to enable
2060 *
2061 * Enables a provided opp. If the operation is valid, this returns 0, else the
2062 * corresponding error value. It is meant to be used for users an OPP available
2063 * after being temporarily made unavailable with dev_pm_opp_disable.
2064 *
2065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2066 * copy operation, returns 0 if no modification was done OR modification was
2067 * successful.
2068 */
2069int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2070{
2071        return _opp_set_availability(dev, freq, true);
2072}
2073EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2074
2075/**
2076 * dev_pm_opp_disable() - Disable a specific OPP
2077 * @dev:        device for which we do this operation
2078 * @freq:       OPP frequency to disable
2079 *
2080 * Disables a provided opp. If the operation is valid, this returns
2081 * 0, else the corresponding error value. It is meant to be a temporary
2082 * control by users to make this OPP not available until the circumstances are
2083 * right to make it available again (with a call to dev_pm_opp_enable).
2084 *
2085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2086 * copy operation, returns 0 if no modification was done OR modification was
2087 * successful.
2088 */
2089int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2090{
2091        return _opp_set_availability(dev, freq, false);
2092}
2093EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2094
2095/**
2096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2097 * @dev:        Device for which notifier needs to be registered
2098 * @nb:         Notifier block to be registered
2099 *
2100 * Return: 0 on success or a negative error value.
2101 */
2102int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2103{
2104        struct opp_table *opp_table;
2105        int ret;
2106
2107        opp_table = _find_opp_table(dev);
2108        if (IS_ERR(opp_table))
2109                return PTR_ERR(opp_table);
2110
2111        ret = blocking_notifier_chain_register(&opp_table->head, nb);
2112
2113        dev_pm_opp_put_opp_table(opp_table);
2114
2115        return ret;
2116}
2117EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2118
2119/**
2120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2121 * @dev:        Device for which notifier needs to be unregistered
2122 * @nb:         Notifier block to be unregistered
2123 *
2124 * Return: 0 on success or a negative error value.
2125 */
2126int dev_pm_opp_unregister_notifier(struct device *dev,
2127                                   struct notifier_block *nb)
2128{
2129        struct opp_table *opp_table;
2130        int ret;
2131
2132        opp_table = _find_opp_table(dev);
2133        if (IS_ERR(opp_table))
2134                return PTR_ERR(opp_table);
2135
2136        ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2137
2138        dev_pm_opp_put_opp_table(opp_table);
2139
2140        return ret;
2141}
2142EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2143
2144void _dev_pm_opp_find_and_remove_table(struct device *dev)
2145{
2146        struct opp_table *opp_table;
2147
2148        /* Check for existing table for 'dev' */
2149        opp_table = _find_opp_table(dev);
2150        if (IS_ERR(opp_table)) {
2151                int error = PTR_ERR(opp_table);
2152
2153                if (error != -ENODEV)
2154                        WARN(1, "%s: opp_table: %d\n",
2155                             IS_ERR_OR_NULL(dev) ?
2156                                        "Invalid device" : dev_name(dev),
2157                             error);
2158                return;
2159        }
2160
2161        _put_opp_list_kref(opp_table);
2162
2163        /* Drop reference taken by _find_opp_table() */
2164        dev_pm_opp_put_opp_table(opp_table);
2165
2166        /* Drop reference taken while the OPP table was added */
2167        dev_pm_opp_put_opp_table(opp_table);
2168}
2169
2170/**
2171 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2172 * @dev:        device pointer used to lookup OPP table.
2173 *
2174 * Free both OPPs created using static entries present in DT and the
2175 * dynamically added entries.
2176 */
2177void dev_pm_opp_remove_table(struct device *dev)
2178{
2179        _dev_pm_opp_find_and_remove_table(dev);
2180}
2181EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2182