linux/drivers/ptp/ptp_clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PTP 1588 clock support
   4 *
   5 * Copyright (C) 2010 OMICRON electronics GmbH
   6 */
   7#include <linux/idr.h>
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/posix-clock.h>
  14#include <linux/pps_kernel.h>
  15#include <linux/slab.h>
  16#include <linux/syscalls.h>
  17#include <linux/uaccess.h>
  18#include <uapi/linux/sched/types.h>
  19
  20#include "ptp_private.h"
  21
  22#define PTP_MAX_ALARMS 4
  23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
  24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
  25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
  26
  27/* private globals */
  28
  29static dev_t ptp_devt;
  30static struct class *ptp_class;
  31
  32static DEFINE_IDA(ptp_clocks_map);
  33
  34/* time stamp event queue operations */
  35
  36static inline int queue_free(struct timestamp_event_queue *q)
  37{
  38        return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
  39}
  40
  41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
  42                                       struct ptp_clock_event *src)
  43{
  44        struct ptp_extts_event *dst;
  45        unsigned long flags;
  46        s64 seconds;
  47        u32 remainder;
  48
  49        seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
  50
  51        spin_lock_irqsave(&queue->lock, flags);
  52
  53        dst = &queue->buf[queue->tail];
  54        dst->index = src->index;
  55        dst->t.sec = seconds;
  56        dst->t.nsec = remainder;
  57
  58        if (!queue_free(queue))
  59                queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
  60
  61        queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
  62
  63        spin_unlock_irqrestore(&queue->lock, flags);
  64}
  65
  66s32 scaled_ppm_to_ppb(long ppm)
  67{
  68        /*
  69         * The 'freq' field in the 'struct timex' is in parts per
  70         * million, but with a 16 bit binary fractional field.
  71         *
  72         * We want to calculate
  73         *
  74         *    ppb = scaled_ppm * 1000 / 2^16
  75         *
  76         * which simplifies to
  77         *
  78         *    ppb = scaled_ppm * 125 / 2^13
  79         */
  80        s64 ppb = 1 + ppm;
  81        ppb *= 125;
  82        ppb >>= 13;
  83        return (s32) ppb;
  84}
  85EXPORT_SYMBOL(scaled_ppm_to_ppb);
  86
  87/* posix clock implementation */
  88
  89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
  90{
  91        tp->tv_sec = 0;
  92        tp->tv_nsec = 1;
  93        return 0;
  94}
  95
  96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
  97{
  98        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  99
 100        return  ptp->info->settime64(ptp->info, tp);
 101}
 102
 103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
 104{
 105        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 106        int err;
 107
 108        if (ptp->info->gettimex64)
 109                err = ptp->info->gettimex64(ptp->info, tp, NULL);
 110        else
 111                err = ptp->info->gettime64(ptp->info, tp);
 112        return err;
 113}
 114
 115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
 116{
 117        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 118        struct ptp_clock_info *ops;
 119        int err = -EOPNOTSUPP;
 120
 121        ops = ptp->info;
 122
 123        if (tx->modes & ADJ_SETOFFSET) {
 124                struct timespec64 ts;
 125                ktime_t kt;
 126                s64 delta;
 127
 128                ts.tv_sec  = tx->time.tv_sec;
 129                ts.tv_nsec = tx->time.tv_usec;
 130
 131                if (!(tx->modes & ADJ_NANO))
 132                        ts.tv_nsec *= 1000;
 133
 134                if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
 135                        return -EINVAL;
 136
 137                kt = timespec64_to_ktime(ts);
 138                delta = ktime_to_ns(kt);
 139                err = ops->adjtime(ops, delta);
 140        } else if (tx->modes & ADJ_FREQUENCY) {
 141                s32 ppb = scaled_ppm_to_ppb(tx->freq);
 142                if (ppb > ops->max_adj || ppb < -ops->max_adj)
 143                        return -ERANGE;
 144                if (ops->adjfine)
 145                        err = ops->adjfine(ops, tx->freq);
 146                else
 147                        err = ops->adjfreq(ops, ppb);
 148                ptp->dialed_frequency = tx->freq;
 149        } else if (tx->modes == 0) {
 150                tx->freq = ptp->dialed_frequency;
 151                err = 0;
 152        }
 153
 154        return err;
 155}
 156
 157static struct posix_clock_operations ptp_clock_ops = {
 158        .owner          = THIS_MODULE,
 159        .clock_adjtime  = ptp_clock_adjtime,
 160        .clock_gettime  = ptp_clock_gettime,
 161        .clock_getres   = ptp_clock_getres,
 162        .clock_settime  = ptp_clock_settime,
 163        .ioctl          = ptp_ioctl,
 164        .open           = ptp_open,
 165        .poll           = ptp_poll,
 166        .read           = ptp_read,
 167};
 168
 169static void delete_ptp_clock(struct posix_clock *pc)
 170{
 171        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 172
 173        mutex_destroy(&ptp->tsevq_mux);
 174        mutex_destroy(&ptp->pincfg_mux);
 175        ida_simple_remove(&ptp_clocks_map, ptp->index);
 176        kfree(ptp);
 177}
 178
 179static void ptp_aux_kworker(struct kthread_work *work)
 180{
 181        struct ptp_clock *ptp = container_of(work, struct ptp_clock,
 182                                             aux_work.work);
 183        struct ptp_clock_info *info = ptp->info;
 184        long delay;
 185
 186        delay = info->do_aux_work(info);
 187
 188        if (delay >= 0)
 189                kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
 190}
 191
 192/* public interface */
 193
 194struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
 195                                     struct device *parent)
 196{
 197        struct ptp_clock *ptp;
 198        int err = 0, index, major = MAJOR(ptp_devt);
 199
 200        if (info->n_alarm > PTP_MAX_ALARMS)
 201                return ERR_PTR(-EINVAL);
 202
 203        /* Initialize a clock structure. */
 204        err = -ENOMEM;
 205        ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
 206        if (ptp == NULL)
 207                goto no_memory;
 208
 209        index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
 210        if (index < 0) {
 211                err = index;
 212                goto no_slot;
 213        }
 214
 215        ptp->clock.ops = ptp_clock_ops;
 216        ptp->clock.release = delete_ptp_clock;
 217        ptp->info = info;
 218        ptp->devid = MKDEV(major, index);
 219        ptp->index = index;
 220        spin_lock_init(&ptp->tsevq.lock);
 221        mutex_init(&ptp->tsevq_mux);
 222        mutex_init(&ptp->pincfg_mux);
 223        init_waitqueue_head(&ptp->tsev_wq);
 224
 225        if (ptp->info->do_aux_work) {
 226                kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
 227                ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
 228                if (IS_ERR(ptp->kworker)) {
 229                        err = PTR_ERR(ptp->kworker);
 230                        pr_err("failed to create ptp aux_worker %d\n", err);
 231                        goto kworker_err;
 232                }
 233        }
 234
 235        err = ptp_populate_pin_groups(ptp);
 236        if (err)
 237                goto no_pin_groups;
 238
 239        /* Create a new device in our class. */
 240        ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
 241                                             ptp, ptp->pin_attr_groups,
 242                                             "ptp%d", ptp->index);
 243        if (IS_ERR(ptp->dev)) {
 244                err = PTR_ERR(ptp->dev);
 245                goto no_device;
 246        }
 247
 248        /* Register a new PPS source. */
 249        if (info->pps) {
 250                struct pps_source_info pps;
 251                memset(&pps, 0, sizeof(pps));
 252                snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
 253                pps.mode = PTP_PPS_MODE;
 254                pps.owner = info->owner;
 255                ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
 256                if (IS_ERR(ptp->pps_source)) {
 257                        err = PTR_ERR(ptp->pps_source);
 258                        pr_err("failed to register pps source\n");
 259                        goto no_pps;
 260                }
 261        }
 262
 263        /* Create a posix clock. */
 264        err = posix_clock_register(&ptp->clock, ptp->devid);
 265        if (err) {
 266                pr_err("failed to create posix clock\n");
 267                goto no_clock;
 268        }
 269
 270        return ptp;
 271
 272no_clock:
 273        if (ptp->pps_source)
 274                pps_unregister_source(ptp->pps_source);
 275no_pps:
 276        device_destroy(ptp_class, ptp->devid);
 277no_device:
 278        ptp_cleanup_pin_groups(ptp);
 279no_pin_groups:
 280        if (ptp->kworker)
 281                kthread_destroy_worker(ptp->kworker);
 282kworker_err:
 283        mutex_destroy(&ptp->tsevq_mux);
 284        mutex_destroy(&ptp->pincfg_mux);
 285        ida_simple_remove(&ptp_clocks_map, index);
 286no_slot:
 287        kfree(ptp);
 288no_memory:
 289        return ERR_PTR(err);
 290}
 291EXPORT_SYMBOL(ptp_clock_register);
 292
 293int ptp_clock_unregister(struct ptp_clock *ptp)
 294{
 295        ptp->defunct = 1;
 296        wake_up_interruptible(&ptp->tsev_wq);
 297
 298        if (ptp->kworker) {
 299                kthread_cancel_delayed_work_sync(&ptp->aux_work);
 300                kthread_destroy_worker(ptp->kworker);
 301        }
 302
 303        /* Release the clock's resources. */
 304        if (ptp->pps_source)
 305                pps_unregister_source(ptp->pps_source);
 306
 307        device_destroy(ptp_class, ptp->devid);
 308        ptp_cleanup_pin_groups(ptp);
 309
 310        posix_clock_unregister(&ptp->clock);
 311        return 0;
 312}
 313EXPORT_SYMBOL(ptp_clock_unregister);
 314
 315void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
 316{
 317        struct pps_event_time evt;
 318
 319        switch (event->type) {
 320
 321        case PTP_CLOCK_ALARM:
 322                break;
 323
 324        case PTP_CLOCK_EXTTS:
 325                enqueue_external_timestamp(&ptp->tsevq, event);
 326                wake_up_interruptible(&ptp->tsev_wq);
 327                break;
 328
 329        case PTP_CLOCK_PPS:
 330                pps_get_ts(&evt);
 331                pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
 332                break;
 333
 334        case PTP_CLOCK_PPSUSR:
 335                pps_event(ptp->pps_source, &event->pps_times,
 336                          PTP_PPS_EVENT, NULL);
 337                break;
 338        }
 339}
 340EXPORT_SYMBOL(ptp_clock_event);
 341
 342int ptp_clock_index(struct ptp_clock *ptp)
 343{
 344        return ptp->index;
 345}
 346EXPORT_SYMBOL(ptp_clock_index);
 347
 348int ptp_find_pin(struct ptp_clock *ptp,
 349                 enum ptp_pin_function func, unsigned int chan)
 350{
 351        struct ptp_pin_desc *pin = NULL;
 352        int i;
 353
 354        mutex_lock(&ptp->pincfg_mux);
 355        for (i = 0; i < ptp->info->n_pins; i++) {
 356                if (ptp->info->pin_config[i].func == func &&
 357                    ptp->info->pin_config[i].chan == chan) {
 358                        pin = &ptp->info->pin_config[i];
 359                        break;
 360                }
 361        }
 362        mutex_unlock(&ptp->pincfg_mux);
 363
 364        return pin ? i : -1;
 365}
 366EXPORT_SYMBOL(ptp_find_pin);
 367
 368int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
 369{
 370        return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
 371}
 372EXPORT_SYMBOL(ptp_schedule_worker);
 373
 374/* module operations */
 375
 376static void __exit ptp_exit(void)
 377{
 378        class_destroy(ptp_class);
 379        unregister_chrdev_region(ptp_devt, MINORMASK + 1);
 380        ida_destroy(&ptp_clocks_map);
 381}
 382
 383static int __init ptp_init(void)
 384{
 385        int err;
 386
 387        ptp_class = class_create(THIS_MODULE, "ptp");
 388        if (IS_ERR(ptp_class)) {
 389                pr_err("ptp: failed to allocate class\n");
 390                return PTR_ERR(ptp_class);
 391        }
 392
 393        err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
 394        if (err < 0) {
 395                pr_err("ptp: failed to allocate device region\n");
 396                goto no_region;
 397        }
 398
 399        ptp_class->dev_groups = ptp_groups;
 400        pr_info("PTP clock support registered\n");
 401        return 0;
 402
 403no_region:
 404        class_destroy(ptp_class);
 405        return err;
 406}
 407
 408subsys_initcall(ptp_init);
 409module_exit(ptp_exit);
 410
 411MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
 412MODULE_DESCRIPTION("PTP clocks support");
 413MODULE_LICENSE("GPL");
 414