linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
  30#include <asm-generic/gpio.h>
  31#endif
  32
  33#include "core.h"
  34#include "devicetree.h"
  35#include "pinmux.h"
  36#include "pinconf.h"
  37
  38
  39static bool pinctrl_dummy_state;
  40
  41/* Mutex taken to protect pinctrl_list */
  42static DEFINE_MUTEX(pinctrl_list_mutex);
  43
  44/* Mutex taken to protect pinctrl_maps */
  45DEFINE_MUTEX(pinctrl_maps_mutex);
  46
  47/* Mutex taken to protect pinctrldev_list */
  48static DEFINE_MUTEX(pinctrldev_list_mutex);
  49
  50/* Global list of pin control devices (struct pinctrl_dev) */
  51static LIST_HEAD(pinctrldev_list);
  52
  53/* List of pin controller handles (struct pinctrl) */
  54static LIST_HEAD(pinctrl_list);
  55
  56/* List of pinctrl maps (struct pinctrl_maps) */
  57LIST_HEAD(pinctrl_maps);
  58
  59
  60/**
  61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  62 *
  63 * Usually this function is called by platforms without pinctrl driver support
  64 * but run with some shared drivers using pinctrl APIs.
  65 * After calling this function, the pinctrl core will return successfully
  66 * with creating a dummy state for the driver to keep going smoothly.
  67 */
  68void pinctrl_provide_dummies(void)
  69{
  70        pinctrl_dummy_state = true;
  71}
  72
  73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  74{
  75        /* We're not allowed to register devices without name */
  76        return pctldev->desc->name;
  77}
  78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  79
  80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  81{
  82        return dev_name(pctldev->dev);
  83}
  84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  85
  86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  87{
  88        return pctldev->driver_data;
  89}
  90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  91
  92/**
  93 * get_pinctrl_dev_from_devname() - look up pin controller device
  94 * @devname: the name of a device instance, as returned by dev_name()
  95 *
  96 * Looks up a pin control device matching a certain device name or pure device
  97 * pointer, the pure device pointer will take precedence.
  98 */
  99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 100{
 101        struct pinctrl_dev *pctldev;
 102
 103        if (!devname)
 104                return NULL;
 105
 106        mutex_lock(&pinctrldev_list_mutex);
 107
 108        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 109                if (!strcmp(dev_name(pctldev->dev), devname)) {
 110                        /* Matched on device name */
 111                        mutex_unlock(&pinctrldev_list_mutex);
 112                        return pctldev;
 113                }
 114        }
 115
 116        mutex_unlock(&pinctrldev_list_mutex);
 117
 118        return NULL;
 119}
 120
 121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 122{
 123        struct pinctrl_dev *pctldev;
 124
 125        mutex_lock(&pinctrldev_list_mutex);
 126
 127        list_for_each_entry(pctldev, &pinctrldev_list, node)
 128                if (pctldev->dev->of_node == np) {
 129                        mutex_unlock(&pinctrldev_list_mutex);
 130                        return pctldev;
 131                }
 132
 133        mutex_unlock(&pinctrldev_list_mutex);
 134
 135        return NULL;
 136}
 137
 138/**
 139 * pin_get_from_name() - look up a pin number from a name
 140 * @pctldev: the pin control device to lookup the pin on
 141 * @name: the name of the pin to look up
 142 */
 143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 144{
 145        unsigned i, pin;
 146
 147        /* The pin number can be retrived from the pin controller descriptor */
 148        for (i = 0; i < pctldev->desc->npins; i++) {
 149                struct pin_desc *desc;
 150
 151                pin = pctldev->desc->pins[i].number;
 152                desc = pin_desc_get(pctldev, pin);
 153                /* Pin space may be sparse */
 154                if (desc && !strcmp(name, desc->name))
 155                        return pin;
 156        }
 157
 158        return -EINVAL;
 159}
 160
 161/**
 162 * pin_get_name_from_id() - look up a pin name from a pin id
 163 * @pctldev: the pin control device to lookup the pin on
 164 * @name: the name of the pin to look up
 165 */
 166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 167{
 168        const struct pin_desc *desc;
 169
 170        desc = pin_desc_get(pctldev, pin);
 171        if (!desc) {
 172                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 173                        pin);
 174                return NULL;
 175        }
 176
 177        return desc->name;
 178}
 179
 180/* Deletes a range of pin descriptors */
 181static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 182                                  const struct pinctrl_pin_desc *pins,
 183                                  unsigned num_pins)
 184{
 185        int i;
 186
 187        for (i = 0; i < num_pins; i++) {
 188                struct pin_desc *pindesc;
 189
 190                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 191                                            pins[i].number);
 192                if (pindesc) {
 193                        radix_tree_delete(&pctldev->pin_desc_tree,
 194                                          pins[i].number);
 195                        if (pindesc->dynamic_name)
 196                                kfree(pindesc->name);
 197                }
 198                kfree(pindesc);
 199        }
 200}
 201
 202static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 203                                    const struct pinctrl_pin_desc *pin)
 204{
 205        struct pin_desc *pindesc;
 206
 207        pindesc = pin_desc_get(pctldev, pin->number);
 208        if (pindesc) {
 209                dev_err(pctldev->dev, "pin %d already registered\n",
 210                        pin->number);
 211                return -EINVAL;
 212        }
 213
 214        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 215        if (!pindesc)
 216                return -ENOMEM;
 217
 218        /* Set owner */
 219        pindesc->pctldev = pctldev;
 220
 221        /* Copy basic pin info */
 222        if (pin->name) {
 223                pindesc->name = pin->name;
 224        } else {
 225                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 226                if (!pindesc->name) {
 227                        kfree(pindesc);
 228                        return -ENOMEM;
 229                }
 230                pindesc->dynamic_name = true;
 231        }
 232
 233        pindesc->drv_data = pin->drv_data;
 234
 235        radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 236        pr_debug("registered pin %d (%s) on %s\n",
 237                 pin->number, pindesc->name, pctldev->desc->name);
 238        return 0;
 239}
 240
 241static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 242                                 const struct pinctrl_pin_desc *pins,
 243                                 unsigned num_descs)
 244{
 245        unsigned i;
 246        int ret = 0;
 247
 248        for (i = 0; i < num_descs; i++) {
 249                ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 250                if (ret)
 251                        return ret;
 252        }
 253
 254        return 0;
 255}
 256
 257/**
 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 259 * @range: GPIO range used for the translation
 260 * @gpio: gpio pin to translate to a pin number
 261 *
 262 * Finds the pin number for a given GPIO using the specified GPIO range
 263 * as a base for translation. The distinction between linear GPIO ranges
 264 * and pin list based GPIO ranges is managed correctly by this function.
 265 *
 266 * This function assumes the gpio is part of the specified GPIO range, use
 267 * only after making sure this is the case (e.g. by calling it on the
 268 * result of successful pinctrl_get_device_gpio_range calls)!
 269 */
 270static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 271                                unsigned int gpio)
 272{
 273        unsigned int offset = gpio - range->base;
 274        if (range->pins)
 275                return range->pins[offset];
 276        else
 277                return range->pin_base + offset;
 278}
 279
 280/**
 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 282 * @pctldev: pin controller device to check
 283 * @gpio: gpio pin to check taken from the global GPIO pin space
 284 *
 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 286 * controller, return the range or NULL
 287 */
 288static struct pinctrl_gpio_range *
 289pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 290{
 291        struct pinctrl_gpio_range *range;
 292
 293        mutex_lock(&pctldev->mutex);
 294        /* Loop over the ranges */
 295        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 296                /* Check if we're in the valid range */
 297                if (gpio >= range->base &&
 298                    gpio < range->base + range->npins) {
 299                        mutex_unlock(&pctldev->mutex);
 300                        return range;
 301                }
 302        }
 303        mutex_unlock(&pctldev->mutex);
 304        return NULL;
 305}
 306
 307/**
 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 309 * the same GPIO chip are in range
 310 * @gpio: gpio pin to check taken from the global GPIO pin space
 311 *
 312 * This function is complement of pinctrl_match_gpio_range(). If the return
 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 315 * of the same GPIO chip don't have back-end pinctrl interface.
 316 * If the return value is true, it means that pinctrl device is ready & the
 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 318 * is false, it means that pinctrl device may not be ready.
 319 */
 320#ifdef CONFIG_GPIOLIB
 321static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 322{
 323        struct pinctrl_dev *pctldev;
 324        struct pinctrl_gpio_range *range = NULL;
 325        struct gpio_chip *chip = gpio_to_chip(gpio);
 326
 327        if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 328                return false;
 329
 330        mutex_lock(&pinctrldev_list_mutex);
 331
 332        /* Loop over the pin controllers */
 333        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 334                /* Loop over the ranges */
 335                mutex_lock(&pctldev->mutex);
 336                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 337                        /* Check if any gpio range overlapped with gpio chip */
 338                        if (range->base + range->npins - 1 < chip->base ||
 339                            range->base > chip->base + chip->ngpio - 1)
 340                                continue;
 341                        mutex_unlock(&pctldev->mutex);
 342                        mutex_unlock(&pinctrldev_list_mutex);
 343                        return true;
 344                }
 345                mutex_unlock(&pctldev->mutex);
 346        }
 347
 348        mutex_unlock(&pinctrldev_list_mutex);
 349
 350        return false;
 351}
 352#else
 353static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 354#endif
 355
 356/**
 357 * pinctrl_get_device_gpio_range() - find device for GPIO range
 358 * @gpio: the pin to locate the pin controller for
 359 * @outdev: the pin control device if found
 360 * @outrange: the GPIO range if found
 361 *
 362 * Find the pin controller handling a certain GPIO pin from the pinspace of
 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 365 * may still have not been registered.
 366 */
 367static int pinctrl_get_device_gpio_range(unsigned gpio,
 368                                         struct pinctrl_dev **outdev,
 369                                         struct pinctrl_gpio_range **outrange)
 370{
 371        struct pinctrl_dev *pctldev;
 372
 373        mutex_lock(&pinctrldev_list_mutex);
 374
 375        /* Loop over the pin controllers */
 376        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 377                struct pinctrl_gpio_range *range;
 378
 379                range = pinctrl_match_gpio_range(pctldev, gpio);
 380                if (range) {
 381                        *outdev = pctldev;
 382                        *outrange = range;
 383                        mutex_unlock(&pinctrldev_list_mutex);
 384                        return 0;
 385                }
 386        }
 387
 388        mutex_unlock(&pinctrldev_list_mutex);
 389
 390        return -EPROBE_DEFER;
 391}
 392
 393/**
 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 395 * @pctldev: pin controller device to add the range to
 396 * @range: the GPIO range to add
 397 *
 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 399 * this to register handled ranges after registering your pin controller.
 400 */
 401void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 402                            struct pinctrl_gpio_range *range)
 403{
 404        mutex_lock(&pctldev->mutex);
 405        list_add_tail(&range->node, &pctldev->gpio_ranges);
 406        mutex_unlock(&pctldev->mutex);
 407}
 408EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 409
 410void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 411                             struct pinctrl_gpio_range *ranges,
 412                             unsigned nranges)
 413{
 414        int i;
 415
 416        for (i = 0; i < nranges; i++)
 417                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 418}
 419EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 420
 421struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 422                struct pinctrl_gpio_range *range)
 423{
 424        struct pinctrl_dev *pctldev;
 425
 426        pctldev = get_pinctrl_dev_from_devname(devname);
 427
 428        /*
 429         * If we can't find this device, let's assume that is because
 430         * it has not probed yet, so the driver trying to register this
 431         * range need to defer probing.
 432         */
 433        if (!pctldev) {
 434                return ERR_PTR(-EPROBE_DEFER);
 435        }
 436        pinctrl_add_gpio_range(pctldev, range);
 437
 438        return pctldev;
 439}
 440EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 441
 442int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 443                                const unsigned **pins, unsigned *num_pins)
 444{
 445        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 446        int gs;
 447
 448        if (!pctlops->get_group_pins)
 449                return -EINVAL;
 450
 451        gs = pinctrl_get_group_selector(pctldev, pin_group);
 452        if (gs < 0)
 453                return gs;
 454
 455        return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 456}
 457EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 458
 459struct pinctrl_gpio_range *
 460pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 461                                        unsigned int pin)
 462{
 463        struct pinctrl_gpio_range *range;
 464
 465        /* Loop over the ranges */
 466        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 467                /* Check if we're in the valid range */
 468                if (range->pins) {
 469                        int a;
 470                        for (a = 0; a < range->npins; a++) {
 471                                if (range->pins[a] == pin)
 472                                        return range;
 473                        }
 474                } else if (pin >= range->pin_base &&
 475                           pin < range->pin_base + range->npins)
 476                        return range;
 477        }
 478
 479        return NULL;
 480}
 481EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 482
 483/**
 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 485 * @pctldev: the pin controller device to look in
 486 * @pin: a controller-local number to find the range for
 487 */
 488struct pinctrl_gpio_range *
 489pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 490                                 unsigned int pin)
 491{
 492        struct pinctrl_gpio_range *range;
 493
 494        mutex_lock(&pctldev->mutex);
 495        range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 496        mutex_unlock(&pctldev->mutex);
 497
 498        return range;
 499}
 500EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 501
 502/**
 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 504 * @pctldev: pin controller device to remove the range from
 505 * @range: the GPIO range to remove
 506 */
 507void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 508                               struct pinctrl_gpio_range *range)
 509{
 510        mutex_lock(&pctldev->mutex);
 511        list_del(&range->node);
 512        mutex_unlock(&pctldev->mutex);
 513}
 514EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 515
 516#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 517
 518/**
 519 * pinctrl_generic_get_group_count() - returns the number of pin groups
 520 * @pctldev: pin controller device
 521 */
 522int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 523{
 524        return pctldev->num_groups;
 525}
 526EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 527
 528/**
 529 * pinctrl_generic_get_group_name() - returns the name of a pin group
 530 * @pctldev: pin controller device
 531 * @selector: group number
 532 */
 533const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 534                                           unsigned int selector)
 535{
 536        struct group_desc *group;
 537
 538        group = radix_tree_lookup(&pctldev->pin_group_tree,
 539                                  selector);
 540        if (!group)
 541                return NULL;
 542
 543        return group->name;
 544}
 545EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 546
 547/**
 548 * pinctrl_generic_get_group_pins() - gets the pin group pins
 549 * @pctldev: pin controller device
 550 * @selector: group number
 551 * @pins: pins in the group
 552 * @num_pins: number of pins in the group
 553 */
 554int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 555                                   unsigned int selector,
 556                                   const unsigned int **pins,
 557                                   unsigned int *num_pins)
 558{
 559        struct group_desc *group;
 560
 561        group = radix_tree_lookup(&pctldev->pin_group_tree,
 562                                  selector);
 563        if (!group) {
 564                dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 565                        __func__, selector);
 566                return -EINVAL;
 567        }
 568
 569        *pins = group->pins;
 570        *num_pins = group->num_pins;
 571
 572        return 0;
 573}
 574EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 575
 576/**
 577 * pinctrl_generic_get_group() - returns a pin group based on the number
 578 * @pctldev: pin controller device
 579 * @gselector: group number
 580 */
 581struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 582                                             unsigned int selector)
 583{
 584        struct group_desc *group;
 585
 586        group = radix_tree_lookup(&pctldev->pin_group_tree,
 587                                  selector);
 588        if (!group)
 589                return NULL;
 590
 591        return group;
 592}
 593EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 594
 595static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 596                                                  const char *function)
 597{
 598        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 599        int ngroups = ops->get_groups_count(pctldev);
 600        int selector = 0;
 601
 602        /* See if this pctldev has this group */
 603        while (selector < ngroups) {
 604                const char *gname = ops->get_group_name(pctldev, selector);
 605
 606                if (gname && !strcmp(function, gname))
 607                        return selector;
 608
 609                selector++;
 610        }
 611
 612        return -EINVAL;
 613}
 614
 615/**
 616 * pinctrl_generic_add_group() - adds a new pin group
 617 * @pctldev: pin controller device
 618 * @name: name of the pin group
 619 * @pins: pins in the pin group
 620 * @num_pins: number of pins in the pin group
 621 * @data: pin controller driver specific data
 622 *
 623 * Note that the caller must take care of locking.
 624 */
 625int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 626                              int *pins, int num_pins, void *data)
 627{
 628        struct group_desc *group;
 629        int selector;
 630
 631        if (!name)
 632                return -EINVAL;
 633
 634        selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 635        if (selector >= 0)
 636                return selector;
 637
 638        selector = pctldev->num_groups;
 639
 640        group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 641        if (!group)
 642                return -ENOMEM;
 643
 644        group->name = name;
 645        group->pins = pins;
 646        group->num_pins = num_pins;
 647        group->data = data;
 648
 649        radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 650
 651        pctldev->num_groups++;
 652
 653        return selector;
 654}
 655EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 656
 657/**
 658 * pinctrl_generic_remove_group() - removes a numbered pin group
 659 * @pctldev: pin controller device
 660 * @selector: group number
 661 *
 662 * Note that the caller must take care of locking.
 663 */
 664int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 665                                 unsigned int selector)
 666{
 667        struct group_desc *group;
 668
 669        group = radix_tree_lookup(&pctldev->pin_group_tree,
 670                                  selector);
 671        if (!group)
 672                return -ENOENT;
 673
 674        radix_tree_delete(&pctldev->pin_group_tree, selector);
 675        devm_kfree(pctldev->dev, group);
 676
 677        pctldev->num_groups--;
 678
 679        return 0;
 680}
 681EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 682
 683/**
 684 * pinctrl_generic_free_groups() - removes all pin groups
 685 * @pctldev: pin controller device
 686 *
 687 * Note that the caller must take care of locking. The pinctrl groups
 688 * are allocated with devm_kzalloc() so no need to free them here.
 689 */
 690static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 691{
 692        struct radix_tree_iter iter;
 693        void __rcu **slot;
 694
 695        radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 696                radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 697
 698        pctldev->num_groups = 0;
 699}
 700
 701#else
 702static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 703{
 704}
 705#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 706
 707/**
 708 * pinctrl_get_group_selector() - returns the group selector for a group
 709 * @pctldev: the pin controller handling the group
 710 * @pin_group: the pin group to look up
 711 */
 712int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 713                               const char *pin_group)
 714{
 715        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 716        unsigned ngroups = pctlops->get_groups_count(pctldev);
 717        unsigned group_selector = 0;
 718
 719        while (group_selector < ngroups) {
 720                const char *gname = pctlops->get_group_name(pctldev,
 721                                                            group_selector);
 722                if (gname && !strcmp(gname, pin_group)) {
 723                        dev_dbg(pctldev->dev,
 724                                "found group selector %u for %s\n",
 725                                group_selector,
 726                                pin_group);
 727                        return group_selector;
 728                }
 729
 730                group_selector++;
 731        }
 732
 733        dev_err(pctldev->dev, "does not have pin group %s\n",
 734                pin_group);
 735
 736        return -EINVAL;
 737}
 738
 739/**
 740 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 741 * @gpio: the GPIO pin number from the GPIO subsystem number space
 742 *
 743 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 744 * as part of their gpio_request() semantics, platforms and individual drivers
 745 * shall *NOT* request GPIO pins to be muxed in.
 746 */
 747int pinctrl_gpio_request(unsigned gpio)
 748{
 749        struct pinctrl_dev *pctldev;
 750        struct pinctrl_gpio_range *range;
 751        int ret;
 752        int pin;
 753
 754        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 755        if (ret) {
 756                if (pinctrl_ready_for_gpio_range(gpio))
 757                        ret = 0;
 758                return ret;
 759        }
 760
 761        mutex_lock(&pctldev->mutex);
 762
 763        /* Convert to the pin controllers number space */
 764        pin = gpio_to_pin(range, gpio);
 765
 766        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 767
 768        mutex_unlock(&pctldev->mutex);
 769
 770        return ret;
 771}
 772EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 773
 774/**
 775 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 776 * @gpio: the GPIO pin number from the GPIO subsystem number space
 777 *
 778 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 779 * as part of their gpio_free() semantics, platforms and individual drivers
 780 * shall *NOT* request GPIO pins to be muxed out.
 781 */
 782void pinctrl_gpio_free(unsigned gpio)
 783{
 784        struct pinctrl_dev *pctldev;
 785        struct pinctrl_gpio_range *range;
 786        int ret;
 787        int pin;
 788
 789        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 790        if (ret) {
 791                return;
 792        }
 793        mutex_lock(&pctldev->mutex);
 794
 795        /* Convert to the pin controllers number space */
 796        pin = gpio_to_pin(range, gpio);
 797
 798        pinmux_free_gpio(pctldev, pin, range);
 799
 800        mutex_unlock(&pctldev->mutex);
 801}
 802EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 803
 804static int pinctrl_gpio_direction(unsigned gpio, bool input)
 805{
 806        struct pinctrl_dev *pctldev;
 807        struct pinctrl_gpio_range *range;
 808        int ret;
 809        int pin;
 810
 811        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 812        if (ret) {
 813                return ret;
 814        }
 815
 816        mutex_lock(&pctldev->mutex);
 817
 818        /* Convert to the pin controllers number space */
 819        pin = gpio_to_pin(range, gpio);
 820        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 821
 822        mutex_unlock(&pctldev->mutex);
 823
 824        return ret;
 825}
 826
 827/**
 828 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 829 * @gpio: the GPIO pin number from the GPIO subsystem number space
 830 *
 831 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 832 * as part of their gpio_direction_input() semantics, platforms and individual
 833 * drivers shall *NOT* touch pin control GPIO calls.
 834 */
 835int pinctrl_gpio_direction_input(unsigned gpio)
 836{
 837        return pinctrl_gpio_direction(gpio, true);
 838}
 839EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 840
 841/**
 842 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 843 * @gpio: the GPIO pin number from the GPIO subsystem number space
 844 *
 845 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 846 * as part of their gpio_direction_output() semantics, platforms and individual
 847 * drivers shall *NOT* touch pin control GPIO calls.
 848 */
 849int pinctrl_gpio_direction_output(unsigned gpio)
 850{
 851        return pinctrl_gpio_direction(gpio, false);
 852}
 853EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 854
 855/**
 856 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 857 * @gpio: the GPIO pin number from the GPIO subsystem number space
 858 * @config: the configuration to apply to the GPIO
 859 *
 860 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 861 * they need to call the underlying pin controller to change GPIO config
 862 * (for example set debounce time).
 863 */
 864int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 865{
 866        unsigned long configs[] = { config };
 867        struct pinctrl_gpio_range *range;
 868        struct pinctrl_dev *pctldev;
 869        int ret, pin;
 870
 871        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 872        if (ret)
 873                return ret;
 874
 875        mutex_lock(&pctldev->mutex);
 876        pin = gpio_to_pin(range, gpio);
 877        ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 878        mutex_unlock(&pctldev->mutex);
 879
 880        return ret;
 881}
 882EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 883
 884static struct pinctrl_state *find_state(struct pinctrl *p,
 885                                        const char *name)
 886{
 887        struct pinctrl_state *state;
 888
 889        list_for_each_entry(state, &p->states, node)
 890                if (!strcmp(state->name, name))
 891                        return state;
 892
 893        return NULL;
 894}
 895
 896static struct pinctrl_state *create_state(struct pinctrl *p,
 897                                          const char *name)
 898{
 899        struct pinctrl_state *state;
 900
 901        state = kzalloc(sizeof(*state), GFP_KERNEL);
 902        if (!state)
 903                return ERR_PTR(-ENOMEM);
 904
 905        state->name = name;
 906        INIT_LIST_HEAD(&state->settings);
 907
 908        list_add_tail(&state->node, &p->states);
 909
 910        return state;
 911}
 912
 913static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 914                       const struct pinctrl_map *map)
 915{
 916        struct pinctrl_state *state;
 917        struct pinctrl_setting *setting;
 918        int ret;
 919
 920        state = find_state(p, map->name);
 921        if (!state)
 922                state = create_state(p, map->name);
 923        if (IS_ERR(state))
 924                return PTR_ERR(state);
 925
 926        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 927                return 0;
 928
 929        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 930        if (!setting)
 931                return -ENOMEM;
 932
 933        setting->type = map->type;
 934
 935        if (pctldev)
 936                setting->pctldev = pctldev;
 937        else
 938                setting->pctldev =
 939                        get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 940        if (!setting->pctldev) {
 941                kfree(setting);
 942                /* Do not defer probing of hogs (circular loop) */
 943                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 944                        return -ENODEV;
 945                /*
 946                 * OK let us guess that the driver is not there yet, and
 947                 * let's defer obtaining this pinctrl handle to later...
 948                 */
 949                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 950                        map->ctrl_dev_name);
 951                return -EPROBE_DEFER;
 952        }
 953
 954        setting->dev_name = map->dev_name;
 955
 956        switch (map->type) {
 957        case PIN_MAP_TYPE_MUX_GROUP:
 958                ret = pinmux_map_to_setting(map, setting);
 959                break;
 960        case PIN_MAP_TYPE_CONFIGS_PIN:
 961        case PIN_MAP_TYPE_CONFIGS_GROUP:
 962                ret = pinconf_map_to_setting(map, setting);
 963                break;
 964        default:
 965                ret = -EINVAL;
 966                break;
 967        }
 968        if (ret < 0) {
 969                kfree(setting);
 970                return ret;
 971        }
 972
 973        list_add_tail(&setting->node, &state->settings);
 974
 975        return 0;
 976}
 977
 978static struct pinctrl *find_pinctrl(struct device *dev)
 979{
 980        struct pinctrl *p;
 981
 982        mutex_lock(&pinctrl_list_mutex);
 983        list_for_each_entry(p, &pinctrl_list, node)
 984                if (p->dev == dev) {
 985                        mutex_unlock(&pinctrl_list_mutex);
 986                        return p;
 987                }
 988
 989        mutex_unlock(&pinctrl_list_mutex);
 990        return NULL;
 991}
 992
 993static void pinctrl_free(struct pinctrl *p, bool inlist);
 994
 995static struct pinctrl *create_pinctrl(struct device *dev,
 996                                      struct pinctrl_dev *pctldev)
 997{
 998        struct pinctrl *p;
 999        const char *devname;
1000        struct pinctrl_maps *maps_node;
1001        int i;
1002        const struct pinctrl_map *map;
1003        int ret;
1004
1005        /*
1006         * create the state cookie holder struct pinctrl for each
1007         * mapping, this is what consumers will get when requesting
1008         * a pin control handle with pinctrl_get()
1009         */
1010        p = kzalloc(sizeof(*p), GFP_KERNEL);
1011        if (!p)
1012                return ERR_PTR(-ENOMEM);
1013        p->dev = dev;
1014        INIT_LIST_HEAD(&p->states);
1015        INIT_LIST_HEAD(&p->dt_maps);
1016
1017        ret = pinctrl_dt_to_map(p, pctldev);
1018        if (ret < 0) {
1019                kfree(p);
1020                return ERR_PTR(ret);
1021        }
1022
1023        devname = dev_name(dev);
1024
1025        mutex_lock(&pinctrl_maps_mutex);
1026        /* Iterate over the pin control maps to locate the right ones */
1027        for_each_maps(maps_node, i, map) {
1028                /* Map must be for this device */
1029                if (strcmp(map->dev_name, devname))
1030                        continue;
1031                /*
1032                 * If pctldev is not null, we are claiming hog for it,
1033                 * that means, setting that is served by pctldev by itself.
1034                 *
1035                 * Thus we must skip map that is for this device but is served
1036                 * by other device.
1037                 */
1038                if (pctldev &&
1039                    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1040                        continue;
1041
1042                ret = add_setting(p, pctldev, map);
1043                /*
1044                 * At this point the adding of a setting may:
1045                 *
1046                 * - Defer, if the pinctrl device is not yet available
1047                 * - Fail, if the pinctrl device is not yet available,
1048                 *   AND the setting is a hog. We cannot defer that, since
1049                 *   the hog will kick in immediately after the device
1050                 *   is registered.
1051                 *
1052                 * If the error returned was not -EPROBE_DEFER then we
1053                 * accumulate the errors to see if we end up with
1054                 * an -EPROBE_DEFER later, as that is the worst case.
1055                 */
1056                if (ret == -EPROBE_DEFER) {
1057                        pinctrl_free(p, false);
1058                        mutex_unlock(&pinctrl_maps_mutex);
1059                        return ERR_PTR(ret);
1060                }
1061        }
1062        mutex_unlock(&pinctrl_maps_mutex);
1063
1064        if (ret < 0) {
1065                /* If some other error than deferral occurred, return here */
1066                pinctrl_free(p, false);
1067                return ERR_PTR(ret);
1068        }
1069
1070        kref_init(&p->users);
1071
1072        /* Add the pinctrl handle to the global list */
1073        mutex_lock(&pinctrl_list_mutex);
1074        list_add_tail(&p->node, &pinctrl_list);
1075        mutex_unlock(&pinctrl_list_mutex);
1076
1077        return p;
1078}
1079
1080/**
1081 * pinctrl_get() - retrieves the pinctrl handle for a device
1082 * @dev: the device to obtain the handle for
1083 */
1084struct pinctrl *pinctrl_get(struct device *dev)
1085{
1086        struct pinctrl *p;
1087
1088        if (WARN_ON(!dev))
1089                return ERR_PTR(-EINVAL);
1090
1091        /*
1092         * See if somebody else (such as the device core) has already
1093         * obtained a handle to the pinctrl for this device. In that case,
1094         * return another pointer to it.
1095         */
1096        p = find_pinctrl(dev);
1097        if (p) {
1098                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1099                kref_get(&p->users);
1100                return p;
1101        }
1102
1103        return create_pinctrl(dev, NULL);
1104}
1105EXPORT_SYMBOL_GPL(pinctrl_get);
1106
1107static void pinctrl_free_setting(bool disable_setting,
1108                                 struct pinctrl_setting *setting)
1109{
1110        switch (setting->type) {
1111        case PIN_MAP_TYPE_MUX_GROUP:
1112                if (disable_setting)
1113                        pinmux_disable_setting(setting);
1114                pinmux_free_setting(setting);
1115                break;
1116        case PIN_MAP_TYPE_CONFIGS_PIN:
1117        case PIN_MAP_TYPE_CONFIGS_GROUP:
1118                pinconf_free_setting(setting);
1119                break;
1120        default:
1121                break;
1122        }
1123}
1124
1125static void pinctrl_free(struct pinctrl *p, bool inlist)
1126{
1127        struct pinctrl_state *state, *n1;
1128        struct pinctrl_setting *setting, *n2;
1129
1130        mutex_lock(&pinctrl_list_mutex);
1131        list_for_each_entry_safe(state, n1, &p->states, node) {
1132                list_for_each_entry_safe(setting, n2, &state->settings, node) {
1133                        pinctrl_free_setting(state == p->state, setting);
1134                        list_del(&setting->node);
1135                        kfree(setting);
1136                }
1137                list_del(&state->node);
1138                kfree(state);
1139        }
1140
1141        pinctrl_dt_free_maps(p);
1142
1143        if (inlist)
1144                list_del(&p->node);
1145        kfree(p);
1146        mutex_unlock(&pinctrl_list_mutex);
1147}
1148
1149/**
1150 * pinctrl_release() - release the pinctrl handle
1151 * @kref: the kref in the pinctrl being released
1152 */
1153static void pinctrl_release(struct kref *kref)
1154{
1155        struct pinctrl *p = container_of(kref, struct pinctrl, users);
1156
1157        pinctrl_free(p, true);
1158}
1159
1160/**
1161 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1162 * @p: the pinctrl handle to release
1163 */
1164void pinctrl_put(struct pinctrl *p)
1165{
1166        kref_put(&p->users, pinctrl_release);
1167}
1168EXPORT_SYMBOL_GPL(pinctrl_put);
1169
1170/**
1171 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1172 * @p: the pinctrl handle to retrieve the state from
1173 * @name: the state name to retrieve
1174 */
1175struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1176                                                 const char *name)
1177{
1178        struct pinctrl_state *state;
1179
1180        state = find_state(p, name);
1181        if (!state) {
1182                if (pinctrl_dummy_state) {
1183                        /* create dummy state */
1184                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1185                                name);
1186                        state = create_state(p, name);
1187                } else
1188                        state = ERR_PTR(-ENODEV);
1189        }
1190
1191        return state;
1192}
1193EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1194
1195static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1196                             struct device *consumer)
1197{
1198        if (pctldev->desc->link_consumers)
1199                device_link_add(consumer, pctldev->dev,
1200                                DL_FLAG_PM_RUNTIME |
1201                                DL_FLAG_AUTOREMOVE_CONSUMER);
1202}
1203
1204/**
1205 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1206 * @p: the pinctrl handle for the device that requests configuration
1207 * @state: the state handle to select/activate/program
1208 */
1209static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1210{
1211        struct pinctrl_setting *setting, *setting2;
1212        struct pinctrl_state *old_state = p->state;
1213        int ret;
1214
1215        if (p->state) {
1216                /*
1217                 * For each pinmux setting in the old state, forget SW's record
1218                 * of mux owner for that pingroup. Any pingroups which are
1219                 * still owned by the new state will be re-acquired by the call
1220                 * to pinmux_enable_setting() in the loop below.
1221                 */
1222                list_for_each_entry(setting, &p->state->settings, node) {
1223                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1224                                continue;
1225                        pinmux_disable_setting(setting);
1226                }
1227        }
1228
1229        p->state = NULL;
1230
1231        /* Apply all the settings for the new state */
1232        list_for_each_entry(setting, &state->settings, node) {
1233                switch (setting->type) {
1234                case PIN_MAP_TYPE_MUX_GROUP:
1235                        ret = pinmux_enable_setting(setting);
1236                        break;
1237                case PIN_MAP_TYPE_CONFIGS_PIN:
1238                case PIN_MAP_TYPE_CONFIGS_GROUP:
1239                        ret = pinconf_apply_setting(setting);
1240                        break;
1241                default:
1242                        ret = -EINVAL;
1243                        break;
1244                }
1245
1246                if (ret < 0) {
1247                        goto unapply_new_state;
1248                }
1249
1250                /* Do not link hogs (circular dependency) */
1251                if (p != setting->pctldev->p)
1252                        pinctrl_link_add(setting->pctldev, p->dev);
1253        }
1254
1255        p->state = state;
1256
1257        return 0;
1258
1259unapply_new_state:
1260        dev_err(p->dev, "Error applying setting, reverse things back\n");
1261
1262        list_for_each_entry(setting2, &state->settings, node) {
1263                if (&setting2->node == &setting->node)
1264                        break;
1265                /*
1266                 * All we can do here is pinmux_disable_setting.
1267                 * That means that some pins are muxed differently now
1268                 * than they were before applying the setting (We can't
1269                 * "unmux a pin"!), but it's not a big deal since the pins
1270                 * are free to be muxed by another apply_setting.
1271                 */
1272                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1273                        pinmux_disable_setting(setting2);
1274        }
1275
1276        /* There's no infinite recursive loop here because p->state is NULL */
1277        if (old_state)
1278                pinctrl_select_state(p, old_state);
1279
1280        return ret;
1281}
1282
1283/**
1284 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1285 * @p: the pinctrl handle for the device that requests configuration
1286 * @state: the state handle to select/activate/program
1287 */
1288int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1289{
1290        if (p->state == state)
1291                return 0;
1292
1293        return pinctrl_commit_state(p, state);
1294}
1295EXPORT_SYMBOL_GPL(pinctrl_select_state);
1296
1297static void devm_pinctrl_release(struct device *dev, void *res)
1298{
1299        pinctrl_put(*(struct pinctrl **)res);
1300}
1301
1302/**
1303 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1304 * @dev: the device to obtain the handle for
1305 *
1306 * If there is a need to explicitly destroy the returned struct pinctrl,
1307 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1308 */
1309struct pinctrl *devm_pinctrl_get(struct device *dev)
1310{
1311        struct pinctrl **ptr, *p;
1312
1313        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1314        if (!ptr)
1315                return ERR_PTR(-ENOMEM);
1316
1317        p = pinctrl_get(dev);
1318        if (!IS_ERR(p)) {
1319                *ptr = p;
1320                devres_add(dev, ptr);
1321        } else {
1322                devres_free(ptr);
1323        }
1324
1325        return p;
1326}
1327EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1328
1329static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1330{
1331        struct pinctrl **p = res;
1332
1333        return *p == data;
1334}
1335
1336/**
1337 * devm_pinctrl_put() - Resource managed pinctrl_put()
1338 * @p: the pinctrl handle to release
1339 *
1340 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1341 * this function will not need to be called and the resource management
1342 * code will ensure that the resource is freed.
1343 */
1344void devm_pinctrl_put(struct pinctrl *p)
1345{
1346        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1347                               devm_pinctrl_match, p));
1348}
1349EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1350
1351int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1352                         bool dup)
1353{
1354        int i, ret;
1355        struct pinctrl_maps *maps_node;
1356
1357        pr_debug("add %u pinctrl maps\n", num_maps);
1358
1359        /* First sanity check the new mapping */
1360        for (i = 0; i < num_maps; i++) {
1361                if (!maps[i].dev_name) {
1362                        pr_err("failed to register map %s (%d): no device given\n",
1363                               maps[i].name, i);
1364                        return -EINVAL;
1365                }
1366
1367                if (!maps[i].name) {
1368                        pr_err("failed to register map %d: no map name given\n",
1369                               i);
1370                        return -EINVAL;
1371                }
1372
1373                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1374                                !maps[i].ctrl_dev_name) {
1375                        pr_err("failed to register map %s (%d): no pin control device given\n",
1376                               maps[i].name, i);
1377                        return -EINVAL;
1378                }
1379
1380                switch (maps[i].type) {
1381                case PIN_MAP_TYPE_DUMMY_STATE:
1382                        break;
1383                case PIN_MAP_TYPE_MUX_GROUP:
1384                        ret = pinmux_validate_map(&maps[i], i);
1385                        if (ret < 0)
1386                                return ret;
1387                        break;
1388                case PIN_MAP_TYPE_CONFIGS_PIN:
1389                case PIN_MAP_TYPE_CONFIGS_GROUP:
1390                        ret = pinconf_validate_map(&maps[i], i);
1391                        if (ret < 0)
1392                                return ret;
1393                        break;
1394                default:
1395                        pr_err("failed to register map %s (%d): invalid type given\n",
1396                               maps[i].name, i);
1397                        return -EINVAL;
1398                }
1399        }
1400
1401        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1402        if (!maps_node)
1403                return -ENOMEM;
1404
1405        maps_node->num_maps = num_maps;
1406        if (dup) {
1407                maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1408                                          GFP_KERNEL);
1409                if (!maps_node->maps) {
1410                        kfree(maps_node);
1411                        return -ENOMEM;
1412                }
1413        } else {
1414                maps_node->maps = maps;
1415        }
1416
1417        mutex_lock(&pinctrl_maps_mutex);
1418        list_add_tail(&maps_node->node, &pinctrl_maps);
1419        mutex_unlock(&pinctrl_maps_mutex);
1420
1421        return 0;
1422}
1423
1424/**
1425 * pinctrl_register_mappings() - register a set of pin controller mappings
1426 * @maps: the pincontrol mappings table to register. This should probably be
1427 *      marked with __initdata so it can be discarded after boot. This
1428 *      function will perform a shallow copy for the mapping entries.
1429 * @num_maps: the number of maps in the mapping table
1430 */
1431int pinctrl_register_mappings(const struct pinctrl_map *maps,
1432                              unsigned num_maps)
1433{
1434        return pinctrl_register_map(maps, num_maps, true);
1435}
1436EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1437
1438void pinctrl_unregister_map(const struct pinctrl_map *map)
1439{
1440        struct pinctrl_maps *maps_node;
1441
1442        mutex_lock(&pinctrl_maps_mutex);
1443        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1444                if (maps_node->maps == map) {
1445                        list_del(&maps_node->node);
1446                        kfree(maps_node);
1447                        mutex_unlock(&pinctrl_maps_mutex);
1448                        return;
1449                }
1450        }
1451        mutex_unlock(&pinctrl_maps_mutex);
1452}
1453
1454/**
1455 * pinctrl_force_sleep() - turn a given controller device into sleep state
1456 * @pctldev: pin controller device
1457 */
1458int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1459{
1460        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1461                return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1462        return 0;
1463}
1464EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1465
1466/**
1467 * pinctrl_force_default() - turn a given controller device into default state
1468 * @pctldev: pin controller device
1469 */
1470int pinctrl_force_default(struct pinctrl_dev *pctldev)
1471{
1472        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1473                return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1474        return 0;
1475}
1476EXPORT_SYMBOL_GPL(pinctrl_force_default);
1477
1478/**
1479 * pinctrl_init_done() - tell pinctrl probe is done
1480 *
1481 * We'll use this time to switch the pins from "init" to "default" unless the
1482 * driver selected some other state.
1483 *
1484 * @dev: device to that's done probing
1485 */
1486int pinctrl_init_done(struct device *dev)
1487{
1488        struct dev_pin_info *pins = dev->pins;
1489        int ret;
1490
1491        if (!pins)
1492                return 0;
1493
1494        if (IS_ERR(pins->init_state))
1495                return 0; /* No such state */
1496
1497        if (pins->p->state != pins->init_state)
1498                return 0; /* Not at init anyway */
1499
1500        if (IS_ERR(pins->default_state))
1501                return 0; /* No default state */
1502
1503        ret = pinctrl_select_state(pins->p, pins->default_state);
1504        if (ret)
1505                dev_err(dev, "failed to activate default pinctrl state\n");
1506
1507        return ret;
1508}
1509
1510#ifdef CONFIG_PM
1511
1512/**
1513 * pinctrl_pm_select_state() - select pinctrl state for PM
1514 * @dev: device to select default state for
1515 * @state: state to set
1516 */
1517static int pinctrl_pm_select_state(struct device *dev,
1518                                   struct pinctrl_state *state)
1519{
1520        struct dev_pin_info *pins = dev->pins;
1521        int ret;
1522
1523        if (IS_ERR(state))
1524                return 0; /* No such state */
1525        ret = pinctrl_select_state(pins->p, state);
1526        if (ret)
1527                dev_err(dev, "failed to activate pinctrl state %s\n",
1528                        state->name);
1529        return ret;
1530}
1531
1532/**
1533 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1534 * @dev: device to select default state for
1535 */
1536int pinctrl_pm_select_default_state(struct device *dev)
1537{
1538        if (!dev->pins)
1539                return 0;
1540
1541        return pinctrl_pm_select_state(dev, dev->pins->default_state);
1542}
1543EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1544
1545/**
1546 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1547 * @dev: device to select sleep state for
1548 */
1549int pinctrl_pm_select_sleep_state(struct device *dev)
1550{
1551        if (!dev->pins)
1552                return 0;
1553
1554        return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1555}
1556EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1557
1558/**
1559 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1560 * @dev: device to select idle state for
1561 */
1562int pinctrl_pm_select_idle_state(struct device *dev)
1563{
1564        if (!dev->pins)
1565                return 0;
1566
1567        return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1568}
1569EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1570#endif
1571
1572#ifdef CONFIG_DEBUG_FS
1573
1574static int pinctrl_pins_show(struct seq_file *s, void *what)
1575{
1576        struct pinctrl_dev *pctldev = s->private;
1577        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1578        unsigned i, pin;
1579
1580        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1581
1582        mutex_lock(&pctldev->mutex);
1583
1584        /* The pin number can be retrived from the pin controller descriptor */
1585        for (i = 0; i < pctldev->desc->npins; i++) {
1586                struct pin_desc *desc;
1587
1588                pin = pctldev->desc->pins[i].number;
1589                desc = pin_desc_get(pctldev, pin);
1590                /* Pin space may be sparse */
1591                if (!desc)
1592                        continue;
1593
1594                seq_printf(s, "pin %d (%s) ", pin, desc->name);
1595
1596                /* Driver-specific info per pin */
1597                if (ops->pin_dbg_show)
1598                        ops->pin_dbg_show(pctldev, s, pin);
1599
1600                seq_puts(s, "\n");
1601        }
1602
1603        mutex_unlock(&pctldev->mutex);
1604
1605        return 0;
1606}
1607DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1608
1609static int pinctrl_groups_show(struct seq_file *s, void *what)
1610{
1611        struct pinctrl_dev *pctldev = s->private;
1612        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1613        unsigned ngroups, selector = 0;
1614
1615        mutex_lock(&pctldev->mutex);
1616
1617        ngroups = ops->get_groups_count(pctldev);
1618
1619        seq_puts(s, "registered pin groups:\n");
1620        while (selector < ngroups) {
1621                const unsigned *pins = NULL;
1622                unsigned num_pins = 0;
1623                const char *gname = ops->get_group_name(pctldev, selector);
1624                const char *pname;
1625                int ret = 0;
1626                int i;
1627
1628                if (ops->get_group_pins)
1629                        ret = ops->get_group_pins(pctldev, selector,
1630                                                  &pins, &num_pins);
1631                if (ret)
1632                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1633                                   gname);
1634                else {
1635                        seq_printf(s, "group: %s\n", gname);
1636                        for (i = 0; i < num_pins; i++) {
1637                                pname = pin_get_name(pctldev, pins[i]);
1638                                if (WARN_ON(!pname)) {
1639                                        mutex_unlock(&pctldev->mutex);
1640                                        return -EINVAL;
1641                                }
1642                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1643                        }
1644                        seq_puts(s, "\n");
1645                }
1646                selector++;
1647        }
1648
1649        mutex_unlock(&pctldev->mutex);
1650
1651        return 0;
1652}
1653DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1654
1655static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1656{
1657        struct pinctrl_dev *pctldev = s->private;
1658        struct pinctrl_gpio_range *range;
1659
1660        seq_puts(s, "GPIO ranges handled:\n");
1661
1662        mutex_lock(&pctldev->mutex);
1663
1664        /* Loop over the ranges */
1665        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1666                if (range->pins) {
1667                        int a;
1668                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1669                                range->id, range->name,
1670                                range->base, (range->base + range->npins - 1));
1671                        for (a = 0; a < range->npins - 1; a++)
1672                                seq_printf(s, "%u, ", range->pins[a]);
1673                        seq_printf(s, "%u}\n", range->pins[a]);
1674                }
1675                else
1676                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1677                                range->id, range->name,
1678                                range->base, (range->base + range->npins - 1),
1679                                range->pin_base,
1680                                (range->pin_base + range->npins - 1));
1681        }
1682
1683        mutex_unlock(&pctldev->mutex);
1684
1685        return 0;
1686}
1687DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1688
1689static int pinctrl_devices_show(struct seq_file *s, void *what)
1690{
1691        struct pinctrl_dev *pctldev;
1692
1693        seq_puts(s, "name [pinmux] [pinconf]\n");
1694
1695        mutex_lock(&pinctrldev_list_mutex);
1696
1697        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1698                seq_printf(s, "%s ", pctldev->desc->name);
1699                if (pctldev->desc->pmxops)
1700                        seq_puts(s, "yes ");
1701                else
1702                        seq_puts(s, "no ");
1703                if (pctldev->desc->confops)
1704                        seq_puts(s, "yes");
1705                else
1706                        seq_puts(s, "no");
1707                seq_puts(s, "\n");
1708        }
1709
1710        mutex_unlock(&pinctrldev_list_mutex);
1711
1712        return 0;
1713}
1714DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1715
1716static inline const char *map_type(enum pinctrl_map_type type)
1717{
1718        static const char * const names[] = {
1719                "INVALID",
1720                "DUMMY_STATE",
1721                "MUX_GROUP",
1722                "CONFIGS_PIN",
1723                "CONFIGS_GROUP",
1724        };
1725
1726        if (type >= ARRAY_SIZE(names))
1727                return "UNKNOWN";
1728
1729        return names[type];
1730}
1731
1732static int pinctrl_maps_show(struct seq_file *s, void *what)
1733{
1734        struct pinctrl_maps *maps_node;
1735        int i;
1736        const struct pinctrl_map *map;
1737
1738        seq_puts(s, "Pinctrl maps:\n");
1739
1740        mutex_lock(&pinctrl_maps_mutex);
1741        for_each_maps(maps_node, i, map) {
1742                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1743                           map->dev_name, map->name, map_type(map->type),
1744                           map->type);
1745
1746                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1747                        seq_printf(s, "controlling device %s\n",
1748                                   map->ctrl_dev_name);
1749
1750                switch (map->type) {
1751                case PIN_MAP_TYPE_MUX_GROUP:
1752                        pinmux_show_map(s, map);
1753                        break;
1754                case PIN_MAP_TYPE_CONFIGS_PIN:
1755                case PIN_MAP_TYPE_CONFIGS_GROUP:
1756                        pinconf_show_map(s, map);
1757                        break;
1758                default:
1759                        break;
1760                }
1761
1762                seq_putc(s, '\n');
1763        }
1764        mutex_unlock(&pinctrl_maps_mutex);
1765
1766        return 0;
1767}
1768DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1769
1770static int pinctrl_show(struct seq_file *s, void *what)
1771{
1772        struct pinctrl *p;
1773        struct pinctrl_state *state;
1774        struct pinctrl_setting *setting;
1775
1776        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1777
1778        mutex_lock(&pinctrl_list_mutex);
1779
1780        list_for_each_entry(p, &pinctrl_list, node) {
1781                seq_printf(s, "device: %s current state: %s\n",
1782                           dev_name(p->dev),
1783                           p->state ? p->state->name : "none");
1784
1785                list_for_each_entry(state, &p->states, node) {
1786                        seq_printf(s, "  state: %s\n", state->name);
1787
1788                        list_for_each_entry(setting, &state->settings, node) {
1789                                struct pinctrl_dev *pctldev = setting->pctldev;
1790
1791                                seq_printf(s, "    type: %s controller %s ",
1792                                           map_type(setting->type),
1793                                           pinctrl_dev_get_name(pctldev));
1794
1795                                switch (setting->type) {
1796                                case PIN_MAP_TYPE_MUX_GROUP:
1797                                        pinmux_show_setting(s, setting);
1798                                        break;
1799                                case PIN_MAP_TYPE_CONFIGS_PIN:
1800                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1801                                        pinconf_show_setting(s, setting);
1802                                        break;
1803                                default:
1804                                        break;
1805                                }
1806                        }
1807                }
1808        }
1809
1810        mutex_unlock(&pinctrl_list_mutex);
1811
1812        return 0;
1813}
1814DEFINE_SHOW_ATTRIBUTE(pinctrl);
1815
1816static struct dentry *debugfs_root;
1817
1818static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1819{
1820        struct dentry *device_root;
1821        const char *debugfs_name;
1822
1823        if (pctldev->desc->name &&
1824                        strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1825                debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1826                                "%s-%s", dev_name(pctldev->dev),
1827                                pctldev->desc->name);
1828                if (!debugfs_name) {
1829                        pr_warn("failed to determine debugfs dir name for %s\n",
1830                                dev_name(pctldev->dev));
1831                        return;
1832                }
1833        } else {
1834                debugfs_name = dev_name(pctldev->dev);
1835        }
1836
1837        device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1838        pctldev->device_root = device_root;
1839
1840        if (IS_ERR(device_root) || !device_root) {
1841                pr_warn("failed to create debugfs directory for %s\n",
1842                        dev_name(pctldev->dev));
1843                return;
1844        }
1845        debugfs_create_file("pins", S_IFREG | S_IRUGO,
1846                            device_root, pctldev, &pinctrl_pins_fops);
1847        debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1848                            device_root, pctldev, &pinctrl_groups_fops);
1849        debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1850                            device_root, pctldev, &pinctrl_gpioranges_fops);
1851        if (pctldev->desc->pmxops)
1852                pinmux_init_device_debugfs(device_root, pctldev);
1853        if (pctldev->desc->confops)
1854                pinconf_init_device_debugfs(device_root, pctldev);
1855}
1856
1857static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1858{
1859        debugfs_remove_recursive(pctldev->device_root);
1860}
1861
1862static void pinctrl_init_debugfs(void)
1863{
1864        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1865        if (IS_ERR(debugfs_root) || !debugfs_root) {
1866                pr_warn("failed to create debugfs directory\n");
1867                debugfs_root = NULL;
1868                return;
1869        }
1870
1871        debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1872                            debugfs_root, NULL, &pinctrl_devices_fops);
1873        debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1874                            debugfs_root, NULL, &pinctrl_maps_fops);
1875        debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1876                            debugfs_root, NULL, &pinctrl_fops);
1877}
1878
1879#else /* CONFIG_DEBUG_FS */
1880
1881static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1882{
1883}
1884
1885static void pinctrl_init_debugfs(void)
1886{
1887}
1888
1889static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1890{
1891}
1892
1893#endif
1894
1895static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1896{
1897        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1898
1899        if (!ops ||
1900            !ops->get_groups_count ||
1901            !ops->get_group_name)
1902                return -EINVAL;
1903
1904        return 0;
1905}
1906
1907/**
1908 * pinctrl_init_controller() - init a pin controller device
1909 * @pctldesc: descriptor for this pin controller
1910 * @dev: parent device for this pin controller
1911 * @driver_data: private pin controller data for this pin controller
1912 */
1913static struct pinctrl_dev *
1914pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1915                        void *driver_data)
1916{
1917        struct pinctrl_dev *pctldev;
1918        int ret;
1919
1920        if (!pctldesc)
1921                return ERR_PTR(-EINVAL);
1922        if (!pctldesc->name)
1923                return ERR_PTR(-EINVAL);
1924
1925        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1926        if (!pctldev)
1927                return ERR_PTR(-ENOMEM);
1928
1929        /* Initialize pin control device struct */
1930        pctldev->owner = pctldesc->owner;
1931        pctldev->desc = pctldesc;
1932        pctldev->driver_data = driver_data;
1933        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1934#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1935        INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1936#endif
1937#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1938        INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1939#endif
1940        INIT_LIST_HEAD(&pctldev->gpio_ranges);
1941        INIT_LIST_HEAD(&pctldev->node);
1942        pctldev->dev = dev;
1943        mutex_init(&pctldev->mutex);
1944
1945        /* check core ops for sanity */
1946        ret = pinctrl_check_ops(pctldev);
1947        if (ret) {
1948                dev_err(dev, "pinctrl ops lacks necessary functions\n");
1949                goto out_err;
1950        }
1951
1952        /* If we're implementing pinmuxing, check the ops for sanity */
1953        if (pctldesc->pmxops) {
1954                ret = pinmux_check_ops(pctldev);
1955                if (ret)
1956                        goto out_err;
1957        }
1958
1959        /* If we're implementing pinconfig, check the ops for sanity */
1960        if (pctldesc->confops) {
1961                ret = pinconf_check_ops(pctldev);
1962                if (ret)
1963                        goto out_err;
1964        }
1965
1966        /* Register all the pins */
1967        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1968        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1969        if (ret) {
1970                dev_err(dev, "error during pin registration\n");
1971                pinctrl_free_pindescs(pctldev, pctldesc->pins,
1972                                      pctldesc->npins);
1973                goto out_err;
1974        }
1975
1976        return pctldev;
1977
1978out_err:
1979        mutex_destroy(&pctldev->mutex);
1980        kfree(pctldev);
1981        return ERR_PTR(ret);
1982}
1983
1984static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1985{
1986        pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1987        if (PTR_ERR(pctldev->p) == -ENODEV) {
1988                dev_dbg(pctldev->dev, "no hogs found\n");
1989
1990                return 0;
1991        }
1992
1993        if (IS_ERR(pctldev->p)) {
1994                dev_err(pctldev->dev, "error claiming hogs: %li\n",
1995                        PTR_ERR(pctldev->p));
1996
1997                return PTR_ERR(pctldev->p);
1998        }
1999
2000        kref_get(&pctldev->p->users);
2001        pctldev->hog_default =
2002                pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2003        if (IS_ERR(pctldev->hog_default)) {
2004                dev_dbg(pctldev->dev,
2005                        "failed to lookup the default state\n");
2006        } else {
2007                if (pinctrl_select_state(pctldev->p,
2008                                         pctldev->hog_default))
2009                        dev_err(pctldev->dev,
2010                                "failed to select default state\n");
2011        }
2012
2013        pctldev->hog_sleep =
2014                pinctrl_lookup_state(pctldev->p,
2015                                     PINCTRL_STATE_SLEEP);
2016        if (IS_ERR(pctldev->hog_sleep))
2017                dev_dbg(pctldev->dev,
2018                        "failed to lookup the sleep state\n");
2019
2020        return 0;
2021}
2022
2023int pinctrl_enable(struct pinctrl_dev *pctldev)
2024{
2025        int error;
2026
2027        error = pinctrl_claim_hogs(pctldev);
2028        if (error) {
2029                dev_err(pctldev->dev, "could not claim hogs: %i\n",
2030                        error);
2031                mutex_destroy(&pctldev->mutex);
2032                kfree(pctldev);
2033
2034                return error;
2035        }
2036
2037        mutex_lock(&pinctrldev_list_mutex);
2038        list_add_tail(&pctldev->node, &pinctrldev_list);
2039        mutex_unlock(&pinctrldev_list_mutex);
2040
2041        pinctrl_init_device_debugfs(pctldev);
2042
2043        return 0;
2044}
2045EXPORT_SYMBOL_GPL(pinctrl_enable);
2046
2047/**
2048 * pinctrl_register() - register a pin controller device
2049 * @pctldesc: descriptor for this pin controller
2050 * @dev: parent device for this pin controller
2051 * @driver_data: private pin controller data for this pin controller
2052 *
2053 * Note that pinctrl_register() is known to have problems as the pin
2054 * controller driver functions are called before the driver has a
2055 * struct pinctrl_dev handle. To avoid issues later on, please use the
2056 * new pinctrl_register_and_init() below instead.
2057 */
2058struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2059                                    struct device *dev, void *driver_data)
2060{
2061        struct pinctrl_dev *pctldev;
2062        int error;
2063
2064        pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2065        if (IS_ERR(pctldev))
2066                return pctldev;
2067
2068        error = pinctrl_enable(pctldev);
2069        if (error)
2070                return ERR_PTR(error);
2071
2072        return pctldev;
2073
2074}
2075EXPORT_SYMBOL_GPL(pinctrl_register);
2076
2077/**
2078 * pinctrl_register_and_init() - register and init pin controller device
2079 * @pctldesc: descriptor for this pin controller
2080 * @dev: parent device for this pin controller
2081 * @driver_data: private pin controller data for this pin controller
2082 * @pctldev: pin controller device
2083 *
2084 * Note that pinctrl_enable() still needs to be manually called after
2085 * this once the driver is ready.
2086 */
2087int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2088                              struct device *dev, void *driver_data,
2089                              struct pinctrl_dev **pctldev)
2090{
2091        struct pinctrl_dev *p;
2092
2093        p = pinctrl_init_controller(pctldesc, dev, driver_data);
2094        if (IS_ERR(p))
2095                return PTR_ERR(p);
2096
2097        /*
2098         * We have pinctrl_start() call functions in the pin controller
2099         * driver with create_pinctrl() for at least dt_node_to_map(). So
2100         * let's make sure pctldev is properly initialized for the
2101         * pin controller driver before we do anything.
2102         */
2103        *pctldev = p;
2104
2105        return 0;
2106}
2107EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2108
2109/**
2110 * pinctrl_unregister() - unregister pinmux
2111 * @pctldev: pin controller to unregister
2112 *
2113 * Called by pinmux drivers to unregister a pinmux.
2114 */
2115void pinctrl_unregister(struct pinctrl_dev *pctldev)
2116{
2117        struct pinctrl_gpio_range *range, *n;
2118
2119        if (!pctldev)
2120                return;
2121
2122        mutex_lock(&pctldev->mutex);
2123        pinctrl_remove_device_debugfs(pctldev);
2124        mutex_unlock(&pctldev->mutex);
2125
2126        if (!IS_ERR_OR_NULL(pctldev->p))
2127                pinctrl_put(pctldev->p);
2128
2129        mutex_lock(&pinctrldev_list_mutex);
2130        mutex_lock(&pctldev->mutex);
2131        /* TODO: check that no pinmuxes are still active? */
2132        list_del(&pctldev->node);
2133        pinmux_generic_free_functions(pctldev);
2134        pinctrl_generic_free_groups(pctldev);
2135        /* Destroy descriptor tree */
2136        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2137                              pctldev->desc->npins);
2138        /* remove gpio ranges map */
2139        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2140                list_del(&range->node);
2141
2142        mutex_unlock(&pctldev->mutex);
2143        mutex_destroy(&pctldev->mutex);
2144        kfree(pctldev);
2145        mutex_unlock(&pinctrldev_list_mutex);
2146}
2147EXPORT_SYMBOL_GPL(pinctrl_unregister);
2148
2149static void devm_pinctrl_dev_release(struct device *dev, void *res)
2150{
2151        struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2152
2153        pinctrl_unregister(pctldev);
2154}
2155
2156static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2157{
2158        struct pctldev **r = res;
2159
2160        if (WARN_ON(!r || !*r))
2161                return 0;
2162
2163        return *r == data;
2164}
2165
2166/**
2167 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2168 * @dev: parent device for this pin controller
2169 * @pctldesc: descriptor for this pin controller
2170 * @driver_data: private pin controller data for this pin controller
2171 *
2172 * Returns an error pointer if pincontrol register failed. Otherwise
2173 * it returns valid pinctrl handle.
2174 *
2175 * The pinctrl device will be automatically released when the device is unbound.
2176 */
2177struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2178                                          struct pinctrl_desc *pctldesc,
2179                                          void *driver_data)
2180{
2181        struct pinctrl_dev **ptr, *pctldev;
2182
2183        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2184        if (!ptr)
2185                return ERR_PTR(-ENOMEM);
2186
2187        pctldev = pinctrl_register(pctldesc, dev, driver_data);
2188        if (IS_ERR(pctldev)) {
2189                devres_free(ptr);
2190                return pctldev;
2191        }
2192
2193        *ptr = pctldev;
2194        devres_add(dev, ptr);
2195
2196        return pctldev;
2197}
2198EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2199
2200/**
2201 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2202 * @dev: parent device for this pin controller
2203 * @pctldesc: descriptor for this pin controller
2204 * @driver_data: private pin controller data for this pin controller
2205 *
2206 * Returns an error pointer if pincontrol register failed. Otherwise
2207 * it returns valid pinctrl handle.
2208 *
2209 * The pinctrl device will be automatically released when the device is unbound.
2210 */
2211int devm_pinctrl_register_and_init(struct device *dev,
2212                                   struct pinctrl_desc *pctldesc,
2213                                   void *driver_data,
2214                                   struct pinctrl_dev **pctldev)
2215{
2216        struct pinctrl_dev **ptr;
2217        int error;
2218
2219        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2220        if (!ptr)
2221                return -ENOMEM;
2222
2223        error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2224        if (error) {
2225                devres_free(ptr);
2226                return error;
2227        }
2228
2229        *ptr = *pctldev;
2230        devres_add(dev, ptr);
2231
2232        return 0;
2233}
2234EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2235
2236/**
2237 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2238 * @dev: device for which which resource was allocated
2239 * @pctldev: the pinctrl device to unregister.
2240 */
2241void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2242{
2243        WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2244                               devm_pinctrl_dev_match, pctldev));
2245}
2246EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2247
2248static int __init pinctrl_init(void)
2249{
2250        pr_info("initialized pinctrl subsystem\n");
2251        pinctrl_init_debugfs();
2252        return 0;
2253}
2254
2255/* init early since many drivers really need to initialized pinmux early */
2256core_initcall(pinctrl_init);
2257