linux/drivers/rapidio/rio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RapidIO interconnect services
   4 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   5 *
   6 * Copyright 2005 MontaVista Software, Inc.
   7 * Matt Porter <mporter@kernel.crashing.org>
   8 *
   9 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
  10 * Alex Bounine <alexandre.bounine@idt.com>
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/kernel.h>
  15
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/rio.h>
  19#include <linux/rio_drv.h>
  20#include <linux/rio_ids.h>
  21#include <linux/rio_regs.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/slab.h>
  25#include <linux/interrupt.h>
  26
  27#include "rio.h"
  28
  29/*
  30 * struct rio_pwrite - RIO portwrite event
  31 * @node:    Node in list of doorbell events
  32 * @pwcback: Doorbell event callback
  33 * @context: Handler specific context to pass on event
  34 */
  35struct rio_pwrite {
  36        struct list_head node;
  37
  38        int (*pwcback)(struct rio_mport *mport, void *context,
  39                       union rio_pw_msg *msg, int step);
  40        void *context;
  41};
  42
  43MODULE_DESCRIPTION("RapidIO Subsystem Core");
  44MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  45MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  46MODULE_LICENSE("GPL");
  47
  48static int hdid[RIO_MAX_MPORTS];
  49static int ids_num;
  50module_param_array(hdid, int, &ids_num, 0);
  51MODULE_PARM_DESC(hdid,
  52        "Destination ID assignment to local RapidIO controllers");
  53
  54static LIST_HEAD(rio_devices);
  55static LIST_HEAD(rio_nets);
  56static DEFINE_SPINLOCK(rio_global_list_lock);
  57
  58static LIST_HEAD(rio_mports);
  59static LIST_HEAD(rio_scans);
  60static DEFINE_MUTEX(rio_mport_list_lock);
  61static unsigned char next_portid;
  62static DEFINE_SPINLOCK(rio_mmap_lock);
  63
  64/**
  65 * rio_local_get_device_id - Get the base/extended device id for a port
  66 * @port: RIO master port from which to get the deviceid
  67 *
  68 * Reads the base/extended device id from the local device
  69 * implementing the master port. Returns the 8/16-bit device
  70 * id.
  71 */
  72u16 rio_local_get_device_id(struct rio_mport *port)
  73{
  74        u32 result;
  75
  76        rio_local_read_config_32(port, RIO_DID_CSR, &result);
  77
  78        return (RIO_GET_DID(port->sys_size, result));
  79}
  80EXPORT_SYMBOL_GPL(rio_local_get_device_id);
  81
  82/**
  83 * rio_query_mport - Query mport device attributes
  84 * @port: mport device to query
  85 * @mport_attr: mport attributes data structure
  86 *
  87 * Returns attributes of specified mport through the
  88 * pointer to attributes data structure.
  89 */
  90int rio_query_mport(struct rio_mport *port,
  91                    struct rio_mport_attr *mport_attr)
  92{
  93        if (!port->ops->query_mport)
  94                return -ENODATA;
  95        return port->ops->query_mport(port, mport_attr);
  96}
  97EXPORT_SYMBOL(rio_query_mport);
  98
  99/**
 100 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 101 * @mport: Master port associated with the RIO network
 102 *
 103 * Allocates a RIO network structure, initializes per-network
 104 * list heads, and adds the associated master port to the
 105 * network list of associated master ports. Returns a
 106 * RIO network pointer on success or %NULL on failure.
 107 */
 108struct rio_net *rio_alloc_net(struct rio_mport *mport)
 109{
 110        struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
 111
 112        if (net) {
 113                INIT_LIST_HEAD(&net->node);
 114                INIT_LIST_HEAD(&net->devices);
 115                INIT_LIST_HEAD(&net->switches);
 116                INIT_LIST_HEAD(&net->mports);
 117                mport->net = net;
 118        }
 119        return net;
 120}
 121EXPORT_SYMBOL_GPL(rio_alloc_net);
 122
 123int rio_add_net(struct rio_net *net)
 124{
 125        int err;
 126
 127        err = device_register(&net->dev);
 128        if (err)
 129                return err;
 130        spin_lock(&rio_global_list_lock);
 131        list_add_tail(&net->node, &rio_nets);
 132        spin_unlock(&rio_global_list_lock);
 133
 134        return 0;
 135}
 136EXPORT_SYMBOL_GPL(rio_add_net);
 137
 138void rio_free_net(struct rio_net *net)
 139{
 140        spin_lock(&rio_global_list_lock);
 141        if (!list_empty(&net->node))
 142                list_del(&net->node);
 143        spin_unlock(&rio_global_list_lock);
 144        if (net->release)
 145                net->release(net);
 146        device_unregister(&net->dev);
 147}
 148EXPORT_SYMBOL_GPL(rio_free_net);
 149
 150/**
 151 * rio_local_set_device_id - Set the base/extended device id for a port
 152 * @port: RIO master port
 153 * @did: Device ID value to be written
 154 *
 155 * Writes the base/extended device id from a device.
 156 */
 157void rio_local_set_device_id(struct rio_mport *port, u16 did)
 158{
 159        rio_local_write_config_32(port, RIO_DID_CSR,
 160                                  RIO_SET_DID(port->sys_size, did));
 161}
 162EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 163
 164/**
 165 * rio_add_device- Adds a RIO device to the device model
 166 * @rdev: RIO device
 167 *
 168 * Adds the RIO device to the global device list and adds the RIO
 169 * device to the RIO device list.  Creates the generic sysfs nodes
 170 * for an RIO device.
 171 */
 172int rio_add_device(struct rio_dev *rdev)
 173{
 174        int err;
 175
 176        atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 177        err = device_register(&rdev->dev);
 178        if (err)
 179                return err;
 180
 181        spin_lock(&rio_global_list_lock);
 182        list_add_tail(&rdev->global_list, &rio_devices);
 183        if (rdev->net) {
 184                list_add_tail(&rdev->net_list, &rdev->net->devices);
 185                if (rdev->pef & RIO_PEF_SWITCH)
 186                        list_add_tail(&rdev->rswitch->node,
 187                                      &rdev->net->switches);
 188        }
 189        spin_unlock(&rio_global_list_lock);
 190
 191        return 0;
 192}
 193EXPORT_SYMBOL_GPL(rio_add_device);
 194
 195/*
 196 * rio_del_device - removes a RIO device from the device model
 197 * @rdev: RIO device
 198 * @state: device state to set during removal process
 199 *
 200 * Removes the RIO device to the kernel device list and subsystem's device list.
 201 * Clears sysfs entries for the removed device.
 202 */
 203void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 204{
 205        pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 206        atomic_set(&rdev->state, state);
 207        spin_lock(&rio_global_list_lock);
 208        list_del(&rdev->global_list);
 209        if (rdev->net) {
 210                list_del(&rdev->net_list);
 211                if (rdev->pef & RIO_PEF_SWITCH) {
 212                        list_del(&rdev->rswitch->node);
 213                        kfree(rdev->rswitch->route_table);
 214                }
 215        }
 216        spin_unlock(&rio_global_list_lock);
 217        device_unregister(&rdev->dev);
 218}
 219EXPORT_SYMBOL_GPL(rio_del_device);
 220
 221/**
 222 * rio_request_inb_mbox - request inbound mailbox service
 223 * @mport: RIO master port from which to allocate the mailbox resource
 224 * @dev_id: Device specific pointer to pass on event
 225 * @mbox: Mailbox number to claim
 226 * @entries: Number of entries in inbound mailbox queue
 227 * @minb: Callback to execute when inbound message is received
 228 *
 229 * Requests ownership of an inbound mailbox resource and binds
 230 * a callback function to the resource. Returns %0 on success.
 231 */
 232int rio_request_inb_mbox(struct rio_mport *mport,
 233                         void *dev_id,
 234                         int mbox,
 235                         int entries,
 236                         void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 237                                       int slot))
 238{
 239        int rc = -ENOSYS;
 240        struct resource *res;
 241
 242        if (!mport->ops->open_inb_mbox)
 243                goto out;
 244
 245        res = kzalloc(sizeof(*res), GFP_KERNEL);
 246        if (res) {
 247                rio_init_mbox_res(res, mbox, mbox);
 248
 249                /* Make sure this mailbox isn't in use */
 250                rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 251                                      res);
 252                if (rc < 0) {
 253                        kfree(res);
 254                        goto out;
 255                }
 256
 257                mport->inb_msg[mbox].res = res;
 258
 259                /* Hook the inbound message callback */
 260                mport->inb_msg[mbox].mcback = minb;
 261
 262                rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 263                if (rc) {
 264                        mport->inb_msg[mbox].mcback = NULL;
 265                        mport->inb_msg[mbox].res = NULL;
 266                        release_resource(res);
 267                        kfree(res);
 268                }
 269        } else
 270                rc = -ENOMEM;
 271
 272      out:
 273        return rc;
 274}
 275EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
 276
 277/**
 278 * rio_release_inb_mbox - release inbound mailbox message service
 279 * @mport: RIO master port from which to release the mailbox resource
 280 * @mbox: Mailbox number to release
 281 *
 282 * Releases ownership of an inbound mailbox resource. Returns 0
 283 * if the request has been satisfied.
 284 */
 285int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 286{
 287        int rc;
 288
 289        if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
 290                return -EINVAL;
 291
 292        mport->ops->close_inb_mbox(mport, mbox);
 293        mport->inb_msg[mbox].mcback = NULL;
 294
 295        rc = release_resource(mport->inb_msg[mbox].res);
 296        if (rc)
 297                return rc;
 298
 299        kfree(mport->inb_msg[mbox].res);
 300        mport->inb_msg[mbox].res = NULL;
 301
 302        return 0;
 303}
 304EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
 305
 306/**
 307 * rio_request_outb_mbox - request outbound mailbox service
 308 * @mport: RIO master port from which to allocate the mailbox resource
 309 * @dev_id: Device specific pointer to pass on event
 310 * @mbox: Mailbox number to claim
 311 * @entries: Number of entries in outbound mailbox queue
 312 * @moutb: Callback to execute when outbound message is sent
 313 *
 314 * Requests ownership of an outbound mailbox resource and binds
 315 * a callback function to the resource. Returns 0 on success.
 316 */
 317int rio_request_outb_mbox(struct rio_mport *mport,
 318                          void *dev_id,
 319                          int mbox,
 320                          int entries,
 321                          void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 322{
 323        int rc = -ENOSYS;
 324        struct resource *res;
 325
 326        if (!mport->ops->open_outb_mbox)
 327                goto out;
 328
 329        res = kzalloc(sizeof(*res), GFP_KERNEL);
 330        if (res) {
 331                rio_init_mbox_res(res, mbox, mbox);
 332
 333                /* Make sure this outbound mailbox isn't in use */
 334                rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 335                                      res);
 336                if (rc < 0) {
 337                        kfree(res);
 338                        goto out;
 339                }
 340
 341                mport->outb_msg[mbox].res = res;
 342
 343                /* Hook the inbound message callback */
 344                mport->outb_msg[mbox].mcback = moutb;
 345
 346                rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 347                if (rc) {
 348                        mport->outb_msg[mbox].mcback = NULL;
 349                        mport->outb_msg[mbox].res = NULL;
 350                        release_resource(res);
 351                        kfree(res);
 352                }
 353        } else
 354                rc = -ENOMEM;
 355
 356      out:
 357        return rc;
 358}
 359EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
 360
 361/**
 362 * rio_release_outb_mbox - release outbound mailbox message service
 363 * @mport: RIO master port from which to release the mailbox resource
 364 * @mbox: Mailbox number to release
 365 *
 366 * Releases ownership of an inbound mailbox resource. Returns 0
 367 * if the request has been satisfied.
 368 */
 369int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 370{
 371        int rc;
 372
 373        if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
 374                return -EINVAL;
 375
 376        mport->ops->close_outb_mbox(mport, mbox);
 377        mport->outb_msg[mbox].mcback = NULL;
 378
 379        rc = release_resource(mport->outb_msg[mbox].res);
 380        if (rc)
 381                return rc;
 382
 383        kfree(mport->outb_msg[mbox].res);
 384        mport->outb_msg[mbox].res = NULL;
 385
 386        return 0;
 387}
 388EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
 389
 390/**
 391 * rio_setup_inb_dbell - bind inbound doorbell callback
 392 * @mport: RIO master port to bind the doorbell callback
 393 * @dev_id: Device specific pointer to pass on event
 394 * @res: Doorbell message resource
 395 * @dinb: Callback to execute when doorbell is received
 396 *
 397 * Adds a doorbell resource/callback pair into a port's
 398 * doorbell event list. Returns 0 if the request has been
 399 * satisfied.
 400 */
 401static int
 402rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 403                    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 404                                  u16 info))
 405{
 406        struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
 407
 408        if (!dbell)
 409                return -ENOMEM;
 410
 411        dbell->res = res;
 412        dbell->dinb = dinb;
 413        dbell->dev_id = dev_id;
 414
 415        mutex_lock(&mport->lock);
 416        list_add_tail(&dbell->node, &mport->dbells);
 417        mutex_unlock(&mport->lock);
 418        return 0;
 419}
 420
 421/**
 422 * rio_request_inb_dbell - request inbound doorbell message service
 423 * @mport: RIO master port from which to allocate the doorbell resource
 424 * @dev_id: Device specific pointer to pass on event
 425 * @start: Doorbell info range start
 426 * @end: Doorbell info range end
 427 * @dinb: Callback to execute when doorbell is received
 428 *
 429 * Requests ownership of an inbound doorbell resource and binds
 430 * a callback function to the resource. Returns 0 if the request
 431 * has been satisfied.
 432 */
 433int rio_request_inb_dbell(struct rio_mport *mport,
 434                          void *dev_id,
 435                          u16 start,
 436                          u16 end,
 437                          void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 438                                        u16 dst, u16 info))
 439{
 440        int rc;
 441        struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 442
 443        if (res) {
 444                rio_init_dbell_res(res, start, end);
 445
 446                /* Make sure these doorbells aren't in use */
 447                rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 448                                      res);
 449                if (rc < 0) {
 450                        kfree(res);
 451                        goto out;
 452                }
 453
 454                /* Hook the doorbell callback */
 455                rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 456        } else
 457                rc = -ENOMEM;
 458
 459      out:
 460        return rc;
 461}
 462EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
 463
 464/**
 465 * rio_release_inb_dbell - release inbound doorbell message service
 466 * @mport: RIO master port from which to release the doorbell resource
 467 * @start: Doorbell info range start
 468 * @end: Doorbell info range end
 469 *
 470 * Releases ownership of an inbound doorbell resource and removes
 471 * callback from the doorbell event list. Returns 0 if the request
 472 * has been satisfied.
 473 */
 474int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 475{
 476        int rc = 0, found = 0;
 477        struct rio_dbell *dbell;
 478
 479        mutex_lock(&mport->lock);
 480        list_for_each_entry(dbell, &mport->dbells, node) {
 481                if ((dbell->res->start == start) && (dbell->res->end == end)) {
 482                        list_del(&dbell->node);
 483                        found = 1;
 484                        break;
 485                }
 486        }
 487        mutex_unlock(&mport->lock);
 488
 489        /* If we can't find an exact match, fail */
 490        if (!found) {
 491                rc = -EINVAL;
 492                goto out;
 493        }
 494
 495        /* Release the doorbell resource */
 496        rc = release_resource(dbell->res);
 497
 498        /* Free the doorbell event */
 499        kfree(dbell);
 500
 501      out:
 502        return rc;
 503}
 504EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
 505
 506/**
 507 * rio_request_outb_dbell - request outbound doorbell message range
 508 * @rdev: RIO device from which to allocate the doorbell resource
 509 * @start: Doorbell message range start
 510 * @end: Doorbell message range end
 511 *
 512 * Requests ownership of a doorbell message range. Returns a resource
 513 * if the request has been satisfied or %NULL on failure.
 514 */
 515struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 516                                        u16 end)
 517{
 518        struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 519
 520        if (res) {
 521                rio_init_dbell_res(res, start, end);
 522
 523                /* Make sure these doorbells aren't in use */
 524                if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 525                    < 0) {
 526                        kfree(res);
 527                        res = NULL;
 528                }
 529        }
 530
 531        return res;
 532}
 533EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
 534
 535/**
 536 * rio_release_outb_dbell - release outbound doorbell message range
 537 * @rdev: RIO device from which to release the doorbell resource
 538 * @res: Doorbell resource to be freed
 539 *
 540 * Releases ownership of a doorbell message range. Returns 0 if the
 541 * request has been satisfied.
 542 */
 543int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 544{
 545        int rc = release_resource(res);
 546
 547        kfree(res);
 548
 549        return rc;
 550}
 551EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
 552
 553/**
 554 * rio_add_mport_pw_handler - add port-write message handler into the list
 555 *                            of mport specific pw handlers
 556 * @mport:   RIO master port to bind the portwrite callback
 557 * @context: Handler specific context to pass on event
 558 * @pwcback: Callback to execute when portwrite is received
 559 *
 560 * Returns 0 if the request has been satisfied.
 561 */
 562int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 563                             int (*pwcback)(struct rio_mport *mport,
 564                             void *context, union rio_pw_msg *msg, int step))
 565{
 566        struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
 567
 568        if (!pwrite)
 569                return -ENOMEM;
 570
 571        pwrite->pwcback = pwcback;
 572        pwrite->context = context;
 573        mutex_lock(&mport->lock);
 574        list_add_tail(&pwrite->node, &mport->pwrites);
 575        mutex_unlock(&mport->lock);
 576        return 0;
 577}
 578EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 579
 580/**
 581 * rio_del_mport_pw_handler - remove port-write message handler from the list
 582 *                            of mport specific pw handlers
 583 * @mport:   RIO master port to bind the portwrite callback
 584 * @context: Registered handler specific context to pass on event
 585 * @pwcback: Registered callback function
 586 *
 587 * Returns 0 if the request has been satisfied.
 588 */
 589int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 590                             int (*pwcback)(struct rio_mport *mport,
 591                             void *context, union rio_pw_msg *msg, int step))
 592{
 593        int rc = -EINVAL;
 594        struct rio_pwrite *pwrite;
 595
 596        mutex_lock(&mport->lock);
 597        list_for_each_entry(pwrite, &mport->pwrites, node) {
 598                if (pwrite->pwcback == pwcback && pwrite->context == context) {
 599                        list_del(&pwrite->node);
 600                        kfree(pwrite);
 601                        rc = 0;
 602                        break;
 603                }
 604        }
 605        mutex_unlock(&mport->lock);
 606
 607        return rc;
 608}
 609EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 610
 611/**
 612 * rio_request_inb_pwrite - request inbound port-write message service for
 613 *                          specific RapidIO device
 614 * @rdev: RIO device to which register inbound port-write callback routine
 615 * @pwcback: Callback routine to execute when port-write is received
 616 *
 617 * Binds a port-write callback function to the RapidIO device.
 618 * Returns 0 if the request has been satisfied.
 619 */
 620int rio_request_inb_pwrite(struct rio_dev *rdev,
 621        int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 622{
 623        int rc = 0;
 624
 625        spin_lock(&rio_global_list_lock);
 626        if (rdev->pwcback)
 627                rc = -ENOMEM;
 628        else
 629                rdev->pwcback = pwcback;
 630
 631        spin_unlock(&rio_global_list_lock);
 632        return rc;
 633}
 634EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 635
 636/**
 637 * rio_release_inb_pwrite - release inbound port-write message service
 638 *                          associated with specific RapidIO device
 639 * @rdev: RIO device which registered for inbound port-write callback
 640 *
 641 * Removes callback from the rio_dev structure. Returns 0 if the request
 642 * has been satisfied.
 643 */
 644int rio_release_inb_pwrite(struct rio_dev *rdev)
 645{
 646        int rc = -ENOMEM;
 647
 648        spin_lock(&rio_global_list_lock);
 649        if (rdev->pwcback) {
 650                rdev->pwcback = NULL;
 651                rc = 0;
 652        }
 653
 654        spin_unlock(&rio_global_list_lock);
 655        return rc;
 656}
 657EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 658
 659/**
 660 * rio_pw_enable - Enables/disables port-write handling by a master port
 661 * @mport: Master port associated with port-write handling
 662 * @enable:  1=enable,  0=disable
 663 */
 664void rio_pw_enable(struct rio_mport *mport, int enable)
 665{
 666        if (mport->ops->pwenable) {
 667                mutex_lock(&mport->lock);
 668
 669                if ((enable && ++mport->pwe_refcnt == 1) ||
 670                    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 671                        mport->ops->pwenable(mport, enable);
 672                mutex_unlock(&mport->lock);
 673        }
 674}
 675EXPORT_SYMBOL_GPL(rio_pw_enable);
 676
 677/**
 678 * rio_map_inb_region -- Map inbound memory region.
 679 * @mport: Master port.
 680 * @local: physical address of memory region to be mapped
 681 * @rbase: RIO base address assigned to this window
 682 * @size: Size of the memory region
 683 * @rflags: Flags for mapping.
 684 *
 685 * Return: 0 -- Success.
 686 *
 687 * This function will create the mapping from RIO space to local memory.
 688 */
 689int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 690                        u64 rbase, u32 size, u32 rflags)
 691{
 692        int rc;
 693        unsigned long flags;
 694
 695        if (!mport->ops->map_inb)
 696                return -1;
 697        spin_lock_irqsave(&rio_mmap_lock, flags);
 698        rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 699        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 700        return rc;
 701}
 702EXPORT_SYMBOL_GPL(rio_map_inb_region);
 703
 704/**
 705 * rio_unmap_inb_region -- Unmap the inbound memory region
 706 * @mport: Master port
 707 * @lstart: physical address of memory region to be unmapped
 708 */
 709void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 710{
 711        unsigned long flags;
 712        if (!mport->ops->unmap_inb)
 713                return;
 714        spin_lock_irqsave(&rio_mmap_lock, flags);
 715        mport->ops->unmap_inb(mport, lstart);
 716        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 717}
 718EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 719
 720/**
 721 * rio_map_outb_region -- Map outbound memory region.
 722 * @mport: Master port.
 723 * @destid: destination id window points to
 724 * @rbase: RIO base address window translates to
 725 * @size: Size of the memory region
 726 * @rflags: Flags for mapping.
 727 * @local: physical address of memory region mapped
 728 *
 729 * Return: 0 -- Success.
 730 *
 731 * This function will create the mapping from RIO space to local memory.
 732 */
 733int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 734                        u32 size, u32 rflags, dma_addr_t *local)
 735{
 736        int rc;
 737        unsigned long flags;
 738
 739        if (!mport->ops->map_outb)
 740                return -ENODEV;
 741
 742        spin_lock_irqsave(&rio_mmap_lock, flags);
 743        rc = mport->ops->map_outb(mport, destid, rbase, size,
 744                rflags, local);
 745        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 746
 747        return rc;
 748}
 749EXPORT_SYMBOL_GPL(rio_map_outb_region);
 750
 751/**
 752 * rio_unmap_inb_region -- Unmap the inbound memory region
 753 * @mport: Master port
 754 * @destid: destination id mapping points to
 755 * @rstart: RIO base address window translates to
 756 */
 757void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 758{
 759        unsigned long flags;
 760
 761        if (!mport->ops->unmap_outb)
 762                return;
 763
 764        spin_lock_irqsave(&rio_mmap_lock, flags);
 765        mport->ops->unmap_outb(mport, destid, rstart);
 766        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 767}
 768EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 769
 770/**
 771 * rio_mport_get_physefb - Helper function that returns register offset
 772 *                      for Physical Layer Extended Features Block.
 773 * @port: Master port to issue transaction
 774 * @local: Indicate a local master port or remote device access
 775 * @destid: Destination ID of the device
 776 * @hopcount: Number of switch hops to the device
 777 * @rmap: pointer to location to store register map type info
 778 */
 779u32
 780rio_mport_get_physefb(struct rio_mport *port, int local,
 781                      u16 destid, u8 hopcount, u32 *rmap)
 782{
 783        u32 ext_ftr_ptr;
 784        u32 ftr_header;
 785
 786        ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 787
 788        while (ext_ftr_ptr)  {
 789                if (local)
 790                        rio_local_read_config_32(port, ext_ftr_ptr,
 791                                                 &ftr_header);
 792                else
 793                        rio_mport_read_config_32(port, destid, hopcount,
 794                                                 ext_ftr_ptr, &ftr_header);
 795
 796                ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 797                switch (ftr_header) {
 798
 799                case RIO_EFB_SER_EP_ID:
 800                case RIO_EFB_SER_EP_REC_ID:
 801                case RIO_EFB_SER_EP_FREE_ID:
 802                case RIO_EFB_SER_EP_M1_ID:
 803                case RIO_EFB_SER_EP_SW_M1_ID:
 804                case RIO_EFB_SER_EPF_M1_ID:
 805                case RIO_EFB_SER_EPF_SW_M1_ID:
 806                        *rmap = 1;
 807                        return ext_ftr_ptr;
 808
 809                case RIO_EFB_SER_EP_M2_ID:
 810                case RIO_EFB_SER_EP_SW_M2_ID:
 811                case RIO_EFB_SER_EPF_M2_ID:
 812                case RIO_EFB_SER_EPF_SW_M2_ID:
 813                        *rmap = 2;
 814                        return ext_ftr_ptr;
 815
 816                default:
 817                        break;
 818                }
 819
 820                ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 821                                                hopcount, ext_ftr_ptr);
 822        }
 823
 824        return ext_ftr_ptr;
 825}
 826EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 827
 828/**
 829 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 830 * @comp_tag: RIO component tag to match
 831 * @from: Previous RIO device found in search, or %NULL for new search
 832 *
 833 * Iterates through the list of known RIO devices. If a RIO device is
 834 * found with a matching @comp_tag, a pointer to its device
 835 * structure is returned. Otherwise, %NULL is returned. A new search
 836 * is initiated by passing %NULL to the @from argument. Otherwise, if
 837 * @from is not %NULL, searches continue from next device on the global
 838 * list.
 839 */
 840struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 841{
 842        struct list_head *n;
 843        struct rio_dev *rdev;
 844
 845        spin_lock(&rio_global_list_lock);
 846        n = from ? from->global_list.next : rio_devices.next;
 847
 848        while (n && (n != &rio_devices)) {
 849                rdev = rio_dev_g(n);
 850                if (rdev->comp_tag == comp_tag)
 851                        goto exit;
 852                n = n->next;
 853        }
 854        rdev = NULL;
 855exit:
 856        spin_unlock(&rio_global_list_lock);
 857        return rdev;
 858}
 859EXPORT_SYMBOL_GPL(rio_get_comptag);
 860
 861/**
 862 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 863 * @rdev: Pointer to RIO device control structure
 864 * @pnum: Switch port number to set LOCKOUT bit
 865 * @lock: Operation : set (=1) or clear (=0)
 866 */
 867int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 868{
 869        u32 regval;
 870
 871        rio_read_config_32(rdev,
 872                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 873                &regval);
 874        if (lock)
 875                regval |= RIO_PORT_N_CTL_LOCKOUT;
 876        else
 877                regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 878
 879        rio_write_config_32(rdev,
 880                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 881                regval);
 882        return 0;
 883}
 884EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 885
 886/**
 887 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 888 * given port
 889 * @port: Master port associated with the RIO network
 890 * @local: local=1 select local port otherwise a far device is reached
 891 * @destid: Destination ID of the device to check host bit
 892 * @hopcount: Number of hops to reach the target
 893 * @port_num: Port (-number on switch) to enable on a far end device
 894 *
 895 * Returns 0 or 1 from on General Control Command and Status Register
 896 * (EXT_PTR+0x3C)
 897 */
 898int rio_enable_rx_tx_port(struct rio_mport *port,
 899                          int local, u16 destid,
 900                          u8 hopcount, u8 port_num)
 901{
 902#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 903        u32 regval;
 904        u32 ext_ftr_ptr;
 905        u32 rmap;
 906
 907        /*
 908        * enable rx input tx output port
 909        */
 910        pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 911                 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 912
 913        ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
 914                                            hopcount, &rmap);
 915
 916        if (local) {
 917                rio_local_read_config_32(port,
 918                                ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
 919                                &regval);
 920        } else {
 921                if (rio_mport_read_config_32(port, destid, hopcount,
 922                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 923                                &regval) < 0)
 924                        return -EIO;
 925        }
 926
 927        regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
 928
 929        if (local) {
 930                rio_local_write_config_32(port,
 931                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
 932        } else {
 933                if (rio_mport_write_config_32(port, destid, hopcount,
 934                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 935                                regval) < 0)
 936                        return -EIO;
 937        }
 938#endif
 939        return 0;
 940}
 941EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 942
 943
 944/**
 945 * rio_chk_dev_route - Validate route to the specified device.
 946 * @rdev:  RIO device failed to respond
 947 * @nrdev: Last active device on the route to rdev
 948 * @npnum: nrdev's port number on the route to rdev
 949 *
 950 * Follows a route to the specified RIO device to determine the last available
 951 * device (and corresponding RIO port) on the route.
 952 */
 953static int
 954rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 955{
 956        u32 result;
 957        int p_port, rc = -EIO;
 958        struct rio_dev *prev = NULL;
 959
 960        /* Find switch with failed RIO link */
 961        while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 962                if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 963                        prev = rdev->prev;
 964                        break;
 965                }
 966                rdev = rdev->prev;
 967        }
 968
 969        if (!prev)
 970                goto err_out;
 971
 972        p_port = prev->rswitch->route_table[rdev->destid];
 973
 974        if (p_port != RIO_INVALID_ROUTE) {
 975                pr_debug("RIO: link failed on [%s]-P%d\n",
 976                         rio_name(prev), p_port);
 977                *nrdev = prev;
 978                *npnum = p_port;
 979                rc = 0;
 980        } else
 981                pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 982err_out:
 983        return rc;
 984}
 985
 986/**
 987 * rio_mport_chk_dev_access - Validate access to the specified device.
 988 * @mport: Master port to send transactions
 989 * @destid: Device destination ID in network
 990 * @hopcount: Number of hops into the network
 991 */
 992int
 993rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 994{
 995        int i = 0;
 996        u32 tmp;
 997
 998        while (rio_mport_read_config_32(mport, destid, hopcount,
 999                                        RIO_DEV_ID_CAR, &tmp)) {
1000                i++;
1001                if (i == RIO_MAX_CHK_RETRY)
1002                        return -EIO;
1003                mdelay(1);
1004        }
1005
1006        return 0;
1007}
1008EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009
1010/**
1011 * rio_chk_dev_access - Validate access to the specified device.
1012 * @rdev: Pointer to RIO device control structure
1013 */
1014static int rio_chk_dev_access(struct rio_dev *rdev)
1015{
1016        return rio_mport_chk_dev_access(rdev->net->hport,
1017                                        rdev->destid, rdev->hopcount);
1018}
1019
1020/**
1021 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022 *                        returns link-response (if requested).
1023 * @rdev: RIO devive to issue Input-status command
1024 * @pnum: Device port number to issue the command
1025 * @lnkresp: Response from a link partner
1026 */
1027static int
1028rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029{
1030        u32 regval;
1031        int checkcount;
1032
1033        if (lnkresp) {
1034                /* Read from link maintenance response register
1035                 * to clear valid bit */
1036                rio_read_config_32(rdev,
1037                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038                        &regval);
1039                udelay(50);
1040        }
1041
1042        /* Issue Input-status command */
1043        rio_write_config_32(rdev,
1044                RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045                RIO_MNT_REQ_CMD_IS);
1046
1047        /* Exit if the response is not expected */
1048        if (!lnkresp)
1049                return 0;
1050
1051        checkcount = 3;
1052        while (checkcount--) {
1053                udelay(50);
1054                rio_read_config_32(rdev,
1055                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056                        &regval);
1057                if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058                        *lnkresp = regval;
1059                        return 0;
1060                }
1061        }
1062
1063        return -EIO;
1064}
1065
1066/**
1067 * rio_clr_err_stopped - Clears port Error-stopped states.
1068 * @rdev: Pointer to RIO device control structure
1069 * @pnum: Switch port number to clear errors
1070 * @err_status: port error status (if 0 reads register from device)
1071 *
1072 * TODO: Currently this routine is not compatible with recovery process
1073 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074 * to implement universal recovery process that is compatible full range
1075 * off available devices.
1076 * IDT gen3 switch driver now implements HW-specific error handler that
1077 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078 */
1079static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080{
1081        struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082        u32 regval;
1083        u32 far_ackid, far_linkstat, near_ackid;
1084
1085        if (err_status == 0)
1086                rio_read_config_32(rdev,
1087                        RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088                        &err_status);
1089
1090        if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091                pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092                /*
1093                 * Send a Link-Request/Input-Status control symbol
1094                 */
1095                if (rio_get_input_status(rdev, pnum, &regval)) {
1096                        pr_debug("RIO_EM: Input-status response timeout\n");
1097                        goto rd_err;
1098                }
1099
1100                pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101                         pnum, regval);
1102                far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103                far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104                rio_read_config_32(rdev,
1105                        RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106                        &regval);
1107                pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108                near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109                pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110                         " near_ackID=0x%02x\n",
1111                        pnum, far_ackid, far_linkstat, near_ackid);
1112
1113                /*
1114                 * If required, synchronize ackIDs of near and
1115                 * far sides.
1116                 */
1117                if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118                    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119                        /* Align near outstanding/outbound ackIDs with
1120                         * far inbound.
1121                         */
1122                        rio_write_config_32(rdev,
1123                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124                                (near_ackid << 24) |
1125                                        (far_ackid << 8) | far_ackid);
1126                        /* Align far outstanding/outbound ackIDs with
1127                         * near inbound.
1128                         */
1129                        far_ackid++;
1130                        if (!nextdev) {
1131                                pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132                                goto rd_err;
1133                        }
1134
1135                        rio_write_config_32(nextdev,
1136                                RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137                                        RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138                                (far_ackid << 24) |
1139                                (near_ackid << 8) | near_ackid);
1140                }
1141rd_err:
1142                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143                                   &err_status);
1144                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145        }
1146
1147        if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148                pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149                rio_get_input_status(nextdev,
1150                                     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151                udelay(50);
1152
1153                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154                                   &err_status);
1155                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156        }
1157
1158        return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159                              RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160}
1161
1162/**
1163 * rio_inb_pwrite_handler - inbound port-write message handler
1164 * @mport:  mport device associated with port-write
1165 * @pw_msg: pointer to inbound port-write message
1166 *
1167 * Processes an inbound port-write message. Returns 0 if the request
1168 * has been satisfied.
1169 */
1170int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171{
1172        struct rio_dev *rdev;
1173        u32 err_status, em_perrdet, em_ltlerrdet;
1174        int rc, portnum;
1175        struct rio_pwrite *pwrite;
1176
1177#ifdef DEBUG_PW
1178        {
1179                u32 i;
1180
1181                pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182                for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183                        pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184                                i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185                                pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186                }
1187        }
1188#endif
1189
1190        rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191        if (rdev) {
1192                pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193        } else {
1194                pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195                        __func__, pw_msg->em.comptag);
1196        }
1197
1198        /* Call a device-specific handler (if it is registered for the device).
1199         * This may be the service for endpoints that send device-specific
1200         * port-write messages. End-point messages expected to be handled
1201         * completely by EP specific device driver.
1202         * For switches rc==0 signals that no standard processing required.
1203         */
1204        if (rdev && rdev->pwcback) {
1205                rc = rdev->pwcback(rdev, pw_msg, 0);
1206                if (rc == 0)
1207                        return 0;
1208        }
1209
1210        mutex_lock(&mport->lock);
1211        list_for_each_entry(pwrite, &mport->pwrites, node)
1212                pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213        mutex_unlock(&mport->lock);
1214
1215        if (!rdev)
1216                return 0;
1217
1218        /*
1219         * FIXME: The code below stays as it was before for now until we decide
1220         * how to do default PW handling in combination with per-mport callbacks
1221         */
1222
1223        portnum = pw_msg->em.is_port & 0xFF;
1224
1225        /* Check if device and route to it are functional:
1226         * Sometimes devices may send PW message(s) just before being
1227         * powered down (or link being lost).
1228         */
1229        if (rio_chk_dev_access(rdev)) {
1230                pr_debug("RIO: device access failed - get link partner\n");
1231                /* Scan route to the device and identify failed link.
1232                 * This will replace device and port reported in PW message.
1233                 * PW message should not be used after this point.
1234                 */
1235                if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236                        pr_err("RIO: Route trace for %s failed\n",
1237                                rio_name(rdev));
1238                        return -EIO;
1239                }
1240                pw_msg = NULL;
1241        }
1242
1243        /* For End-point devices processing stops here */
1244        if (!(rdev->pef & RIO_PEF_SWITCH))
1245                return 0;
1246
1247        if (rdev->phys_efptr == 0) {
1248                pr_err("RIO_PW: Bad switch initialization for %s\n",
1249                        rio_name(rdev));
1250                return 0;
1251        }
1252
1253        /*
1254         * Process the port-write notification from switch
1255         */
1256        if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257                rdev->rswitch->ops->em_handle(rdev, portnum);
1258
1259        rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260                           &err_status);
1261        pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262
1263        if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264
1265                if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266                        rdev->rswitch->port_ok |= (1 << portnum);
1267                        rio_set_port_lockout(rdev, portnum, 0);
1268                        /* Schedule Insertion Service */
1269                        pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270                               rio_name(rdev), portnum);
1271                }
1272
1273                /* Clear error-stopped states (if reported).
1274                 * Depending on the link partner state, two attempts
1275                 * may be needed for successful recovery.
1276                 */
1277                if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278                                  RIO_PORT_N_ERR_STS_INP_ES)) {
1279                        if (rio_clr_err_stopped(rdev, portnum, err_status))
1280                                rio_clr_err_stopped(rdev, portnum, 0);
1281                }
1282        }  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283
1284                if (rdev->rswitch->port_ok & (1 << portnum)) {
1285                        rdev->rswitch->port_ok &= ~(1 << portnum);
1286                        rio_set_port_lockout(rdev, portnum, 1);
1287
1288                        if (rdev->phys_rmap == 1) {
1289                        rio_write_config_32(rdev,
1290                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291                                RIO_PORT_N_ACK_CLEAR);
1292                        } else {
1293                                rio_write_config_32(rdev,
1294                                        RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295                                        RIO_PORT_N_OB_ACK_CLEAR);
1296                                rio_write_config_32(rdev,
1297                                        RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298                                        0);
1299                        }
1300
1301                        /* Schedule Extraction Service */
1302                        pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303                               rio_name(rdev), portnum);
1304                }
1305        }
1306
1307        rio_read_config_32(rdev,
1308                rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309        if (em_perrdet) {
1310                pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311                         portnum, em_perrdet);
1312                /* Clear EM Port N Error Detect CSR */
1313                rio_write_config_32(rdev,
1314                        rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315        }
1316
1317        rio_read_config_32(rdev,
1318                rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319        if (em_ltlerrdet) {
1320                pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321                         em_ltlerrdet);
1322                /* Clear EM L/T Layer Error Detect CSR */
1323                rio_write_config_32(rdev,
1324                        rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325        }
1326
1327        /* Clear remaining error bits and Port-Write Pending bit */
1328        rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329                            err_status);
1330
1331        return 0;
1332}
1333EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334
1335/**
1336 * rio_mport_get_efb - get pointer to next extended features block
1337 * @port: Master port to issue transaction
1338 * @local: Indicate a local master port or remote device access
1339 * @destid: Destination ID of the device
1340 * @hopcount: Number of switch hops to the device
1341 * @from: Offset of  current Extended Feature block header (if 0 starts
1342 * from ExtFeaturePtr)
1343 */
1344u32
1345rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346                      u8 hopcount, u32 from)
1347{
1348        u32 reg_val;
1349
1350        if (from == 0) {
1351                if (local)
1352                        rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353                                                 &reg_val);
1354                else
1355                        rio_mport_read_config_32(port, destid, hopcount,
1356                                                 RIO_ASM_INFO_CAR, &reg_val);
1357                return reg_val & RIO_EXT_FTR_PTR_MASK;
1358        } else {
1359                if (local)
1360                        rio_local_read_config_32(port, from, &reg_val);
1361                else
1362                        rio_mport_read_config_32(port, destid, hopcount,
1363                                                 from, &reg_val);
1364                return RIO_GET_BLOCK_ID(reg_val);
1365        }
1366}
1367EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368
1369/**
1370 * rio_mport_get_feature - query for devices' extended features
1371 * @port: Master port to issue transaction
1372 * @local: Indicate a local master port or remote device access
1373 * @destid: Destination ID of the device
1374 * @hopcount: Number of switch hops to the device
1375 * @ftr: Extended feature code
1376 *
1377 * Tell if a device supports a given RapidIO capability.
1378 * Returns the offset of the requested extended feature
1379 * block within the device's RIO configuration space or
1380 * 0 in case the device does not support it.
1381 */
1382u32
1383rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384                      u8 hopcount, int ftr)
1385{
1386        u32 asm_info, ext_ftr_ptr, ftr_header;
1387
1388        if (local)
1389                rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390        else
1391                rio_mport_read_config_32(port, destid, hopcount,
1392                                         RIO_ASM_INFO_CAR, &asm_info);
1393
1394        ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395
1396        while (ext_ftr_ptr) {
1397                if (local)
1398                        rio_local_read_config_32(port, ext_ftr_ptr,
1399                                                 &ftr_header);
1400                else
1401                        rio_mport_read_config_32(port, destid, hopcount,
1402                                                 ext_ftr_ptr, &ftr_header);
1403                if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404                        return ext_ftr_ptr;
1405
1406                ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407                if (!ext_ftr_ptr)
1408                        break;
1409        }
1410
1411        return 0;
1412}
1413EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414
1415/**
1416 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1417 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1418 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1419 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1420 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1421 * @from: Previous RIO device found in search, or %NULL for new search
1422 *
1423 * Iterates through the list of known RIO devices. If a RIO device is
1424 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1425 * count to the device is incrememted and a pointer to its device
1426 * structure is returned. Otherwise, %NULL is returned. A new search
1427 * is initiated by passing %NULL to the @from argument. Otherwise, if
1428 * @from is not %NULL, searches continue from next device on the global
1429 * list. The reference count for @from is always decremented if it is
1430 * not %NULL.
1431 */
1432struct rio_dev *rio_get_asm(u16 vid, u16 did,
1433                            u16 asm_vid, u16 asm_did, struct rio_dev *from)
1434{
1435        struct list_head *n;
1436        struct rio_dev *rdev;
1437
1438        WARN_ON(in_interrupt());
1439        spin_lock(&rio_global_list_lock);
1440        n = from ? from->global_list.next : rio_devices.next;
1441
1442        while (n && (n != &rio_devices)) {
1443                rdev = rio_dev_g(n);
1444                if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1445                    (did == RIO_ANY_ID || rdev->did == did) &&
1446                    (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1447                    (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1448                        goto exit;
1449                n = n->next;
1450        }
1451        rdev = NULL;
1452      exit:
1453        rio_dev_put(from);
1454        rdev = rio_dev_get(rdev);
1455        spin_unlock(&rio_global_list_lock);
1456        return rdev;
1457}
1458EXPORT_SYMBOL_GPL(rio_get_asm);
1459
1460/**
1461 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1462 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1463 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1464 * @from: Previous RIO device found in search, or %NULL for new search
1465 *
1466 * Iterates through the list of known RIO devices. If a RIO device is
1467 * found with a matching @vid and @did, the reference count to the
1468 * device is incrememted and a pointer to its device structure is returned.
1469 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1470 * to the @from argument. Otherwise, if @from is not %NULL, searches
1471 * continue from next device on the global list. The reference count for
1472 * @from is always decremented if it is not %NULL.
1473 */
1474struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1475{
1476        return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1477}
1478EXPORT_SYMBOL_GPL(rio_get_device);
1479
1480/**
1481 * rio_std_route_add_entry - Add switch route table entry using standard
1482 *   registers defined in RIO specification rev.1.3
1483 * @mport: Master port to issue transaction
1484 * @destid: Destination ID of the device
1485 * @hopcount: Number of switch hops to the device
1486 * @table: routing table ID (global or port-specific)
1487 * @route_destid: destID entry in the RT
1488 * @route_port: destination port for specified destID
1489 */
1490static int
1491rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1492                        u16 table, u16 route_destid, u8 route_port)
1493{
1494        if (table == RIO_GLOBAL_TABLE) {
1495                rio_mport_write_config_32(mport, destid, hopcount,
1496                                RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1497                                (u32)route_destid);
1498                rio_mport_write_config_32(mport, destid, hopcount,
1499                                RIO_STD_RTE_CONF_PORT_SEL_CSR,
1500                                (u32)route_port);
1501        }
1502
1503        udelay(10);
1504        return 0;
1505}
1506
1507/**
1508 * rio_std_route_get_entry - Read switch route table entry (port number)
1509 *   associated with specified destID using standard registers defined in RIO
1510 *   specification rev.1.3
1511 * @mport: Master port to issue transaction
1512 * @destid: Destination ID of the device
1513 * @hopcount: Number of switch hops to the device
1514 * @table: routing table ID (global or port-specific)
1515 * @route_destid: destID entry in the RT
1516 * @route_port: returned destination port for specified destID
1517 */
1518static int
1519rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1520                        u16 table, u16 route_destid, u8 *route_port)
1521{
1522        u32 result;
1523
1524        if (table == RIO_GLOBAL_TABLE) {
1525                rio_mport_write_config_32(mport, destid, hopcount,
1526                                RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1527                rio_mport_read_config_32(mport, destid, hopcount,
1528                                RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1529
1530                *route_port = (u8)result;
1531        }
1532
1533        return 0;
1534}
1535
1536/**
1537 * rio_std_route_clr_table - Clear swotch route table using standard registers
1538 *   defined in RIO specification rev.1.3.
1539 * @mport: Master port to issue transaction
1540 * @destid: Destination ID of the device
1541 * @hopcount: Number of switch hops to the device
1542 * @table: routing table ID (global or port-specific)
1543 */
1544static int
1545rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1546                        u16 table)
1547{
1548        u32 max_destid = 0xff;
1549        u32 i, pef, id_inc = 1, ext_cfg = 0;
1550        u32 port_sel = RIO_INVALID_ROUTE;
1551
1552        if (table == RIO_GLOBAL_TABLE) {
1553                rio_mport_read_config_32(mport, destid, hopcount,
1554                                         RIO_PEF_CAR, &pef);
1555
1556                if (mport->sys_size) {
1557                        rio_mport_read_config_32(mport, destid, hopcount,
1558                                                 RIO_SWITCH_RT_LIMIT,
1559                                                 &max_destid);
1560                        max_destid &= RIO_RT_MAX_DESTID;
1561                }
1562
1563                if (pef & RIO_PEF_EXT_RT) {
1564                        ext_cfg = 0x80000000;
1565                        id_inc = 4;
1566                        port_sel = (RIO_INVALID_ROUTE << 24) |
1567                                   (RIO_INVALID_ROUTE << 16) |
1568                                   (RIO_INVALID_ROUTE << 8) |
1569                                   RIO_INVALID_ROUTE;
1570                }
1571
1572                for (i = 0; i <= max_destid;) {
1573                        rio_mport_write_config_32(mport, destid, hopcount,
1574                                        RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1575                                        ext_cfg | i);
1576                        rio_mport_write_config_32(mport, destid, hopcount,
1577                                        RIO_STD_RTE_CONF_PORT_SEL_CSR,
1578                                        port_sel);
1579                        i += id_inc;
1580                }
1581        }
1582
1583        udelay(10);
1584        return 0;
1585}
1586
1587/**
1588 * rio_lock_device - Acquires host device lock for specified device
1589 * @port: Master port to send transaction
1590 * @destid: Destination ID for device/switch
1591 * @hopcount: Hopcount to reach switch
1592 * @wait_ms: Max wait time in msec (0 = no timeout)
1593 *
1594 * Attepts to acquire host device lock for specified device
1595 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1596 */
1597int rio_lock_device(struct rio_mport *port, u16 destid,
1598                    u8 hopcount, int wait_ms)
1599{
1600        u32 result;
1601        int tcnt = 0;
1602
1603        /* Attempt to acquire device lock */
1604        rio_mport_write_config_32(port, destid, hopcount,
1605                                  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1606        rio_mport_read_config_32(port, destid, hopcount,
1607                                 RIO_HOST_DID_LOCK_CSR, &result);
1608
1609        while (result != port->host_deviceid) {
1610                if (wait_ms != 0 && tcnt == wait_ms) {
1611                        pr_debug("RIO: timeout when locking device %x:%x\n",
1612                                destid, hopcount);
1613                        return -EINVAL;
1614                }
1615
1616                /* Delay a bit */
1617                mdelay(1);
1618                tcnt++;
1619                /* Try to acquire device lock again */
1620                rio_mport_write_config_32(port, destid,
1621                        hopcount,
1622                        RIO_HOST_DID_LOCK_CSR,
1623                        port->host_deviceid);
1624                rio_mport_read_config_32(port, destid,
1625                        hopcount,
1626                        RIO_HOST_DID_LOCK_CSR, &result);
1627        }
1628
1629        return 0;
1630}
1631EXPORT_SYMBOL_GPL(rio_lock_device);
1632
1633/**
1634 * rio_unlock_device - Releases host device lock for specified device
1635 * @port: Master port to send transaction
1636 * @destid: Destination ID for device/switch
1637 * @hopcount: Hopcount to reach switch
1638 *
1639 * Returns 0 if device lock released or EINVAL if fails.
1640 */
1641int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1642{
1643        u32 result;
1644
1645        /* Release device lock */
1646        rio_mport_write_config_32(port, destid,
1647                                  hopcount,
1648                                  RIO_HOST_DID_LOCK_CSR,
1649                                  port->host_deviceid);
1650        rio_mport_read_config_32(port, destid, hopcount,
1651                RIO_HOST_DID_LOCK_CSR, &result);
1652        if ((result & 0xffff) != 0xffff) {
1653                pr_debug("RIO: badness when releasing device lock %x:%x\n",
1654                         destid, hopcount);
1655                return -EINVAL;
1656        }
1657
1658        return 0;
1659}
1660EXPORT_SYMBOL_GPL(rio_unlock_device);
1661
1662/**
1663 * rio_route_add_entry- Add a route entry to a switch routing table
1664 * @rdev: RIO device
1665 * @table: Routing table ID
1666 * @route_destid: Destination ID to be routed
1667 * @route_port: Port number to be routed
1668 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1669 *
1670 * If available calls the switch specific add_entry() method to add a route
1671 * entry into a switch routing table. Otherwise uses standard RT update method
1672 * as defined by RapidIO specification. A specific routing table can be selected
1673 * using the @table argument if a switch has per port routing tables or
1674 * the standard (or global) table may be used by passing
1675 * %RIO_GLOBAL_TABLE in @table.
1676 *
1677 * Returns %0 on success or %-EINVAL on failure.
1678 */
1679int rio_route_add_entry(struct rio_dev *rdev,
1680                        u16 table, u16 route_destid, u8 route_port, int lock)
1681{
1682        int rc = -EINVAL;
1683        struct rio_switch_ops *ops = rdev->rswitch->ops;
1684
1685        if (lock) {
1686                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1687                                     rdev->hopcount, 1000);
1688                if (rc)
1689                        return rc;
1690        }
1691
1692        spin_lock(&rdev->rswitch->lock);
1693
1694        if (!ops || !ops->add_entry) {
1695                rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1696                                             rdev->hopcount, table,
1697                                             route_destid, route_port);
1698        } else if (try_module_get(ops->owner)) {
1699                rc = ops->add_entry(rdev->net->hport, rdev->destid,
1700                                    rdev->hopcount, table, route_destid,
1701                                    route_port);
1702                module_put(ops->owner);
1703        }
1704
1705        spin_unlock(&rdev->rswitch->lock);
1706
1707        if (lock)
1708                rio_unlock_device(rdev->net->hport, rdev->destid,
1709                                  rdev->hopcount);
1710
1711        return rc;
1712}
1713EXPORT_SYMBOL_GPL(rio_route_add_entry);
1714
1715/**
1716 * rio_route_get_entry- Read an entry from a switch routing table
1717 * @rdev: RIO device
1718 * @table: Routing table ID
1719 * @route_destid: Destination ID to be routed
1720 * @route_port: Pointer to read port number into
1721 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1722 *
1723 * If available calls the switch specific get_entry() method to fetch a route
1724 * entry from a switch routing table. Otherwise uses standard RT read method
1725 * as defined by RapidIO specification. A specific routing table can be selected
1726 * using the @table argument if a switch has per port routing tables or
1727 * the standard (or global) table may be used by passing
1728 * %RIO_GLOBAL_TABLE in @table.
1729 *
1730 * Returns %0 on success or %-EINVAL on failure.
1731 */
1732int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1733                        u16 route_destid, u8 *route_port, int lock)
1734{
1735        int rc = -EINVAL;
1736        struct rio_switch_ops *ops = rdev->rswitch->ops;
1737
1738        if (lock) {
1739                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1740                                     rdev->hopcount, 1000);
1741                if (rc)
1742                        return rc;
1743        }
1744
1745        spin_lock(&rdev->rswitch->lock);
1746
1747        if (!ops || !ops->get_entry) {
1748                rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1749                                             rdev->hopcount, table,
1750                                             route_destid, route_port);
1751        } else if (try_module_get(ops->owner)) {
1752                rc = ops->get_entry(rdev->net->hport, rdev->destid,
1753                                    rdev->hopcount, table, route_destid,
1754                                    route_port);
1755                module_put(ops->owner);
1756        }
1757
1758        spin_unlock(&rdev->rswitch->lock);
1759
1760        if (lock)
1761                rio_unlock_device(rdev->net->hport, rdev->destid,
1762                                  rdev->hopcount);
1763        return rc;
1764}
1765EXPORT_SYMBOL_GPL(rio_route_get_entry);
1766
1767/**
1768 * rio_route_clr_table - Clear a switch routing table
1769 * @rdev: RIO device
1770 * @table: Routing table ID
1771 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1772 *
1773 * If available calls the switch specific clr_table() method to clear a switch
1774 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1775 * specification. A specific routing table can be selected using the @table
1776 * argument if a switch has per port routing tables or the standard (or global)
1777 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1778 *
1779 * Returns %0 on success or %-EINVAL on failure.
1780 */
1781int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1782{
1783        int rc = -EINVAL;
1784        struct rio_switch_ops *ops = rdev->rswitch->ops;
1785
1786        if (lock) {
1787                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1788                                     rdev->hopcount, 1000);
1789                if (rc)
1790                        return rc;
1791        }
1792
1793        spin_lock(&rdev->rswitch->lock);
1794
1795        if (!ops || !ops->clr_table) {
1796                rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1797                                             rdev->hopcount, table);
1798        } else if (try_module_get(ops->owner)) {
1799                rc = ops->clr_table(rdev->net->hport, rdev->destid,
1800                                    rdev->hopcount, table);
1801
1802                module_put(ops->owner);
1803        }
1804
1805        spin_unlock(&rdev->rswitch->lock);
1806
1807        if (lock)
1808                rio_unlock_device(rdev->net->hport, rdev->destid,
1809                                  rdev->hopcount);
1810
1811        return rc;
1812}
1813EXPORT_SYMBOL_GPL(rio_route_clr_table);
1814
1815#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1816
1817static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1818{
1819        struct rio_mport *mport = arg;
1820
1821        /* Check that DMA device belongs to the right MPORT */
1822        return mport == container_of(chan->device, struct rio_mport, dma);
1823}
1824
1825/**
1826 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1827 *   with specified local RapidIO mport device.
1828 * @mport: RIO mport to perform DMA data transfers
1829 *
1830 * Returns pointer to allocated DMA channel or NULL if failed.
1831 */
1832struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1833{
1834        dma_cap_mask_t mask;
1835
1836        dma_cap_zero(mask);
1837        dma_cap_set(DMA_SLAVE, mask);
1838        return dma_request_channel(mask, rio_chan_filter, mport);
1839}
1840EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1841
1842/**
1843 * rio_request_dma - request RapidIO capable DMA channel that supports
1844 *   specified target RapidIO device.
1845 * @rdev: RIO device associated with DMA transfer
1846 *
1847 * Returns pointer to allocated DMA channel or NULL if failed.
1848 */
1849struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1850{
1851        return rio_request_mport_dma(rdev->net->hport);
1852}
1853EXPORT_SYMBOL_GPL(rio_request_dma);
1854
1855/**
1856 * rio_release_dma - release specified DMA channel
1857 * @dchan: DMA channel to release
1858 */
1859void rio_release_dma(struct dma_chan *dchan)
1860{
1861        dma_release_channel(dchan);
1862}
1863EXPORT_SYMBOL_GPL(rio_release_dma);
1864
1865/**
1866 * rio_dma_prep_xfer - RapidIO specific wrapper
1867 *   for device_prep_slave_sg callback defined by DMAENGINE.
1868 * @dchan: DMA channel to configure
1869 * @destid: target RapidIO device destination ID
1870 * @data: RIO specific data descriptor
1871 * @direction: DMA data transfer direction (TO or FROM the device)
1872 * @flags: dmaengine defined flags
1873 *
1874 * Initializes RapidIO capable DMA channel for the specified data transfer.
1875 * Uses DMA channel private extension to pass information related to remote
1876 * target RIO device.
1877 *
1878 * Returns: pointer to DMA transaction descriptor if successful,
1879 *          error-valued pointer or NULL if failed.
1880 */
1881struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1882        u16 destid, struct rio_dma_data *data,
1883        enum dma_transfer_direction direction, unsigned long flags)
1884{
1885        struct rio_dma_ext rio_ext;
1886
1887        if (!dchan->device->device_prep_slave_sg) {
1888                pr_err("%s: prep_rio_sg == NULL\n", __func__);
1889                return NULL;
1890        }
1891
1892        rio_ext.destid = destid;
1893        rio_ext.rio_addr_u = data->rio_addr_u;
1894        rio_ext.rio_addr = data->rio_addr;
1895        rio_ext.wr_type = data->wr_type;
1896
1897        return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1898                                     direction, flags, &rio_ext);
1899}
1900EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1901
1902/**
1903 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1904 *   for device_prep_slave_sg callback defined by DMAENGINE.
1905 * @rdev: RIO device control structure
1906 * @dchan: DMA channel to configure
1907 * @data: RIO specific data descriptor
1908 * @direction: DMA data transfer direction (TO or FROM the device)
1909 * @flags: dmaengine defined flags
1910 *
1911 * Initializes RapidIO capable DMA channel for the specified data transfer.
1912 * Uses DMA channel private extension to pass information related to remote
1913 * target RIO device.
1914 *
1915 * Returns: pointer to DMA transaction descriptor if successful,
1916 *          error-valued pointer or NULL if failed.
1917 */
1918struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1919        struct dma_chan *dchan, struct rio_dma_data *data,
1920        enum dma_transfer_direction direction, unsigned long flags)
1921{
1922        return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1923}
1924EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1925
1926#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1927
1928/**
1929 * rio_find_mport - find RIO mport by its ID
1930 * @mport_id: number (ID) of mport device
1931 *
1932 * Given a RIO mport number, the desired mport is located
1933 * in the global list of mports. If the mport is found, a pointer to its
1934 * data structure is returned.  If no mport is found, %NULL is returned.
1935 */
1936struct rio_mport *rio_find_mport(int mport_id)
1937{
1938        struct rio_mport *port;
1939
1940        mutex_lock(&rio_mport_list_lock);
1941        list_for_each_entry(port, &rio_mports, node) {
1942                if (port->id == mport_id)
1943                        goto found;
1944        }
1945        port = NULL;
1946found:
1947        mutex_unlock(&rio_mport_list_lock);
1948
1949        return port;
1950}
1951
1952/**
1953 * rio_register_scan - enumeration/discovery method registration interface
1954 * @mport_id: mport device ID for which fabric scan routine has to be set
1955 *            (RIO_MPORT_ANY = set for all available mports)
1956 * @scan_ops: enumeration/discovery operations structure
1957 *
1958 * Registers enumeration/discovery operations with RapidIO subsystem and
1959 * attaches it to the specified mport device (or all available mports
1960 * if RIO_MPORT_ANY is specified).
1961 *
1962 * Returns error if the mport already has an enumerator attached to it.
1963 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1964 */
1965int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1966{
1967        struct rio_mport *port;
1968        struct rio_scan_node *scan;
1969        int rc = 0;
1970
1971        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1972
1973        if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1974            !scan_ops)
1975                return -EINVAL;
1976
1977        mutex_lock(&rio_mport_list_lock);
1978
1979        /*
1980         * Check if there is another enumerator already registered for
1981         * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1982         * for the same mport ID are not supported.
1983         */
1984        list_for_each_entry(scan, &rio_scans, node) {
1985                if (scan->mport_id == mport_id) {
1986                        rc = -EBUSY;
1987                        goto err_out;
1988                }
1989        }
1990
1991        /*
1992         * Allocate and initialize new scan registration node.
1993         */
1994        scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1995        if (!scan) {
1996                rc = -ENOMEM;
1997                goto err_out;
1998        }
1999
2000        scan->mport_id = mport_id;
2001        scan->ops = scan_ops;
2002
2003        /*
2004         * Traverse the list of registered mports to attach this new scan.
2005         *
2006         * The new scan with matching mport ID overrides any previously attached
2007         * scan assuming that old scan (if any) is the default one (based on the
2008         * enumerator registration check above).
2009         * If the new scan is the global one, it will be attached only to mports
2010         * that do not have their own individual operations already attached.
2011         */
2012        list_for_each_entry(port, &rio_mports, node) {
2013                if (port->id == mport_id) {
2014                        port->nscan = scan_ops;
2015                        break;
2016                } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2017                        port->nscan = scan_ops;
2018        }
2019
2020        list_add_tail(&scan->node, &rio_scans);
2021
2022err_out:
2023        mutex_unlock(&rio_mport_list_lock);
2024
2025        return rc;
2026}
2027EXPORT_SYMBOL_GPL(rio_register_scan);
2028
2029/**
2030 * rio_unregister_scan - removes enumeration/discovery method from mport
2031 * @mport_id: mport device ID for which fabric scan routine has to be
2032 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
2033 *            the specified scan_ops)
2034 * @scan_ops: enumeration/discovery operations structure
2035 *
2036 * Removes enumeration or discovery method assigned to the specified mport
2037 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2038 * all mports that have them attached.
2039 */
2040int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2041{
2042        struct rio_mport *port;
2043        struct rio_scan_node *scan;
2044
2045        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2046
2047        if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2048                return -EINVAL;
2049
2050        mutex_lock(&rio_mport_list_lock);
2051
2052        list_for_each_entry(port, &rio_mports, node)
2053                if (port->id == mport_id ||
2054                    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2055                        port->nscan = NULL;
2056
2057        list_for_each_entry(scan, &rio_scans, node) {
2058                if (scan->mport_id == mport_id) {
2059                        list_del(&scan->node);
2060                        kfree(scan);
2061                        break;
2062                }
2063        }
2064
2065        mutex_unlock(&rio_mport_list_lock);
2066
2067        return 0;
2068}
2069EXPORT_SYMBOL_GPL(rio_unregister_scan);
2070
2071/**
2072 * rio_mport_scan - execute enumeration/discovery on the specified mport
2073 * @mport_id: number (ID) of mport device
2074 */
2075int rio_mport_scan(int mport_id)
2076{
2077        struct rio_mport *port = NULL;
2078        int rc;
2079
2080        mutex_lock(&rio_mport_list_lock);
2081        list_for_each_entry(port, &rio_mports, node) {
2082                if (port->id == mport_id)
2083                        goto found;
2084        }
2085        mutex_unlock(&rio_mport_list_lock);
2086        return -ENODEV;
2087found:
2088        if (!port->nscan) {
2089                mutex_unlock(&rio_mport_list_lock);
2090                return -EINVAL;
2091        }
2092
2093        if (!try_module_get(port->nscan->owner)) {
2094                mutex_unlock(&rio_mport_list_lock);
2095                return -ENODEV;
2096        }
2097
2098        mutex_unlock(&rio_mport_list_lock);
2099
2100        if (port->host_deviceid >= 0)
2101                rc = port->nscan->enumerate(port, 0);
2102        else
2103                rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2104
2105        module_put(port->nscan->owner);
2106        return rc;
2107}
2108
2109static void rio_fixup_device(struct rio_dev *dev)
2110{
2111}
2112
2113static int rio_init(void)
2114{
2115        struct rio_dev *dev = NULL;
2116
2117        while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2118                rio_fixup_device(dev);
2119        }
2120        return 0;
2121}
2122
2123static struct workqueue_struct *rio_wq;
2124
2125struct rio_disc_work {
2126        struct work_struct      work;
2127        struct rio_mport        *mport;
2128};
2129
2130static void disc_work_handler(struct work_struct *_work)
2131{
2132        struct rio_disc_work *work;
2133
2134        work = container_of(_work, struct rio_disc_work, work);
2135        pr_debug("RIO: discovery work for mport %d %s\n",
2136                 work->mport->id, work->mport->name);
2137        if (try_module_get(work->mport->nscan->owner)) {
2138                work->mport->nscan->discover(work->mport, 0);
2139                module_put(work->mport->nscan->owner);
2140        }
2141}
2142
2143int rio_init_mports(void)
2144{
2145        struct rio_mport *port;
2146        struct rio_disc_work *work;
2147        int n = 0;
2148
2149        if (!next_portid)
2150                return -ENODEV;
2151
2152        /*
2153         * First, run enumerations and check if we need to perform discovery
2154         * on any of the registered mports.
2155         */
2156        mutex_lock(&rio_mport_list_lock);
2157        list_for_each_entry(port, &rio_mports, node) {
2158                if (port->host_deviceid >= 0) {
2159                        if (port->nscan && try_module_get(port->nscan->owner)) {
2160                                port->nscan->enumerate(port, 0);
2161                                module_put(port->nscan->owner);
2162                        }
2163                } else
2164                        n++;
2165        }
2166        mutex_unlock(&rio_mport_list_lock);
2167
2168        if (!n)
2169                goto no_disc;
2170
2171        /*
2172         * If we have mports that require discovery schedule a discovery work
2173         * for each of them. If the code below fails to allocate needed
2174         * resources, exit without error to keep results of enumeration
2175         * process (if any).
2176         * TODO: Implement restart of discovery process for all or
2177         * individual discovering mports.
2178         */
2179        rio_wq = alloc_workqueue("riodisc", 0, 0);
2180        if (!rio_wq) {
2181                pr_err("RIO: unable allocate rio_wq\n");
2182                goto no_disc;
2183        }
2184
2185        work = kcalloc(n, sizeof *work, GFP_KERNEL);
2186        if (!work) {
2187                destroy_workqueue(rio_wq);
2188                goto no_disc;
2189        }
2190
2191        n = 0;
2192        mutex_lock(&rio_mport_list_lock);
2193        list_for_each_entry(port, &rio_mports, node) {
2194                if (port->host_deviceid < 0 && port->nscan) {
2195                        work[n].mport = port;
2196                        INIT_WORK(&work[n].work, disc_work_handler);
2197                        queue_work(rio_wq, &work[n].work);
2198                        n++;
2199                }
2200        }
2201
2202        flush_workqueue(rio_wq);
2203        mutex_unlock(&rio_mport_list_lock);
2204        pr_debug("RIO: destroy discovery workqueue\n");
2205        destroy_workqueue(rio_wq);
2206        kfree(work);
2207
2208no_disc:
2209        rio_init();
2210
2211        return 0;
2212}
2213EXPORT_SYMBOL_GPL(rio_init_mports);
2214
2215static int rio_get_hdid(int index)
2216{
2217        if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2218                return -1;
2219
2220        return hdid[index];
2221}
2222
2223int rio_mport_initialize(struct rio_mport *mport)
2224{
2225        if (next_portid >= RIO_MAX_MPORTS) {
2226                pr_err("RIO: reached specified max number of mports\n");
2227                return -ENODEV;
2228        }
2229
2230        atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2231        mport->id = next_portid++;
2232        mport->host_deviceid = rio_get_hdid(mport->id);
2233        mport->nscan = NULL;
2234        mutex_init(&mport->lock);
2235        mport->pwe_refcnt = 0;
2236        INIT_LIST_HEAD(&mport->pwrites);
2237
2238        return 0;
2239}
2240EXPORT_SYMBOL_GPL(rio_mport_initialize);
2241
2242int rio_register_mport(struct rio_mport *port)
2243{
2244        struct rio_scan_node *scan = NULL;
2245        int res = 0;
2246
2247        mutex_lock(&rio_mport_list_lock);
2248
2249        /*
2250         * Check if there are any registered enumeration/discovery operations
2251         * that have to be attached to the added mport.
2252         */
2253        list_for_each_entry(scan, &rio_scans, node) {
2254                if (port->id == scan->mport_id ||
2255                    scan->mport_id == RIO_MPORT_ANY) {
2256                        port->nscan = scan->ops;
2257                        if (port->id == scan->mport_id)
2258                                break;
2259                }
2260        }
2261
2262        list_add_tail(&port->node, &rio_mports);
2263        mutex_unlock(&rio_mport_list_lock);
2264
2265        dev_set_name(&port->dev, "rapidio%d", port->id);
2266        port->dev.class = &rio_mport_class;
2267        atomic_set(&port->state, RIO_DEVICE_RUNNING);
2268
2269        res = device_register(&port->dev);
2270        if (res)
2271                dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2272                        port->id, res);
2273        else
2274                dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2275
2276        return res;
2277}
2278EXPORT_SYMBOL_GPL(rio_register_mport);
2279
2280static int rio_mport_cleanup_callback(struct device *dev, void *data)
2281{
2282        struct rio_dev *rdev = to_rio_dev(dev);
2283
2284        if (dev->bus == &rio_bus_type)
2285                rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2286        return 0;
2287}
2288
2289static int rio_net_remove_children(struct rio_net *net)
2290{
2291        /*
2292         * Unregister all RapidIO devices residing on this net (this will
2293         * invoke notification of registered subsystem interfaces as well).
2294         */
2295        device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2296        return 0;
2297}
2298
2299int rio_unregister_mport(struct rio_mport *port)
2300{
2301        pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2302
2303        /* Transition mport to the SHUTDOWN state */
2304        if (atomic_cmpxchg(&port->state,
2305                           RIO_DEVICE_RUNNING,
2306                           RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2307                pr_err("RIO: %s unexpected state transition for mport %s\n",
2308                        __func__, port->name);
2309        }
2310
2311        if (port->net && port->net->hport == port) {
2312                rio_net_remove_children(port->net);
2313                rio_free_net(port->net);
2314        }
2315
2316        /*
2317         * Unregister all RapidIO devices attached to this mport (this will
2318         * invoke notification of registered subsystem interfaces as well).
2319         */
2320        mutex_lock(&rio_mport_list_lock);
2321        list_del(&port->node);
2322        mutex_unlock(&rio_mport_list_lock);
2323        device_unregister(&port->dev);
2324
2325        return 0;
2326}
2327EXPORT_SYMBOL_GPL(rio_unregister_mport);
2328