linux/drivers/rtc/rtc-armada38x.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RTC driver for the Armada 38x Marvell SoCs
   4 *
   5 * Copyright (C) 2015 Marvell
   6 *
   7 * Gregory Clement <gregory.clement@free-electrons.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/io.h>
  12#include <linux/module.h>
  13#include <linux/of.h>
  14#include <linux/of_device.h>
  15#include <linux/platform_device.h>
  16#include <linux/rtc.h>
  17
  18#define RTC_STATUS          0x0
  19#define RTC_STATUS_ALARM1           BIT(0)
  20#define RTC_STATUS_ALARM2           BIT(1)
  21#define RTC_IRQ1_CONF       0x4
  22#define RTC_IRQ2_CONF       0x8
  23#define RTC_IRQ_AL_EN               BIT(0)
  24#define RTC_IRQ_FREQ_EN             BIT(1)
  25#define RTC_IRQ_FREQ_1HZ            BIT(2)
  26#define RTC_CCR             0x18
  27#define RTC_CCR_MODE                BIT(15)
  28#define RTC_CONF_TEST       0x1C
  29#define RTC_NOMINAL_TIMING          BIT(13)
  30
  31#define RTC_TIME            0xC
  32#define RTC_ALARM1          0x10
  33#define RTC_ALARM2          0x14
  34
  35/* Armada38x SoC registers  */
  36#define RTC_38X_BRIDGE_TIMING_CTL   0x0
  37#define RTC_38X_PERIOD_OFFS             0
  38#define RTC_38X_PERIOD_MASK             (0x3FF << RTC_38X_PERIOD_OFFS)
  39#define RTC_38X_READ_DELAY_OFFS         26
  40#define RTC_38X_READ_DELAY_MASK         (0x1F << RTC_38X_READ_DELAY_OFFS)
  41
  42/* Armada 7K/8K registers  */
  43#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
  44#define RTC_8K_WRCLK_PERIOD_OFFS        0
  45#define RTC_8K_WRCLK_PERIOD_MASK        (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
  46#define RTC_8K_WRCLK_SETUP_OFFS         16
  47#define RTC_8K_WRCLK_SETUP_MASK         (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
  48#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
  49#define RTC_8K_READ_DELAY_OFFS          0
  50#define RTC_8K_READ_DELAY_MASK          (0xFFFF << RTC_8K_READ_DELAY_OFFS)
  51
  52#define RTC_8K_ISR                  0x10
  53#define RTC_8K_IMR                  0x14
  54#define RTC_8K_ALARM2                   BIT(0)
  55
  56#define SOC_RTC_INTERRUPT           0x8
  57#define SOC_RTC_ALARM1                  BIT(0)
  58#define SOC_RTC_ALARM2                  BIT(1)
  59#define SOC_RTC_ALARM1_MASK             BIT(2)
  60#define SOC_RTC_ALARM2_MASK             BIT(3)
  61
  62#define SAMPLE_NR 100
  63
  64struct value_to_freq {
  65        u32 value;
  66        u8 freq;
  67};
  68
  69struct armada38x_rtc {
  70        struct rtc_device   *rtc_dev;
  71        void __iomem        *regs;
  72        void __iomem        *regs_soc;
  73        spinlock_t          lock;
  74        int                 irq;
  75        bool                initialized;
  76        struct value_to_freq *val_to_freq;
  77        struct armada38x_rtc_data *data;
  78};
  79
  80#define ALARM1  0
  81#define ALARM2  1
  82
  83#define ALARM_REG(base, alarm)   ((base) + (alarm) * sizeof(u32))
  84
  85struct armada38x_rtc_data {
  86        /* Initialize the RTC-MBUS bridge timing */
  87        void (*update_mbus_timing)(struct armada38x_rtc *rtc);
  88        u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
  89        void (*clear_isr)(struct armada38x_rtc *rtc);
  90        void (*unmask_interrupt)(struct armada38x_rtc *rtc);
  91        u32 alarm;
  92};
  93
  94/*
  95 * According to the datasheet, the OS should wait 5us after every
  96 * register write to the RTC hard macro so that the required update
  97 * can occur without holding off the system bus
  98 * According to errata RES-3124064, Write to any RTC register
  99 * may fail. As a workaround, before writing to RTC
 100 * register, issue a dummy write of 0x0 twice to RTC Status
 101 * register.
 102 */
 103
 104static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
 105{
 106        writel(0, rtc->regs + RTC_STATUS);
 107        writel(0, rtc->regs + RTC_STATUS);
 108        writel(val, rtc->regs + offset);
 109        udelay(5);
 110}
 111
 112/* Update RTC-MBUS bridge timing parameters */
 113static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
 114{
 115        u32 reg;
 116
 117        reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
 118        reg &= ~RTC_38X_PERIOD_MASK;
 119        reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
 120        reg &= ~RTC_38X_READ_DELAY_MASK;
 121        reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
 122        writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
 123}
 124
 125static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
 126{
 127        u32 reg;
 128
 129        reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
 130        reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
 131        reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
 132        reg &= ~RTC_8K_WRCLK_SETUP_MASK;
 133        reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
 134        writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
 135
 136        reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
 137        reg &= ~RTC_8K_READ_DELAY_MASK;
 138        reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
 139        writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
 140}
 141
 142static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
 143{
 144        return readl(rtc->regs + rtc_reg);
 145}
 146
 147static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
 148{
 149        int i, index_max = 0, max = 0;
 150
 151        for (i = 0; i < SAMPLE_NR; i++) {
 152                rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
 153                rtc->val_to_freq[i].freq = 0;
 154        }
 155
 156        for (i = 0; i < SAMPLE_NR; i++) {
 157                int j = 0;
 158                u32 value = rtc->val_to_freq[i].value;
 159
 160                while (rtc->val_to_freq[j].freq) {
 161                        if (rtc->val_to_freq[j].value == value) {
 162                                rtc->val_to_freq[j].freq++;
 163                                break;
 164                        }
 165                        j++;
 166                }
 167
 168                if (!rtc->val_to_freq[j].freq) {
 169                        rtc->val_to_freq[j].value = value;
 170                        rtc->val_to_freq[j].freq = 1;
 171                }
 172
 173                if (rtc->val_to_freq[j].freq > max) {
 174                        index_max = j;
 175                        max = rtc->val_to_freq[j].freq;
 176                }
 177
 178                /*
 179                 * If a value already has half of the sample this is the most
 180                 * frequent one and we can stop the research right now
 181                 */
 182                if (max > SAMPLE_NR / 2)
 183                        break;
 184        }
 185
 186        return rtc->val_to_freq[index_max].value;
 187}
 188
 189static void armada38x_clear_isr(struct armada38x_rtc *rtc)
 190{
 191        u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
 192
 193        writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
 194}
 195
 196static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
 197{
 198        u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
 199
 200        writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
 201}
 202
 203static void armada8k_clear_isr(struct armada38x_rtc *rtc)
 204{
 205        writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
 206}
 207
 208static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
 209{
 210        writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
 211}
 212
 213static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
 214{
 215        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 216        unsigned long time, flags;
 217
 218        spin_lock_irqsave(&rtc->lock, flags);
 219        time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
 220        spin_unlock_irqrestore(&rtc->lock, flags);
 221
 222        rtc_time64_to_tm(time, tm);
 223
 224        return 0;
 225}
 226
 227static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
 228{
 229        u32 reg;
 230
 231        reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
 232        /* If bits [7:0] are non-zero, assume RTC was uninitialized */
 233        if (reg & 0xff) {
 234                rtc_delayed_write(0, rtc, RTC_CONF_TEST);
 235                msleep(500); /* Oscillator startup time */
 236                rtc_delayed_write(0, rtc, RTC_TIME);
 237                rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
 238                                  RTC_STATUS);
 239                rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
 240        }
 241        rtc->initialized = true;
 242}
 243
 244static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
 245{
 246        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 247        unsigned long time, flags;
 248
 249        time = rtc_tm_to_time64(tm);
 250
 251        if (!rtc->initialized)
 252                armada38x_rtc_reset(rtc);
 253
 254        spin_lock_irqsave(&rtc->lock, flags);
 255        rtc_delayed_write(time, rtc, RTC_TIME);
 256        spin_unlock_irqrestore(&rtc->lock, flags);
 257
 258        return 0;
 259}
 260
 261static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 262{
 263        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 264        unsigned long time, flags;
 265        u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
 266        u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
 267        u32 val;
 268
 269        spin_lock_irqsave(&rtc->lock, flags);
 270
 271        time = rtc->data->read_rtc_reg(rtc, reg);
 272        val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
 273
 274        spin_unlock_irqrestore(&rtc->lock, flags);
 275
 276        alrm->enabled = val ? 1 : 0;
 277        rtc_time64_to_tm(time,  &alrm->time);
 278
 279        return 0;
 280}
 281
 282static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 283{
 284        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 285        u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
 286        u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
 287        unsigned long time, flags;
 288
 289        time = rtc_tm_to_time64(&alrm->time);
 290
 291        spin_lock_irqsave(&rtc->lock, flags);
 292
 293        rtc_delayed_write(time, rtc, reg);
 294
 295        if (alrm->enabled) {
 296                rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
 297                rtc->data->unmask_interrupt(rtc);
 298        }
 299
 300        spin_unlock_irqrestore(&rtc->lock, flags);
 301
 302        return 0;
 303}
 304
 305static int armada38x_rtc_alarm_irq_enable(struct device *dev,
 306                                         unsigned int enabled)
 307{
 308        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 309        u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
 310        unsigned long flags;
 311
 312        spin_lock_irqsave(&rtc->lock, flags);
 313
 314        if (enabled)
 315                rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
 316        else
 317                rtc_delayed_write(0, rtc, reg_irq);
 318
 319        spin_unlock_irqrestore(&rtc->lock, flags);
 320
 321        return 0;
 322}
 323
 324static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
 325{
 326        struct armada38x_rtc *rtc = data;
 327        u32 val;
 328        int event = RTC_IRQF | RTC_AF;
 329        u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
 330
 331        dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
 332
 333        spin_lock(&rtc->lock);
 334
 335        rtc->data->clear_isr(rtc);
 336        val = rtc->data->read_rtc_reg(rtc, reg_irq);
 337        /* disable all the interrupts for alarm*/
 338        rtc_delayed_write(0, rtc, reg_irq);
 339        /* Ack the event */
 340        rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
 341
 342        spin_unlock(&rtc->lock);
 343
 344        if (val & RTC_IRQ_FREQ_EN) {
 345                if (val & RTC_IRQ_FREQ_1HZ)
 346                        event |= RTC_UF;
 347                else
 348                        event |= RTC_PF;
 349        }
 350
 351        rtc_update_irq(rtc->rtc_dev, 1, event);
 352
 353        return IRQ_HANDLED;
 354}
 355
 356/*
 357 * The information given in the Armada 388 functional spec is complex.
 358 * They give two different formulas for calculating the offset value,
 359 * but when considering "Offset" as an 8-bit signed integer, they both
 360 * reduce down to (we shall rename "Offset" as "val" here):
 361 *
 362 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
 363 *
 364 * Converting to time, f = 1/t:
 365 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
 366 *
 367 *   =>  t_measured / t_ideal = val * resolution + 1
 368 *
 369 * "offset" in the RTC interface is defined as:
 370 *   t = t0 * (1 + offset * 1e-9)
 371 * where t is the desired period, t0 is the measured period with a zero
 372 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
 373 *   offset = (t_ideal / t_measured - 1) / 1e-9
 374 *
 375 *   => t_ideal / t_measured = offset * 1e-9 + 1
 376 *
 377 * so:
 378 *
 379 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
 380 *
 381 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
 382 *   offset = 1e18 / (val * R + 1e9) - 1e9
 383 *   val = (1e18 / (offset + 1e9) - 1e9) / R
 384 * with a common transformation:
 385 *   f(x) = 1e18 / (x + 1e9) - 1e9
 386 *   offset = f(val * R)
 387 *   val = f(offset) / R
 388 *
 389 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
 390 */
 391static long armada38x_ppb_convert(long ppb)
 392{
 393        long div = ppb + 1000000000L;
 394
 395        return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
 396}
 397
 398static int armada38x_rtc_read_offset(struct device *dev, long *offset)
 399{
 400        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 401        unsigned long ccr, flags;
 402        long ppb_cor;
 403
 404        spin_lock_irqsave(&rtc->lock, flags);
 405        ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
 406        spin_unlock_irqrestore(&rtc->lock, flags);
 407
 408        ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
 409        /* ppb_cor + 1000000000L can never be zero */
 410        *offset = armada38x_ppb_convert(ppb_cor);
 411
 412        return 0;
 413}
 414
 415static int armada38x_rtc_set_offset(struct device *dev, long offset)
 416{
 417        struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 418        unsigned long ccr = 0;
 419        long ppb_cor, off;
 420
 421        /*
 422         * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
 423         * need to clamp the input.  This equates to -484270 .. 488558.
 424         * Not only is this to stop out of range "off" but also to
 425         * avoid the division by zero in armada38x_ppb_convert().
 426         */
 427        offset = clamp(offset, -484270L, 488558L);
 428
 429        ppb_cor = armada38x_ppb_convert(offset);
 430
 431        /*
 432         * Use low update mode where possible, which gives a better
 433         * resolution of correction.
 434         */
 435        off = DIV_ROUND_CLOSEST(ppb_cor, 954);
 436        if (off > 127 || off < -128) {
 437                ccr = RTC_CCR_MODE;
 438                off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
 439        }
 440
 441        /*
 442         * Armada 388 requires a bit pattern in bits 14..8 depending on
 443         * the sign bit: { 0, ~S, S, S, S, S, S }
 444         */
 445        ccr |= (off & 0x3fff) ^ 0x2000;
 446        rtc_delayed_write(ccr, rtc, RTC_CCR);
 447
 448        return 0;
 449}
 450
 451static const struct rtc_class_ops armada38x_rtc_ops = {
 452        .read_time = armada38x_rtc_read_time,
 453        .set_time = armada38x_rtc_set_time,
 454        .read_alarm = armada38x_rtc_read_alarm,
 455        .set_alarm = armada38x_rtc_set_alarm,
 456        .alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
 457        .read_offset = armada38x_rtc_read_offset,
 458        .set_offset = armada38x_rtc_set_offset,
 459};
 460
 461static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
 462        .read_time = armada38x_rtc_read_time,
 463        .set_time = armada38x_rtc_set_time,
 464        .read_alarm = armada38x_rtc_read_alarm,
 465        .read_offset = armada38x_rtc_read_offset,
 466        .set_offset = armada38x_rtc_set_offset,
 467};
 468
 469static const struct armada38x_rtc_data armada38x_data = {
 470        .update_mbus_timing = rtc_update_38x_mbus_timing_params,
 471        .read_rtc_reg = read_rtc_register_38x_wa,
 472        .clear_isr = armada38x_clear_isr,
 473        .unmask_interrupt = armada38x_unmask_interrupt,
 474        .alarm = ALARM1,
 475};
 476
 477static const struct armada38x_rtc_data armada8k_data = {
 478        .update_mbus_timing = rtc_update_8k_mbus_timing_params,
 479        .read_rtc_reg = read_rtc_register,
 480        .clear_isr = armada8k_clear_isr,
 481        .unmask_interrupt = armada8k_unmask_interrupt,
 482        .alarm = ALARM2,
 483};
 484
 485#ifdef CONFIG_OF
 486static const struct of_device_id armada38x_rtc_of_match_table[] = {
 487        {
 488                .compatible = "marvell,armada-380-rtc",
 489                .data = &armada38x_data,
 490        },
 491        {
 492                .compatible = "marvell,armada-8k-rtc",
 493                .data = &armada8k_data,
 494        },
 495        {}
 496};
 497MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
 498#endif
 499
 500static __init int armada38x_rtc_probe(struct platform_device *pdev)
 501{
 502        struct resource *res;
 503        struct armada38x_rtc *rtc;
 504        const struct of_device_id *match;
 505        int ret;
 506
 507        match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
 508        if (!match)
 509                return -ENODEV;
 510
 511        rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
 512                            GFP_KERNEL);
 513        if (!rtc)
 514                return -ENOMEM;
 515
 516        rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
 517                                sizeof(struct value_to_freq), GFP_KERNEL);
 518        if (!rtc->val_to_freq)
 519                return -ENOMEM;
 520
 521        spin_lock_init(&rtc->lock);
 522
 523        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
 524        rtc->regs = devm_ioremap_resource(&pdev->dev, res);
 525        if (IS_ERR(rtc->regs))
 526                return PTR_ERR(rtc->regs);
 527        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
 528        rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
 529        if (IS_ERR(rtc->regs_soc))
 530                return PTR_ERR(rtc->regs_soc);
 531
 532        rtc->irq = platform_get_irq(pdev, 0);
 533
 534        if (rtc->irq < 0) {
 535                dev_err(&pdev->dev, "no irq\n");
 536                return rtc->irq;
 537        }
 538
 539        rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
 540        if (IS_ERR(rtc->rtc_dev))
 541                return PTR_ERR(rtc->rtc_dev);
 542
 543        if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
 544                                0, pdev->name, rtc) < 0) {
 545                dev_warn(&pdev->dev, "Interrupt not available.\n");
 546                rtc->irq = -1;
 547        }
 548        platform_set_drvdata(pdev, rtc);
 549
 550        if (rtc->irq != -1) {
 551                device_init_wakeup(&pdev->dev, 1);
 552                rtc->rtc_dev->ops = &armada38x_rtc_ops;
 553        } else {
 554                /*
 555                 * If there is no interrupt available then we can't
 556                 * use the alarm
 557                 */
 558                rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
 559        }
 560        rtc->data = (struct armada38x_rtc_data *)match->data;
 561
 562        /* Update RTC-MBUS bridge timing parameters */
 563        rtc->data->update_mbus_timing(rtc);
 564
 565        rtc->rtc_dev->range_max = U32_MAX;
 566
 567        ret = rtc_register_device(rtc->rtc_dev);
 568        if (ret)
 569                dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
 570
 571        return ret;
 572}
 573
 574#ifdef CONFIG_PM_SLEEP
 575static int armada38x_rtc_suspend(struct device *dev)
 576{
 577        if (device_may_wakeup(dev)) {
 578                struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 579
 580                return enable_irq_wake(rtc->irq);
 581        }
 582
 583        return 0;
 584}
 585
 586static int armada38x_rtc_resume(struct device *dev)
 587{
 588        if (device_may_wakeup(dev)) {
 589                struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 590
 591                /* Update RTC-MBUS bridge timing parameters */
 592                rtc->data->update_mbus_timing(rtc);
 593
 594                return disable_irq_wake(rtc->irq);
 595        }
 596
 597        return 0;
 598}
 599#endif
 600
 601static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
 602                         armada38x_rtc_suspend, armada38x_rtc_resume);
 603
 604static struct platform_driver armada38x_rtc_driver = {
 605        .driver         = {
 606                .name   = "armada38x-rtc",
 607                .pm     = &armada38x_rtc_pm_ops,
 608                .of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
 609        },
 610};
 611
 612module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
 613
 614MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
 615MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
 616MODULE_LICENSE("GPL");
 617