linux/drivers/perf/arm_pmu_acpi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ACPI probing code for ARM performance counters.
   4 *
   5 * Copyright (C) 2017 ARM Ltd.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/cpumask.h>
  10#include <linux/init.h>
  11#include <linux/irq.h>
  12#include <linux/irqdesc.h>
  13#include <linux/percpu.h>
  14#include <linux/perf/arm_pmu.h>
  15
  16#include <asm/cputype.h>
  17
  18static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
  19static DEFINE_PER_CPU(int, pmu_irqs);
  20
  21static int arm_pmu_acpi_register_irq(int cpu)
  22{
  23        struct acpi_madt_generic_interrupt *gicc;
  24        int gsi, trigger;
  25
  26        gicc = acpi_cpu_get_madt_gicc(cpu);
  27        if (WARN_ON(!gicc))
  28                return -EINVAL;
  29
  30        gsi = gicc->performance_interrupt;
  31
  32        /*
  33         * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
  34         * have an interrupt. QEMU advertises this by using a GSI of zero,
  35         * which is not known to be valid on any hardware despite being
  36         * valid per the spec. Take the pragmatic approach and reject a
  37         * GSI of zero for now.
  38         */
  39        if (!gsi)
  40                return 0;
  41
  42        if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
  43                trigger = ACPI_EDGE_SENSITIVE;
  44        else
  45                trigger = ACPI_LEVEL_SENSITIVE;
  46
  47        /*
  48         * Helpfully, the MADT GICC doesn't have a polarity flag for the
  49         * "performance interrupt". Luckily, on compliant GICs the polarity is
  50         * a fixed value in HW (for both SPIs and PPIs) that we cannot change
  51         * from SW.
  52         *
  53         * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
  54         * may not match the real polarity, but that should not matter.
  55         *
  56         * Other interrupt controllers are not supported with ACPI.
  57         */
  58        return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
  59}
  60
  61static void arm_pmu_acpi_unregister_irq(int cpu)
  62{
  63        struct acpi_madt_generic_interrupt *gicc;
  64        int gsi;
  65
  66        gicc = acpi_cpu_get_madt_gicc(cpu);
  67        if (!gicc)
  68                return;
  69
  70        gsi = gicc->performance_interrupt;
  71        acpi_unregister_gsi(gsi);
  72}
  73
  74#if IS_ENABLED(CONFIG_ARM_SPE_PMU)
  75static struct resource spe_resources[] = {
  76        {
  77                /* irq */
  78                .flags          = IORESOURCE_IRQ,
  79        }
  80};
  81
  82static struct platform_device spe_dev = {
  83        .name = ARMV8_SPE_PDEV_NAME,
  84        .id = -1,
  85        .resource = spe_resources,
  86        .num_resources = ARRAY_SIZE(spe_resources)
  87};
  88
  89/*
  90 * For lack of a better place, hook the normal PMU MADT walk
  91 * and create a SPE device if we detect a recent MADT with
  92 * a homogeneous PPI mapping.
  93 */
  94static void arm_spe_acpi_register_device(void)
  95{
  96        int cpu, hetid, irq, ret;
  97        bool first = true;
  98        u16 gsi = 0;
  99
 100        /*
 101         * Sanity check all the GICC tables for the same interrupt number.
 102         * For now, we only support homogeneous ACPI/SPE machines.
 103         */
 104        for_each_possible_cpu(cpu) {
 105                struct acpi_madt_generic_interrupt *gicc;
 106
 107                gicc = acpi_cpu_get_madt_gicc(cpu);
 108                if (gicc->header.length < ACPI_MADT_GICC_SPE)
 109                        return;
 110
 111                if (first) {
 112                        gsi = gicc->spe_interrupt;
 113                        if (!gsi)
 114                                return;
 115                        hetid = find_acpi_cpu_topology_hetero_id(cpu);
 116                        first = false;
 117                } else if ((gsi != gicc->spe_interrupt) ||
 118                           (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
 119                        pr_warn("ACPI: SPE must be homogeneous\n");
 120                        return;
 121                }
 122        }
 123
 124        irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
 125                                ACPI_ACTIVE_HIGH);
 126        if (irq < 0) {
 127                pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
 128                return;
 129        }
 130
 131        spe_resources[0].start = irq;
 132        ret = platform_device_register(&spe_dev);
 133        if (ret < 0) {
 134                pr_warn("ACPI: SPE: Unable to register device\n");
 135                acpi_unregister_gsi(gsi);
 136        }
 137}
 138#else
 139static inline void arm_spe_acpi_register_device(void)
 140{
 141}
 142#endif /* CONFIG_ARM_SPE_PMU */
 143
 144static int arm_pmu_acpi_parse_irqs(void)
 145{
 146        int irq, cpu, irq_cpu, err;
 147
 148        for_each_possible_cpu(cpu) {
 149                irq = arm_pmu_acpi_register_irq(cpu);
 150                if (irq < 0) {
 151                        err = irq;
 152                        pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
 153                                cpu, err);
 154                        goto out_err;
 155                } else if (irq == 0) {
 156                        pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
 157                }
 158
 159                /*
 160                 * Log and request the IRQ so the core arm_pmu code can manage
 161                 * it. We'll have to sanity-check IRQs later when we associate
 162                 * them with their PMUs.
 163                 */
 164                per_cpu(pmu_irqs, cpu) = irq;
 165                armpmu_request_irq(irq, cpu);
 166        }
 167
 168        return 0;
 169
 170out_err:
 171        for_each_possible_cpu(cpu) {
 172                irq = per_cpu(pmu_irqs, cpu);
 173                if (!irq)
 174                        continue;
 175
 176                arm_pmu_acpi_unregister_irq(cpu);
 177
 178                /*
 179                 * Blat all copies of the IRQ so that we only unregister the
 180                 * corresponding GSI once (e.g. when we have PPIs).
 181                 */
 182                for_each_possible_cpu(irq_cpu) {
 183                        if (per_cpu(pmu_irqs, irq_cpu) == irq)
 184                                per_cpu(pmu_irqs, irq_cpu) = 0;
 185                }
 186        }
 187
 188        return err;
 189}
 190
 191static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
 192{
 193        unsigned long cpuid = read_cpuid_id();
 194        struct arm_pmu *pmu;
 195        int cpu;
 196
 197        for_each_possible_cpu(cpu) {
 198                pmu = per_cpu(probed_pmus, cpu);
 199                if (!pmu || pmu->acpi_cpuid != cpuid)
 200                        continue;
 201
 202                return pmu;
 203        }
 204
 205        pmu = armpmu_alloc_atomic();
 206        if (!pmu) {
 207                pr_warn("Unable to allocate PMU for CPU%d\n",
 208                        smp_processor_id());
 209                return NULL;
 210        }
 211
 212        pmu->acpi_cpuid = cpuid;
 213
 214        return pmu;
 215}
 216
 217/*
 218 * Check whether the new IRQ is compatible with those already associated with
 219 * the PMU (e.g. we don't have mismatched PPIs).
 220 */
 221static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
 222{
 223        struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 224        int cpu;
 225
 226        if (!irq)
 227                return true;
 228
 229        for_each_cpu(cpu, &pmu->supported_cpus) {
 230                int other_irq = per_cpu(hw_events->irq, cpu);
 231                if (!other_irq)
 232                        continue;
 233
 234                if (irq == other_irq)
 235                        continue;
 236                if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
 237                        continue;
 238
 239                pr_warn("mismatched PPIs detected\n");
 240                return false;
 241        }
 242
 243        return true;
 244}
 245
 246/*
 247 * This must run before the common arm_pmu hotplug logic, so that we can
 248 * associate a CPU and its interrupt before the common code tries to manage the
 249 * affinity and so on.
 250 *
 251 * Note that hotplug events are serialized, so we cannot race with another CPU
 252 * coming up. The perf core won't open events while a hotplug event is in
 253 * progress.
 254 */
 255static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
 256{
 257        struct arm_pmu *pmu;
 258        struct pmu_hw_events __percpu *hw_events;
 259        int irq;
 260
 261        /* If we've already probed this CPU, we have nothing to do */
 262        if (per_cpu(probed_pmus, cpu))
 263                return 0;
 264
 265        irq = per_cpu(pmu_irqs, cpu);
 266
 267        pmu = arm_pmu_acpi_find_alloc_pmu();
 268        if (!pmu)
 269                return -ENOMEM;
 270
 271        per_cpu(probed_pmus, cpu) = pmu;
 272
 273        if (pmu_irq_matches(pmu, irq)) {
 274                hw_events = pmu->hw_events;
 275                per_cpu(hw_events->irq, cpu) = irq;
 276        }
 277
 278        cpumask_set_cpu(cpu, &pmu->supported_cpus);
 279
 280        /*
 281         * Ideally, we'd probe the PMU here when we find the first matching
 282         * CPU. We can't do that for several reasons; see the comment in
 283         * arm_pmu_acpi_init().
 284         *
 285         * So for the time being, we're done.
 286         */
 287        return 0;
 288}
 289
 290int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
 291{
 292        int pmu_idx = 0;
 293        int cpu, ret;
 294
 295        /*
 296         * Initialise and register the set of PMUs which we know about right
 297         * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
 298         * could handle late hotplug, but this may lead to deadlock since we
 299         * might try to register a hotplug notifier instance from within a
 300         * hotplug notifier.
 301         *
 302         * There's also the problem of having access to the right init_fn,
 303         * without tying this too deeply into the "real" PMU driver.
 304         *
 305         * For the moment, as with the platform/DT case, we need at least one
 306         * of a PMU's CPUs to be online at probe time.
 307         */
 308        for_each_possible_cpu(cpu) {
 309                struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
 310                char *base_name;
 311
 312                if (!pmu || pmu->name)
 313                        continue;
 314
 315                ret = init_fn(pmu);
 316                if (ret == -ENODEV) {
 317                        /* PMU not handled by this driver, or not present */
 318                        continue;
 319                } else if (ret) {
 320                        pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
 321                        return ret;
 322                }
 323
 324                base_name = pmu->name;
 325                pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
 326                if (!pmu->name) {
 327                        pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
 328                        return -ENOMEM;
 329                }
 330
 331                ret = armpmu_register(pmu);
 332                if (ret) {
 333                        pr_warn("Failed to register PMU for CPU%d\n", cpu);
 334                        kfree(pmu->name);
 335                        return ret;
 336                }
 337        }
 338
 339        return 0;
 340}
 341
 342static int arm_pmu_acpi_init(void)
 343{
 344        int ret;
 345
 346        if (acpi_disabled)
 347                return 0;
 348
 349        arm_spe_acpi_register_device();
 350
 351        ret = arm_pmu_acpi_parse_irqs();
 352        if (ret)
 353                return ret;
 354
 355        ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
 356                                "perf/arm/pmu_acpi:starting",
 357                                arm_pmu_acpi_cpu_starting, NULL);
 358
 359        return ret;
 360}
 361subsys_initcall(arm_pmu_acpi_init)
 362