linux/drivers/perf/arm_pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#undef DEBUG
   3
   4/*
   5 * ARM performance counter support.
   6 *
   7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   9 *
  10 * This code is based on the sparc64 perf event code, which is in turn based
  11 * on the x86 code.
  12 */
  13#define pr_fmt(fmt) "hw perfevents: " fmt
  14
  15#include <linux/bitmap.h>
  16#include <linux/cpumask.h>
  17#include <linux/cpu_pm.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/perf/arm_pmu.h>
  21#include <linux/slab.h>
  22#include <linux/sched/clock.h>
  23#include <linux/spinlock.h>
  24#include <linux/irq.h>
  25#include <linux/irqdesc.h>
  26
  27#include <asm/irq_regs.h>
  28
  29static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
  30static DEFINE_PER_CPU(int, cpu_irq);
  31
  32static inline u64 arm_pmu_event_max_period(struct perf_event *event)
  33{
  34        if (event->hw.flags & ARMPMU_EVT_64BIT)
  35                return GENMASK_ULL(63, 0);
  36        else
  37                return GENMASK_ULL(31, 0);
  38}
  39
  40static int
  41armpmu_map_cache_event(const unsigned (*cache_map)
  42                                      [PERF_COUNT_HW_CACHE_MAX]
  43                                      [PERF_COUNT_HW_CACHE_OP_MAX]
  44                                      [PERF_COUNT_HW_CACHE_RESULT_MAX],
  45                       u64 config)
  46{
  47        unsigned int cache_type, cache_op, cache_result, ret;
  48
  49        cache_type = (config >>  0) & 0xff;
  50        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  51                return -EINVAL;
  52
  53        cache_op = (config >>  8) & 0xff;
  54        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  55                return -EINVAL;
  56
  57        cache_result = (config >> 16) & 0xff;
  58        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  59                return -EINVAL;
  60
  61        if (!cache_map)
  62                return -ENOENT;
  63
  64        ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  65
  66        if (ret == CACHE_OP_UNSUPPORTED)
  67                return -ENOENT;
  68
  69        return ret;
  70}
  71
  72static int
  73armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  74{
  75        int mapping;
  76
  77        if (config >= PERF_COUNT_HW_MAX)
  78                return -EINVAL;
  79
  80        if (!event_map)
  81                return -ENOENT;
  82
  83        mapping = (*event_map)[config];
  84        return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  85}
  86
  87static int
  88armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  89{
  90        return (int)(config & raw_event_mask);
  91}
  92
  93int
  94armpmu_map_event(struct perf_event *event,
  95                 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  96                 const unsigned (*cache_map)
  97                                [PERF_COUNT_HW_CACHE_MAX]
  98                                [PERF_COUNT_HW_CACHE_OP_MAX]
  99                                [PERF_COUNT_HW_CACHE_RESULT_MAX],
 100                 u32 raw_event_mask)
 101{
 102        u64 config = event->attr.config;
 103        int type = event->attr.type;
 104
 105        if (type == event->pmu->type)
 106                return armpmu_map_raw_event(raw_event_mask, config);
 107
 108        switch (type) {
 109        case PERF_TYPE_HARDWARE:
 110                return armpmu_map_hw_event(event_map, config);
 111        case PERF_TYPE_HW_CACHE:
 112                return armpmu_map_cache_event(cache_map, config);
 113        case PERF_TYPE_RAW:
 114                return armpmu_map_raw_event(raw_event_mask, config);
 115        }
 116
 117        return -ENOENT;
 118}
 119
 120int armpmu_event_set_period(struct perf_event *event)
 121{
 122        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 123        struct hw_perf_event *hwc = &event->hw;
 124        s64 left = local64_read(&hwc->period_left);
 125        s64 period = hwc->sample_period;
 126        u64 max_period;
 127        int ret = 0;
 128
 129        max_period = arm_pmu_event_max_period(event);
 130        if (unlikely(left <= -period)) {
 131                left = period;
 132                local64_set(&hwc->period_left, left);
 133                hwc->last_period = period;
 134                ret = 1;
 135        }
 136
 137        if (unlikely(left <= 0)) {
 138                left += period;
 139                local64_set(&hwc->period_left, left);
 140                hwc->last_period = period;
 141                ret = 1;
 142        }
 143
 144        /*
 145         * Limit the maximum period to prevent the counter value
 146         * from overtaking the one we are about to program. In
 147         * effect we are reducing max_period to account for
 148         * interrupt latency (and we are being very conservative).
 149         */
 150        if (left > (max_period >> 1))
 151                left = (max_period >> 1);
 152
 153        local64_set(&hwc->prev_count, (u64)-left);
 154
 155        armpmu->write_counter(event, (u64)(-left) & max_period);
 156
 157        perf_event_update_userpage(event);
 158
 159        return ret;
 160}
 161
 162u64 armpmu_event_update(struct perf_event *event)
 163{
 164        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 165        struct hw_perf_event *hwc = &event->hw;
 166        u64 delta, prev_raw_count, new_raw_count;
 167        u64 max_period = arm_pmu_event_max_period(event);
 168
 169again:
 170        prev_raw_count = local64_read(&hwc->prev_count);
 171        new_raw_count = armpmu->read_counter(event);
 172
 173        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 174                             new_raw_count) != prev_raw_count)
 175                goto again;
 176
 177        delta = (new_raw_count - prev_raw_count) & max_period;
 178
 179        local64_add(delta, &event->count);
 180        local64_sub(delta, &hwc->period_left);
 181
 182        return new_raw_count;
 183}
 184
 185static void
 186armpmu_read(struct perf_event *event)
 187{
 188        armpmu_event_update(event);
 189}
 190
 191static void
 192armpmu_stop(struct perf_event *event, int flags)
 193{
 194        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 195        struct hw_perf_event *hwc = &event->hw;
 196
 197        /*
 198         * ARM pmu always has to update the counter, so ignore
 199         * PERF_EF_UPDATE, see comments in armpmu_start().
 200         */
 201        if (!(hwc->state & PERF_HES_STOPPED)) {
 202                armpmu->disable(event);
 203                armpmu_event_update(event);
 204                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 205        }
 206}
 207
 208static void armpmu_start(struct perf_event *event, int flags)
 209{
 210        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 211        struct hw_perf_event *hwc = &event->hw;
 212
 213        /*
 214         * ARM pmu always has to reprogram the period, so ignore
 215         * PERF_EF_RELOAD, see the comment below.
 216         */
 217        if (flags & PERF_EF_RELOAD)
 218                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 219
 220        hwc->state = 0;
 221        /*
 222         * Set the period again. Some counters can't be stopped, so when we
 223         * were stopped we simply disabled the IRQ source and the counter
 224         * may have been left counting. If we don't do this step then we may
 225         * get an interrupt too soon or *way* too late if the overflow has
 226         * happened since disabling.
 227         */
 228        armpmu_event_set_period(event);
 229        armpmu->enable(event);
 230}
 231
 232static void
 233armpmu_del(struct perf_event *event, int flags)
 234{
 235        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 236        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 237        struct hw_perf_event *hwc = &event->hw;
 238        int idx = hwc->idx;
 239
 240        armpmu_stop(event, PERF_EF_UPDATE);
 241        hw_events->events[idx] = NULL;
 242        armpmu->clear_event_idx(hw_events, event);
 243        perf_event_update_userpage(event);
 244        /* Clear the allocated counter */
 245        hwc->idx = -1;
 246}
 247
 248static int
 249armpmu_add(struct perf_event *event, int flags)
 250{
 251        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 252        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 253        struct hw_perf_event *hwc = &event->hw;
 254        int idx;
 255
 256        /* An event following a process won't be stopped earlier */
 257        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 258                return -ENOENT;
 259
 260        /* If we don't have a space for the counter then finish early. */
 261        idx = armpmu->get_event_idx(hw_events, event);
 262        if (idx < 0)
 263                return idx;
 264
 265        /*
 266         * If there is an event in the counter we are going to use then make
 267         * sure it is disabled.
 268         */
 269        event->hw.idx = idx;
 270        armpmu->disable(event);
 271        hw_events->events[idx] = event;
 272
 273        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 274        if (flags & PERF_EF_START)
 275                armpmu_start(event, PERF_EF_RELOAD);
 276
 277        /* Propagate our changes to the userspace mapping. */
 278        perf_event_update_userpage(event);
 279
 280        return 0;
 281}
 282
 283static int
 284validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 285                               struct perf_event *event)
 286{
 287        struct arm_pmu *armpmu;
 288
 289        if (is_software_event(event))
 290                return 1;
 291
 292        /*
 293         * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 294         * core perf code won't check that the pmu->ctx == leader->ctx
 295         * until after pmu->event_init(event).
 296         */
 297        if (event->pmu != pmu)
 298                return 0;
 299
 300        if (event->state < PERF_EVENT_STATE_OFF)
 301                return 1;
 302
 303        if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 304                return 1;
 305
 306        armpmu = to_arm_pmu(event->pmu);
 307        return armpmu->get_event_idx(hw_events, event) >= 0;
 308}
 309
 310static int
 311validate_group(struct perf_event *event)
 312{
 313        struct perf_event *sibling, *leader = event->group_leader;
 314        struct pmu_hw_events fake_pmu;
 315
 316        /*
 317         * Initialise the fake PMU. We only need to populate the
 318         * used_mask for the purposes of validation.
 319         */
 320        memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 321
 322        if (!validate_event(event->pmu, &fake_pmu, leader))
 323                return -EINVAL;
 324
 325        for_each_sibling_event(sibling, leader) {
 326                if (!validate_event(event->pmu, &fake_pmu, sibling))
 327                        return -EINVAL;
 328        }
 329
 330        if (!validate_event(event->pmu, &fake_pmu, event))
 331                return -EINVAL;
 332
 333        return 0;
 334}
 335
 336static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 337{
 338        struct arm_pmu *armpmu;
 339        int ret;
 340        u64 start_clock, finish_clock;
 341
 342        /*
 343         * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 344         * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 345         * do any necessary shifting, we just need to perform the first
 346         * dereference.
 347         */
 348        armpmu = *(void **)dev;
 349        if (WARN_ON_ONCE(!armpmu))
 350                return IRQ_NONE;
 351
 352        start_clock = sched_clock();
 353        ret = armpmu->handle_irq(armpmu);
 354        finish_clock = sched_clock();
 355
 356        perf_sample_event_took(finish_clock - start_clock);
 357        return ret;
 358}
 359
 360static int
 361__hw_perf_event_init(struct perf_event *event)
 362{
 363        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 364        struct hw_perf_event *hwc = &event->hw;
 365        int mapping;
 366
 367        hwc->flags = 0;
 368        mapping = armpmu->map_event(event);
 369
 370        if (mapping < 0) {
 371                pr_debug("event %x:%llx not supported\n", event->attr.type,
 372                         event->attr.config);
 373                return mapping;
 374        }
 375
 376        /*
 377         * We don't assign an index until we actually place the event onto
 378         * hardware. Use -1 to signify that we haven't decided where to put it
 379         * yet. For SMP systems, each core has it's own PMU so we can't do any
 380         * clever allocation or constraints checking at this point.
 381         */
 382        hwc->idx                = -1;
 383        hwc->config_base        = 0;
 384        hwc->config             = 0;
 385        hwc->event_base         = 0;
 386
 387        /*
 388         * Check whether we need to exclude the counter from certain modes.
 389         */
 390        if (armpmu->set_event_filter &&
 391            armpmu->set_event_filter(hwc, &event->attr)) {
 392                pr_debug("ARM performance counters do not support "
 393                         "mode exclusion\n");
 394                return -EOPNOTSUPP;
 395        }
 396
 397        /*
 398         * Store the event encoding into the config_base field.
 399         */
 400        hwc->config_base            |= (unsigned long)mapping;
 401
 402        if (!is_sampling_event(event)) {
 403                /*
 404                 * For non-sampling runs, limit the sample_period to half
 405                 * of the counter width. That way, the new counter value
 406                 * is far less likely to overtake the previous one unless
 407                 * you have some serious IRQ latency issues.
 408                 */
 409                hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
 410                hwc->last_period    = hwc->sample_period;
 411                local64_set(&hwc->period_left, hwc->sample_period);
 412        }
 413
 414        if (event->group_leader != event) {
 415                if (validate_group(event) != 0)
 416                        return -EINVAL;
 417        }
 418
 419        return 0;
 420}
 421
 422static int armpmu_event_init(struct perf_event *event)
 423{
 424        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 425
 426        /*
 427         * Reject CPU-affine events for CPUs that are of a different class to
 428         * that which this PMU handles. Process-following events (where
 429         * event->cpu == -1) can be migrated between CPUs, and thus we have to
 430         * reject them later (in armpmu_add) if they're scheduled on a
 431         * different class of CPU.
 432         */
 433        if (event->cpu != -1 &&
 434                !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 435                return -ENOENT;
 436
 437        /* does not support taken branch sampling */
 438        if (has_branch_stack(event))
 439                return -EOPNOTSUPP;
 440
 441        if (armpmu->map_event(event) == -ENOENT)
 442                return -ENOENT;
 443
 444        return __hw_perf_event_init(event);
 445}
 446
 447static void armpmu_enable(struct pmu *pmu)
 448{
 449        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 450        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 451        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 452
 453        /* For task-bound events we may be called on other CPUs */
 454        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 455                return;
 456
 457        if (enabled)
 458                armpmu->start(armpmu);
 459}
 460
 461static void armpmu_disable(struct pmu *pmu)
 462{
 463        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 464
 465        /* For task-bound events we may be called on other CPUs */
 466        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 467                return;
 468
 469        armpmu->stop(armpmu);
 470}
 471
 472/*
 473 * In heterogeneous systems, events are specific to a particular
 474 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 475 * the same microarchitecture.
 476 */
 477static int armpmu_filter_match(struct perf_event *event)
 478{
 479        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 480        unsigned int cpu = smp_processor_id();
 481        int ret;
 482
 483        ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 484        if (ret && armpmu->filter_match)
 485                return armpmu->filter_match(event);
 486
 487        return ret;
 488}
 489
 490static ssize_t armpmu_cpumask_show(struct device *dev,
 491                                   struct device_attribute *attr, char *buf)
 492{
 493        struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
 494        return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
 495}
 496
 497static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
 498
 499static struct attribute *armpmu_common_attrs[] = {
 500        &dev_attr_cpus.attr,
 501        NULL,
 502};
 503
 504static struct attribute_group armpmu_common_attr_group = {
 505        .attrs = armpmu_common_attrs,
 506};
 507
 508/* Set at runtime when we know what CPU type we are. */
 509static struct arm_pmu *__oprofile_cpu_pmu;
 510
 511/*
 512 * Despite the names, these two functions are CPU-specific and are used
 513 * by the OProfile/perf code.
 514 */
 515const char *perf_pmu_name(void)
 516{
 517        if (!__oprofile_cpu_pmu)
 518                return NULL;
 519
 520        return __oprofile_cpu_pmu->name;
 521}
 522EXPORT_SYMBOL_GPL(perf_pmu_name);
 523
 524int perf_num_counters(void)
 525{
 526        int max_events = 0;
 527
 528        if (__oprofile_cpu_pmu != NULL)
 529                max_events = __oprofile_cpu_pmu->num_events;
 530
 531        return max_events;
 532}
 533EXPORT_SYMBOL_GPL(perf_num_counters);
 534
 535static int armpmu_count_irq_users(const int irq)
 536{
 537        int cpu, count = 0;
 538
 539        for_each_possible_cpu(cpu) {
 540                if (per_cpu(cpu_irq, cpu) == irq)
 541                        count++;
 542        }
 543
 544        return count;
 545}
 546
 547void armpmu_free_irq(int irq, int cpu)
 548{
 549        if (per_cpu(cpu_irq, cpu) == 0)
 550                return;
 551        if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
 552                return;
 553
 554        if (!irq_is_percpu_devid(irq))
 555                free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
 556        else if (armpmu_count_irq_users(irq) == 1)
 557                free_percpu_irq(irq, &cpu_armpmu);
 558
 559        per_cpu(cpu_irq, cpu) = 0;
 560}
 561
 562int armpmu_request_irq(int irq, int cpu)
 563{
 564        int err = 0;
 565        const irq_handler_t handler = armpmu_dispatch_irq;
 566        if (!irq)
 567                return 0;
 568
 569        if (!irq_is_percpu_devid(irq)) {
 570                unsigned long irq_flags;
 571
 572                err = irq_force_affinity(irq, cpumask_of(cpu));
 573
 574                if (err && num_possible_cpus() > 1) {
 575                        pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 576                                irq, cpu);
 577                        goto err_out;
 578                }
 579
 580                irq_flags = IRQF_PERCPU |
 581                            IRQF_NOBALANCING |
 582                            IRQF_NO_THREAD;
 583
 584                irq_set_status_flags(irq, IRQ_NOAUTOEN);
 585                err = request_irq(irq, handler, irq_flags, "arm-pmu",
 586                                  per_cpu_ptr(&cpu_armpmu, cpu));
 587        } else if (armpmu_count_irq_users(irq) == 0) {
 588                err = request_percpu_irq(irq, handler, "arm-pmu",
 589                                         &cpu_armpmu);
 590        }
 591
 592        if (err)
 593                goto err_out;
 594
 595        per_cpu(cpu_irq, cpu) = irq;
 596        return 0;
 597
 598err_out:
 599        pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
 600        return err;
 601}
 602
 603static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
 604{
 605        struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 606        return per_cpu(hw_events->irq, cpu);
 607}
 608
 609/*
 610 * PMU hardware loses all context when a CPU goes offline.
 611 * When a CPU is hotplugged back in, since some hardware registers are
 612 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 613 * junk values out of them.
 614 */
 615static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
 616{
 617        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 618        int irq;
 619
 620        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 621                return 0;
 622        if (pmu->reset)
 623                pmu->reset(pmu);
 624
 625        per_cpu(cpu_armpmu, cpu) = pmu;
 626
 627        irq = armpmu_get_cpu_irq(pmu, cpu);
 628        if (irq) {
 629                if (irq_is_percpu_devid(irq))
 630                        enable_percpu_irq(irq, IRQ_TYPE_NONE);
 631                else
 632                        enable_irq(irq);
 633        }
 634
 635        return 0;
 636}
 637
 638static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
 639{
 640        struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 641        int irq;
 642
 643        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 644                return 0;
 645
 646        irq = armpmu_get_cpu_irq(pmu, cpu);
 647        if (irq) {
 648                if (irq_is_percpu_devid(irq))
 649                        disable_percpu_irq(irq);
 650                else
 651                        disable_irq_nosync(irq);
 652        }
 653
 654        per_cpu(cpu_armpmu, cpu) = NULL;
 655
 656        return 0;
 657}
 658
 659#ifdef CONFIG_CPU_PM
 660static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 661{
 662        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 663        struct perf_event *event;
 664        int idx;
 665
 666        for (idx = 0; idx < armpmu->num_events; idx++) {
 667                event = hw_events->events[idx];
 668                if (!event)
 669                        continue;
 670
 671                switch (cmd) {
 672                case CPU_PM_ENTER:
 673                        /*
 674                         * Stop and update the counter
 675                         */
 676                        armpmu_stop(event, PERF_EF_UPDATE);
 677                        break;
 678                case CPU_PM_EXIT:
 679                case CPU_PM_ENTER_FAILED:
 680                         /*
 681                          * Restore and enable the counter.
 682                          * armpmu_start() indirectly calls
 683                          *
 684                          * perf_event_update_userpage()
 685                          *
 686                          * that requires RCU read locking to be functional,
 687                          * wrap the call within RCU_NONIDLE to make the
 688                          * RCU subsystem aware this cpu is not idle from
 689                          * an RCU perspective for the armpmu_start() call
 690                          * duration.
 691                          */
 692                        RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
 693                        break;
 694                default:
 695                        break;
 696                }
 697        }
 698}
 699
 700static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 701                             void *v)
 702{
 703        struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 704        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 705        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 706
 707        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 708                return NOTIFY_DONE;
 709
 710        /*
 711         * Always reset the PMU registers on power-up even if
 712         * there are no events running.
 713         */
 714        if (cmd == CPU_PM_EXIT && armpmu->reset)
 715                armpmu->reset(armpmu);
 716
 717        if (!enabled)
 718                return NOTIFY_OK;
 719
 720        switch (cmd) {
 721        case CPU_PM_ENTER:
 722                armpmu->stop(armpmu);
 723                cpu_pm_pmu_setup(armpmu, cmd);
 724                break;
 725        case CPU_PM_EXIT:
 726        case CPU_PM_ENTER_FAILED:
 727                cpu_pm_pmu_setup(armpmu, cmd);
 728                armpmu->start(armpmu);
 729                break;
 730        default:
 731                return NOTIFY_DONE;
 732        }
 733
 734        return NOTIFY_OK;
 735}
 736
 737static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 738{
 739        cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 740        return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 741}
 742
 743static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 744{
 745        cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 746}
 747#else
 748static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 749static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 750#endif
 751
 752static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 753{
 754        int err;
 755
 756        err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
 757                                       &cpu_pmu->node);
 758        if (err)
 759                goto out;
 760
 761        err = cpu_pm_pmu_register(cpu_pmu);
 762        if (err)
 763                goto out_unregister;
 764
 765        return 0;
 766
 767out_unregister:
 768        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 769                                            &cpu_pmu->node);
 770out:
 771        return err;
 772}
 773
 774static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 775{
 776        cpu_pm_pmu_unregister(cpu_pmu);
 777        cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 778                                            &cpu_pmu->node);
 779}
 780
 781static struct arm_pmu *__armpmu_alloc(gfp_t flags)
 782{
 783        struct arm_pmu *pmu;
 784        int cpu;
 785
 786        pmu = kzalloc(sizeof(*pmu), flags);
 787        if (!pmu) {
 788                pr_info("failed to allocate PMU device!\n");
 789                goto out;
 790        }
 791
 792        pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
 793        if (!pmu->hw_events) {
 794                pr_info("failed to allocate per-cpu PMU data.\n");
 795                goto out_free_pmu;
 796        }
 797
 798        pmu->pmu = (struct pmu) {
 799                .pmu_enable     = armpmu_enable,
 800                .pmu_disable    = armpmu_disable,
 801                .event_init     = armpmu_event_init,
 802                .add            = armpmu_add,
 803                .del            = armpmu_del,
 804                .start          = armpmu_start,
 805                .stop           = armpmu_stop,
 806                .read           = armpmu_read,
 807                .filter_match   = armpmu_filter_match,
 808                .attr_groups    = pmu->attr_groups,
 809                /*
 810                 * This is a CPU PMU potentially in a heterogeneous
 811                 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
 812                 * and we have taken ctx sharing into account (e.g. with our
 813                 * pmu::filter_match callback and pmu::event_init group
 814                 * validation).
 815                 */
 816                .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
 817        };
 818
 819        pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
 820                &armpmu_common_attr_group;
 821
 822        for_each_possible_cpu(cpu) {
 823                struct pmu_hw_events *events;
 824
 825                events = per_cpu_ptr(pmu->hw_events, cpu);
 826                raw_spin_lock_init(&events->pmu_lock);
 827                events->percpu_pmu = pmu;
 828        }
 829
 830        return pmu;
 831
 832out_free_pmu:
 833        kfree(pmu);
 834out:
 835        return NULL;
 836}
 837
 838struct arm_pmu *armpmu_alloc(void)
 839{
 840        return __armpmu_alloc(GFP_KERNEL);
 841}
 842
 843struct arm_pmu *armpmu_alloc_atomic(void)
 844{
 845        return __armpmu_alloc(GFP_ATOMIC);
 846}
 847
 848
 849void armpmu_free(struct arm_pmu *pmu)
 850{
 851        free_percpu(pmu->hw_events);
 852        kfree(pmu);
 853}
 854
 855int armpmu_register(struct arm_pmu *pmu)
 856{
 857        int ret;
 858
 859        ret = cpu_pmu_init(pmu);
 860        if (ret)
 861                return ret;
 862
 863        if (!pmu->set_event_filter)
 864                pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
 865
 866        ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
 867        if (ret)
 868                goto out_destroy;
 869
 870        if (!__oprofile_cpu_pmu)
 871                __oprofile_cpu_pmu = pmu;
 872
 873        pr_info("enabled with %s PMU driver, %d counters available\n",
 874                pmu->name, pmu->num_events);
 875
 876        return 0;
 877
 878out_destroy:
 879        cpu_pmu_destroy(pmu);
 880        return ret;
 881}
 882
 883static int arm_pmu_hp_init(void)
 884{
 885        int ret;
 886
 887        ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
 888                                      "perf/arm/pmu:starting",
 889                                      arm_perf_starting_cpu,
 890                                      arm_perf_teardown_cpu);
 891        if (ret)
 892                pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
 893                       ret);
 894        return ret;
 895}
 896subsys_initcall(arm_pmu_hp_init);
 897