linux/drivers/pwm/pwm-stm32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) STMicroelectronics 2016
   4 *
   5 * Author: Gerald Baeza <gerald.baeza@st.com>
   6 *
   7 * Inspired by timer-stm32.c from Maxime Coquelin
   8 *             pwm-atmel.c from Bo Shen
   9 */
  10
  11#include <linux/bitfield.h>
  12#include <linux/mfd/stm32-timers.h>
  13#include <linux/module.h>
  14#include <linux/of.h>
  15#include <linux/platform_device.h>
  16#include <linux/pwm.h>
  17
  18#define CCMR_CHANNEL_SHIFT 8
  19#define CCMR_CHANNEL_MASK  0xFF
  20#define MAX_BREAKINPUT 2
  21
  22struct stm32_pwm {
  23        struct pwm_chip chip;
  24        struct mutex lock; /* protect pwm config/enable */
  25        struct clk *clk;
  26        struct regmap *regmap;
  27        u32 max_arr;
  28        bool have_complementary_output;
  29        u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
  30};
  31
  32struct stm32_breakinput {
  33        u32 index;
  34        u32 level;
  35        u32 filter;
  36};
  37
  38static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
  39{
  40        return container_of(chip, struct stm32_pwm, chip);
  41}
  42
  43static u32 active_channels(struct stm32_pwm *dev)
  44{
  45        u32 ccer;
  46
  47        regmap_read(dev->regmap, TIM_CCER, &ccer);
  48
  49        return ccer & TIM_CCER_CCXE;
  50}
  51
  52static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
  53{
  54        switch (ch) {
  55        case 0:
  56                return regmap_write(dev->regmap, TIM_CCR1, value);
  57        case 1:
  58                return regmap_write(dev->regmap, TIM_CCR2, value);
  59        case 2:
  60                return regmap_write(dev->regmap, TIM_CCR3, value);
  61        case 3:
  62                return regmap_write(dev->regmap, TIM_CCR4, value);
  63        }
  64        return -EINVAL;
  65}
  66
  67#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
  68#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
  69#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
  70#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
  71
  72/*
  73 * Capture using PWM input mode:
  74 *                              ___          ___
  75 * TI[1, 2, 3 or 4]: ........._|   |________|
  76 *                             ^0  ^1       ^2
  77 *                              .   .        .
  78 *                              .   .        XXXXX
  79 *                              .   .   XXXXX     |
  80 *                              .  XXXXX     .    |
  81 *                            XXXXX .        .    |
  82 * COUNTER:        ______XXXXX  .   .        .    |_XXX
  83 *                 start^       .   .        .        ^stop
  84 *                      .       .   .        .
  85 *                      v       v   .        v
  86 *                                  v
  87 * CCR1/CCR3:       tx..........t0...........t2
  88 * CCR2/CCR4:       tx..............t1.........
  89 *
  90 * DMA burst transfer:          |            |
  91 *                              v            v
  92 * DMA buffer:                  { t0, tx }   { t2, t1 }
  93 * DMA done:                                 ^
  94 *
  95 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
  96 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
  97 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
  98 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
  99 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
 100 *
 101 * DMA done, compute:
 102 * - Period     = t2 - t0
 103 * - Duty cycle = t1 - t0
 104 */
 105static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
 106                                 unsigned long tmo_ms, u32 *raw_prd,
 107                                 u32 *raw_dty)
 108{
 109        struct device *parent = priv->chip.dev->parent;
 110        enum stm32_timers_dmas dma_id;
 111        u32 ccen, ccr;
 112        int ret;
 113
 114        /* Ensure registers have been updated, enable counter and capture */
 115        regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
 116        regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
 117
 118        /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
 119        dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
 120        ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
 121        ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
 122        regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
 123
 124        /*
 125         * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
 126         * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
 127         * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
 128         * or { CCR3, CCR4 }, { CCR3, CCR4 }
 129         */
 130        ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
 131                                          2, tmo_ms);
 132        if (ret)
 133                goto stop;
 134
 135        /* Period: t2 - t0 (take care of counter overflow) */
 136        if (priv->capture[0] <= priv->capture[2])
 137                *raw_prd = priv->capture[2] - priv->capture[0];
 138        else
 139                *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
 140
 141        /* Duty cycle capture requires at least two capture units */
 142        if (pwm->chip->npwm < 2)
 143                *raw_dty = 0;
 144        else if (priv->capture[0] <= priv->capture[3])
 145                *raw_dty = priv->capture[3] - priv->capture[0];
 146        else
 147                *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
 148
 149        if (*raw_dty > *raw_prd) {
 150                /*
 151                 * Race beetween PWM input and DMA: it may happen
 152                 * falling edge triggers new capture on TI2/4 before DMA
 153                 * had a chance to read CCR2/4. It means capture[1]
 154                 * contains period + duty_cycle. So, subtract period.
 155                 */
 156                *raw_dty -= *raw_prd;
 157        }
 158
 159stop:
 160        regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
 161        regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
 162
 163        return ret;
 164}
 165
 166static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
 167                             struct pwm_capture *result, unsigned long tmo_ms)
 168{
 169        struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 170        unsigned long long prd, div, dty;
 171        unsigned long rate;
 172        unsigned int psc = 0, icpsc, scale;
 173        u32 raw_prd = 0, raw_dty = 0;
 174        int ret = 0;
 175
 176        mutex_lock(&priv->lock);
 177
 178        if (active_channels(priv)) {
 179                ret = -EBUSY;
 180                goto unlock;
 181        }
 182
 183        ret = clk_enable(priv->clk);
 184        if (ret) {
 185                dev_err(priv->chip.dev, "failed to enable counter clock\n");
 186                goto unlock;
 187        }
 188
 189        rate = clk_get_rate(priv->clk);
 190        if (!rate) {
 191                ret = -EINVAL;
 192                goto clk_dis;
 193        }
 194
 195        /* prescaler: fit timeout window provided by upper layer */
 196        div = (unsigned long long)rate * (unsigned long long)tmo_ms;
 197        do_div(div, MSEC_PER_SEC);
 198        prd = div;
 199        while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
 200                psc++;
 201                div = prd;
 202                do_div(div, psc + 1);
 203        }
 204        regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
 205        regmap_write(priv->regmap, TIM_PSC, psc);
 206
 207        /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
 208        regmap_update_bits(priv->regmap,
 209                           pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
 210                           TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
 211                           TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
 212                           TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
 213
 214        /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
 215        regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
 216                           TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
 217                           TIM_CCER_CC2P : TIM_CCER_CC4P);
 218
 219        ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
 220        if (ret)
 221                goto stop;
 222
 223        /*
 224         * Got a capture. Try to improve accuracy at high rates:
 225         * - decrease counter clock prescaler, scale up to max rate.
 226         * - use input prescaler, capture once every /2 /4 or /8 edges.
 227         */
 228        if (raw_prd) {
 229                u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
 230
 231                scale = max_arr / min(max_arr, raw_prd);
 232        } else {
 233                scale = priv->max_arr; /* bellow resolution, use max scale */
 234        }
 235
 236        if (psc && scale > 1) {
 237                /* 2nd measure with new scale */
 238                psc /= scale;
 239                regmap_write(priv->regmap, TIM_PSC, psc);
 240                ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
 241                                            &raw_dty);
 242                if (ret)
 243                        goto stop;
 244        }
 245
 246        /* Compute intermediate period not to exceed timeout at low rates */
 247        prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
 248        do_div(prd, rate);
 249
 250        for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
 251                /* input prescaler: also keep arbitrary margin */
 252                if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
 253                        break;
 254                if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
 255                        break;
 256        }
 257
 258        if (!icpsc)
 259                goto done;
 260
 261        /* Last chance to improve period accuracy, using input prescaler */
 262        regmap_update_bits(priv->regmap,
 263                           pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
 264                           TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
 265                           FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
 266                           FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
 267
 268        ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
 269        if (ret)
 270                goto stop;
 271
 272        if (raw_dty >= (raw_prd >> icpsc)) {
 273                /*
 274                 * We may fall here using input prescaler, when input
 275                 * capture starts on high side (before falling edge).
 276                 * Example with icpsc to capture on each 4 events:
 277                 *
 278                 *       start   1st capture                     2nd capture
 279                 *         v     v                               v
 280                 *         ___   _____   _____   _____   _____   ____
 281                 * TI1..4     |__|    |__|    |__|    |__|    |__|
 282                 *            v  v    .  .    .  .    .       v  v
 283                 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
 284                 * icpsc2/4:  0       1       2       3       0
 285                 *            v  v                            v  v
 286                 * CCR1/3  ......t0..............................t2
 287                 * CCR2/4  ..t1..............................t1'...
 288                 *               .                            .  .
 289                 * Capture0:     .<----------------------------->.
 290                 * Capture1:     .<-------------------------->.  .
 291                 *               .                            .  .
 292                 * Period:       .<------>                    .  .
 293                 * Low side:                                  .<>.
 294                 *
 295                 * Result:
 296                 * - Period = Capture0 / icpsc
 297                 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
 298                 */
 299                raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
 300        }
 301
 302done:
 303        prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
 304        result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
 305        dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
 306        result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
 307stop:
 308        regmap_write(priv->regmap, TIM_CCER, 0);
 309        regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
 310        regmap_write(priv->regmap, TIM_PSC, 0);
 311clk_dis:
 312        clk_disable(priv->clk);
 313unlock:
 314        mutex_unlock(&priv->lock);
 315
 316        return ret;
 317}
 318
 319static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
 320                            int duty_ns, int period_ns)
 321{
 322        unsigned long long prd, div, dty;
 323        unsigned int prescaler = 0;
 324        u32 ccmr, mask, shift;
 325
 326        /* Period and prescaler values depends on clock rate */
 327        div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
 328
 329        do_div(div, NSEC_PER_SEC);
 330        prd = div;
 331
 332        while (div > priv->max_arr) {
 333                prescaler++;
 334                div = prd;
 335                do_div(div, prescaler + 1);
 336        }
 337
 338        prd = div;
 339
 340        if (prescaler > MAX_TIM_PSC)
 341                return -EINVAL;
 342
 343        /*
 344         * All channels share the same prescaler and counter so when two
 345         * channels are active at the same time we can't change them
 346         */
 347        if (active_channels(priv) & ~(1 << ch * 4)) {
 348                u32 psc, arr;
 349
 350                regmap_read(priv->regmap, TIM_PSC, &psc);
 351                regmap_read(priv->regmap, TIM_ARR, &arr);
 352
 353                if ((psc != prescaler) || (arr != prd - 1))
 354                        return -EBUSY;
 355        }
 356
 357        regmap_write(priv->regmap, TIM_PSC, prescaler);
 358        regmap_write(priv->regmap, TIM_ARR, prd - 1);
 359        regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
 360
 361        /* Calculate the duty cycles */
 362        dty = prd * duty_ns;
 363        do_div(dty, period_ns);
 364
 365        write_ccrx(priv, ch, dty);
 366
 367        /* Configure output mode */
 368        shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
 369        ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
 370        mask = CCMR_CHANNEL_MASK << shift;
 371
 372        if (ch < 2)
 373                regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
 374        else
 375                regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
 376
 377        regmap_update_bits(priv->regmap, TIM_BDTR,
 378                           TIM_BDTR_MOE | TIM_BDTR_AOE,
 379                           TIM_BDTR_MOE | TIM_BDTR_AOE);
 380
 381        return 0;
 382}
 383
 384static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
 385                                  enum pwm_polarity polarity)
 386{
 387        u32 mask;
 388
 389        mask = TIM_CCER_CC1P << (ch * 4);
 390        if (priv->have_complementary_output)
 391                mask |= TIM_CCER_CC1NP << (ch * 4);
 392
 393        regmap_update_bits(priv->regmap, TIM_CCER, mask,
 394                           polarity == PWM_POLARITY_NORMAL ? 0 : mask);
 395
 396        return 0;
 397}
 398
 399static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
 400{
 401        u32 mask;
 402        int ret;
 403
 404        ret = clk_enable(priv->clk);
 405        if (ret)
 406                return ret;
 407
 408        /* Enable channel */
 409        mask = TIM_CCER_CC1E << (ch * 4);
 410        if (priv->have_complementary_output)
 411                mask |= TIM_CCER_CC1NE << (ch * 4);
 412
 413        regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
 414
 415        /* Make sure that registers are updated */
 416        regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
 417
 418        /* Enable controller */
 419        regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
 420
 421        return 0;
 422}
 423
 424static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
 425{
 426        u32 mask;
 427
 428        /* Disable channel */
 429        mask = TIM_CCER_CC1E << (ch * 4);
 430        if (priv->have_complementary_output)
 431                mask |= TIM_CCER_CC1NE << (ch * 4);
 432
 433        regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
 434
 435        /* When all channels are disabled, we can disable the controller */
 436        if (!active_channels(priv))
 437                regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
 438
 439        clk_disable(priv->clk);
 440}
 441
 442static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 443                           struct pwm_state *state)
 444{
 445        bool enabled;
 446        struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 447        int ret;
 448
 449        enabled = pwm->state.enabled;
 450
 451        if (enabled && !state->enabled) {
 452                stm32_pwm_disable(priv, pwm->hwpwm);
 453                return 0;
 454        }
 455
 456        if (state->polarity != pwm->state.polarity)
 457                stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
 458
 459        ret = stm32_pwm_config(priv, pwm->hwpwm,
 460                               state->duty_cycle, state->period);
 461        if (ret)
 462                return ret;
 463
 464        if (!enabled && state->enabled)
 465                ret = stm32_pwm_enable(priv, pwm->hwpwm);
 466
 467        return ret;
 468}
 469
 470static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
 471                                  struct pwm_state *state)
 472{
 473        struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 474        int ret;
 475
 476        /* protect common prescaler for all active channels */
 477        mutex_lock(&priv->lock);
 478        ret = stm32_pwm_apply(chip, pwm, state);
 479        mutex_unlock(&priv->lock);
 480
 481        return ret;
 482}
 483
 484static const struct pwm_ops stm32pwm_ops = {
 485        .owner = THIS_MODULE,
 486        .apply = stm32_pwm_apply_locked,
 487        .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
 488};
 489
 490static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
 491                                    int index, int level, int filter)
 492{
 493        u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
 494        int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
 495        u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
 496                                : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
 497        u32 bdtr = bke;
 498
 499        /*
 500         * The both bits could be set since only one will be wrote
 501         * due to mask value.
 502         */
 503        if (level)
 504                bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
 505
 506        bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
 507
 508        regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
 509
 510        regmap_read(priv->regmap, TIM_BDTR, &bdtr);
 511
 512        return (bdtr & bke) ? 0 : -EINVAL;
 513}
 514
 515static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
 516                                       struct device_node *np)
 517{
 518        struct stm32_breakinput breakinput[MAX_BREAKINPUT];
 519        int nb, ret, i, array_size;
 520
 521        nb = of_property_count_elems_of_size(np, "st,breakinput",
 522                                             sizeof(struct stm32_breakinput));
 523
 524        /*
 525         * Because "st,breakinput" parameter is optional do not make probe
 526         * failed if it doesn't exist.
 527         */
 528        if (nb <= 0)
 529                return 0;
 530
 531        if (nb > MAX_BREAKINPUT)
 532                return -EINVAL;
 533
 534        array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
 535        ret = of_property_read_u32_array(np, "st,breakinput",
 536                                         (u32 *)breakinput, array_size);
 537        if (ret)
 538                return ret;
 539
 540        for (i = 0; i < nb && !ret; i++) {
 541                ret = stm32_pwm_set_breakinput(priv,
 542                                               breakinput[i].index,
 543                                               breakinput[i].level,
 544                                               breakinput[i].filter);
 545        }
 546
 547        return ret;
 548}
 549
 550static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
 551{
 552        u32 ccer;
 553
 554        /*
 555         * If complementary bit doesn't exist writing 1 will have no
 556         * effect so we can detect it.
 557         */
 558        regmap_update_bits(priv->regmap,
 559                           TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
 560        regmap_read(priv->regmap, TIM_CCER, &ccer);
 561        regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
 562
 563        priv->have_complementary_output = (ccer != 0);
 564}
 565
 566static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
 567{
 568        u32 ccer;
 569        int npwm = 0;
 570
 571        /*
 572         * If channels enable bits don't exist writing 1 will have no
 573         * effect so we can detect and count them.
 574         */
 575        regmap_update_bits(priv->regmap,
 576                           TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
 577        regmap_read(priv->regmap, TIM_CCER, &ccer);
 578        regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
 579
 580        if (ccer & TIM_CCER_CC1E)
 581                npwm++;
 582
 583        if (ccer & TIM_CCER_CC2E)
 584                npwm++;
 585
 586        if (ccer & TIM_CCER_CC3E)
 587                npwm++;
 588
 589        if (ccer & TIM_CCER_CC4E)
 590                npwm++;
 591
 592        return npwm;
 593}
 594
 595static int stm32_pwm_probe(struct platform_device *pdev)
 596{
 597        struct device *dev = &pdev->dev;
 598        struct device_node *np = dev->of_node;
 599        struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
 600        struct stm32_pwm *priv;
 601        int ret;
 602
 603        priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
 604        if (!priv)
 605                return -ENOMEM;
 606
 607        mutex_init(&priv->lock);
 608        priv->regmap = ddata->regmap;
 609        priv->clk = ddata->clk;
 610        priv->max_arr = ddata->max_arr;
 611        priv->chip.of_xlate = of_pwm_xlate_with_flags;
 612        priv->chip.of_pwm_n_cells = 3;
 613
 614        if (!priv->regmap || !priv->clk)
 615                return -EINVAL;
 616
 617        ret = stm32_pwm_apply_breakinputs(priv, np);
 618        if (ret)
 619                return ret;
 620
 621        stm32_pwm_detect_complementary(priv);
 622
 623        priv->chip.base = -1;
 624        priv->chip.dev = dev;
 625        priv->chip.ops = &stm32pwm_ops;
 626        priv->chip.npwm = stm32_pwm_detect_channels(priv);
 627
 628        ret = pwmchip_add(&priv->chip);
 629        if (ret < 0)
 630                return ret;
 631
 632        platform_set_drvdata(pdev, priv);
 633
 634        return 0;
 635}
 636
 637static int stm32_pwm_remove(struct platform_device *pdev)
 638{
 639        struct stm32_pwm *priv = platform_get_drvdata(pdev);
 640        unsigned int i;
 641
 642        for (i = 0; i < priv->chip.npwm; i++)
 643                pwm_disable(&priv->chip.pwms[i]);
 644
 645        pwmchip_remove(&priv->chip);
 646
 647        return 0;
 648}
 649
 650static const struct of_device_id stm32_pwm_of_match[] = {
 651        { .compatible = "st,stm32-pwm", },
 652        { /* end node */ },
 653};
 654MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
 655
 656static struct platform_driver stm32_pwm_driver = {
 657        .probe  = stm32_pwm_probe,
 658        .remove = stm32_pwm_remove,
 659        .driver = {
 660                .name = "stm32-pwm",
 661                .of_match_table = stm32_pwm_of_match,
 662        },
 663};
 664module_platform_driver(stm32_pwm_driver);
 665
 666MODULE_ALIAS("platform:stm32-pwm");
 667MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
 668MODULE_LICENSE("GPL v2");
 669