linux/drivers/pwm/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define MAX_PWMS 1024
  24
  25static DEFINE_MUTEX(pwm_lookup_lock);
  26static LIST_HEAD(pwm_lookup_list);
  27static DEFINE_MUTEX(pwm_lock);
  28static LIST_HEAD(pwm_chips);
  29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  30static RADIX_TREE(pwm_tree, GFP_KERNEL);
  31
  32static struct pwm_device *pwm_to_device(unsigned int pwm)
  33{
  34        return radix_tree_lookup(&pwm_tree, pwm);
  35}
  36
  37static int alloc_pwms(int pwm, unsigned int count)
  38{
  39        unsigned int from = 0;
  40        unsigned int start;
  41
  42        if (pwm >= MAX_PWMS)
  43                return -EINVAL;
  44
  45        if (pwm >= 0)
  46                from = pwm;
  47
  48        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  49                                           count, 0);
  50
  51        if (pwm >= 0 && start != pwm)
  52                return -EEXIST;
  53
  54        if (start + count > MAX_PWMS)
  55                return -ENOSPC;
  56
  57        return start;
  58}
  59
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62        unsigned int i;
  63
  64        for (i = 0; i < chip->npwm; i++) {
  65                struct pwm_device *pwm = &chip->pwms[i];
  66
  67                radix_tree_delete(&pwm_tree, pwm->pwm);
  68        }
  69
  70        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72        kfree(chip->pwms);
  73        chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78        struct pwm_chip *chip;
  79
  80        if (!name)
  81                return NULL;
  82
  83        mutex_lock(&pwm_lock);
  84
  85        list_for_each_entry(chip, &pwm_chips, list) {
  86                const char *chip_name = dev_name(chip->dev);
  87
  88                if (chip_name && strcmp(chip_name, name) == 0) {
  89                        mutex_unlock(&pwm_lock);
  90                        return chip;
  91                }
  92        }
  93
  94        mutex_unlock(&pwm_lock);
  95
  96        return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101        int err;
 102
 103        if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104                return -EBUSY;
 105
 106        if (!try_module_get(pwm->chip->ops->owner))
 107                return -ENODEV;
 108
 109        if (pwm->chip->ops->request) {
 110                err = pwm->chip->ops->request(pwm->chip, pwm);
 111                if (err) {
 112                        module_put(pwm->chip->ops->owner);
 113                        return err;
 114                }
 115        }
 116
 117        set_bit(PWMF_REQUESTED, &pwm->flags);
 118        pwm->label = label;
 119
 120        return 0;
 121}
 122
 123struct pwm_device *
 124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 125{
 126        struct pwm_device *pwm;
 127
 128        /* check, whether the driver supports a third cell for flags */
 129        if (pc->of_pwm_n_cells < 3)
 130                return ERR_PTR(-EINVAL);
 131
 132        /* flags in the third cell are optional */
 133        if (args->args_count < 2)
 134                return ERR_PTR(-EINVAL);
 135
 136        if (args->args[0] >= pc->npwm)
 137                return ERR_PTR(-EINVAL);
 138
 139        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140        if (IS_ERR(pwm))
 141                return pwm;
 142
 143        pwm->args.period = args->args[1];
 144        pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146        if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 147                pwm->args.polarity = PWM_POLARITY_INVERSED;
 148
 149        return pwm;
 150}
 151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 152
 153static struct pwm_device *
 154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 155{
 156        struct pwm_device *pwm;
 157
 158        /* sanity check driver support */
 159        if (pc->of_pwm_n_cells < 2)
 160                return ERR_PTR(-EINVAL);
 161
 162        /* all cells are required */
 163        if (args->args_count != pc->of_pwm_n_cells)
 164                return ERR_PTR(-EINVAL);
 165
 166        if (args->args[0] >= pc->npwm)
 167                return ERR_PTR(-EINVAL);
 168
 169        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 170        if (IS_ERR(pwm))
 171                return pwm;
 172
 173        pwm->args.period = args->args[1];
 174
 175        return pwm;
 176}
 177
 178static void of_pwmchip_add(struct pwm_chip *chip)
 179{
 180        if (!chip->dev || !chip->dev->of_node)
 181                return;
 182
 183        if (!chip->of_xlate) {
 184                chip->of_xlate = of_pwm_simple_xlate;
 185                chip->of_pwm_n_cells = 2;
 186        }
 187
 188        of_node_get(chip->dev->of_node);
 189}
 190
 191static void of_pwmchip_remove(struct pwm_chip *chip)
 192{
 193        if (chip->dev)
 194                of_node_put(chip->dev->of_node);
 195}
 196
 197/**
 198 * pwm_set_chip_data() - set private chip data for a PWM
 199 * @pwm: PWM device
 200 * @data: pointer to chip-specific data
 201 *
 202 * Returns: 0 on success or a negative error code on failure.
 203 */
 204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 205{
 206        if (!pwm)
 207                return -EINVAL;
 208
 209        pwm->chip_data = data;
 210
 211        return 0;
 212}
 213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 214
 215/**
 216 * pwm_get_chip_data() - get private chip data for a PWM
 217 * @pwm: PWM device
 218 *
 219 * Returns: A pointer to the chip-private data for the PWM device.
 220 */
 221void *pwm_get_chip_data(struct pwm_device *pwm)
 222{
 223        return pwm ? pwm->chip_data : NULL;
 224}
 225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 226
 227static bool pwm_ops_check(const struct pwm_ops *ops)
 228{
 229        /* driver supports legacy, non-atomic operation */
 230        if (ops->config && ops->enable && ops->disable)
 231                return true;
 232
 233        /* driver supports atomic operation */
 234        if (ops->apply)
 235                return true;
 236
 237        return false;
 238}
 239
 240/**
 241 * pwmchip_add_with_polarity() - register a new PWM chip
 242 * @chip: the PWM chip to add
 243 * @polarity: initial polarity of PWM channels
 244 *
 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 246 * will be used. The initial polarity for all channels is specified by the
 247 * @polarity parameter.
 248 *
 249 * Returns: 0 on success or a negative error code on failure.
 250 */
 251int pwmchip_add_with_polarity(struct pwm_chip *chip,
 252                              enum pwm_polarity polarity)
 253{
 254        struct pwm_device *pwm;
 255        unsigned int i;
 256        int ret;
 257
 258        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 259                return -EINVAL;
 260
 261        if (!pwm_ops_check(chip->ops))
 262                return -EINVAL;
 263
 264        mutex_lock(&pwm_lock);
 265
 266        ret = alloc_pwms(chip->base, chip->npwm);
 267        if (ret < 0)
 268                goto out;
 269
 270        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 271        if (!chip->pwms) {
 272                ret = -ENOMEM;
 273                goto out;
 274        }
 275
 276        chip->base = ret;
 277
 278        for (i = 0; i < chip->npwm; i++) {
 279                pwm = &chip->pwms[i];
 280
 281                pwm->chip = chip;
 282                pwm->pwm = chip->base + i;
 283                pwm->hwpwm = i;
 284                pwm->state.polarity = polarity;
 285
 286                if (chip->ops->get_state)
 287                        chip->ops->get_state(chip, pwm, &pwm->state);
 288
 289                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 290        }
 291
 292        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 293
 294        INIT_LIST_HEAD(&chip->list);
 295        list_add(&chip->list, &pwm_chips);
 296
 297        ret = 0;
 298
 299        if (IS_ENABLED(CONFIG_OF))
 300                of_pwmchip_add(chip);
 301
 302out:
 303        mutex_unlock(&pwm_lock);
 304
 305        if (!ret)
 306                pwmchip_sysfs_export(chip);
 307
 308        return ret;
 309}
 310EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 311
 312/**
 313 * pwmchip_add() - register a new PWM chip
 314 * @chip: the PWM chip to add
 315 *
 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 317 * will be used. The initial polarity for all channels is normal.
 318 *
 319 * Returns: 0 on success or a negative error code on failure.
 320 */
 321int pwmchip_add(struct pwm_chip *chip)
 322{
 323        return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 324}
 325EXPORT_SYMBOL_GPL(pwmchip_add);
 326
 327/**
 328 * pwmchip_remove() - remove a PWM chip
 329 * @chip: the PWM chip to remove
 330 *
 331 * Removes a PWM chip. This function may return busy if the PWM chip provides
 332 * a PWM device that is still requested.
 333 *
 334 * Returns: 0 on success or a negative error code on failure.
 335 */
 336int pwmchip_remove(struct pwm_chip *chip)
 337{
 338        unsigned int i;
 339        int ret = 0;
 340
 341        pwmchip_sysfs_unexport(chip);
 342
 343        mutex_lock(&pwm_lock);
 344
 345        for (i = 0; i < chip->npwm; i++) {
 346                struct pwm_device *pwm = &chip->pwms[i];
 347
 348                if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 349                        ret = -EBUSY;
 350                        goto out;
 351                }
 352        }
 353
 354        list_del_init(&chip->list);
 355
 356        if (IS_ENABLED(CONFIG_OF))
 357                of_pwmchip_remove(chip);
 358
 359        free_pwms(chip);
 360
 361out:
 362        mutex_unlock(&pwm_lock);
 363        return ret;
 364}
 365EXPORT_SYMBOL_GPL(pwmchip_remove);
 366
 367/**
 368 * pwm_request() - request a PWM device
 369 * @pwm: global PWM device index
 370 * @label: PWM device label
 371 *
 372 * This function is deprecated, use pwm_get() instead.
 373 *
 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 375 * failure.
 376 */
 377struct pwm_device *pwm_request(int pwm, const char *label)
 378{
 379        struct pwm_device *dev;
 380        int err;
 381
 382        if (pwm < 0 || pwm >= MAX_PWMS)
 383                return ERR_PTR(-EINVAL);
 384
 385        mutex_lock(&pwm_lock);
 386
 387        dev = pwm_to_device(pwm);
 388        if (!dev) {
 389                dev = ERR_PTR(-EPROBE_DEFER);
 390                goto out;
 391        }
 392
 393        err = pwm_device_request(dev, label);
 394        if (err < 0)
 395                dev = ERR_PTR(err);
 396
 397out:
 398        mutex_unlock(&pwm_lock);
 399
 400        return dev;
 401}
 402EXPORT_SYMBOL_GPL(pwm_request);
 403
 404/**
 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 406 * @chip: PWM chip
 407 * @index: per-chip index of the PWM to request
 408 * @label: a literal description string of this PWM
 409 *
 410 * Returns: A pointer to the PWM device at the given index of the given PWM
 411 * chip. A negative error code is returned if the index is not valid for the
 412 * specified PWM chip or if the PWM device cannot be requested.
 413 */
 414struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 415                                         unsigned int index,
 416                                         const char *label)
 417{
 418        struct pwm_device *pwm;
 419        int err;
 420
 421        if (!chip || index >= chip->npwm)
 422                return ERR_PTR(-EINVAL);
 423
 424        mutex_lock(&pwm_lock);
 425        pwm = &chip->pwms[index];
 426
 427        err = pwm_device_request(pwm, label);
 428        if (err < 0)
 429                pwm = ERR_PTR(err);
 430
 431        mutex_unlock(&pwm_lock);
 432        return pwm;
 433}
 434EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 435
 436/**
 437 * pwm_free() - free a PWM device
 438 * @pwm: PWM device
 439 *
 440 * This function is deprecated, use pwm_put() instead.
 441 */
 442void pwm_free(struct pwm_device *pwm)
 443{
 444        pwm_put(pwm);
 445}
 446EXPORT_SYMBOL_GPL(pwm_free);
 447
 448/**
 449 * pwm_apply_state() - atomically apply a new state to a PWM device
 450 * @pwm: PWM device
 451 * @state: new state to apply. This can be adjusted by the PWM driver
 452 *         if the requested config is not achievable, for example,
 453 *         ->duty_cycle and ->period might be approximated.
 454 */
 455int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 456{
 457        int err;
 458
 459        if (!pwm || !state || !state->period ||
 460            state->duty_cycle > state->period)
 461                return -EINVAL;
 462
 463        if (state->period == pwm->state.period &&
 464            state->duty_cycle == pwm->state.duty_cycle &&
 465            state->polarity == pwm->state.polarity &&
 466            state->enabled == pwm->state.enabled)
 467                return 0;
 468
 469        if (pwm->chip->ops->apply) {
 470                err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 471                if (err)
 472                        return err;
 473
 474                pwm->state = *state;
 475        } else {
 476                /*
 477                 * FIXME: restore the initial state in case of error.
 478                 */
 479                if (state->polarity != pwm->state.polarity) {
 480                        if (!pwm->chip->ops->set_polarity)
 481                                return -ENOTSUPP;
 482
 483                        /*
 484                         * Changing the polarity of a running PWM is
 485                         * only allowed when the PWM driver implements
 486                         * ->apply().
 487                         */
 488                        if (pwm->state.enabled) {
 489                                pwm->chip->ops->disable(pwm->chip, pwm);
 490                                pwm->state.enabled = false;
 491                        }
 492
 493                        err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 494                                                           state->polarity);
 495                        if (err)
 496                                return err;
 497
 498                        pwm->state.polarity = state->polarity;
 499                }
 500
 501                if (state->period != pwm->state.period ||
 502                    state->duty_cycle != pwm->state.duty_cycle) {
 503                        err = pwm->chip->ops->config(pwm->chip, pwm,
 504                                                     state->duty_cycle,
 505                                                     state->period);
 506                        if (err)
 507                                return err;
 508
 509                        pwm->state.duty_cycle = state->duty_cycle;
 510                        pwm->state.period = state->period;
 511                }
 512
 513                if (state->enabled != pwm->state.enabled) {
 514                        if (state->enabled) {
 515                                err = pwm->chip->ops->enable(pwm->chip, pwm);
 516                                if (err)
 517                                        return err;
 518                        } else {
 519                                pwm->chip->ops->disable(pwm->chip, pwm);
 520                        }
 521
 522                        pwm->state.enabled = state->enabled;
 523                }
 524        }
 525
 526        return 0;
 527}
 528EXPORT_SYMBOL_GPL(pwm_apply_state);
 529
 530/**
 531 * pwm_capture() - capture and report a PWM signal
 532 * @pwm: PWM device
 533 * @result: structure to fill with capture result
 534 * @timeout: time to wait, in milliseconds, before giving up on capture
 535 *
 536 * Returns: 0 on success or a negative error code on failure.
 537 */
 538int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 539                unsigned long timeout)
 540{
 541        int err;
 542
 543        if (!pwm || !pwm->chip->ops)
 544                return -EINVAL;
 545
 546        if (!pwm->chip->ops->capture)
 547                return -ENOSYS;
 548
 549        mutex_lock(&pwm_lock);
 550        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 551        mutex_unlock(&pwm_lock);
 552
 553        return err;
 554}
 555EXPORT_SYMBOL_GPL(pwm_capture);
 556
 557/**
 558 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 559 * @pwm: PWM device
 560 *
 561 * This function will adjust the PWM config to the PWM arguments provided
 562 * by the DT or PWM lookup table. This is particularly useful to adapt
 563 * the bootloader config to the Linux one.
 564 */
 565int pwm_adjust_config(struct pwm_device *pwm)
 566{
 567        struct pwm_state state;
 568        struct pwm_args pargs;
 569
 570        pwm_get_args(pwm, &pargs);
 571        pwm_get_state(pwm, &state);
 572
 573        /*
 574         * If the current period is zero it means that either the PWM driver
 575         * does not support initial state retrieval or the PWM has not yet
 576         * been configured.
 577         *
 578         * In either case, we setup the new period and polarity, and assign a
 579         * duty cycle of 0.
 580         */
 581        if (!state.period) {
 582                state.duty_cycle = 0;
 583                state.period = pargs.period;
 584                state.polarity = pargs.polarity;
 585
 586                return pwm_apply_state(pwm, &state);
 587        }
 588
 589        /*
 590         * Adjust the PWM duty cycle/period based on the period value provided
 591         * in PWM args.
 592         */
 593        if (pargs.period != state.period) {
 594                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 595
 596                do_div(dutycycle, state.period);
 597                state.duty_cycle = dutycycle;
 598                state.period = pargs.period;
 599        }
 600
 601        /*
 602         * If the polarity changed, we should also change the duty cycle.
 603         */
 604        if (pargs.polarity != state.polarity) {
 605                state.polarity = pargs.polarity;
 606                state.duty_cycle = state.period - state.duty_cycle;
 607        }
 608
 609        return pwm_apply_state(pwm, &state);
 610}
 611EXPORT_SYMBOL_GPL(pwm_adjust_config);
 612
 613static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 614{
 615        struct pwm_chip *chip;
 616
 617        mutex_lock(&pwm_lock);
 618
 619        list_for_each_entry(chip, &pwm_chips, list)
 620                if (chip->dev && chip->dev->of_node == np) {
 621                        mutex_unlock(&pwm_lock);
 622                        return chip;
 623                }
 624
 625        mutex_unlock(&pwm_lock);
 626
 627        return ERR_PTR(-EPROBE_DEFER);
 628}
 629
 630static struct device_link *pwm_device_link_add(struct device *dev,
 631                                               struct pwm_device *pwm)
 632{
 633        struct device_link *dl;
 634
 635        if (!dev) {
 636                /*
 637                 * No device for the PWM consumer has been provided. It may
 638                 * impact the PM sequence ordering: the PWM supplier may get
 639                 * suspended before the consumer.
 640                 */
 641                dev_warn(pwm->chip->dev,
 642                         "No consumer device specified to create a link to\n");
 643                return NULL;
 644        }
 645
 646        dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 647        if (!dl) {
 648                dev_err(dev, "failed to create device link to %s\n",
 649                        dev_name(pwm->chip->dev));
 650                return ERR_PTR(-EINVAL);
 651        }
 652
 653        return dl;
 654}
 655
 656/**
 657 * of_pwm_get() - request a PWM via the PWM framework
 658 * @dev: device for PWM consumer
 659 * @np: device node to get the PWM from
 660 * @con_id: consumer name
 661 *
 662 * Returns the PWM device parsed from the phandle and index specified in the
 663 * "pwms" property of a device tree node or a negative error-code on failure.
 664 * Values parsed from the device tree are stored in the returned PWM device
 665 * object.
 666 *
 667 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 668 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 669 * lookup of the PWM index. This also means that the "pwm-names" property
 670 * becomes mandatory for devices that look up the PWM device via the con_id
 671 * parameter.
 672 *
 673 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 674 * error code on failure.
 675 */
 676struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 677                              const char *con_id)
 678{
 679        struct pwm_device *pwm = NULL;
 680        struct of_phandle_args args;
 681        struct device_link *dl;
 682        struct pwm_chip *pc;
 683        int index = 0;
 684        int err;
 685
 686        if (con_id) {
 687                index = of_property_match_string(np, "pwm-names", con_id);
 688                if (index < 0)
 689                        return ERR_PTR(index);
 690        }
 691
 692        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 693                                         &args);
 694        if (err) {
 695                pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 696                return ERR_PTR(err);
 697        }
 698
 699        pc = of_node_to_pwmchip(args.np);
 700        if (IS_ERR(pc)) {
 701                if (PTR_ERR(pc) != -EPROBE_DEFER)
 702                        pr_err("%s(): PWM chip not found\n", __func__);
 703
 704                pwm = ERR_CAST(pc);
 705                goto put;
 706        }
 707
 708        pwm = pc->of_xlate(pc, &args);
 709        if (IS_ERR(pwm))
 710                goto put;
 711
 712        dl = pwm_device_link_add(dev, pwm);
 713        if (IS_ERR(dl)) {
 714                /* of_xlate ended up calling pwm_request_from_chip() */
 715                pwm_free(pwm);
 716                pwm = ERR_CAST(dl);
 717                goto put;
 718        }
 719
 720        /*
 721         * If a consumer name was not given, try to look it up from the
 722         * "pwm-names" property if it exists. Otherwise use the name of
 723         * the user device node.
 724         */
 725        if (!con_id) {
 726                err = of_property_read_string_index(np, "pwm-names", index,
 727                                                    &con_id);
 728                if (err < 0)
 729                        con_id = np->name;
 730        }
 731
 732        pwm->label = con_id;
 733
 734put:
 735        of_node_put(args.np);
 736
 737        return pwm;
 738}
 739EXPORT_SYMBOL_GPL(of_pwm_get);
 740
 741#if IS_ENABLED(CONFIG_ACPI)
 742static struct pwm_chip *device_to_pwmchip(struct device *dev)
 743{
 744        struct pwm_chip *chip;
 745
 746        mutex_lock(&pwm_lock);
 747
 748        list_for_each_entry(chip, &pwm_chips, list) {
 749                struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 750
 751                if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 752                        mutex_unlock(&pwm_lock);
 753                        return chip;
 754                }
 755        }
 756
 757        mutex_unlock(&pwm_lock);
 758
 759        return ERR_PTR(-EPROBE_DEFER);
 760}
 761#endif
 762
 763/**
 764 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 765 * @fwnode: firmware node to get the "pwm" property from
 766 *
 767 * Returns the PWM device parsed from the fwnode and index specified in the
 768 * "pwms" property or a negative error-code on failure.
 769 * Values parsed from the device tree are stored in the returned PWM device
 770 * object.
 771 *
 772 * This is analogous to of_pwm_get() except con_id is not yet supported.
 773 * ACPI entries must look like
 774 * Package () {"pwms", Package ()
 775 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 776 *
 777 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 778 * error code on failure.
 779 */
 780static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 781{
 782        struct pwm_device *pwm = ERR_PTR(-ENODEV);
 783#if IS_ENABLED(CONFIG_ACPI)
 784        struct fwnode_reference_args args;
 785        struct acpi_device *acpi;
 786        struct pwm_chip *chip;
 787        int ret;
 788
 789        memset(&args, 0, sizeof(args));
 790
 791        ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 792        if (ret < 0)
 793                return ERR_PTR(ret);
 794
 795        acpi = to_acpi_device_node(args.fwnode);
 796        if (!acpi)
 797                return ERR_PTR(-EINVAL);
 798
 799        if (args.nargs < 2)
 800                return ERR_PTR(-EPROTO);
 801
 802        chip = device_to_pwmchip(&acpi->dev);
 803        if (IS_ERR(chip))
 804                return ERR_CAST(chip);
 805
 806        pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 807        if (IS_ERR(pwm))
 808                return pwm;
 809
 810        pwm->args.period = args.args[1];
 811        pwm->args.polarity = PWM_POLARITY_NORMAL;
 812
 813        if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 814                pwm->args.polarity = PWM_POLARITY_INVERSED;
 815#endif
 816
 817        return pwm;
 818}
 819
 820/**
 821 * pwm_add_table() - register PWM device consumers
 822 * @table: array of consumers to register
 823 * @num: number of consumers in table
 824 */
 825void pwm_add_table(struct pwm_lookup *table, size_t num)
 826{
 827        mutex_lock(&pwm_lookup_lock);
 828
 829        while (num--) {
 830                list_add_tail(&table->list, &pwm_lookup_list);
 831                table++;
 832        }
 833
 834        mutex_unlock(&pwm_lookup_lock);
 835}
 836
 837/**
 838 * pwm_remove_table() - unregister PWM device consumers
 839 * @table: array of consumers to unregister
 840 * @num: number of consumers in table
 841 */
 842void pwm_remove_table(struct pwm_lookup *table, size_t num)
 843{
 844        mutex_lock(&pwm_lookup_lock);
 845
 846        while (num--) {
 847                list_del(&table->list);
 848                table++;
 849        }
 850
 851        mutex_unlock(&pwm_lookup_lock);
 852}
 853
 854/**
 855 * pwm_get() - look up and request a PWM device
 856 * @dev: device for PWM consumer
 857 * @con_id: consumer name
 858 *
 859 * Lookup is first attempted using DT. If the device was not instantiated from
 860 * a device tree, a PWM chip and a relative index is looked up via a table
 861 * supplied by board setup code (see pwm_add_table()).
 862 *
 863 * Once a PWM chip has been found the specified PWM device will be requested
 864 * and is ready to be used.
 865 *
 866 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 867 * error code on failure.
 868 */
 869struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 870{
 871        const char *dev_id = dev ? dev_name(dev) : NULL;
 872        struct pwm_device *pwm;
 873        struct pwm_chip *chip;
 874        struct device_link *dl;
 875        unsigned int best = 0;
 876        struct pwm_lookup *p, *chosen = NULL;
 877        unsigned int match;
 878        int err;
 879
 880        /* look up via DT first */
 881        if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 882                return of_pwm_get(dev, dev->of_node, con_id);
 883
 884        /* then lookup via ACPI */
 885        if (dev && is_acpi_node(dev->fwnode)) {
 886                pwm = acpi_pwm_get(dev->fwnode);
 887                if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 888                        return pwm;
 889        }
 890
 891        /*
 892         * We look up the provider in the static table typically provided by
 893         * board setup code. We first try to lookup the consumer device by
 894         * name. If the consumer device was passed in as NULL or if no match
 895         * was found, we try to find the consumer by directly looking it up
 896         * by name.
 897         *
 898         * If a match is found, the provider PWM chip is looked up by name
 899         * and a PWM device is requested using the PWM device per-chip index.
 900         *
 901         * The lookup algorithm was shamelessly taken from the clock
 902         * framework:
 903         *
 904         * We do slightly fuzzy matching here:
 905         *  An entry with a NULL ID is assumed to be a wildcard.
 906         *  If an entry has a device ID, it must match
 907         *  If an entry has a connection ID, it must match
 908         * Then we take the most specific entry - with the following order
 909         * of precedence: dev+con > dev only > con only.
 910         */
 911        mutex_lock(&pwm_lookup_lock);
 912
 913        list_for_each_entry(p, &pwm_lookup_list, list) {
 914                match = 0;
 915
 916                if (p->dev_id) {
 917                        if (!dev_id || strcmp(p->dev_id, dev_id))
 918                                continue;
 919
 920                        match += 2;
 921                }
 922
 923                if (p->con_id) {
 924                        if (!con_id || strcmp(p->con_id, con_id))
 925                                continue;
 926
 927                        match += 1;
 928                }
 929
 930                if (match > best) {
 931                        chosen = p;
 932
 933                        if (match != 3)
 934                                best = match;
 935                        else
 936                                break;
 937                }
 938        }
 939
 940        mutex_unlock(&pwm_lookup_lock);
 941
 942        if (!chosen)
 943                return ERR_PTR(-ENODEV);
 944
 945        chip = pwmchip_find_by_name(chosen->provider);
 946
 947        /*
 948         * If the lookup entry specifies a module, load the module and retry
 949         * the PWM chip lookup. This can be used to work around driver load
 950         * ordering issues if driver's can't be made to properly support the
 951         * deferred probe mechanism.
 952         */
 953        if (!chip && chosen->module) {
 954                err = request_module(chosen->module);
 955                if (err == 0)
 956                        chip = pwmchip_find_by_name(chosen->provider);
 957        }
 958
 959        if (!chip)
 960                return ERR_PTR(-EPROBE_DEFER);
 961
 962        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 963        if (IS_ERR(pwm))
 964                return pwm;
 965
 966        dl = pwm_device_link_add(dev, pwm);
 967        if (IS_ERR(dl)) {
 968                pwm_free(pwm);
 969                return ERR_CAST(dl);
 970        }
 971
 972        pwm->args.period = chosen->period;
 973        pwm->args.polarity = chosen->polarity;
 974
 975        return pwm;
 976}
 977EXPORT_SYMBOL_GPL(pwm_get);
 978
 979/**
 980 * pwm_put() - release a PWM device
 981 * @pwm: PWM device
 982 */
 983void pwm_put(struct pwm_device *pwm)
 984{
 985        if (!pwm)
 986                return;
 987
 988        mutex_lock(&pwm_lock);
 989
 990        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 991                pr_warn("PWM device already freed\n");
 992                goto out;
 993        }
 994
 995        if (pwm->chip->ops->free)
 996                pwm->chip->ops->free(pwm->chip, pwm);
 997
 998        pwm_set_chip_data(pwm, NULL);
 999        pwm->label = NULL;
1000
1001        module_put(pwm->chip->ops->owner);
1002out:
1003        mutex_unlock(&pwm_lock);
1004}
1005EXPORT_SYMBOL_GPL(pwm_put);
1006
1007static void devm_pwm_release(struct device *dev, void *res)
1008{
1009        pwm_put(*(struct pwm_device **)res);
1010}
1011
1012/**
1013 * devm_pwm_get() - resource managed pwm_get()
1014 * @dev: device for PWM consumer
1015 * @con_id: consumer name
1016 *
1017 * This function performs like pwm_get() but the acquired PWM device will
1018 * automatically be released on driver detach.
1019 *
1020 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1021 * error code on failure.
1022 */
1023struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1024{
1025        struct pwm_device **ptr, *pwm;
1026
1027        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1028        if (!ptr)
1029                return ERR_PTR(-ENOMEM);
1030
1031        pwm = pwm_get(dev, con_id);
1032        if (!IS_ERR(pwm)) {
1033                *ptr = pwm;
1034                devres_add(dev, ptr);
1035        } else {
1036                devres_free(ptr);
1037        }
1038
1039        return pwm;
1040}
1041EXPORT_SYMBOL_GPL(devm_pwm_get);
1042
1043/**
1044 * devm_of_pwm_get() - resource managed of_pwm_get()
1045 * @dev: device for PWM consumer
1046 * @np: device node to get the PWM from
1047 * @con_id: consumer name
1048 *
1049 * This function performs like of_pwm_get() but the acquired PWM device will
1050 * automatically be released on driver detach.
1051 *
1052 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1053 * error code on failure.
1054 */
1055struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1056                                   const char *con_id)
1057{
1058        struct pwm_device **ptr, *pwm;
1059
1060        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1061        if (!ptr)
1062                return ERR_PTR(-ENOMEM);
1063
1064        pwm = of_pwm_get(dev, np, con_id);
1065        if (!IS_ERR(pwm)) {
1066                *ptr = pwm;
1067                devres_add(dev, ptr);
1068        } else {
1069                devres_free(ptr);
1070        }
1071
1072        return pwm;
1073}
1074EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1075
1076/**
1077 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1078 * @dev: device for PWM consumer
1079 * @fwnode: firmware node to get the PWM from
1080 * @con_id: consumer name
1081 *
1082 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1083 * acpi_pwm_get() for a detailed description.
1084 *
1085 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1086 * error code on failure.
1087 */
1088struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1089                                       struct fwnode_handle *fwnode,
1090                                       const char *con_id)
1091{
1092        struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1093
1094        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1095        if (!ptr)
1096                return ERR_PTR(-ENOMEM);
1097
1098        if (is_of_node(fwnode))
1099                pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1100        else if (is_acpi_node(fwnode))
1101                pwm = acpi_pwm_get(fwnode);
1102
1103        if (!IS_ERR(pwm)) {
1104                *ptr = pwm;
1105                devres_add(dev, ptr);
1106        } else {
1107                devres_free(ptr);
1108        }
1109
1110        return pwm;
1111}
1112EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1113
1114static int devm_pwm_match(struct device *dev, void *res, void *data)
1115{
1116        struct pwm_device **p = res;
1117
1118        if (WARN_ON(!p || !*p))
1119                return 0;
1120
1121        return *p == data;
1122}
1123
1124/**
1125 * devm_pwm_put() - resource managed pwm_put()
1126 * @dev: device for PWM consumer
1127 * @pwm: PWM device
1128 *
1129 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1130 * function is usually not needed because devm-allocated resources are
1131 * automatically released on driver detach.
1132 */
1133void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1134{
1135        WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1136}
1137EXPORT_SYMBOL_GPL(devm_pwm_put);
1138
1139#ifdef CONFIG_DEBUG_FS
1140static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1141{
1142        unsigned int i;
1143
1144        for (i = 0; i < chip->npwm; i++) {
1145                struct pwm_device *pwm = &chip->pwms[i];
1146                struct pwm_state state;
1147
1148                pwm_get_state(pwm, &state);
1149
1150                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1151
1152                if (test_bit(PWMF_REQUESTED, &pwm->flags))
1153                        seq_puts(s, " requested");
1154
1155                if (state.enabled)
1156                        seq_puts(s, " enabled");
1157
1158                seq_printf(s, " period: %u ns", state.period);
1159                seq_printf(s, " duty: %u ns", state.duty_cycle);
1160                seq_printf(s, " polarity: %s",
1161                           state.polarity ? "inverse" : "normal");
1162
1163                seq_puts(s, "\n");
1164        }
1165}
1166
1167static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1168{
1169        mutex_lock(&pwm_lock);
1170        s->private = "";
1171
1172        return seq_list_start(&pwm_chips, *pos);
1173}
1174
1175static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1176{
1177        s->private = "\n";
1178
1179        return seq_list_next(v, &pwm_chips, pos);
1180}
1181
1182static void pwm_seq_stop(struct seq_file *s, void *v)
1183{
1184        mutex_unlock(&pwm_lock);
1185}
1186
1187static int pwm_seq_show(struct seq_file *s, void *v)
1188{
1189        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1190
1191        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1192                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1193                   dev_name(chip->dev), chip->npwm,
1194                   (chip->npwm != 1) ? "s" : "");
1195
1196        pwm_dbg_show(chip, s);
1197
1198        return 0;
1199}
1200
1201static const struct seq_operations pwm_seq_ops = {
1202        .start = pwm_seq_start,
1203        .next = pwm_seq_next,
1204        .stop = pwm_seq_stop,
1205        .show = pwm_seq_show,
1206};
1207
1208static int pwm_seq_open(struct inode *inode, struct file *file)
1209{
1210        return seq_open(file, &pwm_seq_ops);
1211}
1212
1213static const struct file_operations pwm_debugfs_ops = {
1214        .owner = THIS_MODULE,
1215        .open = pwm_seq_open,
1216        .read = seq_read,
1217        .llseek = seq_lseek,
1218        .release = seq_release,
1219};
1220
1221static int __init pwm_debugfs_init(void)
1222{
1223        debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1224                            &pwm_debugfs_ops);
1225
1226        return 0;
1227}
1228subsys_initcall(pwm_debugfs_init);
1229#endif /* CONFIG_DEBUG_FS */
1230