linux/drivers/pci/controller/pci-hyperv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64        PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),      /* Win10 */
  65        PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),      /* RS1 */
  66};
  67
  68#define CPU_AFFINITY_ALL        -1ULL
  69
  70/*
  71 * Supported protocol versions in the order of probing - highest go
  72 * first.
  73 */
  74static enum pci_protocol_version_t pci_protocol_versions[] = {
  75        PCI_PROTOCOL_VERSION_1_2,
  76        PCI_PROTOCOL_VERSION_1_1,
  77};
  78
  79/*
  80 * Protocol version negotiated by hv_pci_protocol_negotiation().
  81 */
  82static enum pci_protocol_version_t pci_protocol_version;
  83
  84#define PCI_CONFIG_MMIO_LENGTH  0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Message Types
  97 */
  98
  99enum pci_message_type {
 100        /*
 101         * Version 1.1
 102         */
 103        PCI_MESSAGE_BASE                = 0x42490000,
 104        PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105        PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106        PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107        PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108        PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109        PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110        PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111        PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112        PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113        PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114        PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115        PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116        PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117        PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118        PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119        PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120        PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121        PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122        PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123        PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124        PCI_RESOURCES_ASSIGNED2         = PCI_MESSAGE_BASE + 0x16,
 125        PCI_CREATE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x17,
 126        PCI_DELETE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x18, /* unused */
 127        PCI_MESSAGE_MAXIMUM
 128};
 129
 130/*
 131 * Structures defining the virtual PCI Express protocol.
 132 */
 133
 134union pci_version {
 135        struct {
 136                u16 minor_version;
 137                u16 major_version;
 138        } parts;
 139        u32 version;
 140} __packed;
 141
 142/*
 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 144 * which is all this driver does.  This representation is the one used in
 145 * Windows, which is what is expected when sending this back and forth with
 146 * the Hyper-V parent partition.
 147 */
 148union win_slot_encoding {
 149        struct {
 150                u32     dev:5;
 151                u32     func:3;
 152                u32     reserved:24;
 153        } bits;
 154        u32 slot;
 155} __packed;
 156
 157/*
 158 * Pretty much as defined in the PCI Specifications.
 159 */
 160struct pci_function_description {
 161        u16     v_id;   /* vendor ID */
 162        u16     d_id;   /* device ID */
 163        u8      rev;
 164        u8      prog_intf;
 165        u8      subclass;
 166        u8      base_class;
 167        u32     subsystem_id;
 168        union win_slot_encoding win_slot;
 169        u32     ser;    /* serial number */
 170} __packed;
 171
 172/**
 173 * struct hv_msi_desc
 174 * @vector:             IDT entry
 175 * @delivery_mode:      As defined in Intel's Programmer's
 176 *                      Reference Manual, Volume 3, Chapter 8.
 177 * @vector_count:       Number of contiguous entries in the
 178 *                      Interrupt Descriptor Table that are
 179 *                      occupied by this Message-Signaled
 180 *                      Interrupt. For "MSI", as first defined
 181 *                      in PCI 2.2, this can be between 1 and
 182 *                      32. For "MSI-X," as first defined in PCI
 183 *                      3.0, this must be 1, as each MSI-X table
 184 *                      entry would have its own descriptor.
 185 * @reserved:           Empty space
 186 * @cpu_mask:           All the target virtual processors.
 187 */
 188struct hv_msi_desc {
 189        u8      vector;
 190        u8      delivery_mode;
 191        u16     vector_count;
 192        u32     reserved;
 193        u64     cpu_mask;
 194} __packed;
 195
 196/**
 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 198 * @vector:             IDT entry
 199 * @delivery_mode:      As defined in Intel's Programmer's
 200 *                      Reference Manual, Volume 3, Chapter 8.
 201 * @vector_count:       Number of contiguous entries in the
 202 *                      Interrupt Descriptor Table that are
 203 *                      occupied by this Message-Signaled
 204 *                      Interrupt. For "MSI", as first defined
 205 *                      in PCI 2.2, this can be between 1 and
 206 *                      32. For "MSI-X," as first defined in PCI
 207 *                      3.0, this must be 1, as each MSI-X table
 208 *                      entry would have its own descriptor.
 209 * @processor_count:    number of bits enabled in array.
 210 * @processor_array:    All the target virtual processors.
 211 */
 212struct hv_msi_desc2 {
 213        u8      vector;
 214        u8      delivery_mode;
 215        u16     vector_count;
 216        u16     processor_count;
 217        u16     processor_array[32];
 218} __packed;
 219
 220/**
 221 * struct tran_int_desc
 222 * @reserved:           unused, padding
 223 * @vector_count:       same as in hv_msi_desc
 224 * @data:               This is the "data payload" value that is
 225 *                      written by the device when it generates
 226 *                      a message-signaled interrupt, either MSI
 227 *                      or MSI-X.
 228 * @address:            This is the address to which the data
 229 *                      payload is written on interrupt
 230 *                      generation.
 231 */
 232struct tran_int_desc {
 233        u16     reserved;
 234        u16     vector_count;
 235        u32     data;
 236        u64     address;
 237} __packed;
 238
 239/*
 240 * A generic message format for virtual PCI.
 241 * Specific message formats are defined later in the file.
 242 */
 243
 244struct pci_message {
 245        u32 type;
 246} __packed;
 247
 248struct pci_child_message {
 249        struct pci_message message_type;
 250        union win_slot_encoding wslot;
 251} __packed;
 252
 253struct pci_incoming_message {
 254        struct vmpacket_descriptor hdr;
 255        struct pci_message message_type;
 256} __packed;
 257
 258struct pci_response {
 259        struct vmpacket_descriptor hdr;
 260        s32 status;                     /* negative values are failures */
 261} __packed;
 262
 263struct pci_packet {
 264        void (*completion_func)(void *context, struct pci_response *resp,
 265                                int resp_packet_size);
 266        void *compl_ctxt;
 267
 268        struct pci_message message[0];
 269};
 270
 271/*
 272 * Specific message types supporting the PCI protocol.
 273 */
 274
 275/*
 276 * Version negotiation message. Sent from the guest to the host.
 277 * The guest is free to try different versions until the host
 278 * accepts the version.
 279 *
 280 * pci_version: The protocol version requested.
 281 * is_last_attempt: If TRUE, this is the last version guest will request.
 282 * reservedz: Reserved field, set to zero.
 283 */
 284
 285struct pci_version_request {
 286        struct pci_message message_type;
 287        u32 protocol_version;
 288} __packed;
 289
 290/*
 291 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 292 * bus (PCI Express port) is ready for action.
 293 */
 294
 295struct pci_bus_d0_entry {
 296        struct pci_message message_type;
 297        u32 reserved;
 298        u64 mmio_base;
 299} __packed;
 300
 301struct pci_bus_relations {
 302        struct pci_incoming_message incoming;
 303        u32 device_count;
 304        struct pci_function_description func[0];
 305} __packed;
 306
 307struct pci_q_res_req_response {
 308        struct vmpacket_descriptor hdr;
 309        s32 status;                     /* negative values are failures */
 310        u32 probed_bar[6];
 311} __packed;
 312
 313struct pci_set_power {
 314        struct pci_message message_type;
 315        union win_slot_encoding wslot;
 316        u32 power_state;                /* In Windows terms */
 317        u32 reserved;
 318} __packed;
 319
 320struct pci_set_power_response {
 321        struct vmpacket_descriptor hdr;
 322        s32 status;                     /* negative values are failures */
 323        union win_slot_encoding wslot;
 324        u32 resultant_state;            /* In Windows terms */
 325        u32 reserved;
 326} __packed;
 327
 328struct pci_resources_assigned {
 329        struct pci_message message_type;
 330        union win_slot_encoding wslot;
 331        u8 memory_range[0x14][6];       /* not used here */
 332        u32 msi_descriptors;
 333        u32 reserved[4];
 334} __packed;
 335
 336struct pci_resources_assigned2 {
 337        struct pci_message message_type;
 338        union win_slot_encoding wslot;
 339        u8 memory_range[0x14][6];       /* not used here */
 340        u32 msi_descriptor_count;
 341        u8 reserved[70];
 342} __packed;
 343
 344struct pci_create_interrupt {
 345        struct pci_message message_type;
 346        union win_slot_encoding wslot;
 347        struct hv_msi_desc int_desc;
 348} __packed;
 349
 350struct pci_create_int_response {
 351        struct pci_response response;
 352        u32 reserved;
 353        struct tran_int_desc int_desc;
 354} __packed;
 355
 356struct pci_create_interrupt2 {
 357        struct pci_message message_type;
 358        union win_slot_encoding wslot;
 359        struct hv_msi_desc2 int_desc;
 360} __packed;
 361
 362struct pci_delete_interrupt {
 363        struct pci_message message_type;
 364        union win_slot_encoding wslot;
 365        struct tran_int_desc int_desc;
 366} __packed;
 367
 368struct pci_dev_incoming {
 369        struct pci_incoming_message incoming;
 370        union win_slot_encoding wslot;
 371} __packed;
 372
 373struct pci_eject_response {
 374        struct pci_message message_type;
 375        union win_slot_encoding wslot;
 376        u32 status;
 377} __packed;
 378
 379static int pci_ring_size = (4 * PAGE_SIZE);
 380
 381/*
 382 * Definitions or interrupt steering hypercall.
 383 */
 384#define HV_PARTITION_ID_SELF            ((u64)-1)
 385#define HVCALL_RETARGET_INTERRUPT       0x7e
 386
 387struct hv_interrupt_entry {
 388        u32     source;                 /* 1 for MSI(-X) */
 389        u32     reserved1;
 390        u32     address;
 391        u32     data;
 392};
 393
 394/*
 395 * flags for hv_device_interrupt_target.flags
 396 */
 397#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST            1
 398#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET        2
 399
 400struct hv_device_interrupt_target {
 401        u32     vector;
 402        u32     flags;
 403        union {
 404                u64              vp_mask;
 405                struct hv_vpset vp_set;
 406        };
 407};
 408
 409struct retarget_msi_interrupt {
 410        u64     partition_id;           /* use "self" */
 411        u64     device_id;
 412        struct hv_interrupt_entry int_entry;
 413        u64     reserved2;
 414        struct hv_device_interrupt_target int_target;
 415} __packed __aligned(8);
 416
 417/*
 418 * Driver specific state.
 419 */
 420
 421enum hv_pcibus_state {
 422        hv_pcibus_init = 0,
 423        hv_pcibus_probed,
 424        hv_pcibus_installed,
 425        hv_pcibus_removed,
 426        hv_pcibus_maximum
 427};
 428
 429struct hv_pcibus_device {
 430        struct pci_sysdata sysdata;
 431        enum hv_pcibus_state state;
 432        refcount_t remove_lock;
 433        struct hv_device *hdev;
 434        resource_size_t low_mmio_space;
 435        resource_size_t high_mmio_space;
 436        struct resource *mem_config;
 437        struct resource *low_mmio_res;
 438        struct resource *high_mmio_res;
 439        struct completion *survey_event;
 440        struct completion remove_event;
 441        struct pci_bus *pci_bus;
 442        spinlock_t config_lock; /* Avoid two threads writing index page */
 443        spinlock_t device_list_lock;    /* Protect lists below */
 444        void __iomem *cfg_addr;
 445
 446        struct list_head resources_for_children;
 447
 448        struct list_head children;
 449        struct list_head dr_list;
 450
 451        struct msi_domain_info msi_info;
 452        struct msi_controller msi_chip;
 453        struct irq_domain *irq_domain;
 454
 455        spinlock_t retarget_msi_interrupt_lock;
 456
 457        struct workqueue_struct *wq;
 458
 459        /* hypercall arg, must not cross page boundary */
 460        struct retarget_msi_interrupt retarget_msi_interrupt_params;
 461
 462        /*
 463         * Don't put anything here: retarget_msi_interrupt_params must be last
 464         */
 465};
 466
 467/*
 468 * Tracks "Device Relations" messages from the host, which must be both
 469 * processed in order and deferred so that they don't run in the context
 470 * of the incoming packet callback.
 471 */
 472struct hv_dr_work {
 473        struct work_struct wrk;
 474        struct hv_pcibus_device *bus;
 475};
 476
 477struct hv_dr_state {
 478        struct list_head list_entry;
 479        u32 device_count;
 480        struct pci_function_description func[0];
 481};
 482
 483enum hv_pcichild_state {
 484        hv_pcichild_init = 0,
 485        hv_pcichild_requirements,
 486        hv_pcichild_resourced,
 487        hv_pcichild_ejecting,
 488        hv_pcichild_maximum
 489};
 490
 491struct hv_pci_dev {
 492        /* List protected by pci_rescan_remove_lock */
 493        struct list_head list_entry;
 494        refcount_t refs;
 495        enum hv_pcichild_state state;
 496        struct pci_slot *pci_slot;
 497        struct pci_function_description desc;
 498        bool reported_missing;
 499        struct hv_pcibus_device *hbus;
 500        struct work_struct wrk;
 501
 502        /*
 503         * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 504         * read it back, for each of the BAR offsets within config space.
 505         */
 506        u32 probed_bar[6];
 507};
 508
 509struct hv_pci_compl {
 510        struct completion host_event;
 511        s32 completion_status;
 512};
 513
 514static void hv_pci_onchannelcallback(void *context);
 515
 516/**
 517 * hv_pci_generic_compl() - Invoked for a completion packet
 518 * @context:            Set up by the sender of the packet.
 519 * @resp:               The response packet
 520 * @resp_packet_size:   Size in bytes of the packet
 521 *
 522 * This function is used to trigger an event and report status
 523 * for any message for which the completion packet contains a
 524 * status and nothing else.
 525 */
 526static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 527                                 int resp_packet_size)
 528{
 529        struct hv_pci_compl *comp_pkt = context;
 530
 531        if (resp_packet_size >= offsetofend(struct pci_response, status))
 532                comp_pkt->completion_status = resp->status;
 533        else
 534                comp_pkt->completion_status = -1;
 535
 536        complete(&comp_pkt->host_event);
 537}
 538
 539static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 540                                                u32 wslot);
 541
 542static void get_pcichild(struct hv_pci_dev *hpdev)
 543{
 544        refcount_inc(&hpdev->refs);
 545}
 546
 547static void put_pcichild(struct hv_pci_dev *hpdev)
 548{
 549        if (refcount_dec_and_test(&hpdev->refs))
 550                kfree(hpdev);
 551}
 552
 553static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 554static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 555
 556/*
 557 * There is no good way to get notified from vmbus_onoffer_rescind(),
 558 * so let's use polling here, since this is not a hot path.
 559 */
 560static int wait_for_response(struct hv_device *hdev,
 561                             struct completion *comp)
 562{
 563        while (true) {
 564                if (hdev->channel->rescind) {
 565                        dev_warn_once(&hdev->device, "The device is gone.\n");
 566                        return -ENODEV;
 567                }
 568
 569                if (wait_for_completion_timeout(comp, HZ / 10))
 570                        break;
 571        }
 572
 573        return 0;
 574}
 575
 576/**
 577 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 578 * @devfn:      The Linux representation of PCI slot
 579 *
 580 * Windows uses a slightly different representation of PCI slot.
 581 *
 582 * Return: The Windows representation
 583 */
 584static u32 devfn_to_wslot(int devfn)
 585{
 586        union win_slot_encoding wslot;
 587
 588        wslot.slot = 0;
 589        wslot.bits.dev = PCI_SLOT(devfn);
 590        wslot.bits.func = PCI_FUNC(devfn);
 591
 592        return wslot.slot;
 593}
 594
 595/**
 596 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 597 * @wslot:      The Windows representation of PCI slot
 598 *
 599 * Windows uses a slightly different representation of PCI slot.
 600 *
 601 * Return: The Linux representation
 602 */
 603static int wslot_to_devfn(u32 wslot)
 604{
 605        union win_slot_encoding slot_no;
 606
 607        slot_no.slot = wslot;
 608        return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 609}
 610
 611/*
 612 * PCI Configuration Space for these root PCI buses is implemented as a pair
 613 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 614 * the PCI function being written or read.  Once the first page has been
 615 * written to, the following page maps in the entire configuration space of
 616 * the function.
 617 */
 618
 619/**
 620 * _hv_pcifront_read_config() - Internal PCI config read
 621 * @hpdev:      The PCI driver's representation of the device
 622 * @where:      Offset within config space
 623 * @size:       Size of the transfer
 624 * @val:        Pointer to the buffer receiving the data
 625 */
 626static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 627                                     int size, u32 *val)
 628{
 629        unsigned long flags;
 630        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 631
 632        /*
 633         * If the attempt is to read the IDs or the ROM BAR, simulate that.
 634         */
 635        if (where + size <= PCI_COMMAND) {
 636                memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 637        } else if (where >= PCI_CLASS_REVISION && where + size <=
 638                   PCI_CACHE_LINE_SIZE) {
 639                memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 640                       PCI_CLASS_REVISION, size);
 641        } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 642                   PCI_ROM_ADDRESS) {
 643                memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 644                       PCI_SUBSYSTEM_VENDOR_ID, size);
 645        } else if (where >= PCI_ROM_ADDRESS && where + size <=
 646                   PCI_CAPABILITY_LIST) {
 647                /* ROM BARs are unimplemented */
 648                *val = 0;
 649        } else if (where >= PCI_INTERRUPT_LINE && where + size <=
 650                   PCI_INTERRUPT_PIN) {
 651                /*
 652                 * Interrupt Line and Interrupt PIN are hard-wired to zero
 653                 * because this front-end only supports message-signaled
 654                 * interrupts.
 655                 */
 656                *val = 0;
 657        } else if (where + size <= CFG_PAGE_SIZE) {
 658                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 659                /* Choose the function to be read. (See comment above) */
 660                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 661                /* Make sure the function was chosen before we start reading. */
 662                mb();
 663                /* Read from that function's config space. */
 664                switch (size) {
 665                case 1:
 666                        *val = readb(addr);
 667                        break;
 668                case 2:
 669                        *val = readw(addr);
 670                        break;
 671                default:
 672                        *val = readl(addr);
 673                        break;
 674                }
 675                /*
 676                 * Make sure the read was done before we release the spinlock
 677                 * allowing consecutive reads/writes.
 678                 */
 679                mb();
 680                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 681        } else {
 682                dev_err(&hpdev->hbus->hdev->device,
 683                        "Attempt to read beyond a function's config space.\n");
 684        }
 685}
 686
 687static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 688{
 689        u16 ret;
 690        unsigned long flags;
 691        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 692                             PCI_VENDOR_ID;
 693
 694        spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 695
 696        /* Choose the function to be read. (See comment above) */
 697        writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 698        /* Make sure the function was chosen before we start reading. */
 699        mb();
 700        /* Read from that function's config space. */
 701        ret = readw(addr);
 702        /*
 703         * mb() is not required here, because the spin_unlock_irqrestore()
 704         * is a barrier.
 705         */
 706
 707        spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 708
 709        return ret;
 710}
 711
 712/**
 713 * _hv_pcifront_write_config() - Internal PCI config write
 714 * @hpdev:      The PCI driver's representation of the device
 715 * @where:      Offset within config space
 716 * @size:       Size of the transfer
 717 * @val:        The data being transferred
 718 */
 719static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 720                                      int size, u32 val)
 721{
 722        unsigned long flags;
 723        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 724
 725        if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 726            where + size <= PCI_CAPABILITY_LIST) {
 727                /* SSIDs and ROM BARs are read-only */
 728        } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 729                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 730                /* Choose the function to be written. (See comment above) */
 731                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 732                /* Make sure the function was chosen before we start writing. */
 733                wmb();
 734                /* Write to that function's config space. */
 735                switch (size) {
 736                case 1:
 737                        writeb(val, addr);
 738                        break;
 739                case 2:
 740                        writew(val, addr);
 741                        break;
 742                default:
 743                        writel(val, addr);
 744                        break;
 745                }
 746                /*
 747                 * Make sure the write was done before we release the spinlock
 748                 * allowing consecutive reads/writes.
 749                 */
 750                mb();
 751                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 752        } else {
 753                dev_err(&hpdev->hbus->hdev->device,
 754                        "Attempt to write beyond a function's config space.\n");
 755        }
 756}
 757
 758/**
 759 * hv_pcifront_read_config() - Read configuration space
 760 * @bus: PCI Bus structure
 761 * @devfn: Device/function
 762 * @where: Offset from base
 763 * @size: Byte/word/dword
 764 * @val: Value to be read
 765 *
 766 * Return: PCIBIOS_SUCCESSFUL on success
 767 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 768 */
 769static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 770                                   int where, int size, u32 *val)
 771{
 772        struct hv_pcibus_device *hbus =
 773                container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 774        struct hv_pci_dev *hpdev;
 775
 776        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 777        if (!hpdev)
 778                return PCIBIOS_DEVICE_NOT_FOUND;
 779
 780        _hv_pcifront_read_config(hpdev, where, size, val);
 781
 782        put_pcichild(hpdev);
 783        return PCIBIOS_SUCCESSFUL;
 784}
 785
 786/**
 787 * hv_pcifront_write_config() - Write configuration space
 788 * @bus: PCI Bus structure
 789 * @devfn: Device/function
 790 * @where: Offset from base
 791 * @size: Byte/word/dword
 792 * @val: Value to be written to device
 793 *
 794 * Return: PCIBIOS_SUCCESSFUL on success
 795 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 796 */
 797static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 798                                    int where, int size, u32 val)
 799{
 800        struct hv_pcibus_device *hbus =
 801            container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 802        struct hv_pci_dev *hpdev;
 803
 804        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 805        if (!hpdev)
 806                return PCIBIOS_DEVICE_NOT_FOUND;
 807
 808        _hv_pcifront_write_config(hpdev, where, size, val);
 809
 810        put_pcichild(hpdev);
 811        return PCIBIOS_SUCCESSFUL;
 812}
 813
 814/* PCIe operations */
 815static struct pci_ops hv_pcifront_ops = {
 816        .read  = hv_pcifront_read_config,
 817        .write = hv_pcifront_write_config,
 818};
 819
 820/* Interrupt management hooks */
 821static void hv_int_desc_free(struct hv_pci_dev *hpdev,
 822                             struct tran_int_desc *int_desc)
 823{
 824        struct pci_delete_interrupt *int_pkt;
 825        struct {
 826                struct pci_packet pkt;
 827                u8 buffer[sizeof(struct pci_delete_interrupt)];
 828        } ctxt;
 829
 830        memset(&ctxt, 0, sizeof(ctxt));
 831        int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
 832        int_pkt->message_type.type =
 833                PCI_DELETE_INTERRUPT_MESSAGE;
 834        int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
 835        int_pkt->int_desc = *int_desc;
 836        vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
 837                         (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
 838        kfree(int_desc);
 839}
 840
 841/**
 842 * hv_msi_free() - Free the MSI.
 843 * @domain:     The interrupt domain pointer
 844 * @info:       Extra MSI-related context
 845 * @irq:        Identifies the IRQ.
 846 *
 847 * The Hyper-V parent partition and hypervisor are tracking the
 848 * messages that are in use, keeping the interrupt redirection
 849 * table up to date.  This callback sends a message that frees
 850 * the IRT entry and related tracking nonsense.
 851 */
 852static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
 853                        unsigned int irq)
 854{
 855        struct hv_pcibus_device *hbus;
 856        struct hv_pci_dev *hpdev;
 857        struct pci_dev *pdev;
 858        struct tran_int_desc *int_desc;
 859        struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
 860        struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
 861
 862        pdev = msi_desc_to_pci_dev(msi);
 863        hbus = info->data;
 864        int_desc = irq_data_get_irq_chip_data(irq_data);
 865        if (!int_desc)
 866                return;
 867
 868        irq_data->chip_data = NULL;
 869        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
 870        if (!hpdev) {
 871                kfree(int_desc);
 872                return;
 873        }
 874
 875        hv_int_desc_free(hpdev, int_desc);
 876        put_pcichild(hpdev);
 877}
 878
 879static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
 880                           bool force)
 881{
 882        struct irq_data *parent = data->parent_data;
 883
 884        return parent->chip->irq_set_affinity(parent, dest, force);
 885}
 886
 887static void hv_irq_mask(struct irq_data *data)
 888{
 889        pci_msi_mask_irq(data);
 890}
 891
 892/**
 893 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
 894 * affinity.
 895 * @data:       Describes the IRQ
 896 *
 897 * Build new a destination for the MSI and make a hypercall to
 898 * update the Interrupt Redirection Table. "Device Logical ID"
 899 * is built out of this PCI bus's instance GUID and the function
 900 * number of the device.
 901 */
 902static void hv_irq_unmask(struct irq_data *data)
 903{
 904        struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
 905        struct irq_cfg *cfg = irqd_cfg(data);
 906        struct retarget_msi_interrupt *params;
 907        struct hv_pcibus_device *hbus;
 908        struct cpumask *dest;
 909        cpumask_var_t tmp;
 910        struct pci_bus *pbus;
 911        struct pci_dev *pdev;
 912        unsigned long flags;
 913        u32 var_size = 0;
 914        int cpu, nr_bank;
 915        u64 res;
 916
 917        dest = irq_data_get_effective_affinity_mask(data);
 918        pdev = msi_desc_to_pci_dev(msi_desc);
 919        pbus = pdev->bus;
 920        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 921
 922        spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
 923
 924        params = &hbus->retarget_msi_interrupt_params;
 925        memset(params, 0, sizeof(*params));
 926        params->partition_id = HV_PARTITION_ID_SELF;
 927        params->int_entry.source = 1; /* MSI(-X) */
 928        params->int_entry.address = msi_desc->msg.address_lo;
 929        params->int_entry.data = msi_desc->msg.data;
 930        params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
 931                           (hbus->hdev->dev_instance.b[4] << 16) |
 932                           (hbus->hdev->dev_instance.b[7] << 8) |
 933                           (hbus->hdev->dev_instance.b[6] & 0xf8) |
 934                           PCI_FUNC(pdev->devfn);
 935        params->int_target.vector = cfg->vector;
 936
 937        /*
 938         * Honoring apic->irq_delivery_mode set to dest_Fixed by
 939         * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
 940         * spurious interrupt storm. Not doing so does not seem to have a
 941         * negative effect (yet?).
 942         */
 943
 944        if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
 945                /*
 946                 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
 947                 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
 948                 * with >64 VP support.
 949                 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
 950                 * is not sufficient for this hypercall.
 951                 */
 952                params->int_target.flags |=
 953                        HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
 954
 955                if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
 956                        res = 1;
 957                        goto exit_unlock;
 958                }
 959
 960                cpumask_and(tmp, dest, cpu_online_mask);
 961                nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
 962                free_cpumask_var(tmp);
 963
 964                if (nr_bank <= 0) {
 965                        res = 1;
 966                        goto exit_unlock;
 967                }
 968
 969                /*
 970                 * var-sized hypercall, var-size starts after vp_mask (thus
 971                 * vp_set.format does not count, but vp_set.valid_bank_mask
 972                 * does).
 973                 */
 974                var_size = 1 + nr_bank;
 975        } else {
 976                for_each_cpu_and(cpu, dest, cpu_online_mask) {
 977                        params->int_target.vp_mask |=
 978                                (1ULL << hv_cpu_number_to_vp_number(cpu));
 979                }
 980        }
 981
 982        res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
 983                              params, NULL);
 984
 985exit_unlock:
 986        spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
 987
 988        if (res) {
 989                dev_err(&hbus->hdev->device,
 990                        "%s() failed: %#llx", __func__, res);
 991                return;
 992        }
 993
 994        pci_msi_unmask_irq(data);
 995}
 996
 997struct compose_comp_ctxt {
 998        struct hv_pci_compl comp_pkt;
 999        struct tran_int_desc int_desc;
1000};
1001
1002static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1003                                 int resp_packet_size)
1004{
1005        struct compose_comp_ctxt *comp_pkt = context;
1006        struct pci_create_int_response *int_resp =
1007                (struct pci_create_int_response *)resp;
1008
1009        comp_pkt->comp_pkt.completion_status = resp->status;
1010        comp_pkt->int_desc = int_resp->int_desc;
1011        complete(&comp_pkt->comp_pkt.host_event);
1012}
1013
1014static u32 hv_compose_msi_req_v1(
1015        struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1016        u32 slot, u8 vector)
1017{
1018        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1019        int_pkt->wslot.slot = slot;
1020        int_pkt->int_desc.vector = vector;
1021        int_pkt->int_desc.vector_count = 1;
1022        int_pkt->int_desc.delivery_mode = dest_Fixed;
1023
1024        /*
1025         * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1026         * hv_irq_unmask().
1027         */
1028        int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1029
1030        return sizeof(*int_pkt);
1031}
1032
1033static u32 hv_compose_msi_req_v2(
1034        struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1035        u32 slot, u8 vector)
1036{
1037        int cpu;
1038
1039        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1040        int_pkt->wslot.slot = slot;
1041        int_pkt->int_desc.vector = vector;
1042        int_pkt->int_desc.vector_count = 1;
1043        int_pkt->int_desc.delivery_mode = dest_Fixed;
1044
1045        /*
1046         * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1047         * by subsequent retarget in hv_irq_unmask().
1048         */
1049        cpu = cpumask_first_and(affinity, cpu_online_mask);
1050        int_pkt->int_desc.processor_array[0] =
1051                hv_cpu_number_to_vp_number(cpu);
1052        int_pkt->int_desc.processor_count = 1;
1053
1054        return sizeof(*int_pkt);
1055}
1056
1057/**
1058 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1059 * @data:       Everything about this MSI
1060 * @msg:        Buffer that is filled in by this function
1061 *
1062 * This function unpacks the IRQ looking for target CPU set, IDT
1063 * vector and mode and sends a message to the parent partition
1064 * asking for a mapping for that tuple in this partition.  The
1065 * response supplies a data value and address to which that data
1066 * should be written to trigger that interrupt.
1067 */
1068static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1069{
1070        struct irq_cfg *cfg = irqd_cfg(data);
1071        struct hv_pcibus_device *hbus;
1072        struct hv_pci_dev *hpdev;
1073        struct pci_bus *pbus;
1074        struct pci_dev *pdev;
1075        struct cpumask *dest;
1076        unsigned long flags;
1077        struct compose_comp_ctxt comp;
1078        struct tran_int_desc *int_desc;
1079        struct {
1080                struct pci_packet pci_pkt;
1081                union {
1082                        struct pci_create_interrupt v1;
1083                        struct pci_create_interrupt2 v2;
1084                } int_pkts;
1085        } __packed ctxt;
1086
1087        u32 size;
1088        int ret;
1089
1090        pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1091        dest = irq_data_get_effective_affinity_mask(data);
1092        pbus = pdev->bus;
1093        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1094        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1095        if (!hpdev)
1096                goto return_null_message;
1097
1098        /* Free any previous message that might have already been composed. */
1099        if (data->chip_data) {
1100                int_desc = data->chip_data;
1101                data->chip_data = NULL;
1102                hv_int_desc_free(hpdev, int_desc);
1103        }
1104
1105        int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1106        if (!int_desc)
1107                goto drop_reference;
1108
1109        memset(&ctxt, 0, sizeof(ctxt));
1110        init_completion(&comp.comp_pkt.host_event);
1111        ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1112        ctxt.pci_pkt.compl_ctxt = &comp;
1113
1114        switch (pci_protocol_version) {
1115        case PCI_PROTOCOL_VERSION_1_1:
1116                size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1117                                        dest,
1118                                        hpdev->desc.win_slot.slot,
1119                                        cfg->vector);
1120                break;
1121
1122        case PCI_PROTOCOL_VERSION_1_2:
1123                size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1124                                        dest,
1125                                        hpdev->desc.win_slot.slot,
1126                                        cfg->vector);
1127                break;
1128
1129        default:
1130                /* As we only negotiate protocol versions known to this driver,
1131                 * this path should never hit. However, this is it not a hot
1132                 * path so we print a message to aid future updates.
1133                 */
1134                dev_err(&hbus->hdev->device,
1135                        "Unexpected vPCI protocol, update driver.");
1136                goto free_int_desc;
1137        }
1138
1139        ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1140                               size, (unsigned long)&ctxt.pci_pkt,
1141                               VM_PKT_DATA_INBAND,
1142                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1143        if (ret) {
1144                dev_err(&hbus->hdev->device,
1145                        "Sending request for interrupt failed: 0x%x",
1146                        comp.comp_pkt.completion_status);
1147                goto free_int_desc;
1148        }
1149
1150        /*
1151         * Since this function is called with IRQ locks held, can't
1152         * do normal wait for completion; instead poll.
1153         */
1154        while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1155                /* 0xFFFF means an invalid PCI VENDOR ID. */
1156                if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1157                        dev_err_once(&hbus->hdev->device,
1158                                     "the device has gone\n");
1159                        goto free_int_desc;
1160                }
1161
1162                /*
1163                 * When the higher level interrupt code calls us with
1164                 * interrupt disabled, we must poll the channel by calling
1165                 * the channel callback directly when channel->target_cpu is
1166                 * the current CPU. When the higher level interrupt code
1167                 * calls us with interrupt enabled, let's add the
1168                 * local_irq_save()/restore() to avoid race:
1169                 * hv_pci_onchannelcallback() can also run in tasklet.
1170                 */
1171                local_irq_save(flags);
1172
1173                if (hbus->hdev->channel->target_cpu == smp_processor_id())
1174                        hv_pci_onchannelcallback(hbus);
1175
1176                local_irq_restore(flags);
1177
1178                if (hpdev->state == hv_pcichild_ejecting) {
1179                        dev_err_once(&hbus->hdev->device,
1180                                     "the device is being ejected\n");
1181                        goto free_int_desc;
1182                }
1183
1184                udelay(100);
1185        }
1186
1187        if (comp.comp_pkt.completion_status < 0) {
1188                dev_err(&hbus->hdev->device,
1189                        "Request for interrupt failed: 0x%x",
1190                        comp.comp_pkt.completion_status);
1191                goto free_int_desc;
1192        }
1193
1194        /*
1195         * Record the assignment so that this can be unwound later. Using
1196         * irq_set_chip_data() here would be appropriate, but the lock it takes
1197         * is already held.
1198         */
1199        *int_desc = comp.int_desc;
1200        data->chip_data = int_desc;
1201
1202        /* Pass up the result. */
1203        msg->address_hi = comp.int_desc.address >> 32;
1204        msg->address_lo = comp.int_desc.address & 0xffffffff;
1205        msg->data = comp.int_desc.data;
1206
1207        put_pcichild(hpdev);
1208        return;
1209
1210free_int_desc:
1211        kfree(int_desc);
1212drop_reference:
1213        put_pcichild(hpdev);
1214return_null_message:
1215        msg->address_hi = 0;
1216        msg->address_lo = 0;
1217        msg->data = 0;
1218}
1219
1220/* HW Interrupt Chip Descriptor */
1221static struct irq_chip hv_msi_irq_chip = {
1222        .name                   = "Hyper-V PCIe MSI",
1223        .irq_compose_msi_msg    = hv_compose_msi_msg,
1224        .irq_set_affinity       = hv_set_affinity,
1225        .irq_ack                = irq_chip_ack_parent,
1226        .irq_mask               = hv_irq_mask,
1227        .irq_unmask             = hv_irq_unmask,
1228};
1229
1230static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1231                                                   msi_alloc_info_t *arg)
1232{
1233        return arg->msi_hwirq;
1234}
1235
1236static struct msi_domain_ops hv_msi_ops = {
1237        .get_hwirq      = hv_msi_domain_ops_get_hwirq,
1238        .msi_prepare    = pci_msi_prepare,
1239        .set_desc       = pci_msi_set_desc,
1240        .msi_free       = hv_msi_free,
1241};
1242
1243/**
1244 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1245 * @hbus:       The root PCI bus
1246 *
1247 * This function creates an IRQ domain which will be used for
1248 * interrupts from devices that have been passed through.  These
1249 * devices only support MSI and MSI-X, not line-based interrupts
1250 * or simulations of line-based interrupts through PCIe's
1251 * fabric-layer messages.  Because interrupts are remapped, we
1252 * can support multi-message MSI here.
1253 *
1254 * Return: '0' on success and error value on failure
1255 */
1256static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1257{
1258        hbus->msi_info.chip = &hv_msi_irq_chip;
1259        hbus->msi_info.ops = &hv_msi_ops;
1260        hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1261                MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1262                MSI_FLAG_PCI_MSIX);
1263        hbus->msi_info.handler = handle_edge_irq;
1264        hbus->msi_info.handler_name = "edge";
1265        hbus->msi_info.data = hbus;
1266        hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1267                                                     &hbus->msi_info,
1268                                                     x86_vector_domain);
1269        if (!hbus->irq_domain) {
1270                dev_err(&hbus->hdev->device,
1271                        "Failed to build an MSI IRQ domain\n");
1272                return -ENODEV;
1273        }
1274
1275        return 0;
1276}
1277
1278/**
1279 * get_bar_size() - Get the address space consumed by a BAR
1280 * @bar_val:    Value that a BAR returned after -1 was written
1281 *              to it.
1282 *
1283 * This function returns the size of the BAR, rounded up to 1
1284 * page.  It has to be rounded up because the hypervisor's page
1285 * table entry that maps the BAR into the VM can't specify an
1286 * offset within a page.  The invariant is that the hypervisor
1287 * must place any BARs of smaller than page length at the
1288 * beginning of a page.
1289 *
1290 * Return:      Size in bytes of the consumed MMIO space.
1291 */
1292static u64 get_bar_size(u64 bar_val)
1293{
1294        return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1295                        PAGE_SIZE);
1296}
1297
1298/**
1299 * survey_child_resources() - Total all MMIO requirements
1300 * @hbus:       Root PCI bus, as understood by this driver
1301 */
1302static void survey_child_resources(struct hv_pcibus_device *hbus)
1303{
1304        struct hv_pci_dev *hpdev;
1305        resource_size_t bar_size = 0;
1306        unsigned long flags;
1307        struct completion *event;
1308        u64 bar_val;
1309        int i;
1310
1311        /* If nobody is waiting on the answer, don't compute it. */
1312        event = xchg(&hbus->survey_event, NULL);
1313        if (!event)
1314                return;
1315
1316        /* If the answer has already been computed, go with it. */
1317        if (hbus->low_mmio_space || hbus->high_mmio_space) {
1318                complete(event);
1319                return;
1320        }
1321
1322        spin_lock_irqsave(&hbus->device_list_lock, flags);
1323
1324        /*
1325         * Due to an interesting quirk of the PCI spec, all memory regions
1326         * for a child device are a power of 2 in size and aligned in memory,
1327         * so it's sufficient to just add them up without tracking alignment.
1328         */
1329        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1330                for (i = 0; i < 6; i++) {
1331                        if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1332                                dev_err(&hbus->hdev->device,
1333                                        "There's an I/O BAR in this list!\n");
1334
1335                        if (hpdev->probed_bar[i] != 0) {
1336                                /*
1337                                 * A probed BAR has all the upper bits set that
1338                                 * can be changed.
1339                                 */
1340
1341                                bar_val = hpdev->probed_bar[i];
1342                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1343                                        bar_val |=
1344                                        ((u64)hpdev->probed_bar[++i] << 32);
1345                                else
1346                                        bar_val |= 0xffffffff00000000ULL;
1347
1348                                bar_size = get_bar_size(bar_val);
1349
1350                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1351                                        hbus->high_mmio_space += bar_size;
1352                                else
1353                                        hbus->low_mmio_space += bar_size;
1354                        }
1355                }
1356        }
1357
1358        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1359        complete(event);
1360}
1361
1362/**
1363 * prepopulate_bars() - Fill in BARs with defaults
1364 * @hbus:       Root PCI bus, as understood by this driver
1365 *
1366 * The core PCI driver code seems much, much happier if the BARs
1367 * for a device have values upon first scan. So fill them in.
1368 * The algorithm below works down from large sizes to small,
1369 * attempting to pack the assignments optimally. The assumption,
1370 * enforced in other parts of the code, is that the beginning of
1371 * the memory-mapped I/O space will be aligned on the largest
1372 * BAR size.
1373 */
1374static void prepopulate_bars(struct hv_pcibus_device *hbus)
1375{
1376        resource_size_t high_size = 0;
1377        resource_size_t low_size = 0;
1378        resource_size_t high_base = 0;
1379        resource_size_t low_base = 0;
1380        resource_size_t bar_size;
1381        struct hv_pci_dev *hpdev;
1382        unsigned long flags;
1383        u64 bar_val;
1384        u32 command;
1385        bool high;
1386        int i;
1387
1388        if (hbus->low_mmio_space) {
1389                low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1390                low_base = hbus->low_mmio_res->start;
1391        }
1392
1393        if (hbus->high_mmio_space) {
1394                high_size = 1ULL <<
1395                        (63 - __builtin_clzll(hbus->high_mmio_space));
1396                high_base = hbus->high_mmio_res->start;
1397        }
1398
1399        spin_lock_irqsave(&hbus->device_list_lock, flags);
1400
1401        /* Pick addresses for the BARs. */
1402        do {
1403                list_for_each_entry(hpdev, &hbus->children, list_entry) {
1404                        for (i = 0; i < 6; i++) {
1405                                bar_val = hpdev->probed_bar[i];
1406                                if (bar_val == 0)
1407                                        continue;
1408                                high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1409                                if (high) {
1410                                        bar_val |=
1411                                                ((u64)hpdev->probed_bar[i + 1]
1412                                                 << 32);
1413                                } else {
1414                                        bar_val |= 0xffffffffULL << 32;
1415                                }
1416                                bar_size = get_bar_size(bar_val);
1417                                if (high) {
1418                                        if (high_size != bar_size) {
1419                                                i++;
1420                                                continue;
1421                                        }
1422                                        _hv_pcifront_write_config(hpdev,
1423                                                PCI_BASE_ADDRESS_0 + (4 * i),
1424                                                4,
1425                                                (u32)(high_base & 0xffffff00));
1426                                        i++;
1427                                        _hv_pcifront_write_config(hpdev,
1428                                                PCI_BASE_ADDRESS_0 + (4 * i),
1429                                                4, (u32)(high_base >> 32));
1430                                        high_base += bar_size;
1431                                } else {
1432                                        if (low_size != bar_size)
1433                                                continue;
1434                                        _hv_pcifront_write_config(hpdev,
1435                                                PCI_BASE_ADDRESS_0 + (4 * i),
1436                                                4,
1437                                                (u32)(low_base & 0xffffff00));
1438                                        low_base += bar_size;
1439                                }
1440                        }
1441                        if (high_size <= 1 && low_size <= 1) {
1442                                /* Set the memory enable bit. */
1443                                _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1444                                                         &command);
1445                                command |= PCI_COMMAND_MEMORY;
1446                                _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1447                                                          command);
1448                                break;
1449                        }
1450                }
1451
1452                high_size >>= 1;
1453                low_size >>= 1;
1454        }  while (high_size || low_size);
1455
1456        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1457}
1458
1459/*
1460 * Assign entries in sysfs pci slot directory.
1461 *
1462 * Note that this function does not need to lock the children list
1463 * because it is called from pci_devices_present_work which
1464 * is serialized with hv_eject_device_work because they are on the
1465 * same ordered workqueue. Therefore hbus->children list will not change
1466 * even when pci_create_slot sleeps.
1467 */
1468static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1469{
1470        struct hv_pci_dev *hpdev;
1471        char name[SLOT_NAME_SIZE];
1472        int slot_nr;
1473
1474        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1475                if (hpdev->pci_slot)
1476                        continue;
1477
1478                slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1479                snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1480                hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1481                                          name, NULL);
1482                if (IS_ERR(hpdev->pci_slot)) {
1483                        pr_warn("pci_create slot %s failed\n", name);
1484                        hpdev->pci_slot = NULL;
1485                }
1486        }
1487}
1488
1489/*
1490 * Remove entries in sysfs pci slot directory.
1491 */
1492static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1493{
1494        struct hv_pci_dev *hpdev;
1495
1496        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1497                if (!hpdev->pci_slot)
1498                        continue;
1499                pci_destroy_slot(hpdev->pci_slot);
1500                hpdev->pci_slot = NULL;
1501        }
1502}
1503
1504/**
1505 * create_root_hv_pci_bus() - Expose a new root PCI bus
1506 * @hbus:       Root PCI bus, as understood by this driver
1507 *
1508 * Return: 0 on success, -errno on failure
1509 */
1510static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1511{
1512        /* Register the device */
1513        hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1514                                            0, /* bus number is always zero */
1515                                            &hv_pcifront_ops,
1516                                            &hbus->sysdata,
1517                                            &hbus->resources_for_children);
1518        if (!hbus->pci_bus)
1519                return -ENODEV;
1520
1521        hbus->pci_bus->msi = &hbus->msi_chip;
1522        hbus->pci_bus->msi->dev = &hbus->hdev->device;
1523
1524        pci_lock_rescan_remove();
1525        pci_scan_child_bus(hbus->pci_bus);
1526        pci_bus_assign_resources(hbus->pci_bus);
1527        hv_pci_assign_slots(hbus);
1528        pci_bus_add_devices(hbus->pci_bus);
1529        pci_unlock_rescan_remove();
1530        hbus->state = hv_pcibus_installed;
1531        return 0;
1532}
1533
1534struct q_res_req_compl {
1535        struct completion host_event;
1536        struct hv_pci_dev *hpdev;
1537};
1538
1539/**
1540 * q_resource_requirements() - Query Resource Requirements
1541 * @context:            The completion context.
1542 * @resp:               The response that came from the host.
1543 * @resp_packet_size:   The size in bytes of resp.
1544 *
1545 * This function is invoked on completion of a Query Resource
1546 * Requirements packet.
1547 */
1548static void q_resource_requirements(void *context, struct pci_response *resp,
1549                                    int resp_packet_size)
1550{
1551        struct q_res_req_compl *completion = context;
1552        struct pci_q_res_req_response *q_res_req =
1553                (struct pci_q_res_req_response *)resp;
1554        int i;
1555
1556        if (resp->status < 0) {
1557                dev_err(&completion->hpdev->hbus->hdev->device,
1558                        "query resource requirements failed: %x\n",
1559                        resp->status);
1560        } else {
1561                for (i = 0; i < 6; i++) {
1562                        completion->hpdev->probed_bar[i] =
1563                                q_res_req->probed_bar[i];
1564                }
1565        }
1566
1567        complete(&completion->host_event);
1568}
1569
1570/**
1571 * new_pcichild_device() - Create a new child device
1572 * @hbus:       The internal struct tracking this root PCI bus.
1573 * @desc:       The information supplied so far from the host
1574 *              about the device.
1575 *
1576 * This function creates the tracking structure for a new child
1577 * device and kicks off the process of figuring out what it is.
1578 *
1579 * Return: Pointer to the new tracking struct
1580 */
1581static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1582                struct pci_function_description *desc)
1583{
1584        struct hv_pci_dev *hpdev;
1585        struct pci_child_message *res_req;
1586        struct q_res_req_compl comp_pkt;
1587        struct {
1588                struct pci_packet init_packet;
1589                u8 buffer[sizeof(struct pci_child_message)];
1590        } pkt;
1591        unsigned long flags;
1592        int ret;
1593
1594        hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1595        if (!hpdev)
1596                return NULL;
1597
1598        hpdev->hbus = hbus;
1599
1600        memset(&pkt, 0, sizeof(pkt));
1601        init_completion(&comp_pkt.host_event);
1602        comp_pkt.hpdev = hpdev;
1603        pkt.init_packet.compl_ctxt = &comp_pkt;
1604        pkt.init_packet.completion_func = q_resource_requirements;
1605        res_req = (struct pci_child_message *)&pkt.init_packet.message;
1606        res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1607        res_req->wslot.slot = desc->win_slot.slot;
1608
1609        ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1610                               sizeof(struct pci_child_message),
1611                               (unsigned long)&pkt.init_packet,
1612                               VM_PKT_DATA_INBAND,
1613                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1614        if (ret)
1615                goto error;
1616
1617        if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1618                goto error;
1619
1620        hpdev->desc = *desc;
1621        refcount_set(&hpdev->refs, 1);
1622        get_pcichild(hpdev);
1623        spin_lock_irqsave(&hbus->device_list_lock, flags);
1624
1625        list_add_tail(&hpdev->list_entry, &hbus->children);
1626        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1627        return hpdev;
1628
1629error:
1630        kfree(hpdev);
1631        return NULL;
1632}
1633
1634/**
1635 * get_pcichild_wslot() - Find device from slot
1636 * @hbus:       Root PCI bus, as understood by this driver
1637 * @wslot:      Location on the bus
1638 *
1639 * This function looks up a PCI device and returns the internal
1640 * representation of it.  It acquires a reference on it, so that
1641 * the device won't be deleted while somebody is using it.  The
1642 * caller is responsible for calling put_pcichild() to release
1643 * this reference.
1644 *
1645 * Return:      Internal representation of a PCI device
1646 */
1647static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1648                                             u32 wslot)
1649{
1650        unsigned long flags;
1651        struct hv_pci_dev *iter, *hpdev = NULL;
1652
1653        spin_lock_irqsave(&hbus->device_list_lock, flags);
1654        list_for_each_entry(iter, &hbus->children, list_entry) {
1655                if (iter->desc.win_slot.slot == wslot) {
1656                        hpdev = iter;
1657                        get_pcichild(hpdev);
1658                        break;
1659                }
1660        }
1661        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1662
1663        return hpdev;
1664}
1665
1666/**
1667 * pci_devices_present_work() - Handle new list of child devices
1668 * @work:       Work struct embedded in struct hv_dr_work
1669 *
1670 * "Bus Relations" is the Windows term for "children of this
1671 * bus."  The terminology is preserved here for people trying to
1672 * debug the interaction between Hyper-V and Linux.  This
1673 * function is called when the parent partition reports a list
1674 * of functions that should be observed under this PCI Express
1675 * port (bus).
1676 *
1677 * This function updates the list, and must tolerate being
1678 * called multiple times with the same information.  The typical
1679 * number of child devices is one, with very atypical cases
1680 * involving three or four, so the algorithms used here can be
1681 * simple and inefficient.
1682 *
1683 * It must also treat the omission of a previously observed device as
1684 * notification that the device no longer exists.
1685 *
1686 * Note that this function is serialized with hv_eject_device_work(),
1687 * because both are pushed to the ordered workqueue hbus->wq.
1688 */
1689static void pci_devices_present_work(struct work_struct *work)
1690{
1691        u32 child_no;
1692        bool found;
1693        struct pci_function_description *new_desc;
1694        struct hv_pci_dev *hpdev;
1695        struct hv_pcibus_device *hbus;
1696        struct list_head removed;
1697        struct hv_dr_work *dr_wrk;
1698        struct hv_dr_state *dr = NULL;
1699        unsigned long flags;
1700
1701        dr_wrk = container_of(work, struct hv_dr_work, wrk);
1702        hbus = dr_wrk->bus;
1703        kfree(dr_wrk);
1704
1705        INIT_LIST_HEAD(&removed);
1706
1707        /* Pull this off the queue and process it if it was the last one. */
1708        spin_lock_irqsave(&hbus->device_list_lock, flags);
1709        while (!list_empty(&hbus->dr_list)) {
1710                dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1711                                      list_entry);
1712                list_del(&dr->list_entry);
1713
1714                /* Throw this away if the list still has stuff in it. */
1715                if (!list_empty(&hbus->dr_list)) {
1716                        kfree(dr);
1717                        continue;
1718                }
1719        }
1720        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1721
1722        if (!dr) {
1723                put_hvpcibus(hbus);
1724                return;
1725        }
1726
1727        /* First, mark all existing children as reported missing. */
1728        spin_lock_irqsave(&hbus->device_list_lock, flags);
1729        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1730                hpdev->reported_missing = true;
1731        }
1732        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1733
1734        /* Next, add back any reported devices. */
1735        for (child_no = 0; child_no < dr->device_count; child_no++) {
1736                found = false;
1737                new_desc = &dr->func[child_no];
1738
1739                spin_lock_irqsave(&hbus->device_list_lock, flags);
1740                list_for_each_entry(hpdev, &hbus->children, list_entry) {
1741                        if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1742                            (hpdev->desc.v_id == new_desc->v_id) &&
1743                            (hpdev->desc.d_id == new_desc->d_id) &&
1744                            (hpdev->desc.ser == new_desc->ser)) {
1745                                hpdev->reported_missing = false;
1746                                found = true;
1747                        }
1748                }
1749                spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1750
1751                if (!found) {
1752                        hpdev = new_pcichild_device(hbus, new_desc);
1753                        if (!hpdev)
1754                                dev_err(&hbus->hdev->device,
1755                                        "couldn't record a child device.\n");
1756                }
1757        }
1758
1759        /* Move missing children to a list on the stack. */
1760        spin_lock_irqsave(&hbus->device_list_lock, flags);
1761        do {
1762                found = false;
1763                list_for_each_entry(hpdev, &hbus->children, list_entry) {
1764                        if (hpdev->reported_missing) {
1765                                found = true;
1766                                put_pcichild(hpdev);
1767                                list_move_tail(&hpdev->list_entry, &removed);
1768                                break;
1769                        }
1770                }
1771        } while (found);
1772        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1773
1774        /* Delete everything that should no longer exist. */
1775        while (!list_empty(&removed)) {
1776                hpdev = list_first_entry(&removed, struct hv_pci_dev,
1777                                         list_entry);
1778                list_del(&hpdev->list_entry);
1779
1780                if (hpdev->pci_slot)
1781                        pci_destroy_slot(hpdev->pci_slot);
1782
1783                put_pcichild(hpdev);
1784        }
1785
1786        switch (hbus->state) {
1787        case hv_pcibus_installed:
1788                /*
1789                 * Tell the core to rescan bus
1790                 * because there may have been changes.
1791                 */
1792                pci_lock_rescan_remove();
1793                pci_scan_child_bus(hbus->pci_bus);
1794                hv_pci_assign_slots(hbus);
1795                pci_unlock_rescan_remove();
1796                break;
1797
1798        case hv_pcibus_init:
1799        case hv_pcibus_probed:
1800                survey_child_resources(hbus);
1801                break;
1802
1803        default:
1804                break;
1805        }
1806
1807        put_hvpcibus(hbus);
1808        kfree(dr);
1809}
1810
1811/**
1812 * hv_pci_devices_present() - Handles list of new children
1813 * @hbus:       Root PCI bus, as understood by this driver
1814 * @relations:  Packet from host listing children
1815 *
1816 * This function is invoked whenever a new list of devices for
1817 * this bus appears.
1818 */
1819static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1820                                   struct pci_bus_relations *relations)
1821{
1822        struct hv_dr_state *dr;
1823        struct hv_dr_work *dr_wrk;
1824        unsigned long flags;
1825        bool pending_dr;
1826
1827        dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1828        if (!dr_wrk)
1829                return;
1830
1831        dr = kzalloc(offsetof(struct hv_dr_state, func) +
1832                     (sizeof(struct pci_function_description) *
1833                      (relations->device_count)), GFP_NOWAIT);
1834        if (!dr)  {
1835                kfree(dr_wrk);
1836                return;
1837        }
1838
1839        INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1840        dr_wrk->bus = hbus;
1841        dr->device_count = relations->device_count;
1842        if (dr->device_count != 0) {
1843                memcpy(dr->func, relations->func,
1844                       sizeof(struct pci_function_description) *
1845                       dr->device_count);
1846        }
1847
1848        spin_lock_irqsave(&hbus->device_list_lock, flags);
1849        /*
1850         * If pending_dr is true, we have already queued a work,
1851         * which will see the new dr. Otherwise, we need to
1852         * queue a new work.
1853         */
1854        pending_dr = !list_empty(&hbus->dr_list);
1855        list_add_tail(&dr->list_entry, &hbus->dr_list);
1856        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1857
1858        if (pending_dr) {
1859                kfree(dr_wrk);
1860        } else {
1861                get_hvpcibus(hbus);
1862                queue_work(hbus->wq, &dr_wrk->wrk);
1863        }
1864}
1865
1866/**
1867 * hv_eject_device_work() - Asynchronously handles ejection
1868 * @work:       Work struct embedded in internal device struct
1869 *
1870 * This function handles ejecting a device.  Windows will
1871 * attempt to gracefully eject a device, waiting 60 seconds to
1872 * hear back from the guest OS that this completed successfully.
1873 * If this timer expires, the device will be forcibly removed.
1874 */
1875static void hv_eject_device_work(struct work_struct *work)
1876{
1877        struct pci_eject_response *ejct_pkt;
1878        struct hv_pcibus_device *hbus;
1879        struct hv_pci_dev *hpdev;
1880        struct pci_dev *pdev;
1881        unsigned long flags;
1882        int wslot;
1883        struct {
1884                struct pci_packet pkt;
1885                u8 buffer[sizeof(struct pci_eject_response)];
1886        } ctxt;
1887
1888        hpdev = container_of(work, struct hv_pci_dev, wrk);
1889        hbus = hpdev->hbus;
1890
1891        WARN_ON(hpdev->state != hv_pcichild_ejecting);
1892
1893        /*
1894         * Ejection can come before or after the PCI bus has been set up, so
1895         * attempt to find it and tear down the bus state, if it exists.  This
1896         * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1897         * because hbus->pci_bus may not exist yet.
1898         */
1899        wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1900        pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
1901        if (pdev) {
1902                pci_lock_rescan_remove();
1903                pci_stop_and_remove_bus_device(pdev);
1904                pci_dev_put(pdev);
1905                pci_unlock_rescan_remove();
1906        }
1907
1908        spin_lock_irqsave(&hbus->device_list_lock, flags);
1909        list_del(&hpdev->list_entry);
1910        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1911
1912        if (hpdev->pci_slot)
1913                pci_destroy_slot(hpdev->pci_slot);
1914
1915        memset(&ctxt, 0, sizeof(ctxt));
1916        ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1917        ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1918        ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1919        vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
1920                         sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1921                         VM_PKT_DATA_INBAND, 0);
1922
1923        /* For the get_pcichild() in hv_pci_eject_device() */
1924        put_pcichild(hpdev);
1925        /* For the two refs got in new_pcichild_device() */
1926        put_pcichild(hpdev);
1927        put_pcichild(hpdev);
1928        /* hpdev has been freed. Do not use it any more. */
1929
1930        put_hvpcibus(hbus);
1931}
1932
1933/**
1934 * hv_pci_eject_device() - Handles device ejection
1935 * @hpdev:      Internal device tracking struct
1936 *
1937 * This function is invoked when an ejection packet arrives.  It
1938 * just schedules work so that we don't re-enter the packet
1939 * delivery code handling the ejection.
1940 */
1941static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1942{
1943        hpdev->state = hv_pcichild_ejecting;
1944        get_pcichild(hpdev);
1945        INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1946        get_hvpcibus(hpdev->hbus);
1947        queue_work(hpdev->hbus->wq, &hpdev->wrk);
1948}
1949
1950/**
1951 * hv_pci_onchannelcallback() - Handles incoming packets
1952 * @context:    Internal bus tracking struct
1953 *
1954 * This function is invoked whenever the host sends a packet to
1955 * this channel (which is private to this root PCI bus).
1956 */
1957static void hv_pci_onchannelcallback(void *context)
1958{
1959        const int packet_size = 0x100;
1960        int ret;
1961        struct hv_pcibus_device *hbus = context;
1962        u32 bytes_recvd;
1963        u64 req_id;
1964        struct vmpacket_descriptor *desc;
1965        unsigned char *buffer;
1966        int bufferlen = packet_size;
1967        struct pci_packet *comp_packet;
1968        struct pci_response *response;
1969        struct pci_incoming_message *new_message;
1970        struct pci_bus_relations *bus_rel;
1971        struct pci_dev_incoming *dev_message;
1972        struct hv_pci_dev *hpdev;
1973
1974        buffer = kmalloc(bufferlen, GFP_ATOMIC);
1975        if (!buffer)
1976                return;
1977
1978        while (1) {
1979                ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1980                                           bufferlen, &bytes_recvd, &req_id);
1981
1982                if (ret == -ENOBUFS) {
1983                        kfree(buffer);
1984                        /* Handle large packet */
1985                        bufferlen = bytes_recvd;
1986                        buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1987                        if (!buffer)
1988                                return;
1989                        continue;
1990                }
1991
1992                /* Zero length indicates there are no more packets. */
1993                if (ret || !bytes_recvd)
1994                        break;
1995
1996                /*
1997                 * All incoming packets must be at least as large as a
1998                 * response.
1999                 */
2000                if (bytes_recvd <= sizeof(struct pci_response))
2001                        continue;
2002                desc = (struct vmpacket_descriptor *)buffer;
2003
2004                switch (desc->type) {
2005                case VM_PKT_COMP:
2006
2007                        /*
2008                         * The host is trusted, and thus it's safe to interpret
2009                         * this transaction ID as a pointer.
2010                         */
2011                        comp_packet = (struct pci_packet *)req_id;
2012                        response = (struct pci_response *)buffer;
2013                        comp_packet->completion_func(comp_packet->compl_ctxt,
2014                                                     response,
2015                                                     bytes_recvd);
2016                        break;
2017
2018                case VM_PKT_DATA_INBAND:
2019
2020                        new_message = (struct pci_incoming_message *)buffer;
2021                        switch (new_message->message_type.type) {
2022                        case PCI_BUS_RELATIONS:
2023
2024                                bus_rel = (struct pci_bus_relations *)buffer;
2025                                if (bytes_recvd <
2026                                    offsetof(struct pci_bus_relations, func) +
2027                                    (sizeof(struct pci_function_description) *
2028                                     (bus_rel->device_count))) {
2029                                        dev_err(&hbus->hdev->device,
2030                                                "bus relations too small\n");
2031                                        break;
2032                                }
2033
2034                                hv_pci_devices_present(hbus, bus_rel);
2035                                break;
2036
2037                        case PCI_EJECT:
2038
2039                                dev_message = (struct pci_dev_incoming *)buffer;
2040                                hpdev = get_pcichild_wslot(hbus,
2041                                                      dev_message->wslot.slot);
2042                                if (hpdev) {
2043                                        hv_pci_eject_device(hpdev);
2044                                        put_pcichild(hpdev);
2045                                }
2046                                break;
2047
2048                        default:
2049                                dev_warn(&hbus->hdev->device,
2050                                        "Unimplemented protocol message %x\n",
2051                                        new_message->message_type.type);
2052                                break;
2053                        }
2054                        break;
2055
2056                default:
2057                        dev_err(&hbus->hdev->device,
2058                                "unhandled packet type %d, tid %llx len %d\n",
2059                                desc->type, req_id, bytes_recvd);
2060                        break;
2061                }
2062        }
2063
2064        kfree(buffer);
2065}
2066
2067/**
2068 * hv_pci_protocol_negotiation() - Set up protocol
2069 * @hdev:       VMBus's tracking struct for this root PCI bus
2070 *
2071 * This driver is intended to support running on Windows 10
2072 * (server) and later versions. It will not run on earlier
2073 * versions, as they assume that many of the operations which
2074 * Linux needs accomplished with a spinlock held were done via
2075 * asynchronous messaging via VMBus.  Windows 10 increases the
2076 * surface area of PCI emulation so that these actions can take
2077 * place by suspending a virtual processor for their duration.
2078 *
2079 * This function negotiates the channel protocol version,
2080 * failing if the host doesn't support the necessary protocol
2081 * level.
2082 */
2083static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2084{
2085        struct pci_version_request *version_req;
2086        struct hv_pci_compl comp_pkt;
2087        struct pci_packet *pkt;
2088        int ret;
2089        int i;
2090
2091        /*
2092         * Initiate the handshake with the host and negotiate
2093         * a version that the host can support. We start with the
2094         * highest version number and go down if the host cannot
2095         * support it.
2096         */
2097        pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2098        if (!pkt)
2099                return -ENOMEM;
2100
2101        init_completion(&comp_pkt.host_event);
2102        pkt->completion_func = hv_pci_generic_compl;
2103        pkt->compl_ctxt = &comp_pkt;
2104        version_req = (struct pci_version_request *)&pkt->message;
2105        version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2106
2107        for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2108                version_req->protocol_version = pci_protocol_versions[i];
2109                ret = vmbus_sendpacket(hdev->channel, version_req,
2110                                sizeof(struct pci_version_request),
2111                                (unsigned long)pkt, VM_PKT_DATA_INBAND,
2112                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2113                if (!ret)
2114                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2115
2116                if (ret) {
2117                        dev_err(&hdev->device,
2118                                "PCI Pass-through VSP failed to request version: %d",
2119                                ret);
2120                        goto exit;
2121                }
2122
2123                if (comp_pkt.completion_status >= 0) {
2124                        pci_protocol_version = pci_protocol_versions[i];
2125                        dev_info(&hdev->device,
2126                                "PCI VMBus probing: Using version %#x\n",
2127                                pci_protocol_version);
2128                        goto exit;
2129                }
2130
2131                if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2132                        dev_err(&hdev->device,
2133                                "PCI Pass-through VSP failed version request: %#x",
2134                                comp_pkt.completion_status);
2135                        ret = -EPROTO;
2136                        goto exit;
2137                }
2138
2139                reinit_completion(&comp_pkt.host_event);
2140        }
2141
2142        dev_err(&hdev->device,
2143                "PCI pass-through VSP failed to find supported version");
2144        ret = -EPROTO;
2145
2146exit:
2147        kfree(pkt);
2148        return ret;
2149}
2150
2151/**
2152 * hv_pci_free_bridge_windows() - Release memory regions for the
2153 * bus
2154 * @hbus:       Root PCI bus, as understood by this driver
2155 */
2156static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2157{
2158        /*
2159         * Set the resources back to the way they looked when they
2160         * were allocated by setting IORESOURCE_BUSY again.
2161         */
2162
2163        if (hbus->low_mmio_space && hbus->low_mmio_res) {
2164                hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2165                vmbus_free_mmio(hbus->low_mmio_res->start,
2166                                resource_size(hbus->low_mmio_res));
2167        }
2168
2169        if (hbus->high_mmio_space && hbus->high_mmio_res) {
2170                hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2171                vmbus_free_mmio(hbus->high_mmio_res->start,
2172                                resource_size(hbus->high_mmio_res));
2173        }
2174}
2175
2176/**
2177 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2178 * for the bus
2179 * @hbus:       Root PCI bus, as understood by this driver
2180 *
2181 * This function calls vmbus_allocate_mmio(), which is itself a
2182 * bit of a compromise.  Ideally, we might change the pnp layer
2183 * in the kernel such that it comprehends either PCI devices
2184 * which are "grandchildren of ACPI," with some intermediate bus
2185 * node (in this case, VMBus) or change it such that it
2186 * understands VMBus.  The pnp layer, however, has been declared
2187 * deprecated, and not subject to change.
2188 *
2189 * The workaround, implemented here, is to ask VMBus to allocate
2190 * MMIO space for this bus.  VMBus itself knows which ranges are
2191 * appropriate by looking at its own ACPI objects.  Then, after
2192 * these ranges are claimed, they're modified to look like they
2193 * would have looked if the ACPI and pnp code had allocated
2194 * bridge windows.  These descriptors have to exist in this form
2195 * in order to satisfy the code which will get invoked when the
2196 * endpoint PCI function driver calls request_mem_region() or
2197 * request_mem_region_exclusive().
2198 *
2199 * Return: 0 on success, -errno on failure
2200 */
2201static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2202{
2203        resource_size_t align;
2204        int ret;
2205
2206        if (hbus->low_mmio_space) {
2207                align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2208                ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2209                                          (u64)(u32)0xffffffff,
2210                                          hbus->low_mmio_space,
2211                                          align, false);
2212                if (ret) {
2213                        dev_err(&hbus->hdev->device,
2214                                "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2215                                hbus->low_mmio_space);
2216                        return ret;
2217                }
2218
2219                /* Modify this resource to become a bridge window. */
2220                hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2221                hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2222                pci_add_resource(&hbus->resources_for_children,
2223                                 hbus->low_mmio_res);
2224        }
2225
2226        if (hbus->high_mmio_space) {
2227                align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2228                ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2229                                          0x100000000, -1,
2230                                          hbus->high_mmio_space, align,
2231                                          false);
2232                if (ret) {
2233                        dev_err(&hbus->hdev->device,
2234                                "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2235                                hbus->high_mmio_space);
2236                        goto release_low_mmio;
2237                }
2238
2239                /* Modify this resource to become a bridge window. */
2240                hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2241                hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2242                pci_add_resource(&hbus->resources_for_children,
2243                                 hbus->high_mmio_res);
2244        }
2245
2246        return 0;
2247
2248release_low_mmio:
2249        if (hbus->low_mmio_res) {
2250                vmbus_free_mmio(hbus->low_mmio_res->start,
2251                                resource_size(hbus->low_mmio_res));
2252        }
2253
2254        return ret;
2255}
2256
2257/**
2258 * hv_allocate_config_window() - Find MMIO space for PCI Config
2259 * @hbus:       Root PCI bus, as understood by this driver
2260 *
2261 * This function claims memory-mapped I/O space for accessing
2262 * configuration space for the functions on this bus.
2263 *
2264 * Return: 0 on success, -errno on failure
2265 */
2266static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2267{
2268        int ret;
2269
2270        /*
2271         * Set up a region of MMIO space to use for accessing configuration
2272         * space.
2273         */
2274        ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2275                                  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2276        if (ret)
2277                return ret;
2278
2279        /*
2280         * vmbus_allocate_mmio() gets used for allocating both device endpoint
2281         * resource claims (those which cannot be overlapped) and the ranges
2282         * which are valid for the children of this bus, which are intended
2283         * to be overlapped by those children.  Set the flag on this claim
2284         * meaning that this region can't be overlapped.
2285         */
2286
2287        hbus->mem_config->flags |= IORESOURCE_BUSY;
2288
2289        return 0;
2290}
2291
2292static void hv_free_config_window(struct hv_pcibus_device *hbus)
2293{
2294        vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2295}
2296
2297/**
2298 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2299 * @hdev:       VMBus's tracking struct for this root PCI bus
2300 *
2301 * Return: 0 on success, -errno on failure
2302 */
2303static int hv_pci_enter_d0(struct hv_device *hdev)
2304{
2305        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2306        struct pci_bus_d0_entry *d0_entry;
2307        struct hv_pci_compl comp_pkt;
2308        struct pci_packet *pkt;
2309        int ret;
2310
2311        /*
2312         * Tell the host that the bus is ready to use, and moved into the
2313         * powered-on state.  This includes telling the host which region
2314         * of memory-mapped I/O space has been chosen for configuration space
2315         * access.
2316         */
2317        pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2318        if (!pkt)
2319                return -ENOMEM;
2320
2321        init_completion(&comp_pkt.host_event);
2322        pkt->completion_func = hv_pci_generic_compl;
2323        pkt->compl_ctxt = &comp_pkt;
2324        d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2325        d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2326        d0_entry->mmio_base = hbus->mem_config->start;
2327
2328        ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2329                               (unsigned long)pkt, VM_PKT_DATA_INBAND,
2330                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2331        if (!ret)
2332                ret = wait_for_response(hdev, &comp_pkt.host_event);
2333
2334        if (ret)
2335                goto exit;
2336
2337        if (comp_pkt.completion_status < 0) {
2338                dev_err(&hdev->device,
2339                        "PCI Pass-through VSP failed D0 Entry with status %x\n",
2340                        comp_pkt.completion_status);
2341                ret = -EPROTO;
2342                goto exit;
2343        }
2344
2345        ret = 0;
2346
2347exit:
2348        kfree(pkt);
2349        return ret;
2350}
2351
2352/**
2353 * hv_pci_query_relations() - Ask host to send list of child
2354 * devices
2355 * @hdev:       VMBus's tracking struct for this root PCI bus
2356 *
2357 * Return: 0 on success, -errno on failure
2358 */
2359static int hv_pci_query_relations(struct hv_device *hdev)
2360{
2361        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2362        struct pci_message message;
2363        struct completion comp;
2364        int ret;
2365
2366        /* Ask the host to send along the list of child devices */
2367        init_completion(&comp);
2368        if (cmpxchg(&hbus->survey_event, NULL, &comp))
2369                return -ENOTEMPTY;
2370
2371        memset(&message, 0, sizeof(message));
2372        message.type = PCI_QUERY_BUS_RELATIONS;
2373
2374        ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2375                               0, VM_PKT_DATA_INBAND, 0);
2376        if (!ret)
2377                ret = wait_for_response(hdev, &comp);
2378
2379        return ret;
2380}
2381
2382/**
2383 * hv_send_resources_allocated() - Report local resource choices
2384 * @hdev:       VMBus's tracking struct for this root PCI bus
2385 *
2386 * The host OS is expecting to be sent a request as a message
2387 * which contains all the resources that the device will use.
2388 * The response contains those same resources, "translated"
2389 * which is to say, the values which should be used by the
2390 * hardware, when it delivers an interrupt.  (MMIO resources are
2391 * used in local terms.)  This is nice for Windows, and lines up
2392 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2393 * is deeply expecting to scan an emulated PCI configuration
2394 * space.  So this message is sent here only to drive the state
2395 * machine on the host forward.
2396 *
2397 * Return: 0 on success, -errno on failure
2398 */
2399static int hv_send_resources_allocated(struct hv_device *hdev)
2400{
2401        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2402        struct pci_resources_assigned *res_assigned;
2403        struct pci_resources_assigned2 *res_assigned2;
2404        struct hv_pci_compl comp_pkt;
2405        struct hv_pci_dev *hpdev;
2406        struct pci_packet *pkt;
2407        size_t size_res;
2408        u32 wslot;
2409        int ret;
2410
2411        size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2412                        ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2413
2414        pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2415        if (!pkt)
2416                return -ENOMEM;
2417
2418        ret = 0;
2419
2420        for (wslot = 0; wslot < 256; wslot++) {
2421                hpdev = get_pcichild_wslot(hbus, wslot);
2422                if (!hpdev)
2423                        continue;
2424
2425                memset(pkt, 0, sizeof(*pkt) + size_res);
2426                init_completion(&comp_pkt.host_event);
2427                pkt->completion_func = hv_pci_generic_compl;
2428                pkt->compl_ctxt = &comp_pkt;
2429
2430                if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2431                        res_assigned =
2432                                (struct pci_resources_assigned *)&pkt->message;
2433                        res_assigned->message_type.type =
2434                                PCI_RESOURCES_ASSIGNED;
2435                        res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2436                } else {
2437                        res_assigned2 =
2438                                (struct pci_resources_assigned2 *)&pkt->message;
2439                        res_assigned2->message_type.type =
2440                                PCI_RESOURCES_ASSIGNED2;
2441                        res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2442                }
2443                put_pcichild(hpdev);
2444
2445                ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2446                                size_res, (unsigned long)pkt,
2447                                VM_PKT_DATA_INBAND,
2448                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2449                if (!ret)
2450                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2451                if (ret)
2452                        break;
2453
2454                if (comp_pkt.completion_status < 0) {
2455                        ret = -EPROTO;
2456                        dev_err(&hdev->device,
2457                                "resource allocated returned 0x%x",
2458                                comp_pkt.completion_status);
2459                        break;
2460                }
2461        }
2462
2463        kfree(pkt);
2464        return ret;
2465}
2466
2467/**
2468 * hv_send_resources_released() - Report local resources
2469 * released
2470 * @hdev:       VMBus's tracking struct for this root PCI bus
2471 *
2472 * Return: 0 on success, -errno on failure
2473 */
2474static int hv_send_resources_released(struct hv_device *hdev)
2475{
2476        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2477        struct pci_child_message pkt;
2478        struct hv_pci_dev *hpdev;
2479        u32 wslot;
2480        int ret;
2481
2482        for (wslot = 0; wslot < 256; wslot++) {
2483                hpdev = get_pcichild_wslot(hbus, wslot);
2484                if (!hpdev)
2485                        continue;
2486
2487                memset(&pkt, 0, sizeof(pkt));
2488                pkt.message_type.type = PCI_RESOURCES_RELEASED;
2489                pkt.wslot.slot = hpdev->desc.win_slot.slot;
2490
2491                put_pcichild(hpdev);
2492
2493                ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2494                                       VM_PKT_DATA_INBAND, 0);
2495                if (ret)
2496                        return ret;
2497        }
2498
2499        return 0;
2500}
2501
2502static void get_hvpcibus(struct hv_pcibus_device *hbus)
2503{
2504        refcount_inc(&hbus->remove_lock);
2505}
2506
2507static void put_hvpcibus(struct hv_pcibus_device *hbus)
2508{
2509        if (refcount_dec_and_test(&hbus->remove_lock))
2510                complete(&hbus->remove_event);
2511}
2512
2513/**
2514 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2515 * @hdev:       VMBus's tracking struct for this root PCI bus
2516 * @dev_id:     Identifies the device itself
2517 *
2518 * Return: 0 on success, -errno on failure
2519 */
2520static int hv_pci_probe(struct hv_device *hdev,
2521                        const struct hv_vmbus_device_id *dev_id)
2522{
2523        struct hv_pcibus_device *hbus;
2524        int ret;
2525
2526        /*
2527         * hv_pcibus_device contains the hypercall arguments for retargeting in
2528         * hv_irq_unmask(). Those must not cross a page boundary.
2529         */
2530        BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2531
2532        hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2533        if (!hbus)
2534                return -ENOMEM;
2535        hbus->state = hv_pcibus_init;
2536
2537        /*
2538         * The PCI bus "domain" is what is called "segment" in ACPI and
2539         * other specs.  Pull it from the instance ID, to get something
2540         * unique.  Bytes 8 and 9 are what is used in Windows guests, so
2541         * do the same thing for consistency.  Note that, since this code
2542         * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2543         * that (1) the only domain in use for something that looks like
2544         * a physical PCI bus (which is actually emulated by the
2545         * hypervisor) is domain 0 and (2) there will be no overlap
2546         * between domains derived from these instance IDs in the same
2547         * VM.
2548         */
2549        hbus->sysdata.domain = hdev->dev_instance.b[9] |
2550                               hdev->dev_instance.b[8] << 8;
2551
2552        hbus->hdev = hdev;
2553        refcount_set(&hbus->remove_lock, 1);
2554        INIT_LIST_HEAD(&hbus->children);
2555        INIT_LIST_HEAD(&hbus->dr_list);
2556        INIT_LIST_HEAD(&hbus->resources_for_children);
2557        spin_lock_init(&hbus->config_lock);
2558        spin_lock_init(&hbus->device_list_lock);
2559        spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2560        init_completion(&hbus->remove_event);
2561        hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2562                                           hbus->sysdata.domain);
2563        if (!hbus->wq) {
2564                ret = -ENOMEM;
2565                goto free_bus;
2566        }
2567
2568        ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2569                         hv_pci_onchannelcallback, hbus);
2570        if (ret)
2571                goto destroy_wq;
2572
2573        hv_set_drvdata(hdev, hbus);
2574
2575        ret = hv_pci_protocol_negotiation(hdev);
2576        if (ret)
2577                goto close;
2578
2579        ret = hv_allocate_config_window(hbus);
2580        if (ret)
2581                goto close;
2582
2583        hbus->cfg_addr = ioremap(hbus->mem_config->start,
2584                                 PCI_CONFIG_MMIO_LENGTH);
2585        if (!hbus->cfg_addr) {
2586                dev_err(&hdev->device,
2587                        "Unable to map a virtual address for config space\n");
2588                ret = -ENOMEM;
2589                goto free_config;
2590        }
2591
2592        hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2593        if (!hbus->sysdata.fwnode) {
2594                ret = -ENOMEM;
2595                goto unmap;
2596        }
2597
2598        ret = hv_pcie_init_irq_domain(hbus);
2599        if (ret)
2600                goto free_fwnode;
2601
2602        ret = hv_pci_query_relations(hdev);
2603        if (ret)
2604                goto free_irq_domain;
2605
2606        ret = hv_pci_enter_d0(hdev);
2607        if (ret)
2608                goto free_irq_domain;
2609
2610        ret = hv_pci_allocate_bridge_windows(hbus);
2611        if (ret)
2612                goto free_irq_domain;
2613
2614        ret = hv_send_resources_allocated(hdev);
2615        if (ret)
2616                goto free_windows;
2617
2618        prepopulate_bars(hbus);
2619
2620        hbus->state = hv_pcibus_probed;
2621
2622        ret = create_root_hv_pci_bus(hbus);
2623        if (ret)
2624                goto free_windows;
2625
2626        return 0;
2627
2628free_windows:
2629        hv_pci_free_bridge_windows(hbus);
2630free_irq_domain:
2631        irq_domain_remove(hbus->irq_domain);
2632free_fwnode:
2633        irq_domain_free_fwnode(hbus->sysdata.fwnode);
2634unmap:
2635        iounmap(hbus->cfg_addr);
2636free_config:
2637        hv_free_config_window(hbus);
2638close:
2639        vmbus_close(hdev->channel);
2640destroy_wq:
2641        destroy_workqueue(hbus->wq);
2642free_bus:
2643        free_page((unsigned long)hbus);
2644        return ret;
2645}
2646
2647static void hv_pci_bus_exit(struct hv_device *hdev)
2648{
2649        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2650        struct {
2651                struct pci_packet teardown_packet;
2652                u8 buffer[sizeof(struct pci_message)];
2653        } pkt;
2654        struct pci_bus_relations relations;
2655        struct hv_pci_compl comp_pkt;
2656        int ret;
2657
2658        /*
2659         * After the host sends the RESCIND_CHANNEL message, it doesn't
2660         * access the per-channel ringbuffer any longer.
2661         */
2662        if (hdev->channel->rescind)
2663                return;
2664
2665        /* Delete any children which might still exist. */
2666        memset(&relations, 0, sizeof(relations));
2667        hv_pci_devices_present(hbus, &relations);
2668
2669        ret = hv_send_resources_released(hdev);
2670        if (ret)
2671                dev_err(&hdev->device,
2672                        "Couldn't send resources released packet(s)\n");
2673
2674        memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2675        init_completion(&comp_pkt.host_event);
2676        pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2677        pkt.teardown_packet.compl_ctxt = &comp_pkt;
2678        pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2679
2680        ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2681                               sizeof(struct pci_message),
2682                               (unsigned long)&pkt.teardown_packet,
2683                               VM_PKT_DATA_INBAND,
2684                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2685        if (!ret)
2686                wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2687}
2688
2689/**
2690 * hv_pci_remove() - Remove routine for this VMBus channel
2691 * @hdev:       VMBus's tracking struct for this root PCI bus
2692 *
2693 * Return: 0 on success, -errno on failure
2694 */
2695static int hv_pci_remove(struct hv_device *hdev)
2696{
2697        struct hv_pcibus_device *hbus;
2698
2699        hbus = hv_get_drvdata(hdev);
2700        if (hbus->state == hv_pcibus_installed) {
2701                /* Remove the bus from PCI's point of view. */
2702                pci_lock_rescan_remove();
2703                pci_stop_root_bus(hbus->pci_bus);
2704                pci_remove_root_bus(hbus->pci_bus);
2705                hv_pci_remove_slots(hbus);
2706                pci_unlock_rescan_remove();
2707                hbus->state = hv_pcibus_removed;
2708        }
2709
2710        hv_pci_bus_exit(hdev);
2711
2712        vmbus_close(hdev->channel);
2713
2714        iounmap(hbus->cfg_addr);
2715        hv_free_config_window(hbus);
2716        pci_free_resource_list(&hbus->resources_for_children);
2717        hv_pci_free_bridge_windows(hbus);
2718        irq_domain_remove(hbus->irq_domain);
2719        irq_domain_free_fwnode(hbus->sysdata.fwnode);
2720        put_hvpcibus(hbus);
2721        wait_for_completion(&hbus->remove_event);
2722        destroy_workqueue(hbus->wq);
2723        free_page((unsigned long)hbus);
2724        return 0;
2725}
2726
2727static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2728        /* PCI Pass-through Class ID */
2729        /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2730        { HV_PCIE_GUID, },
2731        { },
2732};
2733
2734MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2735
2736static struct hv_driver hv_pci_drv = {
2737        .name           = "hv_pci",
2738        .id_table       = hv_pci_id_table,
2739        .probe          = hv_pci_probe,
2740        .remove         = hv_pci_remove,
2741};
2742
2743static void __exit exit_hv_pci_drv(void)
2744{
2745        vmbus_driver_unregister(&hv_pci_drv);
2746}
2747
2748static int __init init_hv_pci_drv(void)
2749{
2750        return vmbus_driver_register(&hv_pci_drv);
2751}
2752
2753module_init(init_hv_pci_drv);
2754module_exit(exit_hv_pci_drv);
2755
2756MODULE_DESCRIPTION("Hyper-V PCI");
2757MODULE_LICENSE("GPL v2");
2758