linux/drivers/pinctrl/aspeed/pinmux-aspeed.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* Copyright (C) 2019 IBM Corp.  */
   3
   4#ifndef ASPEED_PINMUX_H
   5#define ASPEED_PINMUX_H
   6
   7#include <linux/regmap.h>
   8#include <stdbool.h>
   9
  10/*
  11 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other
  12 * functions. The SoC function enabled on a pin is determined on a priority
  13 * basis where a given pin can provide a number of different signal types.
  14 *
  15 * The signal active on a pin is described by both a priority level and
  16 * compound logical expressions involving multiple operators, registers and
  17 * bits. Some difficulty arises as the pin's function bit masks for each
  18 * priority level are frequently not the same (i.e. cannot just flip a bit to
  19 * change from a high to low priority signal), or even in the same register.
  20 * Further, not all signals can be unmuxed, as some expressions depend on
  21 * values in the hardware strapping register (which may be treated as
  22 * read-only).
  23 *
  24 * SoC Multi-function Pin Expression Examples
  25 * ------------------------------------------
  26 *
  27 * Here are some sample mux configurations from the AST2400 and AST2500
  28 * datasheets to illustrate the corner cases, roughly in order of least to most
  29 * corner. The signal priorities are in decending order from P0 (highest).
  30 *
  31 * D6 is a pin with a single function (beside GPIO); a high priority signal
  32 * that participates in one function:
  33 *
  34 * Ball | Default | P0 Signal | P0 Expression               | P1 Signal | P1 Expression | Other
  35 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  36 *  D6    GPIOA0    MAC1LINK    SCU80[0]=1                                                GPIOA0
  37 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  38 *
  39 * C5 is a multi-signal pin (high and low priority signals). Here we touch
  40 * different registers for the different functions that enable each signal:
  41 *
  42 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  43 *  C5    GPIOA4    SCL9        SCU90[22]=1                   TIMER5      SCU80[4]=1      GPIOA4
  44 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  45 *
  46 * E19 is a single-signal pin with two functions that influence the active
  47 * signal. In this case both bits have the same meaning - enable a dedicated
  48 * LPC reset pin. However it's not always the case that the bits in the
  49 * OR-relationship have the same meaning.
  50 *
  51 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  52 *  E19   GPIOB4    LPCRST#     SCU80[12]=1 | Strap[14]=1                                 GPIOB4
  53 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  54 *
  55 * For example, pin B19 has a low-priority signal that's enabled by two
  56 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI
  57 * bit in the STRAP register. The ACPI bit configures signals on pins in
  58 * addition to B19. Both of the low priority functions as well as the high
  59 * priority function must be disabled for GPIOF1 to be used.
  60 *
  61 * Ball | Default | P0 Signal | P0 Expression                           | P1 Signal | P1 Expression                          | Other
  62 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  63 *  B19   GPIOF1    NDCD4       SCU80[25]=1                               SIOPBI#     SCUA4[12]=1 | Strap[19]=0                GPIOF1
  64 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  65 *
  66 * For pin E18, the SoC ANDs the expected state of three bits to determine the
  67 * pin's active signal:
  68 *
  69 * * SCU3C[3]: Enable external SOC reset function
  70 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin
  71 * * SCU90[31]: Select SPI interface CS# output
  72 *
  73 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  74 *  E18   GPIOB7    EXTRST#     SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0    SPICS1#     SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1   GPIOB7
  75 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  76 *
  77 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for
  78 * selecting the signals on pin E18)
  79 *
  80 * Pin T5 is a multi-signal pin with a more complex configuration:
  81 *
  82 * Ball | Default | P0 Signal | P0 Expression                | P1 Signal | P1 Expression | Other
  83 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  84 *  T5    GPIOL1    VPIDE       SCU90[5:4]!=0 & SCU84[17]=1    NDCD1       SCU84[17]=1     GPIOL1
  85 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  86 *
  87 * The high priority signal configuration is best thought of in terms of its
  88 * exploded form, with reference to the SCU90[5:4] bits:
  89 *
  90 * * SCU90[5:4]=00: disable
  91 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode.
  92 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode.
  93 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode.
  94 *
  95 * Re-writing:
  96 *
  97 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  98 *  T5    GPIOL1    VPIDE      (SCU90[5:4]=1 & SCU84[17]=1)    NDCD1       SCU84[17]=1     GPIOL1
  99 *                             | (SCU90[5:4]=2 & SCU84[17]=1)
 100 *                             | (SCU90[5:4]=3 & SCU84[17]=1)
 101 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 102 *
 103 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE
 104 * function pin", where the signal itself is determined by whether SCU94[5:4]
 105 * is disabled or in one of the 18, 24 or 30bit video modes.
 106 *
 107 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g.
 108 * W1 and U5:
 109 *
 110 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 111 *  W1    GPIOL6    VPIB0       SCU90[5:4]=3 & SCU84[22]=1     TXD1        SCU84[22]=1     GPIOL6
 112 *  U5    GPIOL7    VPIB1       SCU90[5:4]=3 & SCU84[23]=1     RXD1        SCU84[23]=1     GPIOL7
 113 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 114 *
 115 * The examples of T5 and W1 are particularly fertile, as they also demonstrate
 116 * that despite operating as part of the video input bus each signal needs to
 117 * be enabled individually via it's own SCU84 (in the cases of T5 and W1)
 118 * register bit. This is a little crazy if the bus doesn't have optional
 119 * signals, but is used to decent effect with some of the UARTs where not all
 120 * signals are required. However, this isn't done consistently - UART1 is
 121 * enabled on a per-pin basis, and by contrast, all signals for UART6 are
 122 * enabled by a single bit.
 123 *
 124 * Further, the high and low priority signals listed in the table above share
 125 * a configuration bit. The VPI signals should operate in concert in a single
 126 * function, but the UART signals should retain the ability to be configured
 127 * independently. This pushes the implementation down the path of tagging a
 128 * signal's expressions with the function they participate in, rather than
 129 * defining masks affecting multiple signals per function. The latter approach
 130 * fails in this instance where applying the configuration for the UART pin of
 131 * interest will stomp on the state of other UART signals when disabling the
 132 * VPI functions on the current pin.
 133 *
 134 * Ball |  Default   | P0 Signal | P0 Expression             | P1 Signal | P1 Expression | Other
 135 * -----+------------+-----------+---------------------------+-----------+---------------+------------
 136 *  A12   RGMII1TXCK   GPIOT0      SCUA0[0]=1                  RMII1TXEN   Strap[6]=0      RGMII1TXCK
 137 *  B12   RGMII1TXCTL  GPIOT1      SCUA0[1]=1                  –           Strap[6]=0      RGMII1TXCTL
 138 * -----+------------+-----------+---------------------------+-----------+---------------+------------
 139 *
 140 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case
 141 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO
 142 * should be treated like any other signal type with full function expression
 143 * requirements, and not assumed to be the default case. Separately, GPIOT0 and
 144 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all
 145 * pins in the function's group to disable the higher-priority signals such
 146 * that the signal for the function of interest is correctly enabled.
 147 *
 148 * Finally, three priority levels aren't always enough; the AST2500 brings with
 149 * it 18 pins of five priority levels, however the 18 pins only use three of
 150 * the five priority levels.
 151 *
 152 * Ultimately the requirement to control pins in the examples above drive the
 153 * design:
 154 *
 155 * * Pins provide signals according to functions activated in the mux
 156 *   configuration
 157 *
 158 * * Pins provide up to five signal types in a priority order
 159 *
 160 * * For priorities levels defined on a pin, each priority provides one signal
 161 *
 162 * * Enabling lower priority signals requires higher priority signals be
 163 *   disabled
 164 *
 165 * * A function represents a set of signals; functions are distinct if their
 166 *   sets of signals are not equal
 167 *
 168 * * Signals participate in one or more functions
 169 *
 170 * * A function is described by an expression of one or more signal
 171 *   descriptors, which compare bit values in a register
 172 *
 173 * * A signal expression is the smallest set of signal descriptors whose
 174 *   comparisons must evaluate 'true' for a signal to be enabled on a pin.
 175 *
 176 * * A signal participating in a function is active on a pin if evaluating all
 177 *   signal descriptors in the pin's signal expression for the function yields
 178 *   a 'true' result
 179 *
 180 * * A signal at a given priority on a given pin is active if any of the
 181 *   functions in which the signal participates are active, and no higher
 182 *   priority signal on the pin is active
 183 *
 184 * * GPIO is configured per-pin
 185 *
 186 * And so:
 187 *
 188 * * To disable a signal, any function(s) activating the signal must be
 189 *   disabled
 190 *
 191 * * Each pin must know the signal expressions of functions in which it
 192 *   participates, for the purpose of enabling the Other function. This is done
 193 *   by deactivating all functions that activate higher priority signals on the
 194 *   pin.
 195 *
 196 * As a concrete example:
 197 *
 198 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO
 199 *
 200 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30
 201 *
 202 * * The NDCD1 signal participates in just its own NDCD1 function
 203 *
 204 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least
 205 *   prioritised
 206 *
 207 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24
 208 *   and VPI30 functions all be disabled
 209 *
 210 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled
 211 *   to provide GPIOL6
 212 *
 213 * Considerations
 214 * --------------
 215 *
 216 * If pinctrl allows us to allocate a pin we can configure a function without
 217 * concern for the function of already allocated pins, if pin groups are
 218 * created with respect to the SoC functions in which they participate. This is
 219 * intuitive, but it did not feel obvious from the bit/pin relationships.
 220 *
 221 * Conversely, failing to allocate all pins in a group indicates some bits (as
 222 * well as pins) required for the group's configuration will already be in use,
 223 * likely in a way that's inconsistent with the requirements of the failed
 224 * group.
 225 *
 226 * Implementation
 227 * --------------
 228 *
 229 * Beyond the documentation below the various structures and helper macros that
 230 * allow the implementation to hang together are defined. The macros are fairly
 231 * dense, so below we walk through some raw examples of the configuration
 232 * tables in an effort to clarify the concepts.
 233 *
 234 * The complexity of configuring the mux combined with the scale of the pins
 235 * and functions was a concern, so the table design along with the macro jungle
 236 * is an attempt to address it. The rough principles of the approach are:
 237 *
 238 * 1. Use a data-driven solution rather than embedding state into code
 239 * 2. Minimise editing to the specifics of the given mux configuration
 240 * 3. Detect as many errors as possible at compile time
 241 *
 242 * Addressing point 3 leads to naming of symbols in terms of the four
 243 * properties associated with a given mux configuration: The pin, the signal,
 244 * the group and the function. In this way copy/paste errors cause duplicate
 245 * symbols to be defined, which prevents successful compilation. Failing to
 246 * properly parent the tables leads to unused symbol warnings, and use of
 247 * designated initialisers and additional warnings ensures that there are
 248 * no override errors in the pin, group and function arrays.
 249 *
 250 * Addressing point 2 drives the development of the macro jungle, as it
 251 * centralises the definition noise at the cost of taking some time to
 252 * understand.
 253 *
 254 * Here's a complete, concrete "pre-processed" example of the table structures
 255 * used to describe the D6 ball from the examples above:
 256 *
 257 * ```
 258 * static const struct aspeed_sig_desc sig_descs_MAC1LINK_MAC1LINK[] = {
 259 *     {
 260 *         .ip = ASPEED_IP_SCU,
 261 *         .reg = 0x80,
 262 *         .mask = BIT(0),
 263 *         .enable = 1,
 264 *         .disable = 0
 265 *     },
 266 * };
 267 *
 268 * static const struct aspeed_sig_expr sig_expr_MAC1LINK_MAC1LINK = {
 269 *     .signal = "MAC1LINK",
 270 *     .function = "MAC1LINK",
 271 *     .ndescs = ARRAY_SIZE(sig_descs_MAC1LINK_MAC1LINK),
 272 *     .descs = &(sig_descs_MAC1LINK_MAC1LINK)[0],
 273 * };
 274 *
 275 * static const struct aspeed_sig_expr *sig_exprs_MAC1LINK_MAC1LINK[] = {
 276 *     &sig_expr_MAC1LINK_MAC1LINK,
 277 *     NULL,
 278 * };
 279 *
 280 * static const struct aspeed_sig_desc sig_descs_GPIOA0_GPIOA0[] = { };
 281 *
 282 * static const struct aspeed_sig_expr sig_expr_GPIOA0_GPIOA0 = {
 283 *     .signal = "GPIOA0",
 284 *     .function = "GPIOA0",
 285 *     .ndescs = ARRAY_SIZE(sig_descs_GPIOA0_GPIOA0),
 286 *     .descs = &(sig_descs_GPIOA0_GPIOA0)[0],
 287 * };
 288 *
 289 * static const struct aspeed_sig_expr *sig_exprs_GPIOA0_GPIOA0[] = {
 290 *     &sig_expr_GPIOA0_GPIOA0,
 291 *     NULL
 292 * };
 293 *
 294 * static const struct aspeed_sig_expr **pin_exprs_0[] = {
 295 *     sig_exprs_MAC1LINK_MAC1LINK,
 296 *     sig_exprs_GPIOA0_GPIOA0,
 297 *     NULL
 298 * };
 299 *
 300 * static const struct aspeed_pin_desc pin_0 = { "0", (&pin_exprs_0[0]) };
 301 * static const int group_pins_MAC1LINK[] = { 0 };
 302 * static const char *func_groups_MAC1LINK[] = { "MAC1LINK" };
 303 *
 304 * static struct pinctrl_pin_desc aspeed_g4_pins[] = {
 305 *     [0] = { .number = 0, .name = "D6", .drv_data = &pin_0 },
 306 * };
 307 *
 308 * static const struct aspeed_pin_group aspeed_g4_groups[] = {
 309 *     {
 310 *         .name = "MAC1LINK",
 311 *         .pins = &(group_pins_MAC1LINK)[0],
 312 *         .npins = ARRAY_SIZE(group_pins_MAC1LINK),
 313 *     },
 314 * };
 315 *
 316 * static const struct aspeed_pin_function aspeed_g4_functions[] = {
 317 *     {
 318 *         .name = "MAC1LINK",
 319 *         .groups = &func_groups_MAC1LINK[0],
 320 *         .ngroups = ARRAY_SIZE(func_groups_MAC1LINK),
 321 *     },
 322 * };
 323 * ```
 324 *
 325 * At the end of the day much of the above code is compressed into the
 326 * following two lines:
 327 *
 328 * ```
 329 * #define D6 0
 330 * SSSF_PIN_DECL(D6, GPIOA0, MAC1LINK, SIG_DESC_SET(SCU80, 0));
 331 * ```
 332 *
 333 * The two examples below show just the differences from the example above.
 334 *
 335 * Ball E18 demonstrates a function, EXTRST, that requires multiple descriptors
 336 * be set for it to be muxed:
 337 *
 338 * ```
 339 * static const struct aspeed_sig_desc sig_descs_EXTRST_EXTRST[] = {
 340 *     {
 341 *         .ip = ASPEED_IP_SCU,
 342 *         .reg = 0x3C,
 343 *         .mask = BIT(3),
 344 *         .enable = 1,
 345 *         .disable = 0
 346 *     },
 347 *     {
 348 *         .ip = ASPEED_IP_SCU,
 349 *         .reg = 0x80,
 350 *         .mask = BIT(15),
 351 *         .enable = 1,
 352 *         .disable = 0
 353 *     },
 354 *     {
 355 *         .ip = ASPEED_IP_SCU,
 356 *         .reg = 0x90,
 357 *         .mask = BIT(31),
 358 *         .enable = 0,
 359 *         .disable = 1
 360 *     },
 361 * };
 362 *
 363 * static const struct aspeed_sig_expr sig_expr_EXTRST_EXTRST = {
 364 *     .signal = "EXTRST",
 365 *     .function = "EXTRST",
 366 *     .ndescs = ARRAY_SIZE(sig_descs_EXTRST_EXTRST),
 367 *     .descs = &(sig_descs_EXTRST_EXTRST)[0],
 368 * };
 369 * ...
 370 * ```
 371 *
 372 * For ball E19, we have multiple functions enabling a single signal, LPCRST#.
 373 * The data structures look like:
 374 *
 375 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRST[] = {
 376 *     {
 377 *         .ip = ASPEED_IP_SCU,
 378 *         .reg = 0x80,
 379 *         .mask = BIT(12),
 380 *         .enable = 1,
 381 *         .disable = 0
 382 *     },
 383 * };
 384 *
 385 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRST = {
 386 *     .signal = "LPCRST",
 387 *     .function = "LPCRST",
 388 *     .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRST),
 389 *     .descs = &(sig_descs_LPCRST_LPCRST)[0],
 390 * };
 391 *
 392 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRSTS[] = {
 393 *     {
 394 *         .ip = ASPEED_IP_SCU,
 395 *         .reg = 0x70,
 396 *         .mask = BIT(14),
 397 *         .enable = 1,
 398 *         .disable = 0
 399 *     },
 400 * };
 401 *
 402 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRSTS = {
 403 *     .signal = "LPCRST",
 404 *     .function = "LPCRSTS",
 405 *     .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRSTS),
 406 *     .descs = &(sig_descs_LPCRST_LPCRSTS)[0],
 407 * };
 408 *
 409 * static const struct aspeed_sig_expr *sig_exprs_LPCRST_LPCRST[] = {
 410 *     &sig_expr_LPCRST_LPCRST,
 411 *     &sig_expr_LPCRST_LPCRSTS,
 412 *     NULL,
 413 * };
 414 * ...
 415 * ```
 416 *
 417 * Both expressions listed in the sig_exprs_LPCRST_LPCRST array need to be set
 418 * to disabled for the associated GPIO to be muxed.
 419 *
 420 */
 421
 422#define ASPEED_IP_SCU           0
 423#define ASPEED_IP_GFX           1
 424#define ASPEED_IP_LPC           2
 425#define ASPEED_NR_PINMUX_IPS    3
 426
 427 /**
 428  * A signal descriptor, which describes the register, bits and the
 429  * enable/disable values that should be compared or written.
 430  *
 431  * @ip: The IP block identifier, used as an index into the regmap array in
 432  *      struct aspeed_pinctrl_data
 433  * @reg: The register offset with respect to the base address of the IP block
 434  * @mask: The mask to apply to the register. The lowest set bit of the mask is
 435  *        used to derive the shift value.
 436  * @enable: The value that enables the function. Value should be in the LSBs,
 437  *          not at the position of the mask.
 438  * @disable: The value that disables the function. Value should be in the
 439  *           LSBs, not at the position of the mask.
 440  */
 441struct aspeed_sig_desc {
 442        unsigned int ip;
 443        unsigned int reg;
 444        u32 mask;
 445        u32 enable;
 446        u32 disable;
 447};
 448
 449/**
 450 * Describes a signal expression. The expression is evaluated by ANDing the
 451 * evaluation of the descriptors.
 452 *
 453 * @signal: The signal name for the priority level on the pin. If the signal
 454 *          type is GPIO, then the signal name must begin with the string
 455 *          "GPIO", e.g. GPIOA0, GPIOT4 etc.
 456 * @function: The name of the function the signal participates in for the
 457 *            associated expression
 458 * @ndescs: The number of signal descriptors in the expression
 459 * @descs: Pointer to an array of signal descriptors that comprise the
 460 *         function expression
 461 */
 462struct aspeed_sig_expr {
 463        const char *signal;
 464        const char *function;
 465        int ndescs;
 466        const struct aspeed_sig_desc *descs;
 467};
 468
 469/**
 470 * A struct capturing the list of expressions enabling signals at each priority
 471 * for a given pin. The signal configuration for a priority level is evaluated
 472 * by ORing the evaluation of the signal expressions in the respective
 473 * priority's list.
 474 *
 475 * @name: A name for the pin
 476 * @prios: A pointer to an array of expression list pointers
 477 *
 478 */
 479struct aspeed_pin_desc {
 480        const char *name;
 481        const struct aspeed_sig_expr ***prios;
 482};
 483
 484/* Macro hell */
 485
 486#define SIG_DESC_IP_BIT(ip, reg, idx, val) \
 487        { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) }
 488
 489/**
 490 * Short-hand macro for describing an SCU descriptor enabled by the state of
 491 * one bit. The disable value is derived.
 492 *
 493 * @reg: The signal's associated register, offset from base
 494 * @idx: The signal's bit index in the register
 495 * @val: The value (0 or 1) that enables the function
 496 */
 497#define SIG_DESC_BIT(reg, idx, val) \
 498        SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val)
 499
 500#define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1)
 501
 502/**
 503 * A further short-hand macro expanding to an SCU descriptor enabled by a set
 504 * bit.
 505 *
 506 * @reg: The register, offset from base
 507 * @idx: The bit index in the register
 508 */
 509#define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1)
 510
 511#define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func
 512#define SIG_DESC_LIST_DECL(sig, func, ...) \
 513        static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \
 514                { __VA_ARGS__ }
 515
 516#define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func
 517#define SIG_EXPR_DECL_(sig, func) \
 518        static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \
 519        { \
 520                .signal = #sig, \
 521                .function = #func, \
 522                .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \
 523                .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \
 524        }
 525
 526/**
 527 * Declare a signal expression.
 528 *
 529 * @sig: A macro symbol name for the signal (is subjected to stringification
 530 *        and token pasting)
 531 * @func: The function in which the signal is participating
 532 * @...: Signal descriptors that define the signal expression
 533 *
 534 * For example, the following declares the ROMD8 signal for the ROM16 function:
 535 *
 536 *     SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
 537 *
 538 * And with multiple signal descriptors:
 539 *
 540 *     SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 541 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 542 */
 543#define SIG_EXPR_DECL(sig, func, ...) \
 544        SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
 545        SIG_EXPR_DECL_(sig, func)
 546
 547/**
 548 * Declare a pointer to a signal expression
 549 *
 550 * @sig: The macro symbol name for the signal (subjected to token pasting)
 551 * @func: The macro symbol name for the function (subjected to token pasting)
 552 */
 553#define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func))
 554
 555#define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig
 556
 557/**
 558 * Declare a signal expression list for reference in a struct aspeed_pin_prio.
 559 *
 560 * @sig: A macro symbol name for the signal (is subjected to token pasting)
 561 * @...: Signal expression structure pointers (use SIG_EXPR_PTR())
 562 *
 563 * For example, the 16-bit ROM bus can be enabled by one of two possible signal
 564 * expressions:
 565 *
 566 *     SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
 567 *     SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 568 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 569 *     SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
 570 *              SIG_EXPR_PTR(ROMD8, ROM16S));
 571 */
 572#define SIG_EXPR_LIST_DECL(sig, ...) \
 573        static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \
 574                { __VA_ARGS__, NULL }
 575
 576/**
 577 * A short-hand macro for declaring a function expression and an expression
 578 * list with a single function.
 579 *
 580 * @func: A macro symbol name for the function (is subjected to token pasting)
 581 * @...: Function descriptors that define the function expression
 582 *
 583 * For example, signal NCTS6 participates in its own function with one group:
 584 *
 585 *     SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
 586 */
 587#define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \
 588        SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
 589        SIG_EXPR_DECL_(sig, func); \
 590        SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func))
 591
 592#define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \
 593        SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1))
 594
 595#define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0])
 596
 597#define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin
 598#define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0])
 599#define PIN_SYM(pin) pin_ ## pin
 600
 601#define MS_PIN_DECL_(pin, ...) \
 602        static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \
 603                { __VA_ARGS__, NULL }; \
 604        static const struct aspeed_pin_desc PIN_SYM(pin) = \
 605                { #pin, PIN_EXPRS_PTR(pin) }
 606
 607/**
 608 * Declare a multi-signal pin
 609 *
 610 * @pin: The pin number
 611 * @other: Macro name for "other" functionality (subjected to stringification)
 612 * @high: Macro name for the highest priority signal functions
 613 * @low: Macro name for the low signal functions
 614 *
 615 * For example:
 616 *
 617 *     #define A8 56
 618 *     SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
 619 *     SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 620 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 621 *     SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
 622 *              SIG_EXPR_PTR(ROMD8, ROM16S));
 623 *     SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
 624 *     MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6);
 625 */
 626#define MS_PIN_DECL(pin, other, high, low) \
 627        SIG_EXPR_LIST_DECL_SINGLE(other, other); \
 628        MS_PIN_DECL_(pin, \
 629                        SIG_EXPR_LIST_PTR(high), \
 630                        SIG_EXPR_LIST_PTR(low), \
 631                        SIG_EXPR_LIST_PTR(other))
 632
 633#define PIN_GROUP_SYM(func) pins_ ## func
 634#define FUNC_GROUP_SYM(func) groups_ ## func
 635#define FUNC_GROUP_DECL(func, ...) \
 636        static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \
 637        static const char *FUNC_GROUP_SYM(func)[] = { #func }
 638
 639/**
 640 * Declare a single signal pin
 641 *
 642 * @pin: The pin number
 643 * @other: Macro name for "other" functionality (subjected to stringification)
 644 * @sig: Macro name for the signal (subjected to stringification)
 645 *
 646 * For example:
 647 *
 648 *     #define E3 80
 649 *     SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC);
 650 *     SS_PIN_DECL(E3, GPIOK0, SCL5);
 651 */
 652#define SS_PIN_DECL(pin, other, sig) \
 653        SIG_EXPR_LIST_DECL_SINGLE(other, other); \
 654        MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other))
 655
 656/**
 657 * Single signal, single function pin declaration
 658 *
 659 * @pin: The pin number
 660 * @other: Macro name for "other" functionality (subjected to stringification)
 661 * @sig: Macro name for the signal (subjected to stringification)
 662 * @...: Signal descriptors that define the function expression
 663 *
 664 * For example:
 665 *
 666 *    SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2));
 667 */
 668#define SSSF_PIN_DECL(pin, other, sig, ...) \
 669        SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \
 670        SIG_EXPR_LIST_DECL_SINGLE(other, other); \
 671        MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \
 672        FUNC_GROUP_DECL(sig, pin)
 673
 674#define GPIO_PIN_DECL(pin, gpio) \
 675        SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \
 676        MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio))
 677
 678struct aspeed_pin_group {
 679        const char *name;
 680        const unsigned int *pins;
 681        const unsigned int npins;
 682};
 683
 684#define ASPEED_PINCTRL_GROUP(name_) { \
 685        .name = #name_, \
 686        .pins = &(PIN_GROUP_SYM(name_))[0], \
 687        .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \
 688}
 689
 690struct aspeed_pin_function {
 691        const char *name;
 692        const char *const *groups;
 693        unsigned int ngroups;
 694};
 695
 696#define ASPEED_PINCTRL_FUNC(name_, ...) { \
 697        .name = #name_, \
 698        .groups = &FUNC_GROUP_SYM(name_)[0], \
 699        .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \
 700}
 701
 702struct aspeed_pinmux_data;
 703
 704struct aspeed_pinmux_ops {
 705        int (*eval)(struct aspeed_pinmux_data *ctx,
 706                    const struct aspeed_sig_expr *expr, bool enabled);
 707        int (*set)(struct aspeed_pinmux_data *ctx,
 708                   const struct aspeed_sig_expr *expr, bool enabled);
 709};
 710
 711struct aspeed_pinmux_data {
 712        struct device *dev;
 713        struct regmap *maps[ASPEED_NR_PINMUX_IPS];
 714
 715        const struct aspeed_pinmux_ops *ops;
 716
 717        const struct aspeed_pin_group *groups;
 718        const unsigned int ngroups;
 719
 720        const struct aspeed_pin_function *functions;
 721        const unsigned int nfunctions;
 722};
 723
 724int aspeed_sig_desc_eval(const struct aspeed_sig_desc *desc, bool enabled,
 725                         struct regmap *map);
 726
 727int aspeed_sig_expr_eval(struct aspeed_pinmux_data *ctx,
 728                         const struct aspeed_sig_expr *expr, bool enabled);
 729
 730static inline int aspeed_sig_expr_set(struct aspeed_pinmux_data *ctx,
 731                                      const struct aspeed_sig_expr *expr,
 732                                      bool enabled)
 733{
 734        return ctx->ops->set(ctx, expr, enabled);
 735}
 736
 737#endif /* ASPEED_PINMUX_H */
 738