linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-170"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76/* How long to wait before giving up on a command */
  77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
  78
  79/* Embedded module documentation macros - see modules.h */
  80MODULE_AUTHOR("Hewlett-Packard Company");
  81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  82        HPSA_DRIVER_VERSION);
  83MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  84MODULE_VERSION(HPSA_DRIVER_VERSION);
  85MODULE_LICENSE("GPL");
  86MODULE_ALIAS("cciss");
  87
  88static int hpsa_simple_mode;
  89module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  90MODULE_PARM_DESC(hpsa_simple_mode,
  91        "Use 'simple mode' rather than 'performant mode'");
  92
  93/* define the PCI info for the cards we can control */
  94static const struct pci_device_id hpsa_pci_device_id[] = {
  95        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 135        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 136        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 141        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 142        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 145        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 146        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 147        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 148        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 149                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150        {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 151                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 152        {0,}
 153};
 154
 155MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 156
 157/*  board_id = Subsystem Device ID & Vendor ID
 158 *  product = Marketing Name for the board
 159 *  access = Address of the struct of function pointers
 160 */
 161static struct board_type products[] = {
 162        {0x40700E11, "Smart Array 5300", &SA5A_access},
 163        {0x40800E11, "Smart Array 5i", &SA5B_access},
 164        {0x40820E11, "Smart Array 532", &SA5B_access},
 165        {0x40830E11, "Smart Array 5312", &SA5B_access},
 166        {0x409A0E11, "Smart Array 641", &SA5A_access},
 167        {0x409B0E11, "Smart Array 642", &SA5A_access},
 168        {0x409C0E11, "Smart Array 6400", &SA5A_access},
 169        {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 170        {0x40910E11, "Smart Array 6i", &SA5A_access},
 171        {0x3225103C, "Smart Array P600", &SA5A_access},
 172        {0x3223103C, "Smart Array P800", &SA5A_access},
 173        {0x3234103C, "Smart Array P400", &SA5A_access},
 174        {0x3235103C, "Smart Array P400i", &SA5A_access},
 175        {0x3211103C, "Smart Array E200i", &SA5A_access},
 176        {0x3212103C, "Smart Array E200", &SA5A_access},
 177        {0x3213103C, "Smart Array E200i", &SA5A_access},
 178        {0x3214103C, "Smart Array E200i", &SA5A_access},
 179        {0x3215103C, "Smart Array E200i", &SA5A_access},
 180        {0x3237103C, "Smart Array E500", &SA5A_access},
 181        {0x323D103C, "Smart Array P700m", &SA5A_access},
 182        {0x3241103C, "Smart Array P212", &SA5_access},
 183        {0x3243103C, "Smart Array P410", &SA5_access},
 184        {0x3245103C, "Smart Array P410i", &SA5_access},
 185        {0x3247103C, "Smart Array P411", &SA5_access},
 186        {0x3249103C, "Smart Array P812", &SA5_access},
 187        {0x324A103C, "Smart Array P712m", &SA5_access},
 188        {0x324B103C, "Smart Array P711m", &SA5_access},
 189        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 190        {0x3350103C, "Smart Array P222", &SA5_access},
 191        {0x3351103C, "Smart Array P420", &SA5_access},
 192        {0x3352103C, "Smart Array P421", &SA5_access},
 193        {0x3353103C, "Smart Array P822", &SA5_access},
 194        {0x3354103C, "Smart Array P420i", &SA5_access},
 195        {0x3355103C, "Smart Array P220i", &SA5_access},
 196        {0x3356103C, "Smart Array P721m", &SA5_access},
 197        {0x1920103C, "Smart Array P430i", &SA5_access},
 198        {0x1921103C, "Smart Array P830i", &SA5_access},
 199        {0x1922103C, "Smart Array P430", &SA5_access},
 200        {0x1923103C, "Smart Array P431", &SA5_access},
 201        {0x1924103C, "Smart Array P830", &SA5_access},
 202        {0x1925103C, "Smart Array P831", &SA5_access},
 203        {0x1926103C, "Smart Array P731m", &SA5_access},
 204        {0x1928103C, "Smart Array P230i", &SA5_access},
 205        {0x1929103C, "Smart Array P530", &SA5_access},
 206        {0x21BD103C, "Smart Array P244br", &SA5_access},
 207        {0x21BE103C, "Smart Array P741m", &SA5_access},
 208        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 209        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 210        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 211        {0x21C2103C, "Smart Array P440", &SA5_access},
 212        {0x21C3103C, "Smart Array P441", &SA5_access},
 213        {0x21C4103C, "Smart Array", &SA5_access},
 214        {0x21C5103C, "Smart Array P841", &SA5_access},
 215        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 216        {0x21C7103C, "Smart HBA H240", &SA5_access},
 217        {0x21C8103C, "Smart HBA H241", &SA5_access},
 218        {0x21C9103C, "Smart Array", &SA5_access},
 219        {0x21CA103C, "Smart Array P246br", &SA5_access},
 220        {0x21CB103C, "Smart Array P840", &SA5_access},
 221        {0x21CC103C, "Smart Array", &SA5_access},
 222        {0x21CD103C, "Smart Array", &SA5_access},
 223        {0x21CE103C, "Smart HBA", &SA5_access},
 224        {0x05809005, "SmartHBA-SA", &SA5_access},
 225        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 226        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 227        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 228        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 229        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 230        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 231        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 232        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 233        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 234        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 235        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 236};
 237
 238static struct scsi_transport_template *hpsa_sas_transport_template;
 239static int hpsa_add_sas_host(struct ctlr_info *h);
 240static void hpsa_delete_sas_host(struct ctlr_info *h);
 241static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 242                        struct hpsa_scsi_dev_t *device);
 243static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 244static struct hpsa_scsi_dev_t
 245        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 246                struct sas_rphy *rphy);
 247
 248#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 249static const struct scsi_cmnd hpsa_cmd_busy;
 250#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 251static const struct scsi_cmnd hpsa_cmd_idle;
 252static int number_of_controllers;
 253
 254static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 255static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 256static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 257                      void __user *arg);
 258
 259#ifdef CONFIG_COMPAT
 260static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 261        void __user *arg);
 262#endif
 263
 264static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 265static struct CommandList *cmd_alloc(struct ctlr_info *h);
 266static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 267static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 268                                            struct scsi_cmnd *scmd);
 269static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 270        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 271        int cmd_type);
 272static void hpsa_free_cmd_pool(struct ctlr_info *h);
 273#define VPD_PAGE (1 << 8)
 274#define HPSA_SIMPLE_ERROR_BITS 0x03
 275
 276static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 277static void hpsa_scan_start(struct Scsi_Host *);
 278static int hpsa_scan_finished(struct Scsi_Host *sh,
 279        unsigned long elapsed_time);
 280static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 281
 282static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 283static int hpsa_slave_alloc(struct scsi_device *sdev);
 284static int hpsa_slave_configure(struct scsi_device *sdev);
 285static void hpsa_slave_destroy(struct scsi_device *sdev);
 286
 287static void hpsa_update_scsi_devices(struct ctlr_info *h);
 288static int check_for_unit_attention(struct ctlr_info *h,
 289        struct CommandList *c);
 290static void check_ioctl_unit_attention(struct ctlr_info *h,
 291        struct CommandList *c);
 292/* performant mode helper functions */
 293static void calc_bucket_map(int *bucket, int num_buckets,
 294        int nsgs, int min_blocks, u32 *bucket_map);
 295static void hpsa_free_performant_mode(struct ctlr_info *h);
 296static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 297static inline u32 next_command(struct ctlr_info *h, u8 q);
 298static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 299                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 300                               u64 *cfg_offset);
 301static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 302                                    unsigned long *memory_bar);
 303static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 304                                bool *legacy_board);
 305static int wait_for_device_to_become_ready(struct ctlr_info *h,
 306                                           unsigned char lunaddr[],
 307                                           int reply_queue);
 308static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 309                                     int wait_for_ready);
 310static inline void finish_cmd(struct CommandList *c);
 311static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 312#define BOARD_NOT_READY 0
 313#define BOARD_READY 1
 314static void hpsa_drain_accel_commands(struct ctlr_info *h);
 315static void hpsa_flush_cache(struct ctlr_info *h);
 316static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 317        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 318        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 319static void hpsa_command_resubmit_worker(struct work_struct *work);
 320static u32 lockup_detected(struct ctlr_info *h);
 321static int detect_controller_lockup(struct ctlr_info *h);
 322static void hpsa_disable_rld_caching(struct ctlr_info *h);
 323static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 324        struct ReportExtendedLUNdata *buf, int bufsize);
 325static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 326        unsigned char scsi3addr[], u8 page);
 327static int hpsa_luns_changed(struct ctlr_info *h);
 328static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 329                               struct hpsa_scsi_dev_t *dev,
 330                               unsigned char *scsi3addr);
 331
 332static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 333{
 334        unsigned long *priv = shost_priv(sdev->host);
 335        return (struct ctlr_info *) *priv;
 336}
 337
 338static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 339{
 340        unsigned long *priv = shost_priv(sh);
 341        return (struct ctlr_info *) *priv;
 342}
 343
 344static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 345{
 346        return c->scsi_cmd == SCSI_CMD_IDLE;
 347}
 348
 349/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 350static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 351                        u8 *sense_key, u8 *asc, u8 *ascq)
 352{
 353        struct scsi_sense_hdr sshdr;
 354        bool rc;
 355
 356        *sense_key = -1;
 357        *asc = -1;
 358        *ascq = -1;
 359
 360        if (sense_data_len < 1)
 361                return;
 362
 363        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 364        if (rc) {
 365                *sense_key = sshdr.sense_key;
 366                *asc = sshdr.asc;
 367                *ascq = sshdr.ascq;
 368        }
 369}
 370
 371static int check_for_unit_attention(struct ctlr_info *h,
 372        struct CommandList *c)
 373{
 374        u8 sense_key, asc, ascq;
 375        int sense_len;
 376
 377        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 378                sense_len = sizeof(c->err_info->SenseInfo);
 379        else
 380                sense_len = c->err_info->SenseLen;
 381
 382        decode_sense_data(c->err_info->SenseInfo, sense_len,
 383                                &sense_key, &asc, &ascq);
 384        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 385                return 0;
 386
 387        switch (asc) {
 388        case STATE_CHANGED:
 389                dev_warn(&h->pdev->dev,
 390                        "%s: a state change detected, command retried\n",
 391                        h->devname);
 392                break;
 393        case LUN_FAILED:
 394                dev_warn(&h->pdev->dev,
 395                        "%s: LUN failure detected\n", h->devname);
 396                break;
 397        case REPORT_LUNS_CHANGED:
 398                dev_warn(&h->pdev->dev,
 399                        "%s: report LUN data changed\n", h->devname);
 400        /*
 401         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 402         * target (array) devices.
 403         */
 404                break;
 405        case POWER_OR_RESET:
 406                dev_warn(&h->pdev->dev,
 407                        "%s: a power on or device reset detected\n",
 408                        h->devname);
 409                break;
 410        case UNIT_ATTENTION_CLEARED:
 411                dev_warn(&h->pdev->dev,
 412                        "%s: unit attention cleared by another initiator\n",
 413                        h->devname);
 414                break;
 415        default:
 416                dev_warn(&h->pdev->dev,
 417                        "%s: unknown unit attention detected\n",
 418                        h->devname);
 419                break;
 420        }
 421        return 1;
 422}
 423
 424static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 425{
 426        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 427                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 428                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 429                return 0;
 430        dev_warn(&h->pdev->dev, HPSA "device busy");
 431        return 1;
 432}
 433
 434static u32 lockup_detected(struct ctlr_info *h);
 435static ssize_t host_show_lockup_detected(struct device *dev,
 436                struct device_attribute *attr, char *buf)
 437{
 438        int ld;
 439        struct ctlr_info *h;
 440        struct Scsi_Host *shost = class_to_shost(dev);
 441
 442        h = shost_to_hba(shost);
 443        ld = lockup_detected(h);
 444
 445        return sprintf(buf, "ld=%d\n", ld);
 446}
 447
 448static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 449                                         struct device_attribute *attr,
 450                                         const char *buf, size_t count)
 451{
 452        int status, len;
 453        struct ctlr_info *h;
 454        struct Scsi_Host *shost = class_to_shost(dev);
 455        char tmpbuf[10];
 456
 457        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 458                return -EACCES;
 459        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 460        strncpy(tmpbuf, buf, len);
 461        tmpbuf[len] = '\0';
 462        if (sscanf(tmpbuf, "%d", &status) != 1)
 463                return -EINVAL;
 464        h = shost_to_hba(shost);
 465        h->acciopath_status = !!status;
 466        dev_warn(&h->pdev->dev,
 467                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 468                h->acciopath_status ? "enabled" : "disabled");
 469        return count;
 470}
 471
 472static ssize_t host_store_raid_offload_debug(struct device *dev,
 473                                         struct device_attribute *attr,
 474                                         const char *buf, size_t count)
 475{
 476        int debug_level, len;
 477        struct ctlr_info *h;
 478        struct Scsi_Host *shost = class_to_shost(dev);
 479        char tmpbuf[10];
 480
 481        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 482                return -EACCES;
 483        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 484        strncpy(tmpbuf, buf, len);
 485        tmpbuf[len] = '\0';
 486        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 487                return -EINVAL;
 488        if (debug_level < 0)
 489                debug_level = 0;
 490        h = shost_to_hba(shost);
 491        h->raid_offload_debug = debug_level;
 492        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 493                h->raid_offload_debug);
 494        return count;
 495}
 496
 497static ssize_t host_store_rescan(struct device *dev,
 498                                 struct device_attribute *attr,
 499                                 const char *buf, size_t count)
 500{
 501        struct ctlr_info *h;
 502        struct Scsi_Host *shost = class_to_shost(dev);
 503        h = shost_to_hba(shost);
 504        hpsa_scan_start(h->scsi_host);
 505        return count;
 506}
 507
 508static ssize_t host_show_firmware_revision(struct device *dev,
 509             struct device_attribute *attr, char *buf)
 510{
 511        struct ctlr_info *h;
 512        struct Scsi_Host *shost = class_to_shost(dev);
 513        unsigned char *fwrev;
 514
 515        h = shost_to_hba(shost);
 516        if (!h->hba_inquiry_data)
 517                return 0;
 518        fwrev = &h->hba_inquiry_data[32];
 519        return snprintf(buf, 20, "%c%c%c%c\n",
 520                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 521}
 522
 523static ssize_t host_show_commands_outstanding(struct device *dev,
 524             struct device_attribute *attr, char *buf)
 525{
 526        struct Scsi_Host *shost = class_to_shost(dev);
 527        struct ctlr_info *h = shost_to_hba(shost);
 528
 529        return snprintf(buf, 20, "%d\n",
 530                        atomic_read(&h->commands_outstanding));
 531}
 532
 533static ssize_t host_show_transport_mode(struct device *dev,
 534        struct device_attribute *attr, char *buf)
 535{
 536        struct ctlr_info *h;
 537        struct Scsi_Host *shost = class_to_shost(dev);
 538
 539        h = shost_to_hba(shost);
 540        return snprintf(buf, 20, "%s\n",
 541                h->transMethod & CFGTBL_Trans_Performant ?
 542                        "performant" : "simple");
 543}
 544
 545static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 546        struct device_attribute *attr, char *buf)
 547{
 548        struct ctlr_info *h;
 549        struct Scsi_Host *shost = class_to_shost(dev);
 550
 551        h = shost_to_hba(shost);
 552        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 553                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 554}
 555
 556/* List of controllers which cannot be hard reset on kexec with reset_devices */
 557static u32 unresettable_controller[] = {
 558        0x324a103C, /* Smart Array P712m */
 559        0x324b103C, /* Smart Array P711m */
 560        0x3223103C, /* Smart Array P800 */
 561        0x3234103C, /* Smart Array P400 */
 562        0x3235103C, /* Smart Array P400i */
 563        0x3211103C, /* Smart Array E200i */
 564        0x3212103C, /* Smart Array E200 */
 565        0x3213103C, /* Smart Array E200i */
 566        0x3214103C, /* Smart Array E200i */
 567        0x3215103C, /* Smart Array E200i */
 568        0x3237103C, /* Smart Array E500 */
 569        0x323D103C, /* Smart Array P700m */
 570        0x40800E11, /* Smart Array 5i */
 571        0x409C0E11, /* Smart Array 6400 */
 572        0x409D0E11, /* Smart Array 6400 EM */
 573        0x40700E11, /* Smart Array 5300 */
 574        0x40820E11, /* Smart Array 532 */
 575        0x40830E11, /* Smart Array 5312 */
 576        0x409A0E11, /* Smart Array 641 */
 577        0x409B0E11, /* Smart Array 642 */
 578        0x40910E11, /* Smart Array 6i */
 579};
 580
 581/* List of controllers which cannot even be soft reset */
 582static u32 soft_unresettable_controller[] = {
 583        0x40800E11, /* Smart Array 5i */
 584        0x40700E11, /* Smart Array 5300 */
 585        0x40820E11, /* Smart Array 532 */
 586        0x40830E11, /* Smart Array 5312 */
 587        0x409A0E11, /* Smart Array 641 */
 588        0x409B0E11, /* Smart Array 642 */
 589        0x40910E11, /* Smart Array 6i */
 590        /* Exclude 640x boards.  These are two pci devices in one slot
 591         * which share a battery backed cache module.  One controls the
 592         * cache, the other accesses the cache through the one that controls
 593         * it.  If we reset the one controlling the cache, the other will
 594         * likely not be happy.  Just forbid resetting this conjoined mess.
 595         * The 640x isn't really supported by hpsa anyway.
 596         */
 597        0x409C0E11, /* Smart Array 6400 */
 598        0x409D0E11, /* Smart Array 6400 EM */
 599};
 600
 601static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 602{
 603        int i;
 604
 605        for (i = 0; i < nelems; i++)
 606                if (a[i] == board_id)
 607                        return 1;
 608        return 0;
 609}
 610
 611static int ctlr_is_hard_resettable(u32 board_id)
 612{
 613        return !board_id_in_array(unresettable_controller,
 614                        ARRAY_SIZE(unresettable_controller), board_id);
 615}
 616
 617static int ctlr_is_soft_resettable(u32 board_id)
 618{
 619        return !board_id_in_array(soft_unresettable_controller,
 620                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 621}
 622
 623static int ctlr_is_resettable(u32 board_id)
 624{
 625        return ctlr_is_hard_resettable(board_id) ||
 626                ctlr_is_soft_resettable(board_id);
 627}
 628
 629static ssize_t host_show_resettable(struct device *dev,
 630        struct device_attribute *attr, char *buf)
 631{
 632        struct ctlr_info *h;
 633        struct Scsi_Host *shost = class_to_shost(dev);
 634
 635        h = shost_to_hba(shost);
 636        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 637}
 638
 639static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 640{
 641        return (scsi3addr[3] & 0xC0) == 0x40;
 642}
 643
 644static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 645        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 646};
 647#define HPSA_RAID_0     0
 648#define HPSA_RAID_4     1
 649#define HPSA_RAID_1     2       /* also used for RAID 10 */
 650#define HPSA_RAID_5     3       /* also used for RAID 50 */
 651#define HPSA_RAID_51    4
 652#define HPSA_RAID_6     5       /* also used for RAID 60 */
 653#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 654#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 655#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 656
 657static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 658{
 659        return !device->physical_device;
 660}
 661
 662static ssize_t raid_level_show(struct device *dev,
 663             struct device_attribute *attr, char *buf)
 664{
 665        ssize_t l = 0;
 666        unsigned char rlevel;
 667        struct ctlr_info *h;
 668        struct scsi_device *sdev;
 669        struct hpsa_scsi_dev_t *hdev;
 670        unsigned long flags;
 671
 672        sdev = to_scsi_device(dev);
 673        h = sdev_to_hba(sdev);
 674        spin_lock_irqsave(&h->lock, flags);
 675        hdev = sdev->hostdata;
 676        if (!hdev) {
 677                spin_unlock_irqrestore(&h->lock, flags);
 678                return -ENODEV;
 679        }
 680
 681        /* Is this even a logical drive? */
 682        if (!is_logical_device(hdev)) {
 683                spin_unlock_irqrestore(&h->lock, flags);
 684                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 685                return l;
 686        }
 687
 688        rlevel = hdev->raid_level;
 689        spin_unlock_irqrestore(&h->lock, flags);
 690        if (rlevel > RAID_UNKNOWN)
 691                rlevel = RAID_UNKNOWN;
 692        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 693        return l;
 694}
 695
 696static ssize_t lunid_show(struct device *dev,
 697             struct device_attribute *attr, char *buf)
 698{
 699        struct ctlr_info *h;
 700        struct scsi_device *sdev;
 701        struct hpsa_scsi_dev_t *hdev;
 702        unsigned long flags;
 703        unsigned char lunid[8];
 704
 705        sdev = to_scsi_device(dev);
 706        h = sdev_to_hba(sdev);
 707        spin_lock_irqsave(&h->lock, flags);
 708        hdev = sdev->hostdata;
 709        if (!hdev) {
 710                spin_unlock_irqrestore(&h->lock, flags);
 711                return -ENODEV;
 712        }
 713        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 714        spin_unlock_irqrestore(&h->lock, flags);
 715        return snprintf(buf, 20, "0x%8phN\n", lunid);
 716}
 717
 718static ssize_t unique_id_show(struct device *dev,
 719             struct device_attribute *attr, char *buf)
 720{
 721        struct ctlr_info *h;
 722        struct scsi_device *sdev;
 723        struct hpsa_scsi_dev_t *hdev;
 724        unsigned long flags;
 725        unsigned char sn[16];
 726
 727        sdev = to_scsi_device(dev);
 728        h = sdev_to_hba(sdev);
 729        spin_lock_irqsave(&h->lock, flags);
 730        hdev = sdev->hostdata;
 731        if (!hdev) {
 732                spin_unlock_irqrestore(&h->lock, flags);
 733                return -ENODEV;
 734        }
 735        memcpy(sn, hdev->device_id, sizeof(sn));
 736        spin_unlock_irqrestore(&h->lock, flags);
 737        return snprintf(buf, 16 * 2 + 2,
 738                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 739                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 740                        sn[0], sn[1], sn[2], sn[3],
 741                        sn[4], sn[5], sn[6], sn[7],
 742                        sn[8], sn[9], sn[10], sn[11],
 743                        sn[12], sn[13], sn[14], sn[15]);
 744}
 745
 746static ssize_t sas_address_show(struct device *dev,
 747              struct device_attribute *attr, char *buf)
 748{
 749        struct ctlr_info *h;
 750        struct scsi_device *sdev;
 751        struct hpsa_scsi_dev_t *hdev;
 752        unsigned long flags;
 753        u64 sas_address;
 754
 755        sdev = to_scsi_device(dev);
 756        h = sdev_to_hba(sdev);
 757        spin_lock_irqsave(&h->lock, flags);
 758        hdev = sdev->hostdata;
 759        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 760                spin_unlock_irqrestore(&h->lock, flags);
 761                return -ENODEV;
 762        }
 763        sas_address = hdev->sas_address;
 764        spin_unlock_irqrestore(&h->lock, flags);
 765
 766        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 767}
 768
 769static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 770             struct device_attribute *attr, char *buf)
 771{
 772        struct ctlr_info *h;
 773        struct scsi_device *sdev;
 774        struct hpsa_scsi_dev_t *hdev;
 775        unsigned long flags;
 776        int offload_enabled;
 777
 778        sdev = to_scsi_device(dev);
 779        h = sdev_to_hba(sdev);
 780        spin_lock_irqsave(&h->lock, flags);
 781        hdev = sdev->hostdata;
 782        if (!hdev) {
 783                spin_unlock_irqrestore(&h->lock, flags);
 784                return -ENODEV;
 785        }
 786        offload_enabled = hdev->offload_enabled;
 787        spin_unlock_irqrestore(&h->lock, flags);
 788
 789        if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 790                return snprintf(buf, 20, "%d\n", offload_enabled);
 791        else
 792                return snprintf(buf, 40, "%s\n",
 793                                "Not applicable for a controller");
 794}
 795
 796#define MAX_PATHS 8
 797static ssize_t path_info_show(struct device *dev,
 798             struct device_attribute *attr, char *buf)
 799{
 800        struct ctlr_info *h;
 801        struct scsi_device *sdev;
 802        struct hpsa_scsi_dev_t *hdev;
 803        unsigned long flags;
 804        int i;
 805        int output_len = 0;
 806        u8 box;
 807        u8 bay;
 808        u8 path_map_index = 0;
 809        char *active;
 810        unsigned char phys_connector[2];
 811
 812        sdev = to_scsi_device(dev);
 813        h = sdev_to_hba(sdev);
 814        spin_lock_irqsave(&h->devlock, flags);
 815        hdev = sdev->hostdata;
 816        if (!hdev) {
 817                spin_unlock_irqrestore(&h->devlock, flags);
 818                return -ENODEV;
 819        }
 820
 821        bay = hdev->bay;
 822        for (i = 0; i < MAX_PATHS; i++) {
 823                path_map_index = 1<<i;
 824                if (i == hdev->active_path_index)
 825                        active = "Active";
 826                else if (hdev->path_map & path_map_index)
 827                        active = "Inactive";
 828                else
 829                        continue;
 830
 831                output_len += scnprintf(buf + output_len,
 832                                PAGE_SIZE - output_len,
 833                                "[%d:%d:%d:%d] %20.20s ",
 834                                h->scsi_host->host_no,
 835                                hdev->bus, hdev->target, hdev->lun,
 836                                scsi_device_type(hdev->devtype));
 837
 838                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 839                        output_len += scnprintf(buf + output_len,
 840                                                PAGE_SIZE - output_len,
 841                                                "%s\n", active);
 842                        continue;
 843                }
 844
 845                box = hdev->box[i];
 846                memcpy(&phys_connector, &hdev->phys_connector[i],
 847                        sizeof(phys_connector));
 848                if (phys_connector[0] < '0')
 849                        phys_connector[0] = '0';
 850                if (phys_connector[1] < '0')
 851                        phys_connector[1] = '0';
 852                output_len += scnprintf(buf + output_len,
 853                                PAGE_SIZE - output_len,
 854                                "PORT: %.2s ",
 855                                phys_connector);
 856                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 857                        hdev->expose_device) {
 858                        if (box == 0 || box == 0xFF) {
 859                                output_len += scnprintf(buf + output_len,
 860                                        PAGE_SIZE - output_len,
 861                                        "BAY: %hhu %s\n",
 862                                        bay, active);
 863                        } else {
 864                                output_len += scnprintf(buf + output_len,
 865                                        PAGE_SIZE - output_len,
 866                                        "BOX: %hhu BAY: %hhu %s\n",
 867                                        box, bay, active);
 868                        }
 869                } else if (box != 0 && box != 0xFF) {
 870                        output_len += scnprintf(buf + output_len,
 871                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 872                                box, active);
 873                } else
 874                        output_len += scnprintf(buf + output_len,
 875                                PAGE_SIZE - output_len, "%s\n", active);
 876        }
 877
 878        spin_unlock_irqrestore(&h->devlock, flags);
 879        return output_len;
 880}
 881
 882static ssize_t host_show_ctlr_num(struct device *dev,
 883        struct device_attribute *attr, char *buf)
 884{
 885        struct ctlr_info *h;
 886        struct Scsi_Host *shost = class_to_shost(dev);
 887
 888        h = shost_to_hba(shost);
 889        return snprintf(buf, 20, "%d\n", h->ctlr);
 890}
 891
 892static ssize_t host_show_legacy_board(struct device *dev,
 893        struct device_attribute *attr, char *buf)
 894{
 895        struct ctlr_info *h;
 896        struct Scsi_Host *shost = class_to_shost(dev);
 897
 898        h = shost_to_hba(shost);
 899        return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 900}
 901
 902static DEVICE_ATTR_RO(raid_level);
 903static DEVICE_ATTR_RO(lunid);
 904static DEVICE_ATTR_RO(unique_id);
 905static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 906static DEVICE_ATTR_RO(sas_address);
 907static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 908                        host_show_hp_ssd_smart_path_enabled, NULL);
 909static DEVICE_ATTR_RO(path_info);
 910static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 911                host_show_hp_ssd_smart_path_status,
 912                host_store_hp_ssd_smart_path_status);
 913static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 914                        host_store_raid_offload_debug);
 915static DEVICE_ATTR(firmware_revision, S_IRUGO,
 916        host_show_firmware_revision, NULL);
 917static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 918        host_show_commands_outstanding, NULL);
 919static DEVICE_ATTR(transport_mode, S_IRUGO,
 920        host_show_transport_mode, NULL);
 921static DEVICE_ATTR(resettable, S_IRUGO,
 922        host_show_resettable, NULL);
 923static DEVICE_ATTR(lockup_detected, S_IRUGO,
 924        host_show_lockup_detected, NULL);
 925static DEVICE_ATTR(ctlr_num, S_IRUGO,
 926        host_show_ctlr_num, NULL);
 927static DEVICE_ATTR(legacy_board, S_IRUGO,
 928        host_show_legacy_board, NULL);
 929
 930static struct device_attribute *hpsa_sdev_attrs[] = {
 931        &dev_attr_raid_level,
 932        &dev_attr_lunid,
 933        &dev_attr_unique_id,
 934        &dev_attr_hp_ssd_smart_path_enabled,
 935        &dev_attr_path_info,
 936        &dev_attr_sas_address,
 937        NULL,
 938};
 939
 940static struct device_attribute *hpsa_shost_attrs[] = {
 941        &dev_attr_rescan,
 942        &dev_attr_firmware_revision,
 943        &dev_attr_commands_outstanding,
 944        &dev_attr_transport_mode,
 945        &dev_attr_resettable,
 946        &dev_attr_hp_ssd_smart_path_status,
 947        &dev_attr_raid_offload_debug,
 948        &dev_attr_lockup_detected,
 949        &dev_attr_ctlr_num,
 950        &dev_attr_legacy_board,
 951        NULL,
 952};
 953
 954#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 955                                 HPSA_MAX_CONCURRENT_PASSTHRUS)
 956
 957static struct scsi_host_template hpsa_driver_template = {
 958        .module                 = THIS_MODULE,
 959        .name                   = HPSA,
 960        .proc_name              = HPSA,
 961        .queuecommand           = hpsa_scsi_queue_command,
 962        .scan_start             = hpsa_scan_start,
 963        .scan_finished          = hpsa_scan_finished,
 964        .change_queue_depth     = hpsa_change_queue_depth,
 965        .this_id                = -1,
 966        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 967        .ioctl                  = hpsa_ioctl,
 968        .slave_alloc            = hpsa_slave_alloc,
 969        .slave_configure        = hpsa_slave_configure,
 970        .slave_destroy          = hpsa_slave_destroy,
 971#ifdef CONFIG_COMPAT
 972        .compat_ioctl           = hpsa_compat_ioctl,
 973#endif
 974        .sdev_attrs = hpsa_sdev_attrs,
 975        .shost_attrs = hpsa_shost_attrs,
 976        .max_sectors = 2048,
 977        .no_write_same = 1,
 978};
 979
 980static inline u32 next_command(struct ctlr_info *h, u8 q)
 981{
 982        u32 a;
 983        struct reply_queue_buffer *rq = &h->reply_queue[q];
 984
 985        if (h->transMethod & CFGTBL_Trans_io_accel1)
 986                return h->access.command_completed(h, q);
 987
 988        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 989                return h->access.command_completed(h, q);
 990
 991        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 992                a = rq->head[rq->current_entry];
 993                rq->current_entry++;
 994                atomic_dec(&h->commands_outstanding);
 995        } else {
 996                a = FIFO_EMPTY;
 997        }
 998        /* Check for wraparound */
 999        if (rq->current_entry == h->max_commands) {
1000                rq->current_entry = 0;
1001                rq->wraparound ^= 1;
1002        }
1003        return a;
1004}
1005
1006/*
1007 * There are some special bits in the bus address of the
1008 * command that we have to set for the controller to know
1009 * how to process the command:
1010 *
1011 * Normal performant mode:
1012 * bit 0: 1 means performant mode, 0 means simple mode.
1013 * bits 1-3 = block fetch table entry
1014 * bits 4-6 = command type (== 0)
1015 *
1016 * ioaccel1 mode:
1017 * bit 0 = "performant mode" bit.
1018 * bits 1-3 = block fetch table entry
1019 * bits 4-6 = command type (== 110)
1020 * (command type is needed because ioaccel1 mode
1021 * commands are submitted through the same register as normal
1022 * mode commands, so this is how the controller knows whether
1023 * the command is normal mode or ioaccel1 mode.)
1024 *
1025 * ioaccel2 mode:
1026 * bit 0 = "performant mode" bit.
1027 * bits 1-4 = block fetch table entry (note extra bit)
1028 * bits 4-6 = not needed, because ioaccel2 mode has
1029 * a separate special register for submitting commands.
1030 */
1031
1032/*
1033 * set_performant_mode: Modify the tag for cciss performant
1034 * set bit 0 for pull model, bits 3-1 for block fetch
1035 * register number
1036 */
1037#define DEFAULT_REPLY_QUEUE (-1)
1038static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1039                                        int reply_queue)
1040{
1041        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043                if (unlikely(!h->msix_vectors))
1044                        return;
1045                c->Header.ReplyQueue = reply_queue;
1046        }
1047}
1048
1049static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050                                                struct CommandList *c,
1051                                                int reply_queue)
1052{
1053        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1054
1055        /*
1056         * Tell the controller to post the reply to the queue for this
1057         * processor.  This seems to give the best I/O throughput.
1058         */
1059        cp->ReplyQueue = reply_queue;
1060        /*
1061         * Set the bits in the address sent down to include:
1062         *  - performant mode bit (bit 0)
1063         *  - pull count (bits 1-3)
1064         *  - command type (bits 4-6)
1065         */
1066        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067                                        IOACCEL1_BUSADDR_CMDTYPE;
1068}
1069
1070static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071                                                struct CommandList *c,
1072                                                int reply_queue)
1073{
1074        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075                &h->ioaccel2_cmd_pool[c->cmdindex];
1076
1077        /* Tell the controller to post the reply to the queue for this
1078         * processor.  This seems to give the best I/O throughput.
1079         */
1080        cp->reply_queue = reply_queue;
1081        /* Set the bits in the address sent down to include:
1082         *  - performant mode bit not used in ioaccel mode 2
1083         *  - pull count (bits 0-3)
1084         *  - command type isn't needed for ioaccel2
1085         */
1086        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1087}
1088
1089static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090                                                struct CommandList *c,
1091                                                int reply_queue)
1092{
1093        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1094
1095        /*
1096         * Tell the controller to post the reply to the queue for this
1097         * processor.  This seems to give the best I/O throughput.
1098         */
1099        cp->reply_queue = reply_queue;
1100        /*
1101         * Set the bits in the address sent down to include:
1102         *  - performant mode bit not used in ioaccel mode 2
1103         *  - pull count (bits 0-3)
1104         *  - command type isn't needed for ioaccel2
1105         */
1106        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1107}
1108
1109static int is_firmware_flash_cmd(u8 *cdb)
1110{
1111        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1112}
1113
1114/*
1115 * During firmware flash, the heartbeat register may not update as frequently
1116 * as it should.  So we dial down lockup detection during firmware flash. and
1117 * dial it back up when firmware flash completes.
1118 */
1119#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123                struct CommandList *c)
1124{
1125        if (!is_firmware_flash_cmd(c->Request.CDB))
1126                return;
1127        atomic_inc(&h->firmware_flash_in_progress);
1128        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1129}
1130
1131static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132                struct CommandList *c)
1133{
1134        if (is_firmware_flash_cmd(c->Request.CDB) &&
1135                atomic_dec_and_test(&h->firmware_flash_in_progress))
1136                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1137}
1138
1139static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140        struct CommandList *c, int reply_queue)
1141{
1142        dial_down_lockup_detection_during_fw_flash(h, c);
1143        atomic_inc(&h->commands_outstanding);
1144        if (c->device)
1145                atomic_inc(&c->device->commands_outstanding);
1146
1147        reply_queue = h->reply_map[raw_smp_processor_id()];
1148        switch (c->cmd_type) {
1149        case CMD_IOACCEL1:
1150                set_ioaccel1_performant_mode(h, c, reply_queue);
1151                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152                break;
1153        case CMD_IOACCEL2:
1154                set_ioaccel2_performant_mode(h, c, reply_queue);
1155                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156                break;
1157        case IOACCEL2_TMF:
1158                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160                break;
1161        default:
1162                set_performant_mode(h, c, reply_queue);
1163                h->access.submit_command(h, c);
1164        }
1165}
1166
1167static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168{
1169        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1170}
1171
1172static inline int is_hba_lunid(unsigned char scsi3addr[])
1173{
1174        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1175}
1176
1177static inline int is_scsi_rev_5(struct ctlr_info *h)
1178{
1179        if (!h->hba_inquiry_data)
1180                return 0;
1181        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1182                return 1;
1183        return 0;
1184}
1185
1186static int hpsa_find_target_lun(struct ctlr_info *h,
1187        unsigned char scsi3addr[], int bus, int *target, int *lun)
1188{
1189        /* finds an unused bus, target, lun for a new physical device
1190         * assumes h->devlock is held
1191         */
1192        int i, found = 0;
1193        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1194
1195        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1196
1197        for (i = 0; i < h->ndevices; i++) {
1198                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199                        __set_bit(h->dev[i]->target, lun_taken);
1200        }
1201
1202        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203        if (i < HPSA_MAX_DEVICES) {
1204                /* *bus = 1; */
1205                *target = i;
1206                *lun = 0;
1207                found = 1;
1208        }
1209        return !found;
1210}
1211
1212static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213        struct hpsa_scsi_dev_t *dev, char *description)
1214{
1215#define LABEL_SIZE 25
1216        char label[LABEL_SIZE];
1217
1218        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1219                return;
1220
1221        switch (dev->devtype) {
1222        case TYPE_RAID:
1223                snprintf(label, LABEL_SIZE, "controller");
1224                break;
1225        case TYPE_ENCLOSURE:
1226                snprintf(label, LABEL_SIZE, "enclosure");
1227                break;
1228        case TYPE_DISK:
1229        case TYPE_ZBC:
1230                if (dev->external)
1231                        snprintf(label, LABEL_SIZE, "external");
1232                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233                        snprintf(label, LABEL_SIZE, "%s",
1234                                raid_label[PHYSICAL_DRIVE]);
1235                else
1236                        snprintf(label, LABEL_SIZE, "RAID-%s",
1237                                dev->raid_level > RAID_UNKNOWN ? "?" :
1238                                raid_label[dev->raid_level]);
1239                break;
1240        case TYPE_ROM:
1241                snprintf(label, LABEL_SIZE, "rom");
1242                break;
1243        case TYPE_TAPE:
1244                snprintf(label, LABEL_SIZE, "tape");
1245                break;
1246        case TYPE_MEDIUM_CHANGER:
1247                snprintf(label, LABEL_SIZE, "changer");
1248                break;
1249        default:
1250                snprintf(label, LABEL_SIZE, "UNKNOWN");
1251                break;
1252        }
1253
1254        dev_printk(level, &h->pdev->dev,
1255                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1257                        description,
1258                        scsi_device_type(dev->devtype),
1259                        dev->vendor,
1260                        dev->model,
1261                        label,
1262                        dev->offload_config ? '+' : '-',
1263                        dev->offload_to_be_enabled ? '+' : '-',
1264                        dev->expose_device);
1265}
1266
1267/* Add an entry into h->dev[] array. */
1268static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269                struct hpsa_scsi_dev_t *device,
1270                struct hpsa_scsi_dev_t *added[], int *nadded)
1271{
1272        /* assumes h->devlock is held */
1273        int n = h->ndevices;
1274        int i;
1275        unsigned char addr1[8], addr2[8];
1276        struct hpsa_scsi_dev_t *sd;
1277
1278        if (n >= HPSA_MAX_DEVICES) {
1279                dev_err(&h->pdev->dev, "too many devices, some will be "
1280                        "inaccessible.\n");
1281                return -1;
1282        }
1283
1284        /* physical devices do not have lun or target assigned until now. */
1285        if (device->lun != -1)
1286                /* Logical device, lun is already assigned. */
1287                goto lun_assigned;
1288
1289        /* If this device a non-zero lun of a multi-lun device
1290         * byte 4 of the 8-byte LUN addr will contain the logical
1291         * unit no, zero otherwise.
1292         */
1293        if (device->scsi3addr[4] == 0) {
1294                /* This is not a non-zero lun of a multi-lun device */
1295                if (hpsa_find_target_lun(h, device->scsi3addr,
1296                        device->bus, &device->target, &device->lun) != 0)
1297                        return -1;
1298                goto lun_assigned;
1299        }
1300
1301        /* This is a non-zero lun of a multi-lun device.
1302         * Search through our list and find the device which
1303         * has the same 8 byte LUN address, excepting byte 4 and 5.
1304         * Assign the same bus and target for this new LUN.
1305         * Use the logical unit number from the firmware.
1306         */
1307        memcpy(addr1, device->scsi3addr, 8);
1308        addr1[4] = 0;
1309        addr1[5] = 0;
1310        for (i = 0; i < n; i++) {
1311                sd = h->dev[i];
1312                memcpy(addr2, sd->scsi3addr, 8);
1313                addr2[4] = 0;
1314                addr2[5] = 0;
1315                /* differ only in byte 4 and 5? */
1316                if (memcmp(addr1, addr2, 8) == 0) {
1317                        device->bus = sd->bus;
1318                        device->target = sd->target;
1319                        device->lun = device->scsi3addr[4];
1320                        break;
1321                }
1322        }
1323        if (device->lun == -1) {
1324                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325                        " suspect firmware bug or unsupported hardware "
1326                        "configuration.\n");
1327                return -1;
1328        }
1329
1330lun_assigned:
1331
1332        h->dev[n] = device;
1333        h->ndevices++;
1334        added[*nadded] = device;
1335        (*nadded)++;
1336        hpsa_show_dev_msg(KERN_INFO, h, device,
1337                device->expose_device ? "added" : "masked");
1338        return 0;
1339}
1340
1341/*
1342 * Called during a scan operation.
1343 *
1344 * Update an entry in h->dev[] array.
1345 */
1346static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347        int entry, struct hpsa_scsi_dev_t *new_entry)
1348{
1349        /* assumes h->devlock is held */
1350        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1351
1352        /* Raid level changed. */
1353        h->dev[entry]->raid_level = new_entry->raid_level;
1354
1355        /*
1356         * ioacccel_handle may have changed for a dual domain disk
1357         */
1358        h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359
1360        /* Raid offload parameters changed.  Careful about the ordering. */
1361        if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1362                /*
1363                 * if drive is newly offload_enabled, we want to copy the
1364                 * raid map data first.  If previously offload_enabled and
1365                 * offload_config were set, raid map data had better be
1366                 * the same as it was before. If raid map data has changed
1367                 * then it had better be the case that
1368                 * h->dev[entry]->offload_enabled is currently 0.
1369                 */
1370                h->dev[entry]->raid_map = new_entry->raid_map;
1371                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372        }
1373        if (new_entry->offload_to_be_enabled) {
1374                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376        }
1377        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378        h->dev[entry]->offload_config = new_entry->offload_config;
1379        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380        h->dev[entry]->queue_depth = new_entry->queue_depth;
1381
1382        /*
1383         * We can turn off ioaccel offload now, but need to delay turning
1384         * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385         * can't do that until all the devices are updated.
1386         */
1387        h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1388
1389        /*
1390         * turn ioaccel off immediately if told to do so.
1391         */
1392        if (!new_entry->offload_to_be_enabled)
1393                h->dev[entry]->offload_enabled = 0;
1394
1395        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1396}
1397
1398/* Replace an entry from h->dev[] array. */
1399static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400        int entry, struct hpsa_scsi_dev_t *new_entry,
1401        struct hpsa_scsi_dev_t *added[], int *nadded,
1402        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1403{
1404        /* assumes h->devlock is held */
1405        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406        removed[*nremoved] = h->dev[entry];
1407        (*nremoved)++;
1408
1409        /*
1410         * New physical devices won't have target/lun assigned yet
1411         * so we need to preserve the values in the slot we are replacing.
1412         */
1413        if (new_entry->target == -1) {
1414                new_entry->target = h->dev[entry]->target;
1415                new_entry->lun = h->dev[entry]->lun;
1416        }
1417
1418        h->dev[entry] = new_entry;
1419        added[*nadded] = new_entry;
1420        (*nadded)++;
1421
1422        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1423}
1424
1425/* Remove an entry from h->dev[] array. */
1426static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1428{
1429        /* assumes h->devlock is held */
1430        int i;
1431        struct hpsa_scsi_dev_t *sd;
1432
1433        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1434
1435        sd = h->dev[entry];
1436        removed[*nremoved] = h->dev[entry];
1437        (*nremoved)++;
1438
1439        for (i = entry; i < h->ndevices-1; i++)
1440                h->dev[i] = h->dev[i+1];
1441        h->ndevices--;
1442        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1443}
1444
1445#define SCSI3ADDR_EQ(a, b) ( \
1446        (a)[7] == (b)[7] && \
1447        (a)[6] == (b)[6] && \
1448        (a)[5] == (b)[5] && \
1449        (a)[4] == (b)[4] && \
1450        (a)[3] == (b)[3] && \
1451        (a)[2] == (b)[2] && \
1452        (a)[1] == (b)[1] && \
1453        (a)[0] == (b)[0])
1454
1455static void fixup_botched_add(struct ctlr_info *h,
1456        struct hpsa_scsi_dev_t *added)
1457{
1458        /* called when scsi_add_device fails in order to re-adjust
1459         * h->dev[] to match the mid layer's view.
1460         */
1461        unsigned long flags;
1462        int i, j;
1463
1464        spin_lock_irqsave(&h->lock, flags);
1465        for (i = 0; i < h->ndevices; i++) {
1466                if (h->dev[i] == added) {
1467                        for (j = i; j < h->ndevices-1; j++)
1468                                h->dev[j] = h->dev[j+1];
1469                        h->ndevices--;
1470                        break;
1471                }
1472        }
1473        spin_unlock_irqrestore(&h->lock, flags);
1474        kfree(added);
1475}
1476
1477static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478        struct hpsa_scsi_dev_t *dev2)
1479{
1480        /* we compare everything except lun and target as these
1481         * are not yet assigned.  Compare parts likely
1482         * to differ first
1483         */
1484        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485                sizeof(dev1->scsi3addr)) != 0)
1486                return 0;
1487        if (memcmp(dev1->device_id, dev2->device_id,
1488                sizeof(dev1->device_id)) != 0)
1489                return 0;
1490        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1491                return 0;
1492        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1493                return 0;
1494        if (dev1->devtype != dev2->devtype)
1495                return 0;
1496        if (dev1->bus != dev2->bus)
1497                return 0;
1498        return 1;
1499}
1500
1501static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502        struct hpsa_scsi_dev_t *dev2)
1503{
1504        /* Device attributes that can change, but don't mean
1505         * that the device is a different device, nor that the OS
1506         * needs to be told anything about the change.
1507         */
1508        if (dev1->raid_level != dev2->raid_level)
1509                return 1;
1510        if (dev1->offload_config != dev2->offload_config)
1511                return 1;
1512        if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1513                return 1;
1514        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515                if (dev1->queue_depth != dev2->queue_depth)
1516                        return 1;
1517        /*
1518         * This can happen for dual domain devices. An active
1519         * path change causes the ioaccel handle to change
1520         *
1521         * for example note the handle differences between p0 and p1
1522         * Device                    WWN               ,WWN hash,Handle
1523         * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524         *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525         */
1526        if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1527                return 1;
1528        return 0;
1529}
1530
1531/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1532 * and return needle location in *index.  If scsi3addr matches, but not
1533 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534 * location in *index.
1535 * In the case of a minor device attribute change, such as RAID level, just
1536 * return DEVICE_UPDATED, along with the updated device's location in index.
1537 * If needle not found, return DEVICE_NOT_FOUND.
1538 */
1539static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1541        int *index)
1542{
1543        int i;
1544#define DEVICE_NOT_FOUND 0
1545#define DEVICE_CHANGED 1
1546#define DEVICE_SAME 2
1547#define DEVICE_UPDATED 3
1548        if (needle == NULL)
1549                return DEVICE_NOT_FOUND;
1550
1551        for (i = 0; i < haystack_size; i++) {
1552                if (haystack[i] == NULL) /* previously removed. */
1553                        continue;
1554                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1555                        *index = i;
1556                        if (device_is_the_same(needle, haystack[i])) {
1557                                if (device_updated(needle, haystack[i]))
1558                                        return DEVICE_UPDATED;
1559                                return DEVICE_SAME;
1560                        } else {
1561                                /* Keep offline devices offline */
1562                                if (needle->volume_offline)
1563                                        return DEVICE_NOT_FOUND;
1564                                return DEVICE_CHANGED;
1565                        }
1566                }
1567        }
1568        *index = -1;
1569        return DEVICE_NOT_FOUND;
1570}
1571
1572static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573                                        unsigned char scsi3addr[])
1574{
1575        struct offline_device_entry *device;
1576        unsigned long flags;
1577
1578        /* Check to see if device is already on the list */
1579        spin_lock_irqsave(&h->offline_device_lock, flags);
1580        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581                if (memcmp(device->scsi3addr, scsi3addr,
1582                        sizeof(device->scsi3addr)) == 0) {
1583                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584                        return;
1585                }
1586        }
1587        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588
1589        /* Device is not on the list, add it. */
1590        device = kmalloc(sizeof(*device), GFP_KERNEL);
1591        if (!device)
1592                return;
1593
1594        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595        spin_lock_irqsave(&h->offline_device_lock, flags);
1596        list_add_tail(&device->offline_list, &h->offline_device_list);
1597        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598}
1599
1600/* Print a message explaining various offline volume states */
1601static void hpsa_show_volume_status(struct ctlr_info *h,
1602        struct hpsa_scsi_dev_t *sd)
1603{
1604        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605                dev_info(&h->pdev->dev,
1606                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607                        h->scsi_host->host_no,
1608                        sd->bus, sd->target, sd->lun);
1609        switch (sd->volume_offline) {
1610        case HPSA_LV_OK:
1611                break;
1612        case HPSA_LV_UNDERGOING_ERASE:
1613                dev_info(&h->pdev->dev,
1614                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615                        h->scsi_host->host_no,
1616                        sd->bus, sd->target, sd->lun);
1617                break;
1618        case HPSA_LV_NOT_AVAILABLE:
1619                dev_info(&h->pdev->dev,
1620                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621                        h->scsi_host->host_no,
1622                        sd->bus, sd->target, sd->lun);
1623                break;
1624        case HPSA_LV_UNDERGOING_RPI:
1625                dev_info(&h->pdev->dev,
1626                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627                        h->scsi_host->host_no,
1628                        sd->bus, sd->target, sd->lun);
1629                break;
1630        case HPSA_LV_PENDING_RPI:
1631                dev_info(&h->pdev->dev,
1632                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633                        h->scsi_host->host_no,
1634                        sd->bus, sd->target, sd->lun);
1635                break;
1636        case HPSA_LV_ENCRYPTED_NO_KEY:
1637                dev_info(&h->pdev->dev,
1638                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639                        h->scsi_host->host_no,
1640                        sd->bus, sd->target, sd->lun);
1641                break;
1642        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643                dev_info(&h->pdev->dev,
1644                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645                        h->scsi_host->host_no,
1646                        sd->bus, sd->target, sd->lun);
1647                break;
1648        case HPSA_LV_UNDERGOING_ENCRYPTION:
1649                dev_info(&h->pdev->dev,
1650                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651                        h->scsi_host->host_no,
1652                        sd->bus, sd->target, sd->lun);
1653                break;
1654        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655                dev_info(&h->pdev->dev,
1656                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657                        h->scsi_host->host_no,
1658                        sd->bus, sd->target, sd->lun);
1659                break;
1660        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661                dev_info(&h->pdev->dev,
1662                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663                        h->scsi_host->host_no,
1664                        sd->bus, sd->target, sd->lun);
1665                break;
1666        case HPSA_LV_PENDING_ENCRYPTION:
1667                dev_info(&h->pdev->dev,
1668                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669                        h->scsi_host->host_no,
1670                        sd->bus, sd->target, sd->lun);
1671                break;
1672        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673                dev_info(&h->pdev->dev,
1674                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675                        h->scsi_host->host_no,
1676                        sd->bus, sd->target, sd->lun);
1677                break;
1678        }
1679}
1680
1681/*
1682 * Figure the list of physical drive pointers for a logical drive with
1683 * raid offload configured.
1684 */
1685static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1687                                struct hpsa_scsi_dev_t *logical_drive)
1688{
1689        struct raid_map_data *map = &logical_drive->raid_map;
1690        struct raid_map_disk_data *dd = &map->data[0];
1691        int i, j;
1692        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693                                le16_to_cpu(map->metadata_disks_per_row);
1694        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695                                le16_to_cpu(map->layout_map_count) *
1696                                total_disks_per_row;
1697        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698                                total_disks_per_row;
1699        int qdepth;
1700
1701        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1703
1704        logical_drive->nphysical_disks = nraid_map_entries;
1705
1706        qdepth = 0;
1707        for (i = 0; i < nraid_map_entries; i++) {
1708                logical_drive->phys_disk[i] = NULL;
1709                if (!logical_drive->offload_config)
1710                        continue;
1711                for (j = 0; j < ndevices; j++) {
1712                        if (dev[j] == NULL)
1713                                continue;
1714                        if (dev[j]->devtype != TYPE_DISK &&
1715                            dev[j]->devtype != TYPE_ZBC)
1716                                continue;
1717                        if (is_logical_device(dev[j]))
1718                                continue;
1719                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1720                                continue;
1721
1722                        logical_drive->phys_disk[i] = dev[j];
1723                        if (i < nphys_disk)
1724                                qdepth = min(h->nr_cmds, qdepth +
1725                                    logical_drive->phys_disk[i]->queue_depth);
1726                        break;
1727                }
1728
1729                /*
1730                 * This can happen if a physical drive is removed and
1731                 * the logical drive is degraded.  In that case, the RAID
1732                 * map data will refer to a physical disk which isn't actually
1733                 * present.  And in that case offload_enabled should already
1734                 * be 0, but we'll turn it off here just in case
1735                 */
1736                if (!logical_drive->phys_disk[i]) {
1737                        dev_warn(&h->pdev->dev,
1738                                "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739                                __func__,
1740                                h->scsi_host->host_no, logical_drive->bus,
1741                                logical_drive->target, logical_drive->lun);
1742                        logical_drive->offload_enabled = 0;
1743                        logical_drive->offload_to_be_enabled = 0;
1744                        logical_drive->queue_depth = 8;
1745                }
1746        }
1747        if (nraid_map_entries)
1748                /*
1749                 * This is correct for reads, too high for full stripe writes,
1750                 * way too high for partial stripe writes
1751                 */
1752                logical_drive->queue_depth = qdepth;
1753        else {
1754                if (logical_drive->external)
1755                        logical_drive->queue_depth = EXTERNAL_QD;
1756                else
1757                        logical_drive->queue_depth = h->nr_cmds;
1758        }
1759}
1760
1761static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1763{
1764        int i;
1765
1766        for (i = 0; i < ndevices; i++) {
1767                if (dev[i] == NULL)
1768                        continue;
1769                if (dev[i]->devtype != TYPE_DISK &&
1770                    dev[i]->devtype != TYPE_ZBC)
1771                        continue;
1772                if (!is_logical_device(dev[i]))
1773                        continue;
1774
1775                /*
1776                 * If offload is currently enabled, the RAID map and
1777                 * phys_disk[] assignment *better* not be changing
1778                 * because we would be changing ioaccel phsy_disk[] pointers
1779                 * on a ioaccel volume processing I/O requests.
1780                 *
1781                 * If an ioaccel volume status changed, initially because it was
1782                 * re-configured and thus underwent a transformation, or
1783                 * a drive failed, we would have received a state change
1784                 * request and ioaccel should have been turned off. When the
1785                 * transformation completes, we get another state change
1786                 * request to turn ioaccel back on. In this case, we need
1787                 * to update the ioaccel information.
1788                 *
1789                 * Thus: If it is not currently enabled, but will be after
1790                 * the scan completes, make sure the ioaccel pointers
1791                 * are up to date.
1792                 */
1793
1794                if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795                        hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1796        }
1797}
1798
1799static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800{
1801        int rc = 0;
1802
1803        if (!h->scsi_host)
1804                return 1;
1805
1806        if (is_logical_device(device)) /* RAID */
1807                rc = scsi_add_device(h->scsi_host, device->bus,
1808                                        device->target, device->lun);
1809        else /* HBA */
1810                rc = hpsa_add_sas_device(h->sas_host, device);
1811
1812        return rc;
1813}
1814
1815static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816                                                struct hpsa_scsi_dev_t *dev)
1817{
1818        int i;
1819        int count = 0;
1820
1821        for (i = 0; i < h->nr_cmds; i++) {
1822                struct CommandList *c = h->cmd_pool + i;
1823                int refcount = atomic_inc_return(&c->refcount);
1824
1825                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1826                                dev->scsi3addr)) {
1827                        unsigned long flags;
1828
1829                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1830                        if (!hpsa_is_cmd_idle(c))
1831                                ++count;
1832                        spin_unlock_irqrestore(&h->lock, flags);
1833                }
1834
1835                cmd_free(h, c);
1836        }
1837
1838        return count;
1839}
1840
1841#define NUM_WAIT 20
1842static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843                                                struct hpsa_scsi_dev_t *device)
1844{
1845        int cmds = 0;
1846        int waits = 0;
1847        int num_wait = NUM_WAIT;
1848
1849        if (device->external)
1850                num_wait = HPSA_EH_PTRAID_TIMEOUT;
1851
1852        while (1) {
1853                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1854                if (cmds == 0)
1855                        break;
1856                if (++waits > num_wait)
1857                        break;
1858                msleep(1000);
1859        }
1860
1861        if (waits > num_wait) {
1862                dev_warn(&h->pdev->dev,
1863                        "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864                        __func__,
1865                        h->scsi_host->host_no,
1866                        device->bus, device->target, device->lun, cmds);
1867        }
1868}
1869
1870static void hpsa_remove_device(struct ctlr_info *h,
1871                        struct hpsa_scsi_dev_t *device)
1872{
1873        struct scsi_device *sdev = NULL;
1874
1875        if (!h->scsi_host)
1876                return;
1877
1878        /*
1879         * Allow for commands to drain
1880         */
1881        device->removed = 1;
1882        hpsa_wait_for_outstanding_commands_for_dev(h, device);
1883
1884        if (is_logical_device(device)) { /* RAID */
1885                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886                                                device->target, device->lun);
1887                if (sdev) {
1888                        scsi_remove_device(sdev);
1889                        scsi_device_put(sdev);
1890                } else {
1891                        /*
1892                         * We don't expect to get here.  Future commands
1893                         * to this device will get a selection timeout as
1894                         * if the device were gone.
1895                         */
1896                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1897                                        "didn't find device for removal.");
1898                }
1899        } else { /* HBA */
1900
1901                hpsa_remove_sas_device(device);
1902        }
1903}
1904
1905static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906        struct hpsa_scsi_dev_t *sd[], int nsds)
1907{
1908        /* sd contains scsi3 addresses and devtypes, and inquiry
1909         * data.  This function takes what's in sd to be the current
1910         * reality and updates h->dev[] to reflect that reality.
1911         */
1912        int i, entry, device_change, changes = 0;
1913        struct hpsa_scsi_dev_t *csd;
1914        unsigned long flags;
1915        struct hpsa_scsi_dev_t **added, **removed;
1916        int nadded, nremoved;
1917
1918        /*
1919         * A reset can cause a device status to change
1920         * re-schedule the scan to see what happened.
1921         */
1922        spin_lock_irqsave(&h->reset_lock, flags);
1923        if (h->reset_in_progress) {
1924                h->drv_req_rescan = 1;
1925                spin_unlock_irqrestore(&h->reset_lock, flags);
1926                return;
1927        }
1928        spin_unlock_irqrestore(&h->reset_lock, flags);
1929
1930        added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931        removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1932
1933        if (!added || !removed) {
1934                dev_warn(&h->pdev->dev, "out of memory in "
1935                        "adjust_hpsa_scsi_table\n");
1936                goto free_and_out;
1937        }
1938
1939        spin_lock_irqsave(&h->devlock, flags);
1940
1941        /* find any devices in h->dev[] that are not in
1942         * sd[] and remove them from h->dev[], and for any
1943         * devices which have changed, remove the old device
1944         * info and add the new device info.
1945         * If minor device attributes change, just update
1946         * the existing device structure.
1947         */
1948        i = 0;
1949        nremoved = 0;
1950        nadded = 0;
1951        while (i < h->ndevices) {
1952                csd = h->dev[i];
1953                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954                if (device_change == DEVICE_NOT_FOUND) {
1955                        changes++;
1956                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957                        continue; /* remove ^^^, hence i not incremented */
1958                } else if (device_change == DEVICE_CHANGED) {
1959                        changes++;
1960                        hpsa_scsi_replace_entry(h, i, sd[entry],
1961                                added, &nadded, removed, &nremoved);
1962                        /* Set it to NULL to prevent it from being freed
1963                         * at the bottom of hpsa_update_scsi_devices()
1964                         */
1965                        sd[entry] = NULL;
1966                } else if (device_change == DEVICE_UPDATED) {
1967                        hpsa_scsi_update_entry(h, i, sd[entry]);
1968                }
1969                i++;
1970        }
1971
1972        /* Now, make sure every device listed in sd[] is also
1973         * listed in h->dev[], adding them if they aren't found
1974         */
1975
1976        for (i = 0; i < nsds; i++) {
1977                if (!sd[i]) /* if already added above. */
1978                        continue;
1979
1980                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981                 * as the SCSI mid-layer does not handle such devices well.
1982                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983                 * at 160Hz, and prevents the system from coming up.
1984                 */
1985                if (sd[i]->volume_offline) {
1986                        hpsa_show_volume_status(h, sd[i]);
1987                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1988                        continue;
1989                }
1990
1991                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992                                        h->ndevices, &entry);
1993                if (device_change == DEVICE_NOT_FOUND) {
1994                        changes++;
1995                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1996                                break;
1997                        sd[i] = NULL; /* prevent from being freed later. */
1998                } else if (device_change == DEVICE_CHANGED) {
1999                        /* should never happen... */
2000                        changes++;
2001                        dev_warn(&h->pdev->dev,
2002                                "device unexpectedly changed.\n");
2003                        /* but if it does happen, we just ignore that device */
2004                }
2005        }
2006        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2007
2008        /*
2009         * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010         * any logical drives that need it enabled.
2011         *
2012         * The raid map should be current by now.
2013         *
2014         * We are updating the device list used for I/O requests.
2015         */
2016        for (i = 0; i < h->ndevices; i++) {
2017                if (h->dev[i] == NULL)
2018                        continue;
2019                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2020        }
2021
2022        spin_unlock_irqrestore(&h->devlock, flags);
2023
2024        /* Monitor devices which are in one of several NOT READY states to be
2025         * brought online later. This must be done without holding h->devlock,
2026         * so don't touch h->dev[]
2027         */
2028        for (i = 0; i < nsds; i++) {
2029                if (!sd[i]) /* if already added above. */
2030                        continue;
2031                if (sd[i]->volume_offline)
2032                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2033        }
2034
2035        /* Don't notify scsi mid layer of any changes the first time through
2036         * (or if there are no changes) scsi_scan_host will do it later the
2037         * first time through.
2038         */
2039        if (!changes)
2040                goto free_and_out;
2041
2042        /* Notify scsi mid layer of any removed devices */
2043        for (i = 0; i < nremoved; i++) {
2044                if (removed[i] == NULL)
2045                        continue;
2046                if (removed[i]->expose_device)
2047                        hpsa_remove_device(h, removed[i]);
2048                kfree(removed[i]);
2049                removed[i] = NULL;
2050        }
2051
2052        /* Notify scsi mid layer of any added devices */
2053        for (i = 0; i < nadded; i++) {
2054                int rc = 0;
2055
2056                if (added[i] == NULL)
2057                        continue;
2058                if (!(added[i]->expose_device))
2059                        continue;
2060                rc = hpsa_add_device(h, added[i]);
2061                if (!rc)
2062                        continue;
2063                dev_warn(&h->pdev->dev,
2064                        "addition failed %d, device not added.", rc);
2065                /* now we have to remove it from h->dev,
2066                 * since it didn't get added to scsi mid layer
2067                 */
2068                fixup_botched_add(h, added[i]);
2069                h->drv_req_rescan = 1;
2070        }
2071
2072free_and_out:
2073        kfree(added);
2074        kfree(removed);
2075}
2076
2077/*
2078 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079 * Assume's h->devlock is held.
2080 */
2081static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082        int bus, int target, int lun)
2083{
2084        int i;
2085        struct hpsa_scsi_dev_t *sd;
2086
2087        for (i = 0; i < h->ndevices; i++) {
2088                sd = h->dev[i];
2089                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2090                        return sd;
2091        }
2092        return NULL;
2093}
2094
2095static int hpsa_slave_alloc(struct scsi_device *sdev)
2096{
2097        struct hpsa_scsi_dev_t *sd = NULL;
2098        unsigned long flags;
2099        struct ctlr_info *h;
2100
2101        h = sdev_to_hba(sdev);
2102        spin_lock_irqsave(&h->devlock, flags);
2103        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104                struct scsi_target *starget;
2105                struct sas_rphy *rphy;
2106
2107                starget = scsi_target(sdev);
2108                rphy = target_to_rphy(starget);
2109                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2110                if (sd) {
2111                        sd->target = sdev_id(sdev);
2112                        sd->lun = sdev->lun;
2113                }
2114        }
2115        if (!sd)
2116                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117                                        sdev_id(sdev), sdev->lun);
2118
2119        if (sd && sd->expose_device) {
2120                atomic_set(&sd->ioaccel_cmds_out, 0);
2121                sdev->hostdata = sd;
2122        } else
2123                sdev->hostdata = NULL;
2124        spin_unlock_irqrestore(&h->devlock, flags);
2125        return 0;
2126}
2127
2128/* configure scsi device based on internal per-device structure */
2129static int hpsa_slave_configure(struct scsi_device *sdev)
2130{
2131        struct hpsa_scsi_dev_t *sd;
2132        int queue_depth;
2133
2134        sd = sdev->hostdata;
2135        sdev->no_uld_attach = !sd || !sd->expose_device;
2136
2137        if (sd) {
2138                sd->was_removed = 0;
2139                if (sd->external) {
2140                        queue_depth = EXTERNAL_QD;
2141                        sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142                        blk_queue_rq_timeout(sdev->request_queue,
2143                                                HPSA_EH_PTRAID_TIMEOUT);
2144                } else {
2145                        queue_depth = sd->queue_depth != 0 ?
2146                                        sd->queue_depth : sdev->host->can_queue;
2147                }
2148        } else
2149                queue_depth = sdev->host->can_queue;
2150
2151        scsi_change_queue_depth(sdev, queue_depth);
2152
2153        return 0;
2154}
2155
2156static void hpsa_slave_destroy(struct scsi_device *sdev)
2157{
2158        struct hpsa_scsi_dev_t *hdev = NULL;
2159
2160        hdev = sdev->hostdata;
2161
2162        if (hdev)
2163                hdev->was_removed = 1;
2164}
2165
2166static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167{
2168        int i;
2169
2170        if (!h->ioaccel2_cmd_sg_list)
2171                return;
2172        for (i = 0; i < h->nr_cmds; i++) {
2173                kfree(h->ioaccel2_cmd_sg_list[i]);
2174                h->ioaccel2_cmd_sg_list[i] = NULL;
2175        }
2176        kfree(h->ioaccel2_cmd_sg_list);
2177        h->ioaccel2_cmd_sg_list = NULL;
2178}
2179
2180static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181{
2182        int i;
2183
2184        if (h->chainsize <= 0)
2185                return 0;
2186
2187        h->ioaccel2_cmd_sg_list =
2188                kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2189                                        GFP_KERNEL);
2190        if (!h->ioaccel2_cmd_sg_list)
2191                return -ENOMEM;
2192        for (i = 0; i < h->nr_cmds; i++) {
2193                h->ioaccel2_cmd_sg_list[i] =
2194                        kmalloc_array(h->maxsgentries,
2195                                      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2196                                      GFP_KERNEL);
2197                if (!h->ioaccel2_cmd_sg_list[i])
2198                        goto clean;
2199        }
2200        return 0;
2201
2202clean:
2203        hpsa_free_ioaccel2_sg_chain_blocks(h);
2204        return -ENOMEM;
2205}
2206
2207static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2208{
2209        int i;
2210
2211        if (!h->cmd_sg_list)
2212                return;
2213        for (i = 0; i < h->nr_cmds; i++) {
2214                kfree(h->cmd_sg_list[i]);
2215                h->cmd_sg_list[i] = NULL;
2216        }
2217        kfree(h->cmd_sg_list);
2218        h->cmd_sg_list = NULL;
2219}
2220
2221static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2222{
2223        int i;
2224
2225        if (h->chainsize <= 0)
2226                return 0;
2227
2228        h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2229                                 GFP_KERNEL);
2230        if (!h->cmd_sg_list)
2231                return -ENOMEM;
2232
2233        for (i = 0; i < h->nr_cmds; i++) {
2234                h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235                                                  sizeof(*h->cmd_sg_list[i]),
2236                                                  GFP_KERNEL);
2237                if (!h->cmd_sg_list[i])
2238                        goto clean;
2239
2240        }
2241        return 0;
2242
2243clean:
2244        hpsa_free_sg_chain_blocks(h);
2245        return -ENOMEM;
2246}
2247
2248static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249        struct io_accel2_cmd *cp, struct CommandList *c)
2250{
2251        struct ioaccel2_sg_element *chain_block;
2252        u64 temp64;
2253        u32 chain_size;
2254
2255        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256        chain_size = le32_to_cpu(cp->sg[0].length);
2257        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2258                                DMA_TO_DEVICE);
2259        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260                /* prevent subsequent unmapping */
2261                cp->sg->address = 0;
2262                return -1;
2263        }
2264        cp->sg->address = cpu_to_le64(temp64);
2265        return 0;
2266}
2267
2268static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269        struct io_accel2_cmd *cp)
2270{
2271        struct ioaccel2_sg_element *chain_sg;
2272        u64 temp64;
2273        u32 chain_size;
2274
2275        chain_sg = cp->sg;
2276        temp64 = le64_to_cpu(chain_sg->address);
2277        chain_size = le32_to_cpu(cp->sg[0].length);
2278        dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2279}
2280
2281static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282        struct CommandList *c)
2283{
2284        struct SGDescriptor *chain_sg, *chain_block;
2285        u64 temp64;
2286        u32 chain_len;
2287
2288        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289        chain_block = h->cmd_sg_list[c->cmdindex];
2290        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291        chain_len = sizeof(*chain_sg) *
2292                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293        chain_sg->Len = cpu_to_le32(chain_len);
2294        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2295                                DMA_TO_DEVICE);
2296        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297                /* prevent subsequent unmapping */
2298                chain_sg->Addr = cpu_to_le64(0);
2299                return -1;
2300        }
2301        chain_sg->Addr = cpu_to_le64(temp64);
2302        return 0;
2303}
2304
2305static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306        struct CommandList *c)
2307{
2308        struct SGDescriptor *chain_sg;
2309
2310        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2311                return;
2312
2313        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314        dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315                        le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2316}
2317
2318
2319/* Decode the various types of errors on ioaccel2 path.
2320 * Return 1 for any error that should generate a RAID path retry.
2321 * Return 0 for errors that don't require a RAID path retry.
2322 */
2323static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324                                        struct CommandList *c,
2325                                        struct scsi_cmnd *cmd,
2326                                        struct io_accel2_cmd *c2,
2327                                        struct hpsa_scsi_dev_t *dev)
2328{
2329        int data_len;
2330        int retry = 0;
2331        u32 ioaccel2_resid = 0;
2332
2333        switch (c2->error_data.serv_response) {
2334        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335                switch (c2->error_data.status) {
2336                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2337                        if (cmd)
2338                                cmd->result = 0;
2339                        break;
2340                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2341                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2342                        if (c2->error_data.data_present !=
2343                                        IOACCEL2_SENSE_DATA_PRESENT) {
2344                                memset(cmd->sense_buffer, 0,
2345                                        SCSI_SENSE_BUFFERSIZE);
2346                                break;
2347                        }
2348                        /* copy the sense data */
2349                        data_len = c2->error_data.sense_data_len;
2350                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2351                                data_len = SCSI_SENSE_BUFFERSIZE;
2352                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2353                                data_len =
2354                                        sizeof(c2->error_data.sense_data_buff);
2355                        memcpy(cmd->sense_buffer,
2356                                c2->error_data.sense_data_buff, data_len);
2357                        retry = 1;
2358                        break;
2359                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2360                        retry = 1;
2361                        break;
2362                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2363                        retry = 1;
2364                        break;
2365                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2366                        retry = 1;
2367                        break;
2368                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2369                        retry = 1;
2370                        break;
2371                default:
2372                        retry = 1;
2373                        break;
2374                }
2375                break;
2376        case IOACCEL2_SERV_RESPONSE_FAILURE:
2377                switch (c2->error_data.status) {
2378                case IOACCEL2_STATUS_SR_IO_ERROR:
2379                case IOACCEL2_STATUS_SR_IO_ABORTED:
2380                case IOACCEL2_STATUS_SR_OVERRUN:
2381                        retry = 1;
2382                        break;
2383                case IOACCEL2_STATUS_SR_UNDERRUN:
2384                        cmd->result = (DID_OK << 16);           /* host byte */
2385                        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2386                        ioaccel2_resid = get_unaligned_le32(
2387                                                &c2->error_data.resid_cnt[0]);
2388                        scsi_set_resid(cmd, ioaccel2_resid);
2389                        break;
2390                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2391                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2392                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2393                        /*
2394                         * Did an HBA disk disappear? We will eventually
2395                         * get a state change event from the controller but
2396                         * in the meantime, we need to tell the OS that the
2397                         * HBA disk is no longer there and stop I/O
2398                         * from going down. This allows the potential re-insert
2399                         * of the disk to get the same device node.
2400                         */
2401                        if (dev->physical_device && dev->expose_device) {
2402                                cmd->result = DID_NO_CONNECT << 16;
2403                                dev->removed = 1;
2404                                h->drv_req_rescan = 1;
2405                                dev_warn(&h->pdev->dev,
2406                                        "%s: device is gone!\n", __func__);
2407                        } else
2408                                /*
2409                                 * Retry by sending down the RAID path.
2410                                 * We will get an event from ctlr to
2411                                 * trigger rescan regardless.
2412                                 */
2413                                retry = 1;
2414                        break;
2415                default:
2416                        retry = 1;
2417                }
2418                break;
2419        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2420                break;
2421        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2422                break;
2423        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2424                retry = 1;
2425                break;
2426        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2427                break;
2428        default:
2429                retry = 1;
2430                break;
2431        }
2432
2433        if (dev->in_reset)
2434                retry = 0;
2435
2436        return retry;   /* retry on raid path? */
2437}
2438
2439static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2440                struct CommandList *c)
2441{
2442        struct hpsa_scsi_dev_t *dev = c->device;
2443
2444        /*
2445         * Reset c->scsi_cmd here so that the reset handler will know
2446         * this command has completed.  Then, check to see if the handler is
2447         * waiting for this command, and, if so, wake it.
2448         */
2449        c->scsi_cmd = SCSI_CMD_IDLE;
2450        mb();   /* Declare command idle before checking for pending events. */
2451        if (dev) {
2452                atomic_dec(&dev->commands_outstanding);
2453                if (dev->in_reset &&
2454                        atomic_read(&dev->commands_outstanding) <= 0)
2455                        wake_up_all(&h->event_sync_wait_queue);
2456        }
2457}
2458
2459static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2460                                      struct CommandList *c)
2461{
2462        hpsa_cmd_resolve_events(h, c);
2463        cmd_tagged_free(h, c);
2464}
2465
2466static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2467                struct CommandList *c, struct scsi_cmnd *cmd)
2468{
2469        hpsa_cmd_resolve_and_free(h, c);
2470        if (cmd && cmd->scsi_done)
2471                cmd->scsi_done(cmd);
2472}
2473
2474static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2475{
2476        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2477        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2478}
2479
2480static void process_ioaccel2_completion(struct ctlr_info *h,
2481                struct CommandList *c, struct scsi_cmnd *cmd,
2482                struct hpsa_scsi_dev_t *dev)
2483{
2484        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2485
2486        /* check for good status */
2487        if (likely(c2->error_data.serv_response == 0 &&
2488                        c2->error_data.status == 0)) {
2489                cmd->result = 0;
2490                return hpsa_cmd_free_and_done(h, c, cmd);
2491        }
2492
2493        /*
2494         * Any RAID offload error results in retry which will use
2495         * the normal I/O path so the controller can handle whatever is
2496         * wrong.
2497         */
2498        if (is_logical_device(dev) &&
2499                c2->error_data.serv_response ==
2500                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2501                if (c2->error_data.status ==
2502                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2503                        dev->offload_enabled = 0;
2504                        dev->offload_to_be_enabled = 0;
2505                }
2506
2507                if (dev->in_reset) {
2508                        cmd->result = DID_RESET << 16;
2509                        return hpsa_cmd_free_and_done(h, c, cmd);
2510                }
2511
2512                return hpsa_retry_cmd(h, c);
2513        }
2514
2515        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2516                return hpsa_retry_cmd(h, c);
2517
2518        return hpsa_cmd_free_and_done(h, c, cmd);
2519}
2520
2521/* Returns 0 on success, < 0 otherwise. */
2522static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2523                                        struct CommandList *cp)
2524{
2525        u8 tmf_status = cp->err_info->ScsiStatus;
2526
2527        switch (tmf_status) {
2528        case CISS_TMF_COMPLETE:
2529                /*
2530                 * CISS_TMF_COMPLETE never happens, instead,
2531                 * ei->CommandStatus == 0 for this case.
2532                 */
2533        case CISS_TMF_SUCCESS:
2534                return 0;
2535        case CISS_TMF_INVALID_FRAME:
2536        case CISS_TMF_NOT_SUPPORTED:
2537        case CISS_TMF_FAILED:
2538        case CISS_TMF_WRONG_LUN:
2539        case CISS_TMF_OVERLAPPED_TAG:
2540                break;
2541        default:
2542                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2543                                tmf_status);
2544                break;
2545        }
2546        return -tmf_status;
2547}
2548
2549static void complete_scsi_command(struct CommandList *cp)
2550{
2551        struct scsi_cmnd *cmd;
2552        struct ctlr_info *h;
2553        struct ErrorInfo *ei;
2554        struct hpsa_scsi_dev_t *dev;
2555        struct io_accel2_cmd *c2;
2556
2557        u8 sense_key;
2558        u8 asc;      /* additional sense code */
2559        u8 ascq;     /* additional sense code qualifier */
2560        unsigned long sense_data_size;
2561
2562        ei = cp->err_info;
2563        cmd = cp->scsi_cmd;
2564        h = cp->h;
2565
2566        if (!cmd->device) {
2567                cmd->result = DID_NO_CONNECT << 16;
2568                return hpsa_cmd_free_and_done(h, cp, cmd);
2569        }
2570
2571        dev = cmd->device->hostdata;
2572        if (!dev) {
2573                cmd->result = DID_NO_CONNECT << 16;
2574                return hpsa_cmd_free_and_done(h, cp, cmd);
2575        }
2576        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2577
2578        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2579        if ((cp->cmd_type == CMD_SCSI) &&
2580                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2581                hpsa_unmap_sg_chain_block(h, cp);
2582
2583        if ((cp->cmd_type == CMD_IOACCEL2) &&
2584                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2585                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2586
2587        cmd->result = (DID_OK << 16);           /* host byte */
2588        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2589
2590        /* SCSI command has already been cleaned up in SML */
2591        if (dev->was_removed) {
2592                hpsa_cmd_resolve_and_free(h, cp);
2593                return;
2594        }
2595
2596        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2597                if (dev->physical_device && dev->expose_device &&
2598                        dev->removed) {
2599                        cmd->result = DID_NO_CONNECT << 16;
2600                        return hpsa_cmd_free_and_done(h, cp, cmd);
2601                }
2602                if (likely(cp->phys_disk != NULL))
2603                        atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2604        }
2605
2606        /*
2607         * We check for lockup status here as it may be set for
2608         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2609         * fail_all_oustanding_cmds()
2610         */
2611        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2612                /* DID_NO_CONNECT will prevent a retry */
2613                cmd->result = DID_NO_CONNECT << 16;
2614                return hpsa_cmd_free_and_done(h, cp, cmd);
2615        }
2616
2617        if (cp->cmd_type == CMD_IOACCEL2)
2618                return process_ioaccel2_completion(h, cp, cmd, dev);
2619
2620        scsi_set_resid(cmd, ei->ResidualCnt);
2621        if (ei->CommandStatus == 0)
2622                return hpsa_cmd_free_and_done(h, cp, cmd);
2623
2624        /* For I/O accelerator commands, copy over some fields to the normal
2625         * CISS header used below for error handling.
2626         */
2627        if (cp->cmd_type == CMD_IOACCEL1) {
2628                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2629                cp->Header.SGList = scsi_sg_count(cmd);
2630                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2631                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2632                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2633                cp->Header.tag = c->tag;
2634                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2635                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2636
2637                /* Any RAID offload error results in retry which will use
2638                 * the normal I/O path so the controller can handle whatever's
2639                 * wrong.
2640                 */
2641                if (is_logical_device(dev)) {
2642                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2643                                dev->offload_enabled = 0;
2644                        return hpsa_retry_cmd(h, cp);
2645                }
2646        }
2647
2648        /* an error has occurred */
2649        switch (ei->CommandStatus) {
2650
2651        case CMD_TARGET_STATUS:
2652                cmd->result |= ei->ScsiStatus;
2653                /* copy the sense data */
2654                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2655                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2656                else
2657                        sense_data_size = sizeof(ei->SenseInfo);
2658                if (ei->SenseLen < sense_data_size)
2659                        sense_data_size = ei->SenseLen;
2660                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2661                if (ei->ScsiStatus)
2662                        decode_sense_data(ei->SenseInfo, sense_data_size,
2663                                &sense_key, &asc, &ascq);
2664                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2665                        switch (sense_key) {
2666                        case ABORTED_COMMAND:
2667                                cmd->result |= DID_SOFT_ERROR << 16;
2668                                break;
2669                        case UNIT_ATTENTION:
2670                                if (asc == 0x3F && ascq == 0x0E)
2671                                        h->drv_req_rescan = 1;
2672                                break;
2673                        case ILLEGAL_REQUEST:
2674                                if (asc == 0x25 && ascq == 0x00) {
2675                                        dev->removed = 1;
2676                                        cmd->result = DID_NO_CONNECT << 16;
2677                                }
2678                                break;
2679                        }
2680                        break;
2681                }
2682                /* Problem was not a check condition
2683                 * Pass it up to the upper layers...
2684                 */
2685                if (ei->ScsiStatus) {
2686                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2687                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2688                                "Returning result: 0x%x\n",
2689                                cp, ei->ScsiStatus,
2690                                sense_key, asc, ascq,
2691                                cmd->result);
2692                } else {  /* scsi status is zero??? How??? */
2693                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2694                                "Returning no connection.\n", cp),
2695
2696                        /* Ordinarily, this case should never happen,
2697                         * but there is a bug in some released firmware
2698                         * revisions that allows it to happen if, for
2699                         * example, a 4100 backplane loses power and
2700                         * the tape drive is in it.  We assume that
2701                         * it's a fatal error of some kind because we
2702                         * can't show that it wasn't. We will make it
2703                         * look like selection timeout since that is
2704                         * the most common reason for this to occur,
2705                         * and it's severe enough.
2706                         */
2707
2708                        cmd->result = DID_NO_CONNECT << 16;
2709                }
2710                break;
2711
2712        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2713                break;
2714        case CMD_DATA_OVERRUN:
2715                dev_warn(&h->pdev->dev,
2716                        "CDB %16phN data overrun\n", cp->Request.CDB);
2717                break;
2718        case CMD_INVALID: {
2719                /* print_bytes(cp, sizeof(*cp), 1, 0);
2720                print_cmd(cp); */
2721                /* We get CMD_INVALID if you address a non-existent device
2722                 * instead of a selection timeout (no response).  You will
2723                 * see this if you yank out a drive, then try to access it.
2724                 * This is kind of a shame because it means that any other
2725                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2726                 * missing target. */
2727                cmd->result = DID_NO_CONNECT << 16;
2728        }
2729                break;
2730        case CMD_PROTOCOL_ERR:
2731                cmd->result = DID_ERROR << 16;
2732                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2733                                cp->Request.CDB);
2734                break;
2735        case CMD_HARDWARE_ERR:
2736                cmd->result = DID_ERROR << 16;
2737                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2738                        cp->Request.CDB);
2739                break;
2740        case CMD_CONNECTION_LOST:
2741                cmd->result = DID_ERROR << 16;
2742                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2743                        cp->Request.CDB);
2744                break;
2745        case CMD_ABORTED:
2746                cmd->result = DID_ABORT << 16;
2747                break;
2748        case CMD_ABORT_FAILED:
2749                cmd->result = DID_ERROR << 16;
2750                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2751                        cp->Request.CDB);
2752                break;
2753        case CMD_UNSOLICITED_ABORT:
2754                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2755                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2756                        cp->Request.CDB);
2757                break;
2758        case CMD_TIMEOUT:
2759                cmd->result = DID_TIME_OUT << 16;
2760                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2761                        cp->Request.CDB);
2762                break;
2763        case CMD_UNABORTABLE:
2764                cmd->result = DID_ERROR << 16;
2765                dev_warn(&h->pdev->dev, "Command unabortable\n");
2766                break;
2767        case CMD_TMF_STATUS:
2768                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2769                        cmd->result = DID_ERROR << 16;
2770                break;
2771        case CMD_IOACCEL_DISABLED:
2772                /* This only handles the direct pass-through case since RAID
2773                 * offload is handled above.  Just attempt a retry.
2774                 */
2775                cmd->result = DID_SOFT_ERROR << 16;
2776                dev_warn(&h->pdev->dev,
2777                                "cp %p had HP SSD Smart Path error\n", cp);
2778                break;
2779        default:
2780                cmd->result = DID_ERROR << 16;
2781                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2782                                cp, ei->CommandStatus);
2783        }
2784
2785        return hpsa_cmd_free_and_done(h, cp, cmd);
2786}
2787
2788static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2789                int sg_used, enum dma_data_direction data_direction)
2790{
2791        int i;
2792
2793        for (i = 0; i < sg_used; i++)
2794                dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2795                                le32_to_cpu(c->SG[i].Len),
2796                                data_direction);
2797}
2798
2799static int hpsa_map_one(struct pci_dev *pdev,
2800                struct CommandList *cp,
2801                unsigned char *buf,
2802                size_t buflen,
2803                enum dma_data_direction data_direction)
2804{
2805        u64 addr64;
2806
2807        if (buflen == 0 || data_direction == DMA_NONE) {
2808                cp->Header.SGList = 0;
2809                cp->Header.SGTotal = cpu_to_le16(0);
2810                return 0;
2811        }
2812
2813        addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2814        if (dma_mapping_error(&pdev->dev, addr64)) {
2815                /* Prevent subsequent unmap of something never mapped */
2816                cp->Header.SGList = 0;
2817                cp->Header.SGTotal = cpu_to_le16(0);
2818                return -1;
2819        }
2820        cp->SG[0].Addr = cpu_to_le64(addr64);
2821        cp->SG[0].Len = cpu_to_le32(buflen);
2822        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2823        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2824        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2825        return 0;
2826}
2827
2828#define NO_TIMEOUT ((unsigned long) -1)
2829#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2830static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2831        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2832{
2833        DECLARE_COMPLETION_ONSTACK(wait);
2834
2835        c->waiting = &wait;
2836        __enqueue_cmd_and_start_io(h, c, reply_queue);
2837        if (timeout_msecs == NO_TIMEOUT) {
2838                /* TODO: get rid of this no-timeout thing */
2839                wait_for_completion_io(&wait);
2840                return IO_OK;
2841        }
2842        if (!wait_for_completion_io_timeout(&wait,
2843                                        msecs_to_jiffies(timeout_msecs))) {
2844                dev_warn(&h->pdev->dev, "Command timed out.\n");
2845                return -ETIMEDOUT;
2846        }
2847        return IO_OK;
2848}
2849
2850static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2851                                   int reply_queue, unsigned long timeout_msecs)
2852{
2853        if (unlikely(lockup_detected(h))) {
2854                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2855                return IO_OK;
2856        }
2857        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2858}
2859
2860static u32 lockup_detected(struct ctlr_info *h)
2861{
2862        int cpu;
2863        u32 rc, *lockup_detected;
2864
2865        cpu = get_cpu();
2866        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2867        rc = *lockup_detected;
2868        put_cpu();
2869        return rc;
2870}
2871
2872#define MAX_DRIVER_CMD_RETRIES 25
2873static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2874                struct CommandList *c, enum dma_data_direction data_direction,
2875                unsigned long timeout_msecs)
2876{
2877        int backoff_time = 10, retry_count = 0;
2878        int rc;
2879
2880        do {
2881                memset(c->err_info, 0, sizeof(*c->err_info));
2882                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2883                                                  timeout_msecs);
2884                if (rc)
2885                        break;
2886                retry_count++;
2887                if (retry_count > 3) {
2888                        msleep(backoff_time);
2889                        if (backoff_time < 1000)
2890                                backoff_time *= 2;
2891                }
2892        } while ((check_for_unit_attention(h, c) ||
2893                        check_for_busy(h, c)) &&
2894                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2895        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2896        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2897                rc = -EIO;
2898        return rc;
2899}
2900
2901static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2902                                struct CommandList *c)
2903{
2904        const u8 *cdb = c->Request.CDB;
2905        const u8 *lun = c->Header.LUN.LunAddrBytes;
2906
2907        dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2908                 txt, lun, cdb);
2909}
2910
2911static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2912                        struct CommandList *cp)
2913{
2914        const struct ErrorInfo *ei = cp->err_info;
2915        struct device *d = &cp->h->pdev->dev;
2916        u8 sense_key, asc, ascq;
2917        int sense_len;
2918
2919        switch (ei->CommandStatus) {
2920        case CMD_TARGET_STATUS:
2921                if (ei->SenseLen > sizeof(ei->SenseInfo))
2922                        sense_len = sizeof(ei->SenseInfo);
2923                else
2924                        sense_len = ei->SenseLen;
2925                decode_sense_data(ei->SenseInfo, sense_len,
2926                                        &sense_key, &asc, &ascq);
2927                hpsa_print_cmd(h, "SCSI status", cp);
2928                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2929                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2930                                sense_key, asc, ascq);
2931                else
2932                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2933                if (ei->ScsiStatus == 0)
2934                        dev_warn(d, "SCSI status is abnormally zero.  "
2935                        "(probably indicates selection timeout "
2936                        "reported incorrectly due to a known "
2937                        "firmware bug, circa July, 2001.)\n");
2938                break;
2939        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2940                break;
2941        case CMD_DATA_OVERRUN:
2942                hpsa_print_cmd(h, "overrun condition", cp);
2943                break;
2944        case CMD_INVALID: {
2945                /* controller unfortunately reports SCSI passthru's
2946                 * to non-existent targets as invalid commands.
2947                 */
2948                hpsa_print_cmd(h, "invalid command", cp);
2949                dev_warn(d, "probably means device no longer present\n");
2950                }
2951                break;
2952        case CMD_PROTOCOL_ERR:
2953                hpsa_print_cmd(h, "protocol error", cp);
2954                break;
2955        case CMD_HARDWARE_ERR:
2956                hpsa_print_cmd(h, "hardware error", cp);
2957                break;
2958        case CMD_CONNECTION_LOST:
2959                hpsa_print_cmd(h, "connection lost", cp);
2960                break;
2961        case CMD_ABORTED:
2962                hpsa_print_cmd(h, "aborted", cp);
2963                break;
2964        case CMD_ABORT_FAILED:
2965                hpsa_print_cmd(h, "abort failed", cp);
2966                break;
2967        case CMD_UNSOLICITED_ABORT:
2968                hpsa_print_cmd(h, "unsolicited abort", cp);
2969                break;
2970        case CMD_TIMEOUT:
2971                hpsa_print_cmd(h, "timed out", cp);
2972                break;
2973        case CMD_UNABORTABLE:
2974                hpsa_print_cmd(h, "unabortable", cp);
2975                break;
2976        case CMD_CTLR_LOCKUP:
2977                hpsa_print_cmd(h, "controller lockup detected", cp);
2978                break;
2979        default:
2980                hpsa_print_cmd(h, "unknown status", cp);
2981                dev_warn(d, "Unknown command status %x\n",
2982                                ei->CommandStatus);
2983        }
2984}
2985
2986static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2987                                        u8 page, u8 *buf, size_t bufsize)
2988{
2989        int rc = IO_OK;
2990        struct CommandList *c;
2991        struct ErrorInfo *ei;
2992
2993        c = cmd_alloc(h);
2994        if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2995                        page, scsi3addr, TYPE_CMD)) {
2996                rc = -1;
2997                goto out;
2998        }
2999        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3000                        NO_TIMEOUT);
3001        if (rc)
3002                goto out;
3003        ei = c->err_info;
3004        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3005                hpsa_scsi_interpret_error(h, c);
3006                rc = -1;
3007        }
3008out:
3009        cmd_free(h, c);
3010        return rc;
3011}
3012
3013static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3014                                                u8 *scsi3addr)
3015{
3016        u8 *buf;
3017        u64 sa = 0;
3018        int rc = 0;
3019
3020        buf = kzalloc(1024, GFP_KERNEL);
3021        if (!buf)
3022                return 0;
3023
3024        rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3025                                        buf, 1024);
3026
3027        if (rc)
3028                goto out;
3029
3030        sa = get_unaligned_be64(buf+12);
3031
3032out:
3033        kfree(buf);
3034        return sa;
3035}
3036
3037static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3038                        u16 page, unsigned char *buf,
3039                        unsigned char bufsize)
3040{
3041        int rc = IO_OK;
3042        struct CommandList *c;
3043        struct ErrorInfo *ei;
3044
3045        c = cmd_alloc(h);
3046
3047        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3048                        page, scsi3addr, TYPE_CMD)) {
3049                rc = -1;
3050                goto out;
3051        }
3052        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3053                        NO_TIMEOUT);
3054        if (rc)
3055                goto out;
3056        ei = c->err_info;
3057        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058                hpsa_scsi_interpret_error(h, c);
3059                rc = -1;
3060        }
3061out:
3062        cmd_free(h, c);
3063        return rc;
3064}
3065
3066static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3067        u8 reset_type, int reply_queue)
3068{
3069        int rc = IO_OK;
3070        struct CommandList *c;
3071        struct ErrorInfo *ei;
3072
3073        c = cmd_alloc(h);
3074        c->device = dev;
3075
3076        /* fill_cmd can't fail here, no data buffer to map. */
3077        (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3078        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3079        if (rc) {
3080                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3081                goto out;
3082        }
3083        /* no unmap needed here because no data xfer. */
3084
3085        ei = c->err_info;
3086        if (ei->CommandStatus != 0) {
3087                hpsa_scsi_interpret_error(h, c);
3088                rc = -1;
3089        }
3090out:
3091        cmd_free(h, c);
3092        return rc;
3093}
3094
3095static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3096                               struct hpsa_scsi_dev_t *dev,
3097                               unsigned char *scsi3addr)
3098{
3099        int i;
3100        bool match = false;
3101        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3102        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3103
3104        if (hpsa_is_cmd_idle(c))
3105                return false;
3106
3107        switch (c->cmd_type) {
3108        case CMD_SCSI:
3109        case CMD_IOCTL_PEND:
3110                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3111                                sizeof(c->Header.LUN.LunAddrBytes));
3112                break;
3113
3114        case CMD_IOACCEL1:
3115        case CMD_IOACCEL2:
3116                if (c->phys_disk == dev) {
3117                        /* HBA mode match */
3118                        match = true;
3119                } else {
3120                        /* Possible RAID mode -- check each phys dev. */
3121                        /* FIXME:  Do we need to take out a lock here?  If
3122                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3123                         * instead. */
3124                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
3125                                /* FIXME: an alternate test might be
3126                                 *
3127                                 * match = dev->phys_disk[i]->ioaccel_handle
3128                                 *              == c2->scsi_nexus;      */
3129                                match = dev->phys_disk[i] == c->phys_disk;
3130                        }
3131                }
3132                break;
3133
3134        case IOACCEL2_TMF:
3135                for (i = 0; i < dev->nphysical_disks && !match; i++) {
3136                        match = dev->phys_disk[i]->ioaccel_handle ==
3137                                        le32_to_cpu(ac->it_nexus);
3138                }
3139                break;
3140
3141        case 0:         /* The command is in the middle of being initialized. */
3142                match = false;
3143                break;
3144
3145        default:
3146                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3147                        c->cmd_type);
3148                BUG();
3149        }
3150
3151        return match;
3152}
3153
3154static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3155        u8 reset_type, int reply_queue)
3156{
3157        int rc = 0;
3158
3159        /* We can really only handle one reset at a time */
3160        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3161                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3162                return -EINTR;
3163        }
3164
3165        rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3166        if (!rc) {
3167                /* incremented by sending the reset request */
3168                atomic_dec(&dev->commands_outstanding);
3169                wait_event(h->event_sync_wait_queue,
3170                        atomic_read(&dev->commands_outstanding) <= 0 ||
3171                        lockup_detected(h));
3172        }
3173
3174        if (unlikely(lockup_detected(h))) {
3175                dev_warn(&h->pdev->dev,
3176                         "Controller lockup detected during reset wait\n");
3177                rc = -ENODEV;
3178        }
3179
3180        if (!rc)
3181                rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3182
3183        mutex_unlock(&h->reset_mutex);
3184        return rc;
3185}
3186
3187static void hpsa_get_raid_level(struct ctlr_info *h,
3188        unsigned char *scsi3addr, unsigned char *raid_level)
3189{
3190        int rc;
3191        unsigned char *buf;
3192
3193        *raid_level = RAID_UNKNOWN;
3194        buf = kzalloc(64, GFP_KERNEL);
3195        if (!buf)
3196                return;
3197
3198        if (!hpsa_vpd_page_supported(h, scsi3addr,
3199                HPSA_VPD_LV_DEVICE_GEOMETRY))
3200                goto exit;
3201
3202        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3203                HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3204
3205        if (rc == 0)
3206                *raid_level = buf[8];
3207        if (*raid_level > RAID_UNKNOWN)
3208                *raid_level = RAID_UNKNOWN;
3209exit:
3210        kfree(buf);
3211        return;
3212}
3213
3214#define HPSA_MAP_DEBUG
3215#ifdef HPSA_MAP_DEBUG
3216static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3217                                struct raid_map_data *map_buff)
3218{
3219        struct raid_map_disk_data *dd = &map_buff->data[0];
3220        int map, row, col;
3221        u16 map_cnt, row_cnt, disks_per_row;
3222
3223        if (rc != 0)
3224                return;
3225
3226        /* Show details only if debugging has been activated. */
3227        if (h->raid_offload_debug < 2)
3228                return;
3229
3230        dev_info(&h->pdev->dev, "structure_size = %u\n",
3231                                le32_to_cpu(map_buff->structure_size));
3232        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3233                        le32_to_cpu(map_buff->volume_blk_size));
3234        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3235                        le64_to_cpu(map_buff->volume_blk_cnt));
3236        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3237                        map_buff->phys_blk_shift);
3238        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3239                        map_buff->parity_rotation_shift);
3240        dev_info(&h->pdev->dev, "strip_size = %u\n",
3241                        le16_to_cpu(map_buff->strip_size));
3242        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3243                        le64_to_cpu(map_buff->disk_starting_blk));
3244        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3245                        le64_to_cpu(map_buff->disk_blk_cnt));
3246        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3247                        le16_to_cpu(map_buff->data_disks_per_row));
3248        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3249                        le16_to_cpu(map_buff->metadata_disks_per_row));
3250        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3251                        le16_to_cpu(map_buff->row_cnt));
3252        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3253                        le16_to_cpu(map_buff->layout_map_count));
3254        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3255                        le16_to_cpu(map_buff->flags));
3256        dev_info(&h->pdev->dev, "encryption = %s\n",
3257                        le16_to_cpu(map_buff->flags) &
3258                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3259        dev_info(&h->pdev->dev, "dekindex = %u\n",
3260                        le16_to_cpu(map_buff->dekindex));
3261        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3262        for (map = 0; map < map_cnt; map++) {
3263                dev_info(&h->pdev->dev, "Map%u:\n", map);
3264                row_cnt = le16_to_cpu(map_buff->row_cnt);
3265                for (row = 0; row < row_cnt; row++) {
3266                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3267                        disks_per_row =
3268                                le16_to_cpu(map_buff->data_disks_per_row);
3269                        for (col = 0; col < disks_per_row; col++, dd++)
3270                                dev_info(&h->pdev->dev,
3271                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3272                                        col, dd->ioaccel_handle,
3273                                        dd->xor_mult[0], dd->xor_mult[1]);
3274                        disks_per_row =
3275                                le16_to_cpu(map_buff->metadata_disks_per_row);
3276                        for (col = 0; col < disks_per_row; col++, dd++)
3277                                dev_info(&h->pdev->dev,
3278                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3279                                        col, dd->ioaccel_handle,
3280                                        dd->xor_mult[0], dd->xor_mult[1]);
3281                }
3282        }
3283}
3284#else
3285static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3286                        __attribute__((unused)) int rc,
3287                        __attribute__((unused)) struct raid_map_data *map_buff)
3288{
3289}
3290#endif
3291
3292static int hpsa_get_raid_map(struct ctlr_info *h,
3293        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3294{
3295        int rc = 0;
3296        struct CommandList *c;
3297        struct ErrorInfo *ei;
3298
3299        c = cmd_alloc(h);
3300
3301        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3302                        sizeof(this_device->raid_map), 0,
3303                        scsi3addr, TYPE_CMD)) {
3304                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3305                cmd_free(h, c);
3306                return -1;
3307        }
3308        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3309                        NO_TIMEOUT);
3310        if (rc)
3311                goto out;
3312        ei = c->err_info;
3313        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314                hpsa_scsi_interpret_error(h, c);
3315                rc = -1;
3316                goto out;
3317        }
3318        cmd_free(h, c);
3319
3320        /* @todo in the future, dynamically allocate RAID map memory */
3321        if (le32_to_cpu(this_device->raid_map.structure_size) >
3322                                sizeof(this_device->raid_map)) {
3323                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3324                rc = -1;
3325        }
3326        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3327        return rc;
3328out:
3329        cmd_free(h, c);
3330        return rc;
3331}
3332
3333static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3334                unsigned char scsi3addr[], u16 bmic_device_index,
3335                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3336{
3337        int rc = IO_OK;
3338        struct CommandList *c;
3339        struct ErrorInfo *ei;
3340
3341        c = cmd_alloc(h);
3342
3343        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3344                0, RAID_CTLR_LUNID, TYPE_CMD);
3345        if (rc)
3346                goto out;
3347
3348        c->Request.CDB[2] = bmic_device_index & 0xff;
3349        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3350
3351        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3352                        NO_TIMEOUT);
3353        if (rc)
3354                goto out;
3355        ei = c->err_info;
3356        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357                hpsa_scsi_interpret_error(h, c);
3358                rc = -1;
3359        }
3360out:
3361        cmd_free(h, c);
3362        return rc;
3363}
3364
3365static int hpsa_bmic_id_controller(struct ctlr_info *h,
3366        struct bmic_identify_controller *buf, size_t bufsize)
3367{
3368        int rc = IO_OK;
3369        struct CommandList *c;
3370        struct ErrorInfo *ei;
3371
3372        c = cmd_alloc(h);
3373
3374        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3375                0, RAID_CTLR_LUNID, TYPE_CMD);
3376        if (rc)
3377                goto out;
3378
3379        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3380                        NO_TIMEOUT);
3381        if (rc)
3382                goto out;
3383        ei = c->err_info;
3384        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                hpsa_scsi_interpret_error(h, c);
3386                rc = -1;
3387        }
3388out:
3389        cmd_free(h, c);
3390        return rc;
3391}
3392
3393static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3394                unsigned char scsi3addr[], u16 bmic_device_index,
3395                struct bmic_identify_physical_device *buf, size_t bufsize)
3396{
3397        int rc = IO_OK;
3398        struct CommandList *c;
3399        struct ErrorInfo *ei;
3400
3401        c = cmd_alloc(h);
3402        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3403                0, RAID_CTLR_LUNID, TYPE_CMD);
3404        if (rc)
3405                goto out;
3406
3407        c->Request.CDB[2] = bmic_device_index & 0xff;
3408        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3409
3410        hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3411                                                NO_TIMEOUT);
3412        ei = c->err_info;
3413        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3414                hpsa_scsi_interpret_error(h, c);
3415                rc = -1;
3416        }
3417out:
3418        cmd_free(h, c);
3419
3420        return rc;
3421}
3422
3423/*
3424 * get enclosure information
3425 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3426 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3427 * Uses id_physical_device to determine the box_index.
3428 */
3429static void hpsa_get_enclosure_info(struct ctlr_info *h,
3430                        unsigned char *scsi3addr,
3431                        struct ReportExtendedLUNdata *rlep, int rle_index,
3432                        struct hpsa_scsi_dev_t *encl_dev)
3433{
3434        int rc = -1;
3435        struct CommandList *c = NULL;
3436        struct ErrorInfo *ei = NULL;
3437        struct bmic_sense_storage_box_params *bssbp = NULL;
3438        struct bmic_identify_physical_device *id_phys = NULL;
3439        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3440        u16 bmic_device_index = 0;
3441
3442        encl_dev->eli =
3443                hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3444
3445        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3446
3447        if (encl_dev->target == -1 || encl_dev->lun == -1) {
3448                rc = IO_OK;
3449                goto out;
3450        }
3451
3452        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3453                rc = IO_OK;
3454                goto out;
3455        }
3456
3457        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3458        if (!bssbp)
3459                goto out;
3460
3461        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3462        if (!id_phys)
3463                goto out;
3464
3465        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3466                                                id_phys, sizeof(*id_phys));
3467        if (rc) {
3468                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3469                        __func__, encl_dev->external, bmic_device_index);
3470                goto out;
3471        }
3472
3473        c = cmd_alloc(h);
3474
3475        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3476                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3477
3478        if (rc)
3479                goto out;
3480
3481        if (id_phys->phys_connector[1] == 'E')
3482                c->Request.CDB[5] = id_phys->box_index;
3483        else
3484                c->Request.CDB[5] = 0;
3485
3486        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3487                                                NO_TIMEOUT);
3488        if (rc)
3489                goto out;
3490
3491        ei = c->err_info;
3492        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3493                rc = -1;
3494                goto out;
3495        }
3496
3497        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3498        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3499                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3500
3501        rc = IO_OK;
3502out:
3503        kfree(bssbp);
3504        kfree(id_phys);
3505
3506        if (c)
3507                cmd_free(h, c);
3508
3509        if (rc != IO_OK)
3510                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3511                        "Error, could not get enclosure information");
3512}
3513
3514static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3515                                                unsigned char *scsi3addr)
3516{
3517        struct ReportExtendedLUNdata *physdev;
3518        u32 nphysicals;
3519        u64 sa = 0;
3520        int i;
3521
3522        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3523        if (!physdev)
3524                return 0;
3525
3526        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3527                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3528                kfree(physdev);
3529                return 0;
3530        }
3531        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3532
3533        for (i = 0; i < nphysicals; i++)
3534                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3535                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3536                        break;
3537                }
3538
3539        kfree(physdev);
3540
3541        return sa;
3542}
3543
3544static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3545                                        struct hpsa_scsi_dev_t *dev)
3546{
3547        int rc;
3548        u64 sa = 0;
3549
3550        if (is_hba_lunid(scsi3addr)) {
3551                struct bmic_sense_subsystem_info *ssi;
3552
3553                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3554                if (!ssi)
3555                        return;
3556
3557                rc = hpsa_bmic_sense_subsystem_information(h,
3558                                        scsi3addr, 0, ssi, sizeof(*ssi));
3559                if (rc == 0) {
3560                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3561                        h->sas_address = sa;
3562                }
3563
3564                kfree(ssi);
3565        } else
3566                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3567
3568        dev->sas_address = sa;
3569}
3570
3571static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3572        struct ReportExtendedLUNdata *physdev)
3573{
3574        u32 nphysicals;
3575        int i;
3576
3577        if (h->discovery_polling)
3578                return;
3579
3580        nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3581
3582        for (i = 0; i < nphysicals; i++) {
3583                if (physdev->LUN[i].device_type ==
3584                        BMIC_DEVICE_TYPE_CONTROLLER
3585                        && !is_hba_lunid(physdev->LUN[i].lunid)) {
3586                        dev_info(&h->pdev->dev,
3587                                "External controller present, activate discovery polling and disable rld caching\n");
3588                        hpsa_disable_rld_caching(h);
3589                        h->discovery_polling = 1;
3590                        break;
3591                }
3592        }
3593}
3594
3595/* Get a device id from inquiry page 0x83 */
3596static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3597        unsigned char scsi3addr[], u8 page)
3598{
3599        int rc;
3600        int i;
3601        int pages;
3602        unsigned char *buf, bufsize;
3603
3604        buf = kzalloc(256, GFP_KERNEL);
3605        if (!buf)
3606                return false;
3607
3608        /* Get the size of the page list first */
3609        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3610                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3611                                buf, HPSA_VPD_HEADER_SZ);
3612        if (rc != 0)
3613                goto exit_unsupported;
3614        pages = buf[3];
3615        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3616                bufsize = pages + HPSA_VPD_HEADER_SZ;
3617        else
3618                bufsize = 255;
3619
3620        /* Get the whole VPD page list */
3621        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3622                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3623                                buf, bufsize);
3624        if (rc != 0)
3625                goto exit_unsupported;
3626
3627        pages = buf[3];
3628        for (i = 1; i <= pages; i++)
3629                if (buf[3 + i] == page)
3630                        goto exit_supported;
3631exit_unsupported:
3632        kfree(buf);
3633        return false;
3634exit_supported:
3635        kfree(buf);
3636        return true;
3637}
3638
3639/*
3640 * Called during a scan operation.
3641 * Sets ioaccel status on the new device list, not the existing device list
3642 *
3643 * The device list used during I/O will be updated later in
3644 * adjust_hpsa_scsi_table.
3645 */
3646static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3647        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3648{
3649        int rc;
3650        unsigned char *buf;
3651        u8 ioaccel_status;
3652
3653        this_device->offload_config = 0;
3654        this_device->offload_enabled = 0;
3655        this_device->offload_to_be_enabled = 0;
3656
3657        buf = kzalloc(64, GFP_KERNEL);
3658        if (!buf)
3659                return;
3660        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3661                goto out;
3662        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3663                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3664        if (rc != 0)
3665                goto out;
3666
3667#define IOACCEL_STATUS_BYTE 4
3668#define OFFLOAD_CONFIGURED_BIT 0x01
3669#define OFFLOAD_ENABLED_BIT 0x02
3670        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3671        this_device->offload_config =
3672                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3673        if (this_device->offload_config) {
3674                this_device->offload_to_be_enabled =
3675                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3676                if (hpsa_get_raid_map(h, scsi3addr, this_device))
3677                        this_device->offload_to_be_enabled = 0;
3678        }
3679
3680out:
3681        kfree(buf);
3682        return;
3683}
3684
3685/* Get the device id from inquiry page 0x83 */
3686static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3687        unsigned char *device_id, int index, int buflen)
3688{
3689        int rc;
3690        unsigned char *buf;
3691
3692        /* Does controller have VPD for device id? */
3693        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3694                return 1; /* not supported */
3695
3696        buf = kzalloc(64, GFP_KERNEL);
3697        if (!buf)
3698                return -ENOMEM;
3699
3700        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3701                                        HPSA_VPD_LV_DEVICE_ID, buf, 64);
3702        if (rc == 0) {
3703                if (buflen > 16)
3704                        buflen = 16;
3705                memcpy(device_id, &buf[8], buflen);
3706        }
3707
3708        kfree(buf);
3709
3710        return rc; /*0 - got id,  otherwise, didn't */
3711}
3712
3713static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3714                void *buf, int bufsize,
3715                int extended_response)
3716{
3717        int rc = IO_OK;
3718        struct CommandList *c;
3719        unsigned char scsi3addr[8];
3720        struct ErrorInfo *ei;
3721
3722        c = cmd_alloc(h);
3723
3724        /* address the controller */
3725        memset(scsi3addr, 0, sizeof(scsi3addr));
3726        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3727                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3728                rc = -EAGAIN;
3729                goto out;
3730        }
3731        if (extended_response)
3732                c->Request.CDB[1] = extended_response;
3733        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3734                        NO_TIMEOUT);
3735        if (rc)
3736                goto out;
3737        ei = c->err_info;
3738        if (ei->CommandStatus != 0 &&
3739            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3740                hpsa_scsi_interpret_error(h, c);
3741                rc = -EIO;
3742        } else {
3743                struct ReportLUNdata *rld = buf;
3744
3745                if (rld->extended_response_flag != extended_response) {
3746                        if (!h->legacy_board) {
3747                                dev_err(&h->pdev->dev,
3748                                        "report luns requested format %u, got %u\n",
3749                                        extended_response,
3750                                        rld->extended_response_flag);
3751                                rc = -EINVAL;
3752                        } else
3753                                rc = -EOPNOTSUPP;
3754                }
3755        }
3756out:
3757        cmd_free(h, c);
3758        return rc;
3759}
3760
3761static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3762                struct ReportExtendedLUNdata *buf, int bufsize)
3763{
3764        int rc;
3765        struct ReportLUNdata *lbuf;
3766
3767        rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3768                                      HPSA_REPORT_PHYS_EXTENDED);
3769        if (!rc || rc != -EOPNOTSUPP)
3770                return rc;
3771
3772        /* REPORT PHYS EXTENDED is not supported */
3773        lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3774        if (!lbuf)
3775                return -ENOMEM;
3776
3777        rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3778        if (!rc) {
3779                int i;
3780                u32 nphys;
3781
3782                /* Copy ReportLUNdata header */
3783                memcpy(buf, lbuf, 8);
3784                nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3785                for (i = 0; i < nphys; i++)
3786                        memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3787        }
3788        kfree(lbuf);
3789        return rc;
3790}
3791
3792static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3793                struct ReportLUNdata *buf, int bufsize)
3794{
3795        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3796}
3797
3798static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3799        int bus, int target, int lun)
3800{
3801        device->bus = bus;
3802        device->target = target;
3803        device->lun = lun;
3804}
3805
3806/* Use VPD inquiry to get details of volume status */
3807static int hpsa_get_volume_status(struct ctlr_info *h,
3808                                        unsigned char scsi3addr[])
3809{
3810        int rc;
3811        int status;
3812        int size;
3813        unsigned char *buf;
3814
3815        buf = kzalloc(64, GFP_KERNEL);
3816        if (!buf)
3817                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3818
3819        /* Does controller have VPD for logical volume status? */
3820        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3821                goto exit_failed;
3822
3823        /* Get the size of the VPD return buffer */
3824        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3825                                        buf, HPSA_VPD_HEADER_SZ);
3826        if (rc != 0)
3827                goto exit_failed;
3828        size = buf[3];
3829
3830        /* Now get the whole VPD buffer */
3831        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3832                                        buf, size + HPSA_VPD_HEADER_SZ);
3833        if (rc != 0)
3834                goto exit_failed;
3835        status = buf[4]; /* status byte */
3836
3837        kfree(buf);
3838        return status;
3839exit_failed:
3840        kfree(buf);
3841        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3842}
3843
3844/* Determine offline status of a volume.
3845 * Return either:
3846 *  0 (not offline)
3847 *  0xff (offline for unknown reasons)
3848 *  # (integer code indicating one of several NOT READY states
3849 *     describing why a volume is to be kept offline)
3850 */
3851static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3852                                        unsigned char scsi3addr[])
3853{
3854        struct CommandList *c;
3855        unsigned char *sense;
3856        u8 sense_key, asc, ascq;
3857        int sense_len;
3858        int rc, ldstat = 0;
3859        u16 cmd_status;
3860        u8 scsi_status;
3861#define ASC_LUN_NOT_READY 0x04
3862#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3863#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3864
3865        c = cmd_alloc(h);
3866
3867        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3868        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3869                                        NO_TIMEOUT);
3870        if (rc) {
3871                cmd_free(h, c);
3872                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3873        }
3874        sense = c->err_info->SenseInfo;
3875        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3876                sense_len = sizeof(c->err_info->SenseInfo);
3877        else
3878                sense_len = c->err_info->SenseLen;
3879        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3880        cmd_status = c->err_info->CommandStatus;
3881        scsi_status = c->err_info->ScsiStatus;
3882        cmd_free(h, c);
3883
3884        /* Determine the reason for not ready state */
3885        ldstat = hpsa_get_volume_status(h, scsi3addr);
3886
3887        /* Keep volume offline in certain cases: */
3888        switch (ldstat) {
3889        case HPSA_LV_FAILED:
3890        case HPSA_LV_UNDERGOING_ERASE:
3891        case HPSA_LV_NOT_AVAILABLE:
3892        case HPSA_LV_UNDERGOING_RPI:
3893        case HPSA_LV_PENDING_RPI:
3894        case HPSA_LV_ENCRYPTED_NO_KEY:
3895        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3896        case HPSA_LV_UNDERGOING_ENCRYPTION:
3897        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3898        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3899                return ldstat;
3900        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3901                /* If VPD status page isn't available,
3902                 * use ASC/ASCQ to determine state
3903                 */
3904                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3905                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3906                        return ldstat;
3907                break;
3908        default:
3909                break;
3910        }
3911        return HPSA_LV_OK;
3912}
3913
3914static int hpsa_update_device_info(struct ctlr_info *h,
3915        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3916        unsigned char *is_OBDR_device)
3917{
3918
3919#define OBDR_SIG_OFFSET 43
3920#define OBDR_TAPE_SIG "$DR-10"
3921#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3922#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3923
3924        unsigned char *inq_buff;
3925        unsigned char *obdr_sig;
3926        int rc = 0;
3927
3928        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3929        if (!inq_buff) {
3930                rc = -ENOMEM;
3931                goto bail_out;
3932        }
3933
3934        /* Do an inquiry to the device to see what it is. */
3935        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3936                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3937                dev_err(&h->pdev->dev,
3938                        "%s: inquiry failed, device will be skipped.\n",
3939                        __func__);
3940                rc = HPSA_INQUIRY_FAILED;
3941                goto bail_out;
3942        }
3943
3944        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3945        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3946
3947        this_device->devtype = (inq_buff[0] & 0x1f);
3948        memcpy(this_device->scsi3addr, scsi3addr, 8);
3949        memcpy(this_device->vendor, &inq_buff[8],
3950                sizeof(this_device->vendor));
3951        memcpy(this_device->model, &inq_buff[16],
3952                sizeof(this_device->model));
3953        this_device->rev = inq_buff[2];
3954        memset(this_device->device_id, 0,
3955                sizeof(this_device->device_id));
3956        if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3957                sizeof(this_device->device_id)) < 0) {
3958                dev_err(&h->pdev->dev,
3959                        "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3960                        h->ctlr, __func__,
3961                        h->scsi_host->host_no,
3962                        this_device->bus, this_device->target,
3963                        this_device->lun,
3964                        scsi_device_type(this_device->devtype),
3965                        this_device->model);
3966                rc = HPSA_LV_FAILED;
3967                goto bail_out;
3968        }
3969
3970        if ((this_device->devtype == TYPE_DISK ||
3971                this_device->devtype == TYPE_ZBC) &&
3972                is_logical_dev_addr_mode(scsi3addr)) {
3973                unsigned char volume_offline;
3974
3975                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3976                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3977                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3978                volume_offline = hpsa_volume_offline(h, scsi3addr);
3979                if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3980                    h->legacy_board) {
3981                        /*
3982                         * Legacy boards might not support volume status
3983                         */
3984                        dev_info(&h->pdev->dev,
3985                                 "C0:T%d:L%d Volume status not available, assuming online.\n",
3986                                 this_device->target, this_device->lun);
3987                        volume_offline = 0;
3988                }
3989                this_device->volume_offline = volume_offline;
3990                if (volume_offline == HPSA_LV_FAILED) {
3991                        rc = HPSA_LV_FAILED;
3992                        dev_err(&h->pdev->dev,
3993                                "%s: LV failed, device will be skipped.\n",
3994                                __func__);
3995                        goto bail_out;
3996                }
3997        } else {
3998                this_device->raid_level = RAID_UNKNOWN;
3999                this_device->offload_config = 0;
4000                this_device->offload_enabled = 0;
4001                this_device->offload_to_be_enabled = 0;
4002                this_device->hba_ioaccel_enabled = 0;
4003                this_device->volume_offline = 0;
4004                this_device->queue_depth = h->nr_cmds;
4005        }
4006
4007        if (this_device->external)
4008                this_device->queue_depth = EXTERNAL_QD;
4009
4010        if (is_OBDR_device) {
4011                /* See if this is a One-Button-Disaster-Recovery device
4012                 * by looking for "$DR-10" at offset 43 in inquiry data.
4013                 */
4014                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4015                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4016                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
4017                                                OBDR_SIG_LEN) == 0);
4018        }
4019        kfree(inq_buff);
4020        return 0;
4021
4022bail_out:
4023        kfree(inq_buff);
4024        return rc;
4025}
4026
4027/*
4028 * Helper function to assign bus, target, lun mapping of devices.
4029 * Logical drive target and lun are assigned at this time, but
4030 * physical device lun and target assignment are deferred (assigned
4031 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4032*/
4033static void figure_bus_target_lun(struct ctlr_info *h,
4034        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4035{
4036        u32 lunid = get_unaligned_le32(lunaddrbytes);
4037
4038        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4039                /* physical device, target and lun filled in later */
4040                if (is_hba_lunid(lunaddrbytes)) {
4041                        int bus = HPSA_HBA_BUS;
4042
4043                        if (!device->rev)
4044                                bus = HPSA_LEGACY_HBA_BUS;
4045                        hpsa_set_bus_target_lun(device,
4046                                        bus, 0, lunid & 0x3fff);
4047                } else
4048                        /* defer target, lun assignment for physical devices */
4049                        hpsa_set_bus_target_lun(device,
4050                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4051                return;
4052        }
4053        /* It's a logical device */
4054        if (device->external) {
4055                hpsa_set_bus_target_lun(device,
4056                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4057                        lunid & 0x00ff);
4058                return;
4059        }
4060        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4061                                0, lunid & 0x3fff);
4062}
4063
4064static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4065        int i, int nphysicals, int nlocal_logicals)
4066{
4067        /* In report logicals, local logicals are listed first,
4068        * then any externals.
4069        */
4070        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4071
4072        if (i == raid_ctlr_position)
4073                return 0;
4074
4075        if (i < logicals_start)
4076                return 0;
4077
4078        /* i is in logicals range, but still within local logicals */
4079        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4080                return 0;
4081
4082        return 1; /* it's an external lun */
4083}
4084
4085/*
4086 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4087 * logdev.  The number of luns in physdev and logdev are returned in
4088 * *nphysicals and *nlogicals, respectively.
4089 * Returns 0 on success, -1 otherwise.
4090 */
4091static int hpsa_gather_lun_info(struct ctlr_info *h,
4092        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4093        struct ReportLUNdata *logdev, u32 *nlogicals)
4094{
4095        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4096                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4097                return -1;
4098        }
4099        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4100        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4101                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4102                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4103                *nphysicals = HPSA_MAX_PHYS_LUN;
4104        }
4105        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4106                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4107                return -1;
4108        }
4109        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4110        /* Reject Logicals in excess of our max capability. */
4111        if (*nlogicals > HPSA_MAX_LUN) {
4112                dev_warn(&h->pdev->dev,
4113                        "maximum logical LUNs (%d) exceeded.  "
4114                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
4115                        *nlogicals - HPSA_MAX_LUN);
4116                *nlogicals = HPSA_MAX_LUN;
4117        }
4118        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4119                dev_warn(&h->pdev->dev,
4120                        "maximum logical + physical LUNs (%d) exceeded. "
4121                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4122                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4123                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4124        }
4125        return 0;
4126}
4127
4128static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4129        int i, int nphysicals, int nlogicals,
4130        struct ReportExtendedLUNdata *physdev_list,
4131        struct ReportLUNdata *logdev_list)
4132{
4133        /* Helper function, figure out where the LUN ID info is coming from
4134         * given index i, lists of physical and logical devices, where in
4135         * the list the raid controller is supposed to appear (first or last)
4136         */
4137
4138        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4139        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4140
4141        if (i == raid_ctlr_position)
4142                return RAID_CTLR_LUNID;
4143
4144        if (i < logicals_start)
4145                return &physdev_list->LUN[i -
4146                                (raid_ctlr_position == 0)].lunid[0];
4147
4148        if (i < last_device)
4149                return &logdev_list->LUN[i - nphysicals -
4150                        (raid_ctlr_position == 0)][0];
4151        BUG();
4152        return NULL;
4153}
4154
4155/* get physical drive ioaccel handle and queue depth */
4156static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4157                struct hpsa_scsi_dev_t *dev,
4158                struct ReportExtendedLUNdata *rlep, int rle_index,
4159                struct bmic_identify_physical_device *id_phys)
4160{
4161        int rc;
4162        struct ext_report_lun_entry *rle;
4163
4164        rle = &rlep->LUN[rle_index];
4165
4166        dev->ioaccel_handle = rle->ioaccel_handle;
4167        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4168                dev->hba_ioaccel_enabled = 1;
4169        memset(id_phys, 0, sizeof(*id_phys));
4170        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4171                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4172                        sizeof(*id_phys));
4173        if (!rc)
4174                /* Reserve space for FW operations */
4175#define DRIVE_CMDS_RESERVED_FOR_FW 2
4176#define DRIVE_QUEUE_DEPTH 7
4177                dev->queue_depth =
4178                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4179                                DRIVE_CMDS_RESERVED_FOR_FW;
4180        else
4181                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4182}
4183
4184static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4185        struct ReportExtendedLUNdata *rlep, int rle_index,
4186        struct bmic_identify_physical_device *id_phys)
4187{
4188        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4189
4190        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4191                this_device->hba_ioaccel_enabled = 1;
4192
4193        memcpy(&this_device->active_path_index,
4194                &id_phys->active_path_number,
4195                sizeof(this_device->active_path_index));
4196        memcpy(&this_device->path_map,
4197                &id_phys->redundant_path_present_map,
4198                sizeof(this_device->path_map));
4199        memcpy(&this_device->box,
4200                &id_phys->alternate_paths_phys_box_on_port,
4201                sizeof(this_device->box));
4202        memcpy(&this_device->phys_connector,
4203                &id_phys->alternate_paths_phys_connector,
4204                sizeof(this_device->phys_connector));
4205        memcpy(&this_device->bay,
4206                &id_phys->phys_bay_in_box,
4207                sizeof(this_device->bay));
4208}
4209
4210/* get number of local logical disks. */
4211static int hpsa_set_local_logical_count(struct ctlr_info *h,
4212        struct bmic_identify_controller *id_ctlr,
4213        u32 *nlocals)
4214{
4215        int rc;
4216
4217        if (!id_ctlr) {
4218                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4219                        __func__);
4220                return -ENOMEM;
4221        }
4222        memset(id_ctlr, 0, sizeof(*id_ctlr));
4223        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4224        if (!rc)
4225                if (id_ctlr->configured_logical_drive_count < 255)
4226                        *nlocals = id_ctlr->configured_logical_drive_count;
4227                else
4228                        *nlocals = le16_to_cpu(
4229                                        id_ctlr->extended_logical_unit_count);
4230        else
4231                *nlocals = -1;
4232        return rc;
4233}
4234
4235static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4236{
4237        struct bmic_identify_physical_device *id_phys;
4238        bool is_spare = false;
4239        int rc;
4240
4241        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4242        if (!id_phys)
4243                return false;
4244
4245        rc = hpsa_bmic_id_physical_device(h,
4246                                        lunaddrbytes,
4247                                        GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4248                                        id_phys, sizeof(*id_phys));
4249        if (rc == 0)
4250                is_spare = (id_phys->more_flags >> 6) & 0x01;
4251
4252        kfree(id_phys);
4253        return is_spare;
4254}
4255
4256#define RPL_DEV_FLAG_NON_DISK                           0x1
4257#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4258#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4259
4260#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4261
4262static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4263                                struct ext_report_lun_entry *rle)
4264{
4265        u8 device_flags;
4266        u8 device_type;
4267
4268        if (!MASKED_DEVICE(lunaddrbytes))
4269                return false;
4270
4271        device_flags = rle->device_flags;
4272        device_type = rle->device_type;
4273
4274        if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4275                if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4276                        return false;
4277                return true;
4278        }
4279
4280        if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4281                return false;
4282
4283        if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4284                return false;
4285
4286        /*
4287         * Spares may be spun down, we do not want to
4288         * do an Inquiry to a RAID set spare drive as
4289         * that would have them spun up, that is a
4290         * performance hit because I/O to the RAID device
4291         * stops while the spin up occurs which can take
4292         * over 50 seconds.
4293         */
4294        if (hpsa_is_disk_spare(h, lunaddrbytes))
4295                return true;
4296
4297        return false;
4298}
4299
4300static void hpsa_update_scsi_devices(struct ctlr_info *h)
4301{
4302        /* the idea here is we could get notified
4303         * that some devices have changed, so we do a report
4304         * physical luns and report logical luns cmd, and adjust
4305         * our list of devices accordingly.
4306         *
4307         * The scsi3addr's of devices won't change so long as the
4308         * adapter is not reset.  That means we can rescan and
4309         * tell which devices we already know about, vs. new
4310         * devices, vs.  disappearing devices.
4311         */
4312        struct ReportExtendedLUNdata *physdev_list = NULL;
4313        struct ReportLUNdata *logdev_list = NULL;
4314        struct bmic_identify_physical_device *id_phys = NULL;
4315        struct bmic_identify_controller *id_ctlr = NULL;
4316        u32 nphysicals = 0;
4317        u32 nlogicals = 0;
4318        u32 nlocal_logicals = 0;
4319        u32 ndev_allocated = 0;
4320        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4321        int ncurrent = 0;
4322        int i, n_ext_target_devs, ndevs_to_allocate;
4323        int raid_ctlr_position;
4324        bool physical_device;
4325        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4326
4327        currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4328        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4329        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4330        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4331        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4332        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4333
4334        if (!currentsd || !physdev_list || !logdev_list ||
4335                !tmpdevice || !id_phys || !id_ctlr) {
4336                dev_err(&h->pdev->dev, "out of memory\n");
4337                goto out;
4338        }
4339        memset(lunzerobits, 0, sizeof(lunzerobits));
4340
4341        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4342
4343        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4344                        logdev_list, &nlogicals)) {
4345                h->drv_req_rescan = 1;
4346                goto out;
4347        }
4348
4349        /* Set number of local logicals (non PTRAID) */
4350        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4351                dev_warn(&h->pdev->dev,
4352                        "%s: Can't determine number of local logical devices.\n",
4353                        __func__);
4354        }
4355
4356        /* We might see up to the maximum number of logical and physical disks
4357         * plus external target devices, and a device for the local RAID
4358         * controller.
4359         */
4360        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4361
4362        hpsa_ext_ctrl_present(h, physdev_list);
4363
4364        /* Allocate the per device structures */
4365        for (i = 0; i < ndevs_to_allocate; i++) {
4366                if (i >= HPSA_MAX_DEVICES) {
4367                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4368                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4369                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4370                        break;
4371                }
4372
4373                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4374                if (!currentsd[i]) {
4375                        h->drv_req_rescan = 1;
4376                        goto out;
4377                }
4378                ndev_allocated++;
4379        }
4380
4381        if (is_scsi_rev_5(h))
4382                raid_ctlr_position = 0;
4383        else
4384                raid_ctlr_position = nphysicals + nlogicals;
4385
4386        /* adjust our table of devices */
4387        n_ext_target_devs = 0;
4388        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4389                u8 *lunaddrbytes, is_OBDR = 0;
4390                int rc = 0;
4391                int phys_dev_index = i - (raid_ctlr_position == 0);
4392                bool skip_device = false;
4393
4394                memset(tmpdevice, 0, sizeof(*tmpdevice));
4395
4396                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4397
4398                /* Figure out where the LUN ID info is coming from */
4399                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4400                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4401
4402                /* Determine if this is a lun from an external target array */
4403                tmpdevice->external =
4404                        figure_external_status(h, raid_ctlr_position, i,
4405                                                nphysicals, nlocal_logicals);
4406
4407                /*
4408                 * Skip over some devices such as a spare.
4409                 */
4410                if (!tmpdevice->external && physical_device) {
4411                        skip_device = hpsa_skip_device(h, lunaddrbytes,
4412                                        &physdev_list->LUN[phys_dev_index]);
4413                        if (skip_device)
4414                                continue;
4415                }
4416
4417                /* Get device type, vendor, model, device id, raid_map */
4418                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4419                                                        &is_OBDR);
4420                if (rc == -ENOMEM) {
4421                        dev_warn(&h->pdev->dev,
4422                                "Out of memory, rescan deferred.\n");
4423                        h->drv_req_rescan = 1;
4424                        goto out;
4425                }
4426                if (rc) {
4427                        h->drv_req_rescan = 1;
4428                        continue;
4429                }
4430
4431                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4432                this_device = currentsd[ncurrent];
4433
4434                *this_device = *tmpdevice;
4435                this_device->physical_device = physical_device;
4436
4437                /*
4438                 * Expose all devices except for physical devices that
4439                 * are masked.
4440                 */
4441                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4442                        this_device->expose_device = 0;
4443                else
4444                        this_device->expose_device = 1;
4445
4446
4447                /*
4448                 * Get the SAS address for physical devices that are exposed.
4449                 */
4450                if (this_device->physical_device && this_device->expose_device)
4451                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4452
4453                switch (this_device->devtype) {
4454                case TYPE_ROM:
4455                        /* We don't *really* support actual CD-ROM devices,
4456                         * just "One Button Disaster Recovery" tape drive
4457                         * which temporarily pretends to be a CD-ROM drive.
4458                         * So we check that the device is really an OBDR tape
4459                         * device by checking for "$DR-10" in bytes 43-48 of
4460                         * the inquiry data.
4461                         */
4462                        if (is_OBDR)
4463                                ncurrent++;
4464                        break;
4465                case TYPE_DISK:
4466                case TYPE_ZBC:
4467                        if (this_device->physical_device) {
4468                                /* The disk is in HBA mode. */
4469                                /* Never use RAID mapper in HBA mode. */
4470                                this_device->offload_enabled = 0;
4471                                hpsa_get_ioaccel_drive_info(h, this_device,
4472                                        physdev_list, phys_dev_index, id_phys);
4473                                hpsa_get_path_info(this_device,
4474                                        physdev_list, phys_dev_index, id_phys);
4475                        }
4476                        ncurrent++;
4477                        break;
4478                case TYPE_TAPE:
4479                case TYPE_MEDIUM_CHANGER:
4480                        ncurrent++;
4481                        break;
4482                case TYPE_ENCLOSURE:
4483                        if (!this_device->external)
4484                                hpsa_get_enclosure_info(h, lunaddrbytes,
4485                                                physdev_list, phys_dev_index,
4486                                                this_device);
4487                        ncurrent++;
4488                        break;
4489                case TYPE_RAID:
4490                        /* Only present the Smartarray HBA as a RAID controller.
4491                         * If it's a RAID controller other than the HBA itself
4492                         * (an external RAID controller, MSA500 or similar)
4493                         * don't present it.
4494                         */
4495                        if (!is_hba_lunid(lunaddrbytes))
4496                                break;
4497                        ncurrent++;
4498                        break;
4499                default:
4500                        break;
4501                }
4502                if (ncurrent >= HPSA_MAX_DEVICES)
4503                        break;
4504        }
4505
4506        if (h->sas_host == NULL) {
4507                int rc = 0;
4508
4509                rc = hpsa_add_sas_host(h);
4510                if (rc) {
4511                        dev_warn(&h->pdev->dev,
4512                                "Could not add sas host %d\n", rc);
4513                        goto out;
4514                }
4515        }
4516
4517        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4518out:
4519        kfree(tmpdevice);
4520        for (i = 0; i < ndev_allocated; i++)
4521                kfree(currentsd[i]);
4522        kfree(currentsd);
4523        kfree(physdev_list);
4524        kfree(logdev_list);
4525        kfree(id_ctlr);
4526        kfree(id_phys);
4527}
4528
4529static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4530                                   struct scatterlist *sg)
4531{
4532        u64 addr64 = (u64) sg_dma_address(sg);
4533        unsigned int len = sg_dma_len(sg);
4534
4535        desc->Addr = cpu_to_le64(addr64);
4536        desc->Len = cpu_to_le32(len);
4537        desc->Ext = 0;
4538}
4539
4540/*
4541 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4542 * dma mapping  and fills in the scatter gather entries of the
4543 * hpsa command, cp.
4544 */
4545static int hpsa_scatter_gather(struct ctlr_info *h,
4546                struct CommandList *cp,
4547                struct scsi_cmnd *cmd)
4548{
4549        struct scatterlist *sg;
4550        int use_sg, i, sg_limit, chained, last_sg;
4551        struct SGDescriptor *curr_sg;
4552
4553        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4554
4555        use_sg = scsi_dma_map(cmd);
4556        if (use_sg < 0)
4557                return use_sg;
4558
4559        if (!use_sg)
4560                goto sglist_finished;
4561
4562        /*
4563         * If the number of entries is greater than the max for a single list,
4564         * then we have a chained list; we will set up all but one entry in the
4565         * first list (the last entry is saved for link information);
4566         * otherwise, we don't have a chained list and we'll set up at each of
4567         * the entries in the one list.
4568         */
4569        curr_sg = cp->SG;
4570        chained = use_sg > h->max_cmd_sg_entries;
4571        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4572        last_sg = scsi_sg_count(cmd) - 1;
4573        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4574                hpsa_set_sg_descriptor(curr_sg, sg);
4575                curr_sg++;
4576        }
4577
4578        if (chained) {
4579                /*
4580                 * Continue with the chained list.  Set curr_sg to the chained
4581                 * list.  Modify the limit to the total count less the entries
4582                 * we've already set up.  Resume the scan at the list entry
4583                 * where the previous loop left off.
4584                 */
4585                curr_sg = h->cmd_sg_list[cp->cmdindex];
4586                sg_limit = use_sg - sg_limit;
4587                for_each_sg(sg, sg, sg_limit, i) {
4588                        hpsa_set_sg_descriptor(curr_sg, sg);
4589                        curr_sg++;
4590                }
4591        }
4592
4593        /* Back the pointer up to the last entry and mark it as "last". */
4594        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4595
4596        if (use_sg + chained > h->maxSG)
4597                h->maxSG = use_sg + chained;
4598
4599        if (chained) {
4600                cp->Header.SGList = h->max_cmd_sg_entries;
4601                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4602                if (hpsa_map_sg_chain_block(h, cp)) {
4603                        scsi_dma_unmap(cmd);
4604                        return -1;
4605                }
4606                return 0;
4607        }
4608
4609sglist_finished:
4610
4611        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4612        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4613        return 0;
4614}
4615
4616static inline void warn_zero_length_transfer(struct ctlr_info *h,
4617                                                u8 *cdb, int cdb_len,
4618                                                const char *func)
4619{
4620        dev_warn(&h->pdev->dev,
4621                 "%s: Blocking zero-length request: CDB:%*phN\n",
4622                 func, cdb_len, cdb);
4623}
4624
4625#define IO_ACCEL_INELIGIBLE 1
4626/* zero-length transfers trigger hardware errors. */
4627static bool is_zero_length_transfer(u8 *cdb)
4628{
4629        u32 block_cnt;
4630
4631        /* Block zero-length transfer sizes on certain commands. */
4632        switch (cdb[0]) {
4633        case READ_10:
4634        case WRITE_10:
4635        case VERIFY:            /* 0x2F */
4636        case WRITE_VERIFY:      /* 0x2E */
4637                block_cnt = get_unaligned_be16(&cdb[7]);
4638                break;
4639        case READ_12:
4640        case WRITE_12:
4641        case VERIFY_12: /* 0xAF */
4642        case WRITE_VERIFY_12:   /* 0xAE */
4643                block_cnt = get_unaligned_be32(&cdb[6]);
4644                break;
4645        case READ_16:
4646        case WRITE_16:
4647        case VERIFY_16:         /* 0x8F */
4648                block_cnt = get_unaligned_be32(&cdb[10]);
4649                break;
4650        default:
4651                return false;
4652        }
4653
4654        return block_cnt == 0;
4655}
4656
4657static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4658{
4659        int is_write = 0;
4660        u32 block;
4661        u32 block_cnt;
4662
4663        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4664        switch (cdb[0]) {
4665        case WRITE_6:
4666        case WRITE_12:
4667                is_write = 1;
4668                /* fall through */
4669        case READ_6:
4670        case READ_12:
4671                if (*cdb_len == 6) {
4672                        block = (((cdb[1] & 0x1F) << 16) |
4673                                (cdb[2] << 8) |
4674                                cdb[3]);
4675                        block_cnt = cdb[4];
4676                        if (block_cnt == 0)
4677                                block_cnt = 256;
4678                } else {
4679                        BUG_ON(*cdb_len != 12);
4680                        block = get_unaligned_be32(&cdb[2]);
4681                        block_cnt = get_unaligned_be32(&cdb[6]);
4682                }
4683                if (block_cnt > 0xffff)
4684                        return IO_ACCEL_INELIGIBLE;
4685
4686                cdb[0] = is_write ? WRITE_10 : READ_10;
4687                cdb[1] = 0;
4688                cdb[2] = (u8) (block >> 24);
4689                cdb[3] = (u8) (block >> 16);
4690                cdb[4] = (u8) (block >> 8);
4691                cdb[5] = (u8) (block);
4692                cdb[6] = 0;
4693                cdb[7] = (u8) (block_cnt >> 8);
4694                cdb[8] = (u8) (block_cnt);
4695                cdb[9] = 0;
4696                *cdb_len = 10;
4697                break;
4698        }
4699        return 0;
4700}
4701
4702static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4703        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4704        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4705{
4706        struct scsi_cmnd *cmd = c->scsi_cmd;
4707        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4708        unsigned int len;
4709        unsigned int total_len = 0;
4710        struct scatterlist *sg;
4711        u64 addr64;
4712        int use_sg, i;
4713        struct SGDescriptor *curr_sg;
4714        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4715
4716        /* TODO: implement chaining support */
4717        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4718                atomic_dec(&phys_disk->ioaccel_cmds_out);
4719                return IO_ACCEL_INELIGIBLE;
4720        }
4721
4722        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4723
4724        if (is_zero_length_transfer(cdb)) {
4725                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4726                atomic_dec(&phys_disk->ioaccel_cmds_out);
4727                return IO_ACCEL_INELIGIBLE;
4728        }
4729
4730        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4731                atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                return IO_ACCEL_INELIGIBLE;
4733        }
4734
4735        c->cmd_type = CMD_IOACCEL1;
4736
4737        /* Adjust the DMA address to point to the accelerated command buffer */
4738        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4739                                (c->cmdindex * sizeof(*cp));
4740        BUG_ON(c->busaddr & 0x0000007F);
4741
4742        use_sg = scsi_dma_map(cmd);
4743        if (use_sg < 0) {
4744                atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                return use_sg;
4746        }
4747
4748        if (use_sg) {
4749                curr_sg = cp->SG;
4750                scsi_for_each_sg(cmd, sg, use_sg, i) {
4751                        addr64 = (u64) sg_dma_address(sg);
4752                        len  = sg_dma_len(sg);
4753                        total_len += len;
4754                        curr_sg->Addr = cpu_to_le64(addr64);
4755                        curr_sg->Len = cpu_to_le32(len);
4756                        curr_sg->Ext = cpu_to_le32(0);
4757                        curr_sg++;
4758                }
4759                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4760
4761                switch (cmd->sc_data_direction) {
4762                case DMA_TO_DEVICE:
4763                        control |= IOACCEL1_CONTROL_DATA_OUT;
4764                        break;
4765                case DMA_FROM_DEVICE:
4766                        control |= IOACCEL1_CONTROL_DATA_IN;
4767                        break;
4768                case DMA_NONE:
4769                        control |= IOACCEL1_CONTROL_NODATAXFER;
4770                        break;
4771                default:
4772                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4773                        cmd->sc_data_direction);
4774                        BUG();
4775                        break;
4776                }
4777        } else {
4778                control |= IOACCEL1_CONTROL_NODATAXFER;
4779        }
4780
4781        c->Header.SGList = use_sg;
4782        /* Fill out the command structure to submit */
4783        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4784        cp->transfer_len = cpu_to_le32(total_len);
4785        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4786                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4787        cp->control = cpu_to_le32(control);
4788        memcpy(cp->CDB, cdb, cdb_len);
4789        memcpy(cp->CISS_LUN, scsi3addr, 8);
4790        /* Tag was already set at init time. */
4791        enqueue_cmd_and_start_io(h, c);
4792        return 0;
4793}
4794
4795/*
4796 * Queue a command directly to a device behind the controller using the
4797 * I/O accelerator path.
4798 */
4799static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4800        struct CommandList *c)
4801{
4802        struct scsi_cmnd *cmd = c->scsi_cmd;
4803        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4804
4805        if (!dev)
4806                return -1;
4807
4808        c->phys_disk = dev;
4809
4810        if (dev->in_reset)
4811                return -1;
4812
4813        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4814                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4815}
4816
4817/*
4818 * Set encryption parameters for the ioaccel2 request
4819 */
4820static void set_encrypt_ioaccel2(struct ctlr_info *h,
4821        struct CommandList *c, struct io_accel2_cmd *cp)
4822{
4823        struct scsi_cmnd *cmd = c->scsi_cmd;
4824        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4825        struct raid_map_data *map = &dev->raid_map;
4826        u64 first_block;
4827
4828        /* Are we doing encryption on this device */
4829        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4830                return;
4831        /* Set the data encryption key index. */
4832        cp->dekindex = map->dekindex;
4833
4834        /* Set the encryption enable flag, encoded into direction field. */
4835        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4836
4837        /* Set encryption tweak values based on logical block address
4838         * If block size is 512, tweak value is LBA.
4839         * For other block sizes, tweak is (LBA * block size)/ 512)
4840         */
4841        switch (cmd->cmnd[0]) {
4842        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4843        case READ_6:
4844        case WRITE_6:
4845                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4846                                (cmd->cmnd[2] << 8) |
4847                                cmd->cmnd[3]);
4848                break;
4849        case WRITE_10:
4850        case READ_10:
4851        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4852        case WRITE_12:
4853        case READ_12:
4854                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4855                break;
4856        case WRITE_16:
4857        case READ_16:
4858                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4859                break;
4860        default:
4861                dev_err(&h->pdev->dev,
4862                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4863                        __func__, cmd->cmnd[0]);
4864                BUG();
4865                break;
4866        }
4867
4868        if (le32_to_cpu(map->volume_blk_size) != 512)
4869                first_block = first_block *
4870                                le32_to_cpu(map->volume_blk_size)/512;
4871
4872        cp->tweak_lower = cpu_to_le32(first_block);
4873        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4874}
4875
4876static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4877        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4878        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4879{
4880        struct scsi_cmnd *cmd = c->scsi_cmd;
4881        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4882        struct ioaccel2_sg_element *curr_sg;
4883        int use_sg, i;
4884        struct scatterlist *sg;
4885        u64 addr64;
4886        u32 len;
4887        u32 total_len = 0;
4888
4889        if (!cmd->device)
4890                return -1;
4891
4892        if (!cmd->device->hostdata)
4893                return -1;
4894
4895        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4896
4897        if (is_zero_length_transfer(cdb)) {
4898                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4899                atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                return IO_ACCEL_INELIGIBLE;
4901        }
4902
4903        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4904                atomic_dec(&phys_disk->ioaccel_cmds_out);
4905                return IO_ACCEL_INELIGIBLE;
4906        }
4907
4908        c->cmd_type = CMD_IOACCEL2;
4909        /* Adjust the DMA address to point to the accelerated command buffer */
4910        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4911                                (c->cmdindex * sizeof(*cp));
4912        BUG_ON(c->busaddr & 0x0000007F);
4913
4914        memset(cp, 0, sizeof(*cp));
4915        cp->IU_type = IOACCEL2_IU_TYPE;
4916
4917        use_sg = scsi_dma_map(cmd);
4918        if (use_sg < 0) {
4919                atomic_dec(&phys_disk->ioaccel_cmds_out);
4920                return use_sg;
4921        }
4922
4923        if (use_sg) {
4924                curr_sg = cp->sg;
4925                if (use_sg > h->ioaccel_maxsg) {
4926                        addr64 = le64_to_cpu(
4927                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4928                        curr_sg->address = cpu_to_le64(addr64);
4929                        curr_sg->length = 0;
4930                        curr_sg->reserved[0] = 0;
4931                        curr_sg->reserved[1] = 0;
4932                        curr_sg->reserved[2] = 0;
4933                        curr_sg->chain_indicator = IOACCEL2_CHAIN;
4934
4935                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4936                }
4937                scsi_for_each_sg(cmd, sg, use_sg, i) {
4938                        addr64 = (u64) sg_dma_address(sg);
4939                        len  = sg_dma_len(sg);
4940                        total_len += len;
4941                        curr_sg->address = cpu_to_le64(addr64);
4942                        curr_sg->length = cpu_to_le32(len);
4943                        curr_sg->reserved[0] = 0;
4944                        curr_sg->reserved[1] = 0;
4945                        curr_sg->reserved[2] = 0;
4946                        curr_sg->chain_indicator = 0;
4947                        curr_sg++;
4948                }
4949
4950                /*
4951                 * Set the last s/g element bit
4952                 */
4953                (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4954
4955                switch (cmd->sc_data_direction) {
4956                case DMA_TO_DEVICE:
4957                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4959                        break;
4960                case DMA_FROM_DEVICE:
4961                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4963                        break;
4964                case DMA_NONE:
4965                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966                        cp->direction |= IOACCEL2_DIR_NO_DATA;
4967                        break;
4968                default:
4969                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4970                                cmd->sc_data_direction);
4971                        BUG();
4972                        break;
4973                }
4974        } else {
4975                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976                cp->direction |= IOACCEL2_DIR_NO_DATA;
4977        }
4978
4979        /* Set encryption parameters, if necessary */
4980        set_encrypt_ioaccel2(h, c, cp);
4981
4982        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4983        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4984        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4985
4986        cp->data_len = cpu_to_le32(total_len);
4987        cp->err_ptr = cpu_to_le64(c->busaddr +
4988                        offsetof(struct io_accel2_cmd, error_data));
4989        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4990
4991        /* fill in sg elements */
4992        if (use_sg > h->ioaccel_maxsg) {
4993                cp->sg_count = 1;
4994                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4995                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4996                        atomic_dec(&phys_disk->ioaccel_cmds_out);
4997                        scsi_dma_unmap(cmd);
4998                        return -1;
4999                }
5000        } else
5001                cp->sg_count = (u8) use_sg;
5002
5003        if (phys_disk->in_reset) {
5004                cmd->result = DID_RESET << 16;
5005                return -1;
5006        }
5007
5008        enqueue_cmd_and_start_io(h, c);
5009        return 0;
5010}
5011
5012/*
5013 * Queue a command to the correct I/O accelerator path.
5014 */
5015static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018{
5019        if (!c->scsi_cmd->device)
5020                return -1;
5021
5022        if (!c->scsi_cmd->device->hostdata)
5023                return -1;
5024
5025        if (phys_disk->in_reset)
5026                return -1;
5027
5028        /* Try to honor the device's queue depth */
5029        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5030                                        phys_disk->queue_depth) {
5031                atomic_dec(&phys_disk->ioaccel_cmds_out);
5032                return IO_ACCEL_INELIGIBLE;
5033        }
5034        if (h->transMethod & CFGTBL_Trans_io_accel1)
5035                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5036                                                cdb, cdb_len, scsi3addr,
5037                                                phys_disk);
5038        else
5039                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5040                                                cdb, cdb_len, scsi3addr,
5041                                                phys_disk);
5042}
5043
5044static void raid_map_helper(struct raid_map_data *map,
5045                int offload_to_mirror, u32 *map_index, u32 *current_group)
5046{
5047        if (offload_to_mirror == 0)  {
5048                /* use physical disk in the first mirrored group. */
5049                *map_index %= le16_to_cpu(map->data_disks_per_row);
5050                return;
5051        }
5052        do {
5053                /* determine mirror group that *map_index indicates */
5054                *current_group = *map_index /
5055                        le16_to_cpu(map->data_disks_per_row);
5056                if (offload_to_mirror == *current_group)
5057                        continue;
5058                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5059                        /* select map index from next group */
5060                        *map_index += le16_to_cpu(map->data_disks_per_row);
5061                        (*current_group)++;
5062                } else {
5063                        /* select map index from first group */
5064                        *map_index %= le16_to_cpu(map->data_disks_per_row);
5065                        *current_group = 0;
5066                }
5067        } while (offload_to_mirror != *current_group);
5068}
5069
5070/*
5071 * Attempt to perform offload RAID mapping for a logical volume I/O.
5072 */
5073static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5074        struct CommandList *c)
5075{
5076        struct scsi_cmnd *cmd = c->scsi_cmd;
5077        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5078        struct raid_map_data *map = &dev->raid_map;
5079        struct raid_map_disk_data *dd = &map->data[0];
5080        int is_write = 0;
5081        u32 map_index;
5082        u64 first_block, last_block;
5083        u32 block_cnt;
5084        u32 blocks_per_row;
5085        u64 first_row, last_row;
5086        u32 first_row_offset, last_row_offset;
5087        u32 first_column, last_column;
5088        u64 r0_first_row, r0_last_row;
5089        u32 r5or6_blocks_per_row;
5090        u64 r5or6_first_row, r5or6_last_row;
5091        u32 r5or6_first_row_offset, r5or6_last_row_offset;
5092        u32 r5or6_first_column, r5or6_last_column;
5093        u32 total_disks_per_row;
5094        u32 stripesize;
5095        u32 first_group, last_group, current_group;
5096        u32 map_row;
5097        u32 disk_handle;
5098        u64 disk_block;
5099        u32 disk_block_cnt;
5100        u8 cdb[16];
5101        u8 cdb_len;
5102        u16 strip_size;
5103#if BITS_PER_LONG == 32
5104        u64 tmpdiv;
5105#endif
5106        int offload_to_mirror;
5107
5108        if (!dev)
5109                return -1;
5110
5111        if (dev->in_reset)
5112                return -1;
5113
5114        /* check for valid opcode, get LBA and block count */
5115        switch (cmd->cmnd[0]) {
5116        case WRITE_6:
5117                is_write = 1;
5118                /* fall through */
5119        case READ_6:
5120                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5121                                (cmd->cmnd[2] << 8) |
5122                                cmd->cmnd[3]);
5123                block_cnt = cmd->cmnd[4];
5124                if (block_cnt == 0)
5125                        block_cnt = 256;
5126                break;
5127        case WRITE_10:
5128                is_write = 1;
5129                /* fall through */
5130        case READ_10:
5131                first_block =
5132                        (((u64) cmd->cmnd[2]) << 24) |
5133                        (((u64) cmd->cmnd[3]) << 16) |
5134                        (((u64) cmd->cmnd[4]) << 8) |
5135                        cmd->cmnd[5];
5136                block_cnt =
5137                        (((u32) cmd->cmnd[7]) << 8) |
5138                        cmd->cmnd[8];
5139                break;
5140        case WRITE_12:
5141                is_write = 1;
5142                /* fall through */
5143        case READ_12:
5144                first_block =
5145                        (((u64) cmd->cmnd[2]) << 24) |
5146                        (((u64) cmd->cmnd[3]) << 16) |
5147                        (((u64) cmd->cmnd[4]) << 8) |
5148                        cmd->cmnd[5];
5149                block_cnt =
5150                        (((u32) cmd->cmnd[6]) << 24) |
5151                        (((u32) cmd->cmnd[7]) << 16) |
5152                        (((u32) cmd->cmnd[8]) << 8) |
5153                cmd->cmnd[9];
5154                break;
5155        case WRITE_16:
5156                is_write = 1;
5157                /* fall through */
5158        case READ_16:
5159                first_block =
5160                        (((u64) cmd->cmnd[2]) << 56) |
5161                        (((u64) cmd->cmnd[3]) << 48) |
5162                        (((u64) cmd->cmnd[4]) << 40) |
5163                        (((u64) cmd->cmnd[5]) << 32) |
5164                        (((u64) cmd->cmnd[6]) << 24) |
5165                        (((u64) cmd->cmnd[7]) << 16) |
5166                        (((u64) cmd->cmnd[8]) << 8) |
5167                        cmd->cmnd[9];
5168                block_cnt =
5169                        (((u32) cmd->cmnd[10]) << 24) |
5170                        (((u32) cmd->cmnd[11]) << 16) |
5171                        (((u32) cmd->cmnd[12]) << 8) |
5172                        cmd->cmnd[13];
5173                break;
5174        default:
5175                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5176        }
5177        last_block = first_block + block_cnt - 1;
5178
5179        /* check for write to non-RAID-0 */
5180        if (is_write && dev->raid_level != 0)
5181                return IO_ACCEL_INELIGIBLE;
5182
5183        /* check for invalid block or wraparound */
5184        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5185                last_block < first_block)
5186                return IO_ACCEL_INELIGIBLE;
5187
5188        /* calculate stripe information for the request */
5189        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5190                                le16_to_cpu(map->strip_size);
5191        strip_size = le16_to_cpu(map->strip_size);
5192#if BITS_PER_LONG == 32
5193        tmpdiv = first_block;
5194        (void) do_div(tmpdiv, blocks_per_row);
5195        first_row = tmpdiv;
5196        tmpdiv = last_block;
5197        (void) do_div(tmpdiv, blocks_per_row);
5198        last_row = tmpdiv;
5199        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5200        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5201        tmpdiv = first_row_offset;
5202        (void) do_div(tmpdiv, strip_size);
5203        first_column = tmpdiv;
5204        tmpdiv = last_row_offset;
5205        (void) do_div(tmpdiv, strip_size);
5206        last_column = tmpdiv;
5207#else
5208        first_row = first_block / blocks_per_row;
5209        last_row = last_block / blocks_per_row;
5210        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5211        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5212        first_column = first_row_offset / strip_size;
5213        last_column = last_row_offset / strip_size;
5214#endif
5215
5216        /* if this isn't a single row/column then give to the controller */
5217        if ((first_row != last_row) || (first_column != last_column))
5218                return IO_ACCEL_INELIGIBLE;
5219
5220        /* proceeding with driver mapping */
5221        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5222                                le16_to_cpu(map->metadata_disks_per_row);
5223        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5224                                le16_to_cpu(map->row_cnt);
5225        map_index = (map_row * total_disks_per_row) + first_column;
5226
5227        switch (dev->raid_level) {
5228        case HPSA_RAID_0:
5229                break; /* nothing special to do */
5230        case HPSA_RAID_1:
5231                /* Handles load balance across RAID 1 members.
5232                 * (2-drive R1 and R10 with even # of drives.)
5233                 * Appropriate for SSDs, not optimal for HDDs
5234                 */
5235                BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5236                if (dev->offload_to_mirror)
5237                        map_index += le16_to_cpu(map->data_disks_per_row);
5238                dev->offload_to_mirror = !dev->offload_to_mirror;
5239                break;
5240        case HPSA_RAID_ADM:
5241                /* Handles N-way mirrors  (R1-ADM)
5242                 * and R10 with # of drives divisible by 3.)
5243                 */
5244                BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5245
5246                offload_to_mirror = dev->offload_to_mirror;
5247                raid_map_helper(map, offload_to_mirror,
5248                                &map_index, &current_group);
5249                /* set mirror group to use next time */
5250                offload_to_mirror =
5251                        (offload_to_mirror >=
5252                        le16_to_cpu(map->layout_map_count) - 1)
5253                        ? 0 : offload_to_mirror + 1;
5254                dev->offload_to_mirror = offload_to_mirror;
5255                /* Avoid direct use of dev->offload_to_mirror within this
5256                 * function since multiple threads might simultaneously
5257                 * increment it beyond the range of dev->layout_map_count -1.
5258                 */
5259                break;
5260        case HPSA_RAID_5:
5261        case HPSA_RAID_6:
5262                if (le16_to_cpu(map->layout_map_count) <= 1)
5263                        break;
5264
5265                /* Verify first and last block are in same RAID group */
5266                r5or6_blocks_per_row =
5267                        le16_to_cpu(map->strip_size) *
5268                        le16_to_cpu(map->data_disks_per_row);
5269                BUG_ON(r5or6_blocks_per_row == 0);
5270                stripesize = r5or6_blocks_per_row *
5271                        le16_to_cpu(map->layout_map_count);
5272#if BITS_PER_LONG == 32
5273                tmpdiv = first_block;
5274                first_group = do_div(tmpdiv, stripesize);
5275                tmpdiv = first_group;
5276                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5277                first_group = tmpdiv;
5278                tmpdiv = last_block;
5279                last_group = do_div(tmpdiv, stripesize);
5280                tmpdiv = last_group;
5281                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5282                last_group = tmpdiv;
5283#else
5284                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5285                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5286#endif
5287                if (first_group != last_group)
5288                        return IO_ACCEL_INELIGIBLE;
5289
5290                /* Verify request is in a single row of RAID 5/6 */
5291#if BITS_PER_LONG == 32
5292                tmpdiv = first_block;
5293                (void) do_div(tmpdiv, stripesize);
5294                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5295                tmpdiv = last_block;
5296                (void) do_div(tmpdiv, stripesize);
5297                r5or6_last_row = r0_last_row = tmpdiv;
5298#else
5299                first_row = r5or6_first_row = r0_first_row =
5300                                                first_block / stripesize;
5301                r5or6_last_row = r0_last_row = last_block / stripesize;
5302#endif
5303                if (r5or6_first_row != r5or6_last_row)
5304                        return IO_ACCEL_INELIGIBLE;
5305
5306
5307                /* Verify request is in a single column */
5308#if BITS_PER_LONG == 32
5309                tmpdiv = first_block;
5310                first_row_offset = do_div(tmpdiv, stripesize);
5311                tmpdiv = first_row_offset;
5312                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5313                r5or6_first_row_offset = first_row_offset;
5314                tmpdiv = last_block;
5315                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5316                tmpdiv = r5or6_last_row_offset;
5317                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5318                tmpdiv = r5or6_first_row_offset;
5319                (void) do_div(tmpdiv, map->strip_size);
5320                first_column = r5or6_first_column = tmpdiv;
5321                tmpdiv = r5or6_last_row_offset;
5322                (void) do_div(tmpdiv, map->strip_size);
5323                r5or6_last_column = tmpdiv;
5324#else
5325                first_row_offset = r5or6_first_row_offset =
5326                        (u32)((first_block % stripesize) %
5327                                                r5or6_blocks_per_row);
5328
5329                r5or6_last_row_offset =
5330                        (u32)((last_block % stripesize) %
5331                                                r5or6_blocks_per_row);
5332
5333                first_column = r5or6_first_column =
5334                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5335                r5or6_last_column =
5336                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5337#endif
5338                if (r5or6_first_column != r5or6_last_column)
5339                        return IO_ACCEL_INELIGIBLE;
5340
5341                /* Request is eligible */
5342                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5343                        le16_to_cpu(map->row_cnt);
5344
5345                map_index = (first_group *
5346                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5347                        (map_row * total_disks_per_row) + first_column;
5348                break;
5349        default:
5350                return IO_ACCEL_INELIGIBLE;
5351        }
5352
5353        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5354                return IO_ACCEL_INELIGIBLE;
5355
5356        c->phys_disk = dev->phys_disk[map_index];
5357        if (!c->phys_disk)
5358                return IO_ACCEL_INELIGIBLE;
5359
5360        disk_handle = dd[map_index].ioaccel_handle;
5361        disk_block = le64_to_cpu(map->disk_starting_blk) +
5362                        first_row * le16_to_cpu(map->strip_size) +
5363                        (first_row_offset - first_column *
5364                        le16_to_cpu(map->strip_size));
5365        disk_block_cnt = block_cnt;
5366
5367        /* handle differing logical/physical block sizes */
5368        if (map->phys_blk_shift) {
5369                disk_block <<= map->phys_blk_shift;
5370                disk_block_cnt <<= map->phys_blk_shift;
5371        }
5372        BUG_ON(disk_block_cnt > 0xffff);
5373
5374        /* build the new CDB for the physical disk I/O */
5375        if (disk_block > 0xffffffff) {
5376                cdb[0] = is_write ? WRITE_16 : READ_16;
5377                cdb[1] = 0;
5378                cdb[2] = (u8) (disk_block >> 56);
5379                cdb[3] = (u8) (disk_block >> 48);
5380                cdb[4] = (u8) (disk_block >> 40);
5381                cdb[5] = (u8) (disk_block >> 32);
5382                cdb[6] = (u8) (disk_block >> 24);
5383                cdb[7] = (u8) (disk_block >> 16);
5384                cdb[8] = (u8) (disk_block >> 8);
5385                cdb[9] = (u8) (disk_block);
5386                cdb[10] = (u8) (disk_block_cnt >> 24);
5387                cdb[11] = (u8) (disk_block_cnt >> 16);
5388                cdb[12] = (u8) (disk_block_cnt >> 8);
5389                cdb[13] = (u8) (disk_block_cnt);
5390                cdb[14] = 0;
5391                cdb[15] = 0;
5392                cdb_len = 16;
5393        } else {
5394                cdb[0] = is_write ? WRITE_10 : READ_10;
5395                cdb[1] = 0;
5396                cdb[2] = (u8) (disk_block >> 24);
5397                cdb[3] = (u8) (disk_block >> 16);
5398                cdb[4] = (u8) (disk_block >> 8);
5399                cdb[5] = (u8) (disk_block);
5400                cdb[6] = 0;
5401                cdb[7] = (u8) (disk_block_cnt >> 8);
5402                cdb[8] = (u8) (disk_block_cnt);
5403                cdb[9] = 0;
5404                cdb_len = 10;
5405        }
5406        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5407                                                dev->scsi3addr,
5408                                                dev->phys_disk[map_index]);
5409}
5410
5411/*
5412 * Submit commands down the "normal" RAID stack path
5413 * All callers to hpsa_ciss_submit must check lockup_detected
5414 * beforehand, before (opt.) and after calling cmd_alloc
5415 */
5416static int hpsa_ciss_submit(struct ctlr_info *h,
5417        struct CommandList *c, struct scsi_cmnd *cmd,
5418        struct hpsa_scsi_dev_t *dev)
5419{
5420        cmd->host_scribble = (unsigned char *) c;
5421        c->cmd_type = CMD_SCSI;
5422        c->scsi_cmd = cmd;
5423        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5424        memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5425        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5426
5427        /* Fill in the request block... */
5428
5429        c->Request.Timeout = 0;
5430        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5431        c->Request.CDBLen = cmd->cmd_len;
5432        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5433        switch (cmd->sc_data_direction) {
5434        case DMA_TO_DEVICE:
5435                c->Request.type_attr_dir =
5436                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5437                break;
5438        case DMA_FROM_DEVICE:
5439                c->Request.type_attr_dir =
5440                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5441                break;
5442        case DMA_NONE:
5443                c->Request.type_attr_dir =
5444                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5445                break;
5446        case DMA_BIDIRECTIONAL:
5447                /* This can happen if a buggy application does a scsi passthru
5448                 * and sets both inlen and outlen to non-zero. ( see
5449                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5450                 */
5451
5452                c->Request.type_attr_dir =
5453                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5454                /* This is technically wrong, and hpsa controllers should
5455                 * reject it with CMD_INVALID, which is the most correct
5456                 * response, but non-fibre backends appear to let it
5457                 * slide by, and give the same results as if this field
5458                 * were set correctly.  Either way is acceptable for
5459                 * our purposes here.
5460                 */
5461
5462                break;
5463
5464        default:
5465                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5466                        cmd->sc_data_direction);
5467                BUG();
5468                break;
5469        }
5470
5471        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5472                hpsa_cmd_resolve_and_free(h, c);
5473                return SCSI_MLQUEUE_HOST_BUSY;
5474        }
5475
5476        if (dev->in_reset) {
5477                hpsa_cmd_resolve_and_free(h, c);
5478                return SCSI_MLQUEUE_HOST_BUSY;
5479        }
5480
5481        enqueue_cmd_and_start_io(h, c);
5482        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5483        return 0;
5484}
5485
5486static void hpsa_cmd_init(struct ctlr_info *h, int index,
5487                                struct CommandList *c)
5488{
5489        dma_addr_t cmd_dma_handle, err_dma_handle;
5490
5491        /* Zero out all of commandlist except the last field, refcount */
5492        memset(c, 0, offsetof(struct CommandList, refcount));
5493        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5494        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5495        c->err_info = h->errinfo_pool + index;
5496        memset(c->err_info, 0, sizeof(*c->err_info));
5497        err_dma_handle = h->errinfo_pool_dhandle
5498            + index * sizeof(*c->err_info);
5499        c->cmdindex = index;
5500        c->busaddr = (u32) cmd_dma_handle;
5501        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5502        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5503        c->h = h;
5504        c->scsi_cmd = SCSI_CMD_IDLE;
5505}
5506
5507static void hpsa_preinitialize_commands(struct ctlr_info *h)
5508{
5509        int i;
5510
5511        for (i = 0; i < h->nr_cmds; i++) {
5512                struct CommandList *c = h->cmd_pool + i;
5513
5514                hpsa_cmd_init(h, i, c);
5515                atomic_set(&c->refcount, 0);
5516        }
5517}
5518
5519static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5520                                struct CommandList *c)
5521{
5522        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5523
5524        BUG_ON(c->cmdindex != index);
5525
5526        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5527        memset(c->err_info, 0, sizeof(*c->err_info));
5528        c->busaddr = (u32) cmd_dma_handle;
5529}
5530
5531static int hpsa_ioaccel_submit(struct ctlr_info *h,
5532                struct CommandList *c, struct scsi_cmnd *cmd)
5533{
5534        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5535        int rc = IO_ACCEL_INELIGIBLE;
5536
5537        if (!dev)
5538                return SCSI_MLQUEUE_HOST_BUSY;
5539
5540        if (dev->in_reset)
5541                return SCSI_MLQUEUE_HOST_BUSY;
5542
5543        if (hpsa_simple_mode)
5544                return IO_ACCEL_INELIGIBLE;
5545
5546        cmd->host_scribble = (unsigned char *) c;
5547
5548        if (dev->offload_enabled) {
5549                hpsa_cmd_init(h, c->cmdindex, c);
5550                c->cmd_type = CMD_SCSI;
5551                c->scsi_cmd = cmd;
5552                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5553                if (rc < 0)     /* scsi_dma_map failed. */
5554                        rc = SCSI_MLQUEUE_HOST_BUSY;
5555        } else if (dev->hba_ioaccel_enabled) {
5556                hpsa_cmd_init(h, c->cmdindex, c);
5557                c->cmd_type = CMD_SCSI;
5558                c->scsi_cmd = cmd;
5559                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5560                if (rc < 0)     /* scsi_dma_map failed. */
5561                        rc = SCSI_MLQUEUE_HOST_BUSY;
5562        }
5563        return rc;
5564}
5565
5566static void hpsa_command_resubmit_worker(struct work_struct *work)
5567{
5568        struct scsi_cmnd *cmd;
5569        struct hpsa_scsi_dev_t *dev;
5570        struct CommandList *c = container_of(work, struct CommandList, work);
5571
5572        cmd = c->scsi_cmd;
5573        dev = cmd->device->hostdata;
5574        if (!dev) {
5575                cmd->result = DID_NO_CONNECT << 16;
5576                return hpsa_cmd_free_and_done(c->h, c, cmd);
5577        }
5578
5579        if (dev->in_reset) {
5580                cmd->result = DID_RESET << 16;
5581                return hpsa_cmd_free_and_done(c->h, c, cmd);
5582        }
5583
5584        if (c->cmd_type == CMD_IOACCEL2) {
5585                struct ctlr_info *h = c->h;
5586                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5587                int rc;
5588
5589                if (c2->error_data.serv_response ==
5590                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5591                        rc = hpsa_ioaccel_submit(h, c, cmd);
5592                        if (rc == 0)
5593                                return;
5594                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5595                                /*
5596                                 * If we get here, it means dma mapping failed.
5597                                 * Try again via scsi mid layer, which will
5598                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5599                                 */
5600                                cmd->result = DID_IMM_RETRY << 16;
5601                                return hpsa_cmd_free_and_done(h, c, cmd);
5602                        }
5603                        /* else, fall thru and resubmit down CISS path */
5604                }
5605        }
5606        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5607        if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5608                /*
5609                 * If we get here, it means dma mapping failed. Try
5610                 * again via scsi mid layer, which will then get
5611                 * SCSI_MLQUEUE_HOST_BUSY.
5612                 *
5613                 * hpsa_ciss_submit will have already freed c
5614                 * if it encountered a dma mapping failure.
5615                 */
5616                cmd->result = DID_IMM_RETRY << 16;
5617                cmd->scsi_done(cmd);
5618        }
5619}
5620
5621/* Running in struct Scsi_Host->host_lock less mode */
5622static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5623{
5624        struct ctlr_info *h;
5625        struct hpsa_scsi_dev_t *dev;
5626        struct CommandList *c;
5627        int rc = 0;
5628
5629        /* Get the ptr to our adapter structure out of cmd->host. */
5630        h = sdev_to_hba(cmd->device);
5631
5632        BUG_ON(cmd->request->tag < 0);
5633
5634        dev = cmd->device->hostdata;
5635        if (!dev) {
5636                cmd->result = DID_NO_CONNECT << 16;
5637                cmd->scsi_done(cmd);
5638                return 0;
5639        }
5640
5641        if (dev->removed) {
5642                cmd->result = DID_NO_CONNECT << 16;
5643                cmd->scsi_done(cmd);
5644                return 0;
5645        }
5646
5647        if (unlikely(lockup_detected(h))) {
5648                cmd->result = DID_NO_CONNECT << 16;
5649                cmd->scsi_done(cmd);
5650                return 0;
5651        }
5652
5653        if (dev->in_reset)
5654                return SCSI_MLQUEUE_DEVICE_BUSY;
5655
5656        c = cmd_tagged_alloc(h, cmd);
5657        if (c == NULL)
5658                return SCSI_MLQUEUE_DEVICE_BUSY;
5659
5660        /*
5661         * This is necessary because the SML doesn't zero out this field during
5662         * error recovery.
5663         */
5664        cmd->result = 0;
5665
5666        /*
5667         * Call alternate submit routine for I/O accelerated commands.
5668         * Retries always go down the normal I/O path.
5669         */
5670        if (likely(cmd->retries == 0 &&
5671                        !blk_rq_is_passthrough(cmd->request) &&
5672                        h->acciopath_status)) {
5673                rc = hpsa_ioaccel_submit(h, c, cmd);
5674                if (rc == 0)
5675                        return 0;
5676                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5677                        hpsa_cmd_resolve_and_free(h, c);
5678                        return SCSI_MLQUEUE_HOST_BUSY;
5679                }
5680        }
5681        return hpsa_ciss_submit(h, c, cmd, dev);
5682}
5683
5684static void hpsa_scan_complete(struct ctlr_info *h)
5685{
5686        unsigned long flags;
5687
5688        spin_lock_irqsave(&h->scan_lock, flags);
5689        h->scan_finished = 1;
5690        wake_up(&h->scan_wait_queue);
5691        spin_unlock_irqrestore(&h->scan_lock, flags);
5692}
5693
5694static void hpsa_scan_start(struct Scsi_Host *sh)
5695{
5696        struct ctlr_info *h = shost_to_hba(sh);
5697        unsigned long flags;
5698
5699        /*
5700         * Don't let rescans be initiated on a controller known to be locked
5701         * up.  If the controller locks up *during* a rescan, that thread is
5702         * probably hosed, but at least we can prevent new rescan threads from
5703         * piling up on a locked up controller.
5704         */
5705        if (unlikely(lockup_detected(h)))
5706                return hpsa_scan_complete(h);
5707
5708        /*
5709         * If a scan is already waiting to run, no need to add another
5710         */
5711        spin_lock_irqsave(&h->scan_lock, flags);
5712        if (h->scan_waiting) {
5713                spin_unlock_irqrestore(&h->scan_lock, flags);
5714                return;
5715        }
5716
5717        spin_unlock_irqrestore(&h->scan_lock, flags);
5718
5719        /* wait until any scan already in progress is finished. */
5720        while (1) {
5721                spin_lock_irqsave(&h->scan_lock, flags);
5722                if (h->scan_finished)
5723                        break;
5724                h->scan_waiting = 1;
5725                spin_unlock_irqrestore(&h->scan_lock, flags);
5726                wait_event(h->scan_wait_queue, h->scan_finished);
5727                /* Note: We don't need to worry about a race between this
5728                 * thread and driver unload because the midlayer will
5729                 * have incremented the reference count, so unload won't
5730                 * happen if we're in here.
5731                 */
5732        }
5733        h->scan_finished = 0; /* mark scan as in progress */
5734        h->scan_waiting = 0;
5735        spin_unlock_irqrestore(&h->scan_lock, flags);
5736
5737        if (unlikely(lockup_detected(h)))
5738                return hpsa_scan_complete(h);
5739
5740        /*
5741         * Do the scan after a reset completion
5742         */
5743        spin_lock_irqsave(&h->reset_lock, flags);
5744        if (h->reset_in_progress) {
5745                h->drv_req_rescan = 1;
5746                spin_unlock_irqrestore(&h->reset_lock, flags);
5747                hpsa_scan_complete(h);
5748                return;
5749        }
5750        spin_unlock_irqrestore(&h->reset_lock, flags);
5751
5752        hpsa_update_scsi_devices(h);
5753
5754        hpsa_scan_complete(h);
5755}
5756
5757static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5758{
5759        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5760
5761        if (!logical_drive)
5762                return -ENODEV;
5763
5764        if (qdepth < 1)
5765                qdepth = 1;
5766        else if (qdepth > logical_drive->queue_depth)
5767                qdepth = logical_drive->queue_depth;
5768
5769        return scsi_change_queue_depth(sdev, qdepth);
5770}
5771
5772static int hpsa_scan_finished(struct Scsi_Host *sh,
5773        unsigned long elapsed_time)
5774{
5775        struct ctlr_info *h = shost_to_hba(sh);
5776        unsigned long flags;
5777        int finished;
5778
5779        spin_lock_irqsave(&h->scan_lock, flags);
5780        finished = h->scan_finished;
5781        spin_unlock_irqrestore(&h->scan_lock, flags);
5782        return finished;
5783}
5784
5785static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5786{
5787        struct Scsi_Host *sh;
5788
5789        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5790        if (sh == NULL) {
5791                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5792                return -ENOMEM;
5793        }
5794
5795        sh->io_port = 0;
5796        sh->n_io_port = 0;
5797        sh->this_id = -1;
5798        sh->max_channel = 3;
5799        sh->max_cmd_len = MAX_COMMAND_SIZE;
5800        sh->max_lun = HPSA_MAX_LUN;
5801        sh->max_id = HPSA_MAX_LUN;
5802        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5803        sh->cmd_per_lun = sh->can_queue;
5804        sh->sg_tablesize = h->maxsgentries;
5805        sh->transportt = hpsa_sas_transport_template;
5806        sh->hostdata[0] = (unsigned long) h;
5807        sh->irq = pci_irq_vector(h->pdev, 0);
5808        sh->unique_id = sh->irq;
5809
5810        h->scsi_host = sh;
5811        return 0;
5812}
5813
5814static int hpsa_scsi_add_host(struct ctlr_info *h)
5815{
5816        int rv;
5817
5818        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5819        if (rv) {
5820                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5821                return rv;
5822        }
5823        scsi_scan_host(h->scsi_host);
5824        return 0;
5825}
5826
5827/*
5828 * The block layer has already gone to the trouble of picking out a unique,
5829 * small-integer tag for this request.  We use an offset from that value as
5830 * an index to select our command block.  (The offset allows us to reserve the
5831 * low-numbered entries for our own uses.)
5832 */
5833static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5834{
5835        int idx = scmd->request->tag;
5836
5837        if (idx < 0)
5838                return idx;
5839
5840        /* Offset to leave space for internal cmds. */
5841        return idx += HPSA_NRESERVED_CMDS;
5842}
5843
5844/*
5845 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5846 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5847 */
5848static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5849                                struct CommandList *c, unsigned char lunaddr[],
5850                                int reply_queue)
5851{
5852        int rc;
5853
5854        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5855        (void) fill_cmd(c, TEST_UNIT_READY, h,
5856                        NULL, 0, 0, lunaddr, TYPE_CMD);
5857        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5858        if (rc)
5859                return rc;
5860        /* no unmap needed here because no data xfer. */
5861
5862        /* Check if the unit is already ready. */
5863        if (c->err_info->CommandStatus == CMD_SUCCESS)
5864                return 0;
5865
5866        /*
5867         * The first command sent after reset will receive "unit attention" to
5868         * indicate that the LUN has been reset...this is actually what we're
5869         * looking for (but, success is good too).
5870         */
5871        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5872                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5873                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5874                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5875                return 0;
5876
5877        return 1;
5878}
5879
5880/*
5881 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5882 * returns zero when the unit is ready, and non-zero when giving up.
5883 */
5884static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5885                                struct CommandList *c,
5886                                unsigned char lunaddr[], int reply_queue)
5887{
5888        int rc;
5889        int count = 0;
5890        int waittime = 1; /* seconds */
5891
5892        /* Send test unit ready until device ready, or give up. */
5893        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5894
5895                /*
5896                 * Wait for a bit.  do this first, because if we send
5897                 * the TUR right away, the reset will just abort it.
5898                 */
5899                msleep(1000 * waittime);
5900
5901                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5902                if (!rc)
5903                        break;
5904
5905                /* Increase wait time with each try, up to a point. */
5906                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5907                        waittime *= 2;
5908
5909                dev_warn(&h->pdev->dev,
5910                         "waiting %d secs for device to become ready.\n",
5911                         waittime);
5912        }
5913
5914        return rc;
5915}
5916
5917static int wait_for_device_to_become_ready(struct ctlr_info *h,
5918                                           unsigned char lunaddr[],
5919                                           int reply_queue)
5920{
5921        int first_queue;
5922        int last_queue;
5923        int rq;
5924        int rc = 0;
5925        struct CommandList *c;
5926
5927        c = cmd_alloc(h);
5928
5929        /*
5930         * If no specific reply queue was requested, then send the TUR
5931         * repeatedly, requesting a reply on each reply queue; otherwise execute
5932         * the loop exactly once using only the specified queue.
5933         */
5934        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5935                first_queue = 0;
5936                last_queue = h->nreply_queues - 1;
5937        } else {
5938                first_queue = reply_queue;
5939                last_queue = reply_queue;
5940        }
5941
5942        for (rq = first_queue; rq <= last_queue; rq++) {
5943                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5944                if (rc)
5945                        break;
5946        }
5947
5948        if (rc)
5949                dev_warn(&h->pdev->dev, "giving up on device.\n");
5950        else
5951                dev_warn(&h->pdev->dev, "device is ready.\n");
5952
5953        cmd_free(h, c);
5954        return rc;
5955}
5956
5957/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5958 * complaining.  Doing a host- or bus-reset can't do anything good here.
5959 */
5960static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5961{
5962        int rc = SUCCESS;
5963        int i;
5964        struct ctlr_info *h;
5965        struct hpsa_scsi_dev_t *dev = NULL;
5966        u8 reset_type;
5967        char msg[48];
5968        unsigned long flags;
5969
5970        /* find the controller to which the command to be aborted was sent */
5971        h = sdev_to_hba(scsicmd->device);
5972        if (h == NULL) /* paranoia */
5973                return FAILED;
5974
5975        spin_lock_irqsave(&h->reset_lock, flags);
5976        h->reset_in_progress = 1;
5977        spin_unlock_irqrestore(&h->reset_lock, flags);
5978
5979        if (lockup_detected(h)) {
5980                rc = FAILED;
5981                goto return_reset_status;
5982        }
5983
5984        dev = scsicmd->device->hostdata;
5985        if (!dev) {
5986                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5987                rc = FAILED;
5988                goto return_reset_status;
5989        }
5990
5991        if (dev->devtype == TYPE_ENCLOSURE) {
5992                rc = SUCCESS;
5993                goto return_reset_status;
5994        }
5995
5996        /* if controller locked up, we can guarantee command won't complete */
5997        if (lockup_detected(h)) {
5998                snprintf(msg, sizeof(msg),
5999                         "cmd %d RESET FAILED, lockup detected",
6000                         hpsa_get_cmd_index(scsicmd));
6001                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6002                rc = FAILED;
6003                goto return_reset_status;
6004        }
6005
6006        /* this reset request might be the result of a lockup; check */
6007        if (detect_controller_lockup(h)) {
6008                snprintf(msg, sizeof(msg),
6009                         "cmd %d RESET FAILED, new lockup detected",
6010                         hpsa_get_cmd_index(scsicmd));
6011                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6012                rc = FAILED;
6013                goto return_reset_status;
6014        }
6015
6016        /* Do not attempt on controller */
6017        if (is_hba_lunid(dev->scsi3addr)) {
6018                rc = SUCCESS;
6019                goto return_reset_status;
6020        }
6021
6022        if (is_logical_dev_addr_mode(dev->scsi3addr))
6023                reset_type = HPSA_DEVICE_RESET_MSG;
6024        else
6025                reset_type = HPSA_PHYS_TARGET_RESET;
6026
6027        sprintf(msg, "resetting %s",
6028                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6029        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6030
6031        /*
6032         * wait to see if any commands will complete before sending reset
6033         */
6034        dev->in_reset = true; /* block any new cmds from OS for this device */
6035        for (i = 0; i < 10; i++) {
6036                if (atomic_read(&dev->commands_outstanding) > 0)
6037                        msleep(1000);
6038                else
6039                        break;
6040        }
6041
6042        /* send a reset to the SCSI LUN which the command was sent to */
6043        rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6044        if (rc == 0)
6045                rc = SUCCESS;
6046        else
6047                rc = FAILED;
6048
6049        sprintf(msg, "reset %s %s",
6050                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6051                rc == SUCCESS ? "completed successfully" : "failed");
6052        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6053
6054return_reset_status:
6055        spin_lock_irqsave(&h->reset_lock, flags);
6056        h->reset_in_progress = 0;
6057        if (dev)
6058                dev->in_reset = false;
6059        spin_unlock_irqrestore(&h->reset_lock, flags);
6060        return rc;
6061}
6062
6063/*
6064 * For operations with an associated SCSI command, a command block is allocated
6065 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6066 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6067 * the complement, although cmd_free() may be called instead.
6068 */
6069static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6070                                            struct scsi_cmnd *scmd)
6071{
6072        int idx = hpsa_get_cmd_index(scmd);
6073        struct CommandList *c = h->cmd_pool + idx;
6074
6075        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6076                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6077                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6078                /* The index value comes from the block layer, so if it's out of
6079                 * bounds, it's probably not our bug.
6080                 */
6081                BUG();
6082        }
6083
6084        if (unlikely(!hpsa_is_cmd_idle(c))) {
6085                /*
6086                 * We expect that the SCSI layer will hand us a unique tag
6087                 * value.  Thus, there should never be a collision here between
6088                 * two requests...because if the selected command isn't idle
6089                 * then someone is going to be very disappointed.
6090                 */
6091                if (idx != h->last_collision_tag) { /* Print once per tag */
6092                        dev_warn(&h->pdev->dev,
6093                                "%s: tag collision (tag=%d)\n", __func__, idx);
6094                        if (scmd)
6095                                scsi_print_command(scmd);
6096                        h->last_collision_tag = idx;
6097                }
6098                return NULL;
6099        }
6100
6101        atomic_inc(&c->refcount);
6102
6103        hpsa_cmd_partial_init(h, idx, c);
6104        return c;
6105}
6106
6107static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6108{
6109        /*
6110         * Release our reference to the block.  We don't need to do anything
6111         * else to free it, because it is accessed by index.
6112         */
6113        (void)atomic_dec(&c->refcount);
6114}
6115
6116/*
6117 * For operations that cannot sleep, a command block is allocated at init,
6118 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6119 * which ones are free or in use.  Lock must be held when calling this.
6120 * cmd_free() is the complement.
6121 * This function never gives up and returns NULL.  If it hangs,
6122 * another thread must call cmd_free() to free some tags.
6123 */
6124
6125static struct CommandList *cmd_alloc(struct ctlr_info *h)
6126{
6127        struct CommandList *c;
6128        int refcount, i;
6129        int offset = 0;
6130
6131        /*
6132         * There is some *extremely* small but non-zero chance that that
6133         * multiple threads could get in here, and one thread could
6134         * be scanning through the list of bits looking for a free
6135         * one, but the free ones are always behind him, and other
6136         * threads sneak in behind him and eat them before he can
6137         * get to them, so that while there is always a free one, a
6138         * very unlucky thread might be starved anyway, never able to
6139         * beat the other threads.  In reality, this happens so
6140         * infrequently as to be indistinguishable from never.
6141         *
6142         * Note that we start allocating commands before the SCSI host structure
6143         * is initialized.  Since the search starts at bit zero, this
6144         * all works, since we have at least one command structure available;
6145         * however, it means that the structures with the low indexes have to be
6146         * reserved for driver-initiated requests, while requests from the block
6147         * layer will use the higher indexes.
6148         */
6149
6150        for (;;) {
6151                i = find_next_zero_bit(h->cmd_pool_bits,
6152                                        HPSA_NRESERVED_CMDS,
6153                                        offset);
6154                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6155                        offset = 0;
6156                        continue;
6157                }
6158                c = h->cmd_pool + i;
6159                refcount = atomic_inc_return(&c->refcount);
6160                if (unlikely(refcount > 1)) {
6161                        cmd_free(h, c); /* already in use */
6162                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6163                        continue;
6164                }
6165                set_bit(i & (BITS_PER_LONG - 1),
6166                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6167                break; /* it's ours now. */
6168        }
6169        hpsa_cmd_partial_init(h, i, c);
6170        c->device = NULL;
6171        return c;
6172}
6173
6174/*
6175 * This is the complementary operation to cmd_alloc().  Note, however, in some
6176 * corner cases it may also be used to free blocks allocated by
6177 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6178 * the clear-bit is harmless.
6179 */
6180static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6181{
6182        if (atomic_dec_and_test(&c->refcount)) {
6183                int i;
6184
6185                i = c - h->cmd_pool;
6186                clear_bit(i & (BITS_PER_LONG - 1),
6187                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6188        }
6189}
6190
6191#ifdef CONFIG_COMPAT
6192
6193static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6194        void __user *arg)
6195{
6196        IOCTL32_Command_struct __user *arg32 =
6197            (IOCTL32_Command_struct __user *) arg;
6198        IOCTL_Command_struct arg64;
6199        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6200        int err;
6201        u32 cp;
6202
6203        memset(&arg64, 0, sizeof(arg64));
6204        err = 0;
6205        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6206                           sizeof(arg64.LUN_info));
6207        err |= copy_from_user(&arg64.Request, &arg32->Request,
6208                           sizeof(arg64.Request));
6209        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6210                           sizeof(arg64.error_info));
6211        err |= get_user(arg64.buf_size, &arg32->buf_size);
6212        err |= get_user(cp, &arg32->buf);
6213        arg64.buf = compat_ptr(cp);
6214        err |= copy_to_user(p, &arg64, sizeof(arg64));
6215
6216        if (err)
6217                return -EFAULT;
6218
6219        err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6220        if (err)
6221                return err;
6222        err |= copy_in_user(&arg32->error_info, &p->error_info,
6223                         sizeof(arg32->error_info));
6224        if (err)
6225                return -EFAULT;
6226        return err;
6227}
6228
6229static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6230        unsigned int cmd, void __user *arg)
6231{
6232        BIG_IOCTL32_Command_struct __user *arg32 =
6233            (BIG_IOCTL32_Command_struct __user *) arg;
6234        BIG_IOCTL_Command_struct arg64;
6235        BIG_IOCTL_Command_struct __user *p =
6236            compat_alloc_user_space(sizeof(arg64));
6237        int err;
6238        u32 cp;
6239
6240        memset(&arg64, 0, sizeof(arg64));
6241        err = 0;
6242        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6243                           sizeof(arg64.LUN_info));
6244        err |= copy_from_user(&arg64.Request, &arg32->Request,
6245                           sizeof(arg64.Request));
6246        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6247                           sizeof(arg64.error_info));
6248        err |= get_user(arg64.buf_size, &arg32->buf_size);
6249        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6250        err |= get_user(cp, &arg32->buf);
6251        arg64.buf = compat_ptr(cp);
6252        err |= copy_to_user(p, &arg64, sizeof(arg64));
6253
6254        if (err)
6255                return -EFAULT;
6256
6257        err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6258        if (err)
6259                return err;
6260        err |= copy_in_user(&arg32->error_info, &p->error_info,
6261                         sizeof(arg32->error_info));
6262        if (err)
6263                return -EFAULT;
6264        return err;
6265}
6266
6267static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6268                             void __user *arg)
6269{
6270        switch (cmd) {
6271        case CCISS_GETPCIINFO:
6272        case CCISS_GETINTINFO:
6273        case CCISS_SETINTINFO:
6274        case CCISS_GETNODENAME:
6275        case CCISS_SETNODENAME:
6276        case CCISS_GETHEARTBEAT:
6277        case CCISS_GETBUSTYPES:
6278        case CCISS_GETFIRMVER:
6279        case CCISS_GETDRIVVER:
6280        case CCISS_REVALIDVOLS:
6281        case CCISS_DEREGDISK:
6282        case CCISS_REGNEWDISK:
6283        case CCISS_REGNEWD:
6284        case CCISS_RESCANDISK:
6285        case CCISS_GETLUNINFO:
6286                return hpsa_ioctl(dev, cmd, arg);
6287
6288        case CCISS_PASSTHRU32:
6289                return hpsa_ioctl32_passthru(dev, cmd, arg);
6290        case CCISS_BIG_PASSTHRU32:
6291                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6292
6293        default:
6294                return -ENOIOCTLCMD;
6295        }
6296}
6297#endif
6298
6299static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6300{
6301        struct hpsa_pci_info pciinfo;
6302
6303        if (!argp)
6304                return -EINVAL;
6305        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6306        pciinfo.bus = h->pdev->bus->number;
6307        pciinfo.dev_fn = h->pdev->devfn;
6308        pciinfo.board_id = h->board_id;
6309        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6310                return -EFAULT;
6311        return 0;
6312}
6313
6314static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6315{
6316        DriverVer_type DriverVer;
6317        unsigned char vmaj, vmin, vsubmin;
6318        int rc;
6319
6320        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6321                &vmaj, &vmin, &vsubmin);
6322        if (rc != 3) {
6323                dev_info(&h->pdev->dev, "driver version string '%s' "
6324                        "unrecognized.", HPSA_DRIVER_VERSION);
6325                vmaj = 0;
6326                vmin = 0;
6327                vsubmin = 0;
6328        }
6329        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6330        if (!argp)
6331                return -EINVAL;
6332        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6333                return -EFAULT;
6334        return 0;
6335}
6336
6337static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6338{
6339        IOCTL_Command_struct iocommand;
6340        struct CommandList *c;
6341        char *buff = NULL;
6342        u64 temp64;
6343        int rc = 0;
6344
6345        if (!argp)
6346                return -EINVAL;
6347        if (!capable(CAP_SYS_RAWIO))
6348                return -EPERM;
6349        if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6350                return -EFAULT;
6351        if ((iocommand.buf_size < 1) &&
6352            (iocommand.Request.Type.Direction != XFER_NONE)) {
6353                return -EINVAL;
6354        }
6355        if (iocommand.buf_size > 0) {
6356                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6357                if (buff == NULL)
6358                        return -ENOMEM;
6359                if (iocommand.Request.Type.Direction & XFER_WRITE) {
6360                        /* Copy the data into the buffer we created */
6361                        if (copy_from_user(buff, iocommand.buf,
6362                                iocommand.buf_size)) {
6363                                rc = -EFAULT;
6364                                goto out_kfree;
6365                        }
6366                } else {
6367                        memset(buff, 0, iocommand.buf_size);
6368                }
6369        }
6370        c = cmd_alloc(h);
6371
6372        /* Fill in the command type */
6373        c->cmd_type = CMD_IOCTL_PEND;
6374        c->scsi_cmd = SCSI_CMD_BUSY;
6375        /* Fill in Command Header */
6376        c->Header.ReplyQueue = 0; /* unused in simple mode */
6377        if (iocommand.buf_size > 0) {   /* buffer to fill */
6378                c->Header.SGList = 1;
6379                c->Header.SGTotal = cpu_to_le16(1);
6380        } else  { /* no buffers to fill */
6381                c->Header.SGList = 0;
6382                c->Header.SGTotal = cpu_to_le16(0);
6383        }
6384        memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6385
6386        /* Fill in Request block */
6387        memcpy(&c->Request, &iocommand.Request,
6388                sizeof(c->Request));
6389
6390        /* Fill in the scatter gather information */
6391        if (iocommand.buf_size > 0) {
6392                temp64 = dma_map_single(&h->pdev->dev, buff,
6393                        iocommand.buf_size, DMA_BIDIRECTIONAL);
6394                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6395                        c->SG[0].Addr = cpu_to_le64(0);
6396                        c->SG[0].Len = cpu_to_le32(0);
6397                        rc = -ENOMEM;
6398                        goto out;
6399                }
6400                c->SG[0].Addr = cpu_to_le64(temp64);
6401                c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6402                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6403        }
6404        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6405                                        NO_TIMEOUT);
6406        if (iocommand.buf_size > 0)
6407                hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6408        check_ioctl_unit_attention(h, c);
6409        if (rc) {
6410                rc = -EIO;
6411                goto out;
6412        }
6413
6414        /* Copy the error information out */
6415        memcpy(&iocommand.error_info, c->err_info,
6416                sizeof(iocommand.error_info));
6417        if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6418                rc = -EFAULT;
6419                goto out;
6420        }
6421        if ((iocommand.Request.Type.Direction & XFER_READ) &&
6422                iocommand.buf_size > 0) {
6423                /* Copy the data out of the buffer we created */
6424                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6425                        rc = -EFAULT;
6426                        goto out;
6427                }
6428        }
6429out:
6430        cmd_free(h, c);
6431out_kfree:
6432        kfree(buff);
6433        return rc;
6434}
6435
6436static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6437{
6438        BIG_IOCTL_Command_struct *ioc;
6439        struct CommandList *c;
6440        unsigned char **buff = NULL;
6441        int *buff_size = NULL;
6442        u64 temp64;
6443        BYTE sg_used = 0;
6444        int status = 0;
6445        u32 left;
6446        u32 sz;
6447        BYTE __user *data_ptr;
6448
6449        if (!argp)
6450                return -EINVAL;
6451        if (!capable(CAP_SYS_RAWIO))
6452                return -EPERM;
6453        ioc = vmemdup_user(argp, sizeof(*ioc));
6454        if (IS_ERR(ioc)) {
6455                status = PTR_ERR(ioc);
6456                goto cleanup1;
6457        }
6458        if ((ioc->buf_size < 1) &&
6459            (ioc->Request.Type.Direction != XFER_NONE)) {
6460                status = -EINVAL;
6461                goto cleanup1;
6462        }
6463        /* Check kmalloc limits  using all SGs */
6464        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6465                status = -EINVAL;
6466                goto cleanup1;
6467        }
6468        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6469                status = -EINVAL;
6470                goto cleanup1;
6471        }
6472        buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6473        if (!buff) {
6474                status = -ENOMEM;
6475                goto cleanup1;
6476        }
6477        buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6478        if (!buff_size) {
6479                status = -ENOMEM;
6480                goto cleanup1;
6481        }
6482        left = ioc->buf_size;
6483        data_ptr = ioc->buf;
6484        while (left) {
6485                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6486                buff_size[sg_used] = sz;
6487                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6488                if (buff[sg_used] == NULL) {
6489                        status = -ENOMEM;
6490                        goto cleanup1;
6491                }
6492                if (ioc->Request.Type.Direction & XFER_WRITE) {
6493                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6494                                status = -EFAULT;
6495                                goto cleanup1;
6496                        }
6497                } else
6498                        memset(buff[sg_used], 0, sz);
6499                left -= sz;
6500                data_ptr += sz;
6501                sg_used++;
6502        }
6503        c = cmd_alloc(h);
6504
6505        c->cmd_type = CMD_IOCTL_PEND;
6506        c->scsi_cmd = SCSI_CMD_BUSY;
6507        c->Header.ReplyQueue = 0;
6508        c->Header.SGList = (u8) sg_used;
6509        c->Header.SGTotal = cpu_to_le16(sg_used);
6510        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6511        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6512        if (ioc->buf_size > 0) {
6513                int i;
6514                for (i = 0; i < sg_used; i++) {
6515                        temp64 = dma_map_single(&h->pdev->dev, buff[i],
6516                                    buff_size[i], DMA_BIDIRECTIONAL);
6517                        if (dma_mapping_error(&h->pdev->dev,
6518                                                        (dma_addr_t) temp64)) {
6519                                c->SG[i].Addr = cpu_to_le64(0);
6520                                c->SG[i].Len = cpu_to_le32(0);
6521                                hpsa_pci_unmap(h->pdev, c, i,
6522                                        DMA_BIDIRECTIONAL);
6523                                status = -ENOMEM;
6524                                goto cleanup0;
6525                        }
6526                        c->SG[i].Addr = cpu_to_le64(temp64);
6527                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6528                        c->SG[i].Ext = cpu_to_le32(0);
6529                }
6530                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6531        }
6532        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6533                                                NO_TIMEOUT);
6534        if (sg_used)
6535                hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6536        check_ioctl_unit_attention(h, c);
6537        if (status) {
6538                status = -EIO;
6539                goto cleanup0;
6540        }
6541
6542        /* Copy the error information out */
6543        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6544        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6545                status = -EFAULT;
6546                goto cleanup0;
6547        }
6548        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6549                int i;
6550
6551                /* Copy the data out of the buffer we created */
6552                BYTE __user *ptr = ioc->buf;
6553                for (i = 0; i < sg_used; i++) {
6554                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6555                                status = -EFAULT;
6556                                goto cleanup0;
6557                        }
6558                        ptr += buff_size[i];
6559                }
6560        }
6561        status = 0;
6562cleanup0:
6563        cmd_free(h, c);
6564cleanup1:
6565        if (buff) {
6566                int i;
6567
6568                for (i = 0; i < sg_used; i++)
6569                        kfree(buff[i]);
6570                kfree(buff);
6571        }
6572        kfree(buff_size);
6573        kvfree(ioc);
6574        return status;
6575}
6576
6577static void check_ioctl_unit_attention(struct ctlr_info *h,
6578        struct CommandList *c)
6579{
6580        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6581                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6582                (void) check_for_unit_attention(h, c);
6583}
6584
6585/*
6586 * ioctl
6587 */
6588static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6589                      void __user *arg)
6590{
6591        struct ctlr_info *h;
6592        void __user *argp = (void __user *)arg;
6593        int rc;
6594
6595        h = sdev_to_hba(dev);
6596
6597        switch (cmd) {
6598        case CCISS_DEREGDISK:
6599        case CCISS_REGNEWDISK:
6600        case CCISS_REGNEWD:
6601                hpsa_scan_start(h->scsi_host);
6602                return 0;
6603        case CCISS_GETPCIINFO:
6604                return hpsa_getpciinfo_ioctl(h, argp);
6605        case CCISS_GETDRIVVER:
6606                return hpsa_getdrivver_ioctl(h, argp);
6607        case CCISS_PASSTHRU:
6608                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6609                        return -EAGAIN;
6610                rc = hpsa_passthru_ioctl(h, argp);
6611                atomic_inc(&h->passthru_cmds_avail);
6612                return rc;
6613        case CCISS_BIG_PASSTHRU:
6614                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6615                        return -EAGAIN;
6616                rc = hpsa_big_passthru_ioctl(h, argp);
6617                atomic_inc(&h->passthru_cmds_avail);
6618                return rc;
6619        default:
6620                return -ENOTTY;
6621        }
6622}
6623
6624static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6625{
6626        struct CommandList *c;
6627
6628        c = cmd_alloc(h);
6629
6630        /* fill_cmd can't fail here, no data buffer to map */
6631        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6632                RAID_CTLR_LUNID, TYPE_MSG);
6633        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6634        c->waiting = NULL;
6635        enqueue_cmd_and_start_io(h, c);
6636        /* Don't wait for completion, the reset won't complete.  Don't free
6637         * the command either.  This is the last command we will send before
6638         * re-initializing everything, so it doesn't matter and won't leak.
6639         */
6640        return;
6641}
6642
6643static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6644        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6645        int cmd_type)
6646{
6647        enum dma_data_direction dir = DMA_NONE;
6648
6649        c->cmd_type = CMD_IOCTL_PEND;
6650        c->scsi_cmd = SCSI_CMD_BUSY;
6651        c->Header.ReplyQueue = 0;
6652        if (buff != NULL && size > 0) {
6653                c->Header.SGList = 1;
6654                c->Header.SGTotal = cpu_to_le16(1);
6655        } else {
6656                c->Header.SGList = 0;
6657                c->Header.SGTotal = cpu_to_le16(0);
6658        }
6659        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6660
6661        if (cmd_type == TYPE_CMD) {
6662                switch (cmd) {
6663                case HPSA_INQUIRY:
6664                        /* are we trying to read a vital product page */
6665                        if (page_code & VPD_PAGE) {
6666                                c->Request.CDB[1] = 0x01;
6667                                c->Request.CDB[2] = (page_code & 0xff);
6668                        }
6669                        c->Request.CDBLen = 6;
6670                        c->Request.type_attr_dir =
6671                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672                        c->Request.Timeout = 0;
6673                        c->Request.CDB[0] = HPSA_INQUIRY;
6674                        c->Request.CDB[4] = size & 0xFF;
6675                        break;
6676                case RECEIVE_DIAGNOSTIC:
6677                        c->Request.CDBLen = 6;
6678                        c->Request.type_attr_dir =
6679                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680                        c->Request.Timeout = 0;
6681                        c->Request.CDB[0] = cmd;
6682                        c->Request.CDB[1] = 1;
6683                        c->Request.CDB[2] = 1;
6684                        c->Request.CDB[3] = (size >> 8) & 0xFF;
6685                        c->Request.CDB[4] = size & 0xFF;
6686                        break;
6687                case HPSA_REPORT_LOG:
6688                case HPSA_REPORT_PHYS:
6689                        /* Talking to controller so It's a physical command
6690                           mode = 00 target = 0.  Nothing to write.
6691                         */
6692                        c->Request.CDBLen = 12;
6693                        c->Request.type_attr_dir =
6694                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695                        c->Request.Timeout = 0;
6696                        c->Request.CDB[0] = cmd;
6697                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6698                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6699                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6700                        c->Request.CDB[9] = size & 0xFF;
6701                        break;
6702                case BMIC_SENSE_DIAG_OPTIONS:
6703                        c->Request.CDBLen = 16;
6704                        c->Request.type_attr_dir =
6705                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706                        c->Request.Timeout = 0;
6707                        /* Spec says this should be BMIC_WRITE */
6708                        c->Request.CDB[0] = BMIC_READ;
6709                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6710                        break;
6711                case BMIC_SET_DIAG_OPTIONS:
6712                        c->Request.CDBLen = 16;
6713                        c->Request.type_attr_dir =
6714                                        TYPE_ATTR_DIR(cmd_type,
6715                                                ATTR_SIMPLE, XFER_WRITE);
6716                        c->Request.Timeout = 0;
6717                        c->Request.CDB[0] = BMIC_WRITE;
6718                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6719                        break;
6720                case HPSA_CACHE_FLUSH:
6721                        c->Request.CDBLen = 12;
6722                        c->Request.type_attr_dir =
6723                                        TYPE_ATTR_DIR(cmd_type,
6724                                                ATTR_SIMPLE, XFER_WRITE);
6725                        c->Request.Timeout = 0;
6726                        c->Request.CDB[0] = BMIC_WRITE;
6727                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6728                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6729                        c->Request.CDB[8] = size & 0xFF;
6730                        break;
6731                case TEST_UNIT_READY:
6732                        c->Request.CDBLen = 6;
6733                        c->Request.type_attr_dir =
6734                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6735                        c->Request.Timeout = 0;
6736                        break;
6737                case HPSA_GET_RAID_MAP:
6738                        c->Request.CDBLen = 12;
6739                        c->Request.type_attr_dir =
6740                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6741                        c->Request.Timeout = 0;
6742                        c->Request.CDB[0] = HPSA_CISS_READ;
6743                        c->Request.CDB[1] = cmd;
6744                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6745                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6746                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6747                        c->Request.CDB[9] = size & 0xFF;
6748                        break;
6749                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6750                        c->Request.CDBLen = 10;
6751                        c->Request.type_attr_dir =
6752                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6753                        c->Request.Timeout = 0;
6754                        c->Request.CDB[0] = BMIC_READ;
6755                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6756                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6757                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6758                        break;
6759                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6760                        c->Request.CDBLen = 10;
6761                        c->Request.type_attr_dir =
6762                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6763                        c->Request.Timeout = 0;
6764                        c->Request.CDB[0] = BMIC_READ;
6765                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6766                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6767                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6768                        break;
6769                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6770                        c->Request.CDBLen = 10;
6771                        c->Request.type_attr_dir =
6772                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6773                        c->Request.Timeout = 0;
6774                        c->Request.CDB[0] = BMIC_READ;
6775                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6776                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6777                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6778                        break;
6779                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6780                        c->Request.CDBLen = 10;
6781                        c->Request.type_attr_dir =
6782                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6783                        c->Request.Timeout = 0;
6784                        c->Request.CDB[0] = BMIC_READ;
6785                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6786                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6787                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6788                        break;
6789                case BMIC_IDENTIFY_CONTROLLER:
6790                        c->Request.CDBLen = 10;
6791                        c->Request.type_attr_dir =
6792                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6793                        c->Request.Timeout = 0;
6794                        c->Request.CDB[0] = BMIC_READ;
6795                        c->Request.CDB[1] = 0;
6796                        c->Request.CDB[2] = 0;
6797                        c->Request.CDB[3] = 0;
6798                        c->Request.CDB[4] = 0;
6799                        c->Request.CDB[5] = 0;
6800                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6801                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6802                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6803                        c->Request.CDB[9] = 0;
6804                        break;
6805                default:
6806                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6807                        BUG();
6808                }
6809        } else if (cmd_type == TYPE_MSG) {
6810                switch (cmd) {
6811
6812                case  HPSA_PHYS_TARGET_RESET:
6813                        c->Request.CDBLen = 16;
6814                        c->Request.type_attr_dir =
6815                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6816                        c->Request.Timeout = 0; /* Don't time out */
6817                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6818                        c->Request.CDB[0] = HPSA_RESET;
6819                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6820                        /* Physical target reset needs no control bytes 4-7*/
6821                        c->Request.CDB[4] = 0x00;
6822                        c->Request.CDB[5] = 0x00;
6823                        c->Request.CDB[6] = 0x00;
6824                        c->Request.CDB[7] = 0x00;
6825                        break;
6826                case  HPSA_DEVICE_RESET_MSG:
6827                        c->Request.CDBLen = 16;
6828                        c->Request.type_attr_dir =
6829                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6830                        c->Request.Timeout = 0; /* Don't time out */
6831                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6832                        c->Request.CDB[0] =  cmd;
6833                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6834                        /* If bytes 4-7 are zero, it means reset the */
6835                        /* LunID device */
6836                        c->Request.CDB[4] = 0x00;
6837                        c->Request.CDB[5] = 0x00;
6838                        c->Request.CDB[6] = 0x00;
6839                        c->Request.CDB[7] = 0x00;
6840                        break;
6841                default:
6842                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6843                                cmd);
6844                        BUG();
6845                }
6846        } else {
6847                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6848                BUG();
6849        }
6850
6851        switch (GET_DIR(c->Request.type_attr_dir)) {
6852        case XFER_READ:
6853                dir = DMA_FROM_DEVICE;
6854                break;
6855        case XFER_WRITE:
6856                dir = DMA_TO_DEVICE;
6857                break;
6858        case XFER_NONE:
6859                dir = DMA_NONE;
6860                break;
6861        default:
6862                dir = DMA_BIDIRECTIONAL;
6863        }
6864        if (hpsa_map_one(h->pdev, c, buff, size, dir))
6865                return -1;
6866        return 0;
6867}
6868
6869/*
6870 * Map (physical) PCI mem into (virtual) kernel space
6871 */
6872static void __iomem *remap_pci_mem(ulong base, ulong size)
6873{
6874        ulong page_base = ((ulong) base) & PAGE_MASK;
6875        ulong page_offs = ((ulong) base) - page_base;
6876        void __iomem *page_remapped = ioremap_nocache(page_base,
6877                page_offs + size);
6878
6879        return page_remapped ? (page_remapped + page_offs) : NULL;
6880}
6881
6882static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6883{
6884        return h->access.command_completed(h, q);
6885}
6886
6887static inline bool interrupt_pending(struct ctlr_info *h)
6888{
6889        return h->access.intr_pending(h);
6890}
6891
6892static inline long interrupt_not_for_us(struct ctlr_info *h)
6893{
6894        return (h->access.intr_pending(h) == 0) ||
6895                (h->interrupts_enabled == 0);
6896}
6897
6898static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6899        u32 raw_tag)
6900{
6901        if (unlikely(tag_index >= h->nr_cmds)) {
6902                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6903                return 1;
6904        }
6905        return 0;
6906}
6907
6908static inline void finish_cmd(struct CommandList *c)
6909{
6910        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6911        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6912                        || c->cmd_type == CMD_IOACCEL2))
6913                complete_scsi_command(c);
6914        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6915                complete(c->waiting);
6916}
6917
6918/* process completion of an indexed ("direct lookup") command */
6919static inline void process_indexed_cmd(struct ctlr_info *h,
6920        u32 raw_tag)
6921{
6922        u32 tag_index;
6923        struct CommandList *c;
6924
6925        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6926        if (!bad_tag(h, tag_index, raw_tag)) {
6927                c = h->cmd_pool + tag_index;
6928                finish_cmd(c);
6929        }
6930}
6931
6932/* Some controllers, like p400, will give us one interrupt
6933 * after a soft reset, even if we turned interrupts off.
6934 * Only need to check for this in the hpsa_xxx_discard_completions
6935 * functions.
6936 */
6937static int ignore_bogus_interrupt(struct ctlr_info *h)
6938{
6939        if (likely(!reset_devices))
6940                return 0;
6941
6942        if (likely(h->interrupts_enabled))
6943                return 0;
6944
6945        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6946                "(known firmware bug.)  Ignoring.\n");
6947
6948        return 1;
6949}
6950
6951/*
6952 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6953 * Relies on (h-q[x] == x) being true for x such that
6954 * 0 <= x < MAX_REPLY_QUEUES.
6955 */
6956static struct ctlr_info *queue_to_hba(u8 *queue)
6957{
6958        return container_of((queue - *queue), struct ctlr_info, q[0]);
6959}
6960
6961static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6962{
6963        struct ctlr_info *h = queue_to_hba(queue);
6964        u8 q = *(u8 *) queue;
6965        u32 raw_tag;
6966
6967        if (ignore_bogus_interrupt(h))
6968                return IRQ_NONE;
6969
6970        if (interrupt_not_for_us(h))
6971                return IRQ_NONE;
6972        h->last_intr_timestamp = get_jiffies_64();
6973        while (interrupt_pending(h)) {
6974                raw_tag = get_next_completion(h, q);
6975                while (raw_tag != FIFO_EMPTY)
6976                        raw_tag = next_command(h, q);
6977        }
6978        return IRQ_HANDLED;
6979}
6980
6981static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6982{
6983        struct ctlr_info *h = queue_to_hba(queue);
6984        u32 raw_tag;
6985        u8 q = *(u8 *) queue;
6986
6987        if (ignore_bogus_interrupt(h))
6988                return IRQ_NONE;
6989
6990        h->last_intr_timestamp = get_jiffies_64();
6991        raw_tag = get_next_completion(h, q);
6992        while (raw_tag != FIFO_EMPTY)
6993                raw_tag = next_command(h, q);
6994        return IRQ_HANDLED;
6995}
6996
6997static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6998{
6999        struct ctlr_info *h = queue_to_hba((u8 *) queue);
7000        u32 raw_tag;
7001        u8 q = *(u8 *) queue;
7002
7003        if (interrupt_not_for_us(h))
7004                return IRQ_NONE;
7005        h->last_intr_timestamp = get_jiffies_64();
7006        while (interrupt_pending(h)) {
7007                raw_tag = get_next_completion(h, q);
7008                while (raw_tag != FIFO_EMPTY) {
7009                        process_indexed_cmd(h, raw_tag);
7010                        raw_tag = next_command(h, q);
7011                }
7012        }
7013        return IRQ_HANDLED;
7014}
7015
7016static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7017{
7018        struct ctlr_info *h = queue_to_hba(queue);
7019        u32 raw_tag;
7020        u8 q = *(u8 *) queue;
7021
7022        h->last_intr_timestamp = get_jiffies_64();
7023        raw_tag = get_next_completion(h, q);
7024        while (raw_tag != FIFO_EMPTY) {
7025                process_indexed_cmd(h, raw_tag);
7026                raw_tag = next_command(h, q);
7027        }
7028        return IRQ_HANDLED;
7029}
7030
7031/* Send a message CDB to the firmware. Careful, this only works
7032 * in simple mode, not performant mode due to the tag lookup.
7033 * We only ever use this immediately after a controller reset.
7034 */
7035static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7036                        unsigned char type)
7037{
7038        struct Command {
7039                struct CommandListHeader CommandHeader;
7040                struct RequestBlock Request;
7041                struct ErrDescriptor ErrorDescriptor;
7042        };
7043        struct Command *cmd;
7044        static const size_t cmd_sz = sizeof(*cmd) +
7045                                        sizeof(cmd->ErrorDescriptor);
7046        dma_addr_t paddr64;
7047        __le32 paddr32;
7048        u32 tag;
7049        void __iomem *vaddr;
7050        int i, err;
7051
7052        vaddr = pci_ioremap_bar(pdev, 0);
7053        if (vaddr == NULL)
7054                return -ENOMEM;
7055
7056        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7057         * CCISS commands, so they must be allocated from the lower 4GiB of
7058         * memory.
7059         */
7060        err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7061        if (err) {
7062                iounmap(vaddr);
7063                return err;
7064        }
7065
7066        cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7067        if (cmd == NULL) {
7068                iounmap(vaddr);
7069                return -ENOMEM;
7070        }
7071
7072        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7073         * although there's no guarantee, we assume that the address is at
7074         * least 4-byte aligned (most likely, it's page-aligned).
7075         */
7076        paddr32 = cpu_to_le32(paddr64);
7077
7078        cmd->CommandHeader.ReplyQueue = 0;
7079        cmd->CommandHeader.SGList = 0;
7080        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7081        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7082        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7083
7084        cmd->Request.CDBLen = 16;
7085        cmd->Request.type_attr_dir =
7086                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7087        cmd->Request.Timeout = 0; /* Don't time out */
7088        cmd->Request.CDB[0] = opcode;
7089        cmd->Request.CDB[1] = type;
7090        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7091        cmd->ErrorDescriptor.Addr =
7092                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7093        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7094
7095        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7096
7097        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7098                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7099                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7100                        break;
7101                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7102        }
7103
7104        iounmap(vaddr);
7105
7106        /* we leak the DMA buffer here ... no choice since the controller could
7107         *  still complete the command.
7108         */
7109        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7110                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7111                        opcode, type);
7112                return -ETIMEDOUT;
7113        }
7114
7115        dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7116
7117        if (tag & HPSA_ERROR_BIT) {
7118                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7119                        opcode, type);
7120                return -EIO;
7121        }
7122
7123        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7124                opcode, type);
7125        return 0;
7126}
7127
7128#define hpsa_noop(p) hpsa_message(p, 3, 0)
7129
7130static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7131        void __iomem *vaddr, u32 use_doorbell)
7132{
7133
7134        if (use_doorbell) {
7135                /* For everything after the P600, the PCI power state method
7136                 * of resetting the controller doesn't work, so we have this
7137                 * other way using the doorbell register.
7138                 */
7139                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7140                writel(use_doorbell, vaddr + SA5_DOORBELL);
7141
7142                /* PMC hardware guys tell us we need a 10 second delay after
7143                 * doorbell reset and before any attempt to talk to the board
7144                 * at all to ensure that this actually works and doesn't fall
7145                 * over in some weird corner cases.
7146                 */
7147                msleep(10000);
7148        } else { /* Try to do it the PCI power state way */
7149
7150                /* Quoting from the Open CISS Specification: "The Power
7151                 * Management Control/Status Register (CSR) controls the power
7152                 * state of the device.  The normal operating state is D0,
7153                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7154                 * the controller, place the interface device in D3 then to D0,
7155                 * this causes a secondary PCI reset which will reset the
7156                 * controller." */
7157
7158                int rc = 0;
7159
7160                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7161
7162                /* enter the D3hot power management state */
7163                rc = pci_set_power_state(pdev, PCI_D3hot);
7164                if (rc)
7165                        return rc;
7166
7167                msleep(500);
7168
7169                /* enter the D0 power management state */
7170                rc = pci_set_power_state(pdev, PCI_D0);
7171                if (rc)
7172                        return rc;
7173
7174                /*
7175                 * The P600 requires a small delay when changing states.
7176                 * Otherwise we may think the board did not reset and we bail.
7177                 * This for kdump only and is particular to the P600.
7178                 */
7179                msleep(500);
7180        }
7181        return 0;
7182}
7183
7184static void init_driver_version(char *driver_version, int len)
7185{
7186        memset(driver_version, 0, len);
7187        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7188}
7189
7190static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7191{
7192        char *driver_version;
7193        int i, size = sizeof(cfgtable->driver_version);
7194
7195        driver_version = kmalloc(size, GFP_KERNEL);
7196        if (!driver_version)
7197                return -ENOMEM;
7198
7199        init_driver_version(driver_version, size);
7200        for (i = 0; i < size; i++)
7201                writeb(driver_version[i], &cfgtable->driver_version[i]);
7202        kfree(driver_version);
7203        return 0;
7204}
7205
7206static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7207                                          unsigned char *driver_ver)
7208{
7209        int i;
7210
7211        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7212                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7213}
7214
7215static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7216{
7217
7218        char *driver_ver, *old_driver_ver;
7219        int rc, size = sizeof(cfgtable->driver_version);
7220
7221        old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7222        if (!old_driver_ver)
7223                return -ENOMEM;
7224        driver_ver = old_driver_ver + size;
7225
7226        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7227         * should have been changed, otherwise we know the reset failed.
7228         */
7229        init_driver_version(old_driver_ver, size);
7230        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7231        rc = !memcmp(driver_ver, old_driver_ver, size);
7232        kfree(old_driver_ver);
7233        return rc;
7234}
7235/* This does a hard reset of the controller using PCI power management
7236 * states or the using the doorbell register.
7237 */
7238static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7239{
7240        u64 cfg_offset;
7241        u32 cfg_base_addr;
7242        u64 cfg_base_addr_index;
7243        void __iomem *vaddr;
7244        unsigned long paddr;
7245        u32 misc_fw_support;
7246        int rc;
7247        struct CfgTable __iomem *cfgtable;
7248        u32 use_doorbell;
7249        u16 command_register;
7250
7251        /* For controllers as old as the P600, this is very nearly
7252         * the same thing as
7253         *
7254         * pci_save_state(pci_dev);
7255         * pci_set_power_state(pci_dev, PCI_D3hot);
7256         * pci_set_power_state(pci_dev, PCI_D0);
7257         * pci_restore_state(pci_dev);
7258         *
7259         * For controllers newer than the P600, the pci power state
7260         * method of resetting doesn't work so we have another way
7261         * using the doorbell register.
7262         */
7263
7264        if (!ctlr_is_resettable(board_id)) {
7265                dev_warn(&pdev->dev, "Controller not resettable\n");
7266                return -ENODEV;
7267        }
7268
7269        /* if controller is soft- but not hard resettable... */
7270        if (!ctlr_is_hard_resettable(board_id))
7271                return -ENOTSUPP; /* try soft reset later. */
7272
7273        /* Save the PCI command register */
7274        pci_read_config_word(pdev, 4, &command_register);
7275        pci_save_state(pdev);
7276
7277        /* find the first memory BAR, so we can find the cfg table */
7278        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7279        if (rc)
7280                return rc;
7281        vaddr = remap_pci_mem(paddr, 0x250);
7282        if (!vaddr)
7283                return -ENOMEM;
7284
7285        /* find cfgtable in order to check if reset via doorbell is supported */
7286        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7287                                        &cfg_base_addr_index, &cfg_offset);
7288        if (rc)
7289                goto unmap_vaddr;
7290        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7291                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7292        if (!cfgtable) {
7293                rc = -ENOMEM;
7294                goto unmap_vaddr;
7295        }
7296        rc = write_driver_ver_to_cfgtable(cfgtable);
7297        if (rc)
7298                goto unmap_cfgtable;
7299
7300        /* If reset via doorbell register is supported, use that.
7301         * There are two such methods.  Favor the newest method.
7302         */
7303        misc_fw_support = readl(&cfgtable->misc_fw_support);
7304        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7305        if (use_doorbell) {
7306                use_doorbell = DOORBELL_CTLR_RESET2;
7307        } else {
7308                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7309                if (use_doorbell) {
7310                        dev_warn(&pdev->dev,
7311                                "Soft reset not supported. Firmware update is required.\n");
7312                        rc = -ENOTSUPP; /* try soft reset */
7313                        goto unmap_cfgtable;
7314                }
7315        }
7316
7317        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7318        if (rc)
7319                goto unmap_cfgtable;
7320
7321        pci_restore_state(pdev);
7322        pci_write_config_word(pdev, 4, command_register);
7323
7324        /* Some devices (notably the HP Smart Array 5i Controller)
7325           need a little pause here */
7326        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7327
7328        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7329        if (rc) {
7330                dev_warn(&pdev->dev,
7331                        "Failed waiting for board to become ready after hard reset\n");
7332                goto unmap_cfgtable;
7333        }
7334
7335        rc = controller_reset_failed(vaddr);
7336        if (rc < 0)
7337                goto unmap_cfgtable;
7338        if (rc) {
7339                dev_warn(&pdev->dev, "Unable to successfully reset "
7340                        "controller. Will try soft reset.\n");
7341                rc = -ENOTSUPP;
7342        } else {
7343                dev_info(&pdev->dev, "board ready after hard reset.\n");
7344        }
7345
7346unmap_cfgtable:
7347        iounmap(cfgtable);
7348
7349unmap_vaddr:
7350        iounmap(vaddr);
7351        return rc;
7352}
7353
7354/*
7355 *  We cannot read the structure directly, for portability we must use
7356 *   the io functions.
7357 *   This is for debug only.
7358 */
7359static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7360{
7361#ifdef HPSA_DEBUG
7362        int i;
7363        char temp_name[17];
7364
7365        dev_info(dev, "Controller Configuration information\n");
7366        dev_info(dev, "------------------------------------\n");
7367        for (i = 0; i < 4; i++)
7368                temp_name[i] = readb(&(tb->Signature[i]));
7369        temp_name[4] = '\0';
7370        dev_info(dev, "   Signature = %s\n", temp_name);
7371        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7372        dev_info(dev, "   Transport methods supported = 0x%x\n",
7373               readl(&(tb->TransportSupport)));
7374        dev_info(dev, "   Transport methods active = 0x%x\n",
7375               readl(&(tb->TransportActive)));
7376        dev_info(dev, "   Requested transport Method = 0x%x\n",
7377               readl(&(tb->HostWrite.TransportRequest)));
7378        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7379               readl(&(tb->HostWrite.CoalIntDelay)));
7380        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7381               readl(&(tb->HostWrite.CoalIntCount)));
7382        dev_info(dev, "   Max outstanding commands = %d\n",
7383               readl(&(tb->CmdsOutMax)));
7384        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7385        for (i = 0; i < 16; i++)
7386                temp_name[i] = readb(&(tb->ServerName[i]));
7387        temp_name[16] = '\0';
7388        dev_info(dev, "   Server Name = %s\n", temp_name);
7389        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7390                readl(&(tb->HeartBeat)));
7391#endif                          /* HPSA_DEBUG */
7392}
7393
7394static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7395{
7396        int i, offset, mem_type, bar_type;
7397
7398        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7399                return 0;
7400        offset = 0;
7401        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7402                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7403                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7404                        offset += 4;
7405                else {
7406                        mem_type = pci_resource_flags(pdev, i) &
7407                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7408                        switch (mem_type) {
7409                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7410                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7411                                offset += 4;    /* 32 bit */
7412                                break;
7413                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7414                                offset += 8;
7415                                break;
7416                        default:        /* reserved in PCI 2.2 */
7417                                dev_warn(&pdev->dev,
7418                                       "base address is invalid\n");
7419                                return -1;
7420                                break;
7421                        }
7422                }
7423                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7424                        return i + 1;
7425        }
7426        return -1;
7427}
7428
7429static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7430{
7431        pci_free_irq_vectors(h->pdev);
7432        h->msix_vectors = 0;
7433}
7434
7435static void hpsa_setup_reply_map(struct ctlr_info *h)
7436{
7437        const struct cpumask *mask;
7438        unsigned int queue, cpu;
7439
7440        for (queue = 0; queue < h->msix_vectors; queue++) {
7441                mask = pci_irq_get_affinity(h->pdev, queue);
7442                if (!mask)
7443                        goto fallback;
7444
7445                for_each_cpu(cpu, mask)
7446                        h->reply_map[cpu] = queue;
7447        }
7448        return;
7449
7450fallback:
7451        for_each_possible_cpu(cpu)
7452                h->reply_map[cpu] = 0;
7453}
7454
7455/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7456 * controllers that are capable. If not, we use legacy INTx mode.
7457 */
7458static int hpsa_interrupt_mode(struct ctlr_info *h)
7459{
7460        unsigned int flags = PCI_IRQ_LEGACY;
7461        int ret;
7462
7463        /* Some boards advertise MSI but don't really support it */
7464        switch (h->board_id) {
7465        case 0x40700E11:
7466        case 0x40800E11:
7467        case 0x40820E11:
7468        case 0x40830E11:
7469                break;
7470        default:
7471                ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7472                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7473                if (ret > 0) {
7474                        h->msix_vectors = ret;
7475                        return 0;
7476                }
7477
7478                flags |= PCI_IRQ_MSI;
7479                break;
7480        }
7481
7482        ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7483        if (ret < 0)
7484                return ret;
7485        return 0;
7486}
7487
7488static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7489                                bool *legacy_board)
7490{
7491        int i;
7492        u32 subsystem_vendor_id, subsystem_device_id;
7493
7494        subsystem_vendor_id = pdev->subsystem_vendor;
7495        subsystem_device_id = pdev->subsystem_device;
7496        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7497                    subsystem_vendor_id;
7498
7499        if (legacy_board)
7500                *legacy_board = false;
7501        for (i = 0; i < ARRAY_SIZE(products); i++)
7502                if (*board_id == products[i].board_id) {
7503                        if (products[i].access != &SA5A_access &&
7504                            products[i].access != &SA5B_access)
7505                                return i;
7506                        dev_warn(&pdev->dev,
7507                                 "legacy board ID: 0x%08x\n",
7508                                 *board_id);
7509                        if (legacy_board)
7510                            *legacy_board = true;
7511                        return i;
7512                }
7513
7514        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7515        if (legacy_board)
7516                *legacy_board = true;
7517        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7518}
7519
7520static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7521                                    unsigned long *memory_bar)
7522{
7523        int i;
7524
7525        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7526                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7527                        /* addressing mode bits already removed */
7528                        *memory_bar = pci_resource_start(pdev, i);
7529                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7530                                *memory_bar);
7531                        return 0;
7532                }
7533        dev_warn(&pdev->dev, "no memory BAR found\n");
7534        return -ENODEV;
7535}
7536
7537static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7538                                     int wait_for_ready)
7539{
7540        int i, iterations;
7541        u32 scratchpad;
7542        if (wait_for_ready)
7543                iterations = HPSA_BOARD_READY_ITERATIONS;
7544        else
7545                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7546
7547        for (i = 0; i < iterations; i++) {
7548                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7549                if (wait_for_ready) {
7550                        if (scratchpad == HPSA_FIRMWARE_READY)
7551                                return 0;
7552                } else {
7553                        if (scratchpad != HPSA_FIRMWARE_READY)
7554                                return 0;
7555                }
7556                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7557        }
7558        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7559        return -ENODEV;
7560}
7561
7562static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7563                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7564                               u64 *cfg_offset)
7565{
7566        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7567        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7568        *cfg_base_addr &= (u32) 0x0000ffff;
7569        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7570        if (*cfg_base_addr_index == -1) {
7571                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7572                return -ENODEV;
7573        }
7574        return 0;
7575}
7576
7577static void hpsa_free_cfgtables(struct ctlr_info *h)
7578{
7579        if (h->transtable) {
7580                iounmap(h->transtable);
7581                h->transtable = NULL;
7582        }
7583        if (h->cfgtable) {
7584                iounmap(h->cfgtable);
7585                h->cfgtable = NULL;
7586        }
7587}
7588
7589/* Find and map CISS config table and transfer table
7590+ * several items must be unmapped (freed) later
7591+ * */
7592static int hpsa_find_cfgtables(struct ctlr_info *h)
7593{
7594        u64 cfg_offset;
7595        u32 cfg_base_addr;
7596        u64 cfg_base_addr_index;
7597        u32 trans_offset;
7598        int rc;
7599
7600        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7601                &cfg_base_addr_index, &cfg_offset);
7602        if (rc)
7603                return rc;
7604        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7605                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7606        if (!h->cfgtable) {
7607                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7608                return -ENOMEM;
7609        }
7610        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7611        if (rc)
7612                return rc;
7613        /* Find performant mode table. */
7614        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7615        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7616                                cfg_base_addr_index)+cfg_offset+trans_offset,
7617                                sizeof(*h->transtable));
7618        if (!h->transtable) {
7619                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7620                hpsa_free_cfgtables(h);
7621                return -ENOMEM;
7622        }
7623        return 0;
7624}
7625
7626static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7627{
7628#define MIN_MAX_COMMANDS 16
7629        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7630
7631        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7632
7633        /* Limit commands in memory limited kdump scenario. */
7634        if (reset_devices && h->max_commands > 32)
7635                h->max_commands = 32;
7636
7637        if (h->max_commands < MIN_MAX_COMMANDS) {
7638                dev_warn(&h->pdev->dev,
7639                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7640                        h->max_commands,
7641                        MIN_MAX_COMMANDS);
7642                h->max_commands = MIN_MAX_COMMANDS;
7643        }
7644}
7645
7646/* If the controller reports that the total max sg entries is greater than 512,
7647 * then we know that chained SG blocks work.  (Original smart arrays did not
7648 * support chained SG blocks and would return zero for max sg entries.)
7649 */
7650static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7651{
7652        return h->maxsgentries > 512;
7653}
7654
7655/* Interrogate the hardware for some limits:
7656 * max commands, max SG elements without chaining, and with chaining,
7657 * SG chain block size, etc.
7658 */
7659static void hpsa_find_board_params(struct ctlr_info *h)
7660{
7661        hpsa_get_max_perf_mode_cmds(h);
7662        h->nr_cmds = h->max_commands;
7663        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7664        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7665        if (hpsa_supports_chained_sg_blocks(h)) {
7666                /* Limit in-command s/g elements to 32 save dma'able memory. */
7667                h->max_cmd_sg_entries = 32;
7668                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7669                h->maxsgentries--; /* save one for chain pointer */
7670        } else {
7671                /*
7672                 * Original smart arrays supported at most 31 s/g entries
7673                 * embedded inline in the command (trying to use more
7674                 * would lock up the controller)
7675                 */
7676                h->max_cmd_sg_entries = 31;
7677                h->maxsgentries = 31; /* default to traditional values */
7678                h->chainsize = 0;
7679        }
7680
7681        /* Find out what task management functions are supported and cache */
7682        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7683        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7684                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7685        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7686                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7687        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7688                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7689}
7690
7691static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7692{
7693        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7694                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7695                return false;
7696        }
7697        return true;
7698}
7699
7700static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7701{
7702        u32 driver_support;
7703
7704        driver_support = readl(&(h->cfgtable->driver_support));
7705        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7706#ifdef CONFIG_X86
7707        driver_support |= ENABLE_SCSI_PREFETCH;
7708#endif
7709        driver_support |= ENABLE_UNIT_ATTN;
7710        writel(driver_support, &(h->cfgtable->driver_support));
7711}
7712
7713/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7714 * in a prefetch beyond physical memory.
7715 */
7716static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7717{
7718        u32 dma_prefetch;
7719
7720        if (h->board_id != 0x3225103C)
7721                return;
7722        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7723        dma_prefetch |= 0x8000;
7724        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7725}
7726
7727static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7728{
7729        int i;
7730        u32 doorbell_value;
7731        unsigned long flags;
7732        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7733        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7734                spin_lock_irqsave(&h->lock, flags);
7735                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7736                spin_unlock_irqrestore(&h->lock, flags);
7737                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7738                        goto done;
7739                /* delay and try again */
7740                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7741        }
7742        return -ENODEV;
7743done:
7744        return 0;
7745}
7746
7747static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7748{
7749        int i;
7750        u32 doorbell_value;
7751        unsigned long flags;
7752
7753        /* under certain very rare conditions, this can take awhile.
7754         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7755         * as we enter this code.)
7756         */
7757        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7758                if (h->remove_in_progress)
7759                        goto done;
7760                spin_lock_irqsave(&h->lock, flags);
7761                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7762                spin_unlock_irqrestore(&h->lock, flags);
7763                if (!(doorbell_value & CFGTBL_ChangeReq))
7764                        goto done;
7765                /* delay and try again */
7766                msleep(MODE_CHANGE_WAIT_INTERVAL);
7767        }
7768        return -ENODEV;
7769done:
7770        return 0;
7771}
7772
7773/* return -ENODEV or other reason on error, 0 on success */
7774static int hpsa_enter_simple_mode(struct ctlr_info *h)
7775{
7776        u32 trans_support;
7777
7778        trans_support = readl(&(h->cfgtable->TransportSupport));
7779        if (!(trans_support & SIMPLE_MODE))
7780                return -ENOTSUPP;
7781
7782        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7783
7784        /* Update the field, and then ring the doorbell */
7785        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7786        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7787        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7788        if (hpsa_wait_for_mode_change_ack(h))
7789                goto error;
7790        print_cfg_table(&h->pdev->dev, h->cfgtable);
7791        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7792                goto error;
7793        h->transMethod = CFGTBL_Trans_Simple;
7794        return 0;
7795error:
7796        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7797        return -ENODEV;
7798}
7799
7800/* free items allocated or mapped by hpsa_pci_init */
7801static void hpsa_free_pci_init(struct ctlr_info *h)
7802{
7803        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7804        iounmap(h->vaddr);                      /* pci_init 3 */
7805        h->vaddr = NULL;
7806        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7807        /*
7808         * call pci_disable_device before pci_release_regions per
7809         * Documentation/driver-api/pci/pci.rst
7810         */
7811        pci_disable_device(h->pdev);            /* pci_init 1 */
7812        pci_release_regions(h->pdev);           /* pci_init 2 */
7813}
7814
7815/* several items must be freed later */
7816static int hpsa_pci_init(struct ctlr_info *h)
7817{
7818        int prod_index, err;
7819        bool legacy_board;
7820
7821        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7822        if (prod_index < 0)
7823                return prod_index;
7824        h->product_name = products[prod_index].product_name;
7825        h->access = *(products[prod_index].access);
7826        h->legacy_board = legacy_board;
7827        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7828                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7829
7830        err = pci_enable_device(h->pdev);
7831        if (err) {
7832                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7833                pci_disable_device(h->pdev);
7834                return err;
7835        }
7836
7837        err = pci_request_regions(h->pdev, HPSA);
7838        if (err) {
7839                dev_err(&h->pdev->dev,
7840                        "failed to obtain PCI resources\n");
7841                pci_disable_device(h->pdev);
7842                return err;
7843        }
7844
7845        pci_set_master(h->pdev);
7846
7847        err = hpsa_interrupt_mode(h);
7848        if (err)
7849                goto clean1;
7850
7851        /* setup mapping between CPU and reply queue */
7852        hpsa_setup_reply_map(h);
7853
7854        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7855        if (err)
7856                goto clean2;    /* intmode+region, pci */
7857        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7858        if (!h->vaddr) {
7859                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7860                err = -ENOMEM;
7861                goto clean2;    /* intmode+region, pci */
7862        }
7863        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7864        if (err)
7865                goto clean3;    /* vaddr, intmode+region, pci */
7866        err = hpsa_find_cfgtables(h);
7867        if (err)
7868                goto clean3;    /* vaddr, intmode+region, pci */
7869        hpsa_find_board_params(h);
7870
7871        if (!hpsa_CISS_signature_present(h)) {
7872                err = -ENODEV;
7873                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7874        }
7875        hpsa_set_driver_support_bits(h);
7876        hpsa_p600_dma_prefetch_quirk(h);
7877        err = hpsa_enter_simple_mode(h);
7878        if (err)
7879                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7880        return 0;
7881
7882clean4: /* cfgtables, vaddr, intmode+region, pci */
7883        hpsa_free_cfgtables(h);
7884clean3: /* vaddr, intmode+region, pci */
7885        iounmap(h->vaddr);
7886        h->vaddr = NULL;
7887clean2: /* intmode+region, pci */
7888        hpsa_disable_interrupt_mode(h);
7889clean1:
7890        /*
7891         * call pci_disable_device before pci_release_regions per
7892         * Documentation/driver-api/pci/pci.rst
7893         */
7894        pci_disable_device(h->pdev);
7895        pci_release_regions(h->pdev);
7896        return err;
7897}
7898
7899static void hpsa_hba_inquiry(struct ctlr_info *h)
7900{
7901        int rc;
7902
7903#define HBA_INQUIRY_BYTE_COUNT 64
7904        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7905        if (!h->hba_inquiry_data)
7906                return;
7907        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7908                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7909        if (rc != 0) {
7910                kfree(h->hba_inquiry_data);
7911                h->hba_inquiry_data = NULL;
7912        }
7913}
7914
7915static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7916{
7917        int rc, i;
7918        void __iomem *vaddr;
7919
7920        if (!reset_devices)
7921                return 0;
7922
7923        /* kdump kernel is loading, we don't know in which state is
7924         * the pci interface. The dev->enable_cnt is equal zero
7925         * so we call enable+disable, wait a while and switch it on.
7926         */
7927        rc = pci_enable_device(pdev);
7928        if (rc) {
7929                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7930                return -ENODEV;
7931        }
7932        pci_disable_device(pdev);
7933        msleep(260);                    /* a randomly chosen number */
7934        rc = pci_enable_device(pdev);
7935        if (rc) {
7936                dev_warn(&pdev->dev, "failed to enable device.\n");
7937                return -ENODEV;
7938        }
7939
7940        pci_set_master(pdev);
7941
7942        vaddr = pci_ioremap_bar(pdev, 0);
7943        if (vaddr == NULL) {
7944                rc = -ENOMEM;
7945                goto out_disable;
7946        }
7947        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7948        iounmap(vaddr);
7949
7950        /* Reset the controller with a PCI power-cycle or via doorbell */
7951        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7952
7953        /* -ENOTSUPP here means we cannot reset the controller
7954         * but it's already (and still) up and running in
7955         * "performant mode".  Or, it might be 640x, which can't reset
7956         * due to concerns about shared bbwc between 6402/6404 pair.
7957         */
7958        if (rc)
7959                goto out_disable;
7960
7961        /* Now try to get the controller to respond to a no-op */
7962        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7963        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7964                if (hpsa_noop(pdev) == 0)
7965                        break;
7966                else
7967                        dev_warn(&pdev->dev, "no-op failed%s\n",
7968                                        (i < 11 ? "; re-trying" : ""));
7969        }
7970
7971out_disable:
7972
7973        pci_disable_device(pdev);
7974        return rc;
7975}
7976
7977static void hpsa_free_cmd_pool(struct ctlr_info *h)
7978{
7979        kfree(h->cmd_pool_bits);
7980        h->cmd_pool_bits = NULL;
7981        if (h->cmd_pool) {
7982                dma_free_coherent(&h->pdev->dev,
7983                                h->nr_cmds * sizeof(struct CommandList),
7984                                h->cmd_pool,
7985                                h->cmd_pool_dhandle);
7986                h->cmd_pool = NULL;
7987                h->cmd_pool_dhandle = 0;
7988        }
7989        if (h->errinfo_pool) {
7990                dma_free_coherent(&h->pdev->dev,
7991                                h->nr_cmds * sizeof(struct ErrorInfo),
7992                                h->errinfo_pool,
7993                                h->errinfo_pool_dhandle);
7994                h->errinfo_pool = NULL;
7995                h->errinfo_pool_dhandle = 0;
7996        }
7997}
7998
7999static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8000{
8001        h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8002                                   sizeof(unsigned long),
8003                                   GFP_KERNEL);
8004        h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8005                    h->nr_cmds * sizeof(*h->cmd_pool),
8006                    &h->cmd_pool_dhandle, GFP_KERNEL);
8007        h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8008                    h->nr_cmds * sizeof(*h->errinfo_pool),
8009                    &h->errinfo_pool_dhandle, GFP_KERNEL);
8010        if ((h->cmd_pool_bits == NULL)
8011            || (h->cmd_pool == NULL)
8012            || (h->errinfo_pool == NULL)) {
8013                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8014                goto clean_up;
8015        }
8016        hpsa_preinitialize_commands(h);
8017        return 0;
8018clean_up:
8019        hpsa_free_cmd_pool(h);
8020        return -ENOMEM;
8021}
8022
8023/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8024static void hpsa_free_irqs(struct ctlr_info *h)
8025{
8026        int i;
8027        int irq_vector = 0;
8028
8029        if (hpsa_simple_mode)
8030                irq_vector = h->intr_mode;
8031
8032        if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8033                /* Single reply queue, only one irq to free */
8034                free_irq(pci_irq_vector(h->pdev, irq_vector),
8035                                &h->q[h->intr_mode]);
8036                h->q[h->intr_mode] = 0;
8037                return;
8038        }
8039
8040        for (i = 0; i < h->msix_vectors; i++) {
8041                free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8042                h->q[i] = 0;
8043        }
8044        for (; i < MAX_REPLY_QUEUES; i++)
8045                h->q[i] = 0;
8046}
8047
8048/* returns 0 on success; cleans up and returns -Enn on error */
8049static int hpsa_request_irqs(struct ctlr_info *h,
8050        irqreturn_t (*msixhandler)(int, void *),
8051        irqreturn_t (*intxhandler)(int, void *))
8052{
8053        int rc, i;
8054        int irq_vector = 0;
8055
8056        if (hpsa_simple_mode)
8057                irq_vector = h->intr_mode;
8058
8059        /*
8060         * initialize h->q[x] = x so that interrupt handlers know which
8061         * queue to process.
8062         */
8063        for (i = 0; i < MAX_REPLY_QUEUES; i++)
8064                h->q[i] = (u8) i;
8065
8066        if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8067                /* If performant mode and MSI-X, use multiple reply queues */
8068                for (i = 0; i < h->msix_vectors; i++) {
8069                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8070                        rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8071                                        0, h->intrname[i],
8072                                        &h->q[i]);
8073                        if (rc) {
8074                                int j;
8075
8076                                dev_err(&h->pdev->dev,
8077                                        "failed to get irq %d for %s\n",
8078                                       pci_irq_vector(h->pdev, i), h->devname);
8079                                for (j = 0; j < i; j++) {
8080                                        free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8081                                        h->q[j] = 0;
8082                                }
8083                                for (; j < MAX_REPLY_QUEUES; j++)
8084                                        h->q[j] = 0;
8085                                return rc;
8086                        }
8087                }
8088        } else {
8089                /* Use single reply pool */
8090                if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8091                        sprintf(h->intrname[0], "%s-msi%s", h->devname,
8092                                h->msix_vectors ? "x" : "");
8093                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8094                                msixhandler, 0,
8095                                h->intrname[0],
8096                                &h->q[h->intr_mode]);
8097                } else {
8098                        sprintf(h->intrname[h->intr_mode],
8099                                "%s-intx", h->devname);
8100                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8101                                intxhandler, IRQF_SHARED,
8102                                h->intrname[0],
8103                                &h->q[h->intr_mode]);
8104                }
8105        }
8106        if (rc) {
8107                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8108                       pci_irq_vector(h->pdev, irq_vector), h->devname);
8109                hpsa_free_irqs(h);
8110                return -ENODEV;
8111        }
8112        return 0;
8113}
8114
8115static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8116{
8117        int rc;
8118        hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8119
8120        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8121        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8122        if (rc) {
8123                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8124                return rc;
8125        }
8126
8127        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8128        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8129        if (rc) {
8130                dev_warn(&h->pdev->dev, "Board failed to become ready "
8131                        "after soft reset.\n");
8132                return rc;
8133        }
8134
8135        return 0;
8136}
8137
8138static void hpsa_free_reply_queues(struct ctlr_info *h)
8139{
8140        int i;
8141
8142        for (i = 0; i < h->nreply_queues; i++) {
8143                if (!h->reply_queue[i].head)
8144                        continue;
8145                dma_free_coherent(&h->pdev->dev,
8146                                        h->reply_queue_size,
8147                                        h->reply_queue[i].head,
8148                                        h->reply_queue[i].busaddr);
8149                h->reply_queue[i].head = NULL;
8150                h->reply_queue[i].busaddr = 0;
8151        }
8152        h->reply_queue_size = 0;
8153}
8154
8155static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8156{
8157        hpsa_free_performant_mode(h);           /* init_one 7 */
8158        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8159        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8160        hpsa_free_irqs(h);                      /* init_one 4 */
8161        scsi_host_put(h->scsi_host);            /* init_one 3 */
8162        h->scsi_host = NULL;                    /* init_one 3 */
8163        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8164        free_percpu(h->lockup_detected);        /* init_one 2 */
8165        h->lockup_detected = NULL;              /* init_one 2 */
8166        if (h->resubmit_wq) {
8167                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8168                h->resubmit_wq = NULL;
8169        }
8170        if (h->rescan_ctlr_wq) {
8171                destroy_workqueue(h->rescan_ctlr_wq);
8172                h->rescan_ctlr_wq = NULL;
8173        }
8174        if (h->monitor_ctlr_wq) {
8175                destroy_workqueue(h->monitor_ctlr_wq);
8176                h->monitor_ctlr_wq = NULL;
8177        }
8178
8179        kfree(h);                               /* init_one 1 */
8180}
8181
8182/* Called when controller lockup detected. */
8183static void fail_all_outstanding_cmds(struct ctlr_info *h)
8184{
8185        int i, refcount;
8186        struct CommandList *c;
8187        int failcount = 0;
8188
8189        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8190        for (i = 0; i < h->nr_cmds; i++) {
8191                c = h->cmd_pool + i;
8192                refcount = atomic_inc_return(&c->refcount);
8193                if (refcount > 1) {
8194                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8195                        finish_cmd(c);
8196                        atomic_dec(&h->commands_outstanding);
8197                        failcount++;
8198                }
8199                cmd_free(h, c);
8200        }
8201        dev_warn(&h->pdev->dev,
8202                "failed %d commands in fail_all\n", failcount);
8203}
8204
8205static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8206{
8207        int cpu;
8208
8209        for_each_online_cpu(cpu) {
8210                u32 *lockup_detected;
8211                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8212                *lockup_detected = value;
8213        }
8214        wmb(); /* be sure the per-cpu variables are out to memory */
8215}
8216
8217static void controller_lockup_detected(struct ctlr_info *h)
8218{
8219        unsigned long flags;
8220        u32 lockup_detected;
8221
8222        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8223        spin_lock_irqsave(&h->lock, flags);
8224        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8225        if (!lockup_detected) {
8226                /* no heartbeat, but controller gave us a zero. */
8227                dev_warn(&h->pdev->dev,
8228                        "lockup detected after %d but scratchpad register is zero\n",
8229                        h->heartbeat_sample_interval / HZ);
8230                lockup_detected = 0xffffffff;
8231        }
8232        set_lockup_detected_for_all_cpus(h, lockup_detected);
8233        spin_unlock_irqrestore(&h->lock, flags);
8234        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8235                        lockup_detected, h->heartbeat_sample_interval / HZ);
8236        if (lockup_detected == 0xffff0000) {
8237                dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8238                writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8239        }
8240        pci_disable_device(h->pdev);
8241        fail_all_outstanding_cmds(h);
8242}
8243
8244static int detect_controller_lockup(struct ctlr_info *h)
8245{
8246        u64 now;
8247        u32 heartbeat;
8248        unsigned long flags;
8249
8250        now = get_jiffies_64();
8251        /* If we've received an interrupt recently, we're ok. */
8252        if (time_after64(h->last_intr_timestamp +
8253                                (h->heartbeat_sample_interval), now))
8254                return false;
8255
8256        /*
8257         * If we've already checked the heartbeat recently, we're ok.
8258         * This could happen if someone sends us a signal. We
8259         * otherwise don't care about signals in this thread.
8260         */
8261        if (time_after64(h->last_heartbeat_timestamp +
8262                                (h->heartbeat_sample_interval), now))
8263                return false;
8264
8265        /* If heartbeat has not changed since we last looked, we're not ok. */
8266        spin_lock_irqsave(&h->lock, flags);
8267        heartbeat = readl(&h->cfgtable->HeartBeat);
8268        spin_unlock_irqrestore(&h->lock, flags);
8269        if (h->last_heartbeat == heartbeat) {
8270                controller_lockup_detected(h);
8271                return true;
8272        }
8273
8274        /* We're ok. */
8275        h->last_heartbeat = heartbeat;
8276        h->last_heartbeat_timestamp = now;
8277        return false;
8278}
8279
8280/*
8281 * Set ioaccel status for all ioaccel volumes.
8282 *
8283 * Called from monitor controller worker (hpsa_event_monitor_worker)
8284 *
8285 * A Volume (or Volumes that comprise an Array set may be undergoing a
8286 * transformation, so we will be turning off ioaccel for all volumes that
8287 * make up the Array.
8288 */
8289static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8290{
8291        int rc;
8292        int i;
8293        u8 ioaccel_status;
8294        unsigned char *buf;
8295        struct hpsa_scsi_dev_t *device;
8296
8297        if (!h)
8298                return;
8299
8300        buf = kmalloc(64, GFP_KERNEL);
8301        if (!buf)
8302                return;
8303
8304        /*
8305         * Run through current device list used during I/O requests.
8306         */
8307        for (i = 0; i < h->ndevices; i++) {
8308                device = h->dev[i];
8309
8310                if (!device)
8311                        continue;
8312                if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8313                                                HPSA_VPD_LV_IOACCEL_STATUS))
8314                        continue;
8315
8316                memset(buf, 0, 64);
8317
8318                rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8319                                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8320                                        buf, 64);
8321                if (rc != 0)
8322                        continue;
8323
8324                ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8325                device->offload_config =
8326                                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8327                if (device->offload_config)
8328                        device->offload_to_be_enabled =
8329                                !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8330
8331                /*
8332                 * Immediately turn off ioaccel for any volume the
8333                 * controller tells us to. Some of the reasons could be:
8334                 *    transformation - change to the LVs of an Array.
8335                 *    degraded volume - component failure
8336                 *
8337                 * If ioaccel is to be re-enabled, re-enable later during the
8338                 * scan operation so the driver can get a fresh raidmap
8339                 * before turning ioaccel back on.
8340                 *
8341                 */
8342                if (!device->offload_to_be_enabled)
8343                        device->offload_enabled = 0;
8344        }
8345
8346        kfree(buf);
8347}
8348
8349static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8350{
8351        char *event_type;
8352
8353        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8354                return;
8355
8356        /* Ask the controller to clear the events we're handling. */
8357        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8358                        | CFGTBL_Trans_io_accel2)) &&
8359                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8360                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8361
8362                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8363                        event_type = "state change";
8364                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8365                        event_type = "configuration change";
8366                /* Stop sending new RAID offload reqs via the IO accelerator */
8367                scsi_block_requests(h->scsi_host);
8368                hpsa_set_ioaccel_status(h);
8369                hpsa_drain_accel_commands(h);
8370                /* Set 'accelerator path config change' bit */
8371                dev_warn(&h->pdev->dev,
8372                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373                        h->events, event_type);
8374                writel(h->events, &(h->cfgtable->clear_event_notify));
8375                /* Set the "clear event notify field update" bit 6 */
8376                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378                hpsa_wait_for_clear_event_notify_ack(h);
8379                scsi_unblock_requests(h->scsi_host);
8380        } else {
8381                /* Acknowledge controller notification events. */
8382                writel(h->events, &(h->cfgtable->clear_event_notify));
8383                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384                hpsa_wait_for_clear_event_notify_ack(h);
8385        }
8386        return;
8387}
8388
8389/* Check a register on the controller to see if there are configuration
8390 * changes (added/changed/removed logical drives, etc.) which mean that
8391 * we should rescan the controller for devices.
8392 * Also check flag for driver-initiated rescan.
8393 */
8394static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8395{
8396        if (h->drv_req_rescan) {
8397                h->drv_req_rescan = 0;
8398                return 1;
8399        }
8400
8401        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8402                return 0;
8403
8404        h->events = readl(&(h->cfgtable->event_notify));
8405        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8406}
8407
8408/*
8409 * Check if any of the offline devices have become ready
8410 */
8411static int hpsa_offline_devices_ready(struct ctlr_info *h)
8412{
8413        unsigned long flags;
8414        struct offline_device_entry *d;
8415        struct list_head *this, *tmp;
8416
8417        spin_lock_irqsave(&h->offline_device_lock, flags);
8418        list_for_each_safe(this, tmp, &h->offline_device_list) {
8419                d = list_entry(this, struct offline_device_entry,
8420                                offline_list);
8421                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8422                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8423                        spin_lock_irqsave(&h->offline_device_lock, flags);
8424                        list_del(&d->offline_list);
8425                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426                        return 1;
8427                }
8428                spin_lock_irqsave(&h->offline_device_lock, flags);
8429        }
8430        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8431        return 0;
8432}
8433
8434static int hpsa_luns_changed(struct ctlr_info *h)
8435{
8436        int rc = 1; /* assume there are changes */
8437        struct ReportLUNdata *logdev = NULL;
8438
8439        /* if we can't find out if lun data has changed,
8440         * assume that it has.
8441         */
8442
8443        if (!h->lastlogicals)
8444                return rc;
8445
8446        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8447        if (!logdev)
8448                return rc;
8449
8450        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8451                dev_warn(&h->pdev->dev,
8452                        "report luns failed, can't track lun changes.\n");
8453                goto out;
8454        }
8455        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8456                dev_info(&h->pdev->dev,
8457                        "Lun changes detected.\n");
8458                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8459                goto out;
8460        } else
8461                rc = 0; /* no changes detected. */
8462out:
8463        kfree(logdev);
8464        return rc;
8465}
8466
8467static void hpsa_perform_rescan(struct ctlr_info *h)
8468{
8469        struct Scsi_Host *sh = NULL;
8470        unsigned long flags;
8471
8472        /*
8473         * Do the scan after the reset
8474         */
8475        spin_lock_irqsave(&h->reset_lock, flags);
8476        if (h->reset_in_progress) {
8477                h->drv_req_rescan = 1;
8478                spin_unlock_irqrestore(&h->reset_lock, flags);
8479                return;
8480        }
8481        spin_unlock_irqrestore(&h->reset_lock, flags);
8482
8483        sh = scsi_host_get(h->scsi_host);
8484        if (sh != NULL) {
8485                hpsa_scan_start(sh);
8486                scsi_host_put(sh);
8487                h->drv_req_rescan = 0;
8488        }
8489}
8490
8491/*
8492 * watch for controller events
8493 */
8494static void hpsa_event_monitor_worker(struct work_struct *work)
8495{
8496        struct ctlr_info *h = container_of(to_delayed_work(work),
8497                                        struct ctlr_info, event_monitor_work);
8498        unsigned long flags;
8499
8500        spin_lock_irqsave(&h->lock, flags);
8501        if (h->remove_in_progress) {
8502                spin_unlock_irqrestore(&h->lock, flags);
8503                return;
8504        }
8505        spin_unlock_irqrestore(&h->lock, flags);
8506
8507        if (hpsa_ctlr_needs_rescan(h)) {
8508                hpsa_ack_ctlr_events(h);
8509                hpsa_perform_rescan(h);
8510        }
8511
8512        spin_lock_irqsave(&h->lock, flags);
8513        if (!h->remove_in_progress)
8514                queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8515                                HPSA_EVENT_MONITOR_INTERVAL);
8516        spin_unlock_irqrestore(&h->lock, flags);
8517}
8518
8519static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8520{
8521        unsigned long flags;
8522        struct ctlr_info *h = container_of(to_delayed_work(work),
8523                                        struct ctlr_info, rescan_ctlr_work);
8524
8525        spin_lock_irqsave(&h->lock, flags);
8526        if (h->remove_in_progress) {
8527                spin_unlock_irqrestore(&h->lock, flags);
8528                return;
8529        }
8530        spin_unlock_irqrestore(&h->lock, flags);
8531
8532        if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8533                hpsa_perform_rescan(h);
8534        } else if (h->discovery_polling) {
8535                if (hpsa_luns_changed(h)) {
8536                        dev_info(&h->pdev->dev,
8537                                "driver discovery polling rescan.\n");
8538                        hpsa_perform_rescan(h);
8539                }
8540        }
8541        spin_lock_irqsave(&h->lock, flags);
8542        if (!h->remove_in_progress)
8543                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8544                                h->heartbeat_sample_interval);
8545        spin_unlock_irqrestore(&h->lock, flags);
8546}
8547
8548static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8549{
8550        unsigned long flags;
8551        struct ctlr_info *h = container_of(to_delayed_work(work),
8552                                        struct ctlr_info, monitor_ctlr_work);
8553
8554        detect_controller_lockup(h);
8555        if (lockup_detected(h))
8556                return;
8557
8558        spin_lock_irqsave(&h->lock, flags);
8559        if (!h->remove_in_progress)
8560                queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8561                                h->heartbeat_sample_interval);
8562        spin_unlock_irqrestore(&h->lock, flags);
8563}
8564
8565static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8566                                                char *name)
8567{
8568        struct workqueue_struct *wq = NULL;
8569
8570        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8571        if (!wq)
8572                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8573
8574        return wq;
8575}
8576
8577static void hpda_free_ctlr_info(struct ctlr_info *h)
8578{
8579        kfree(h->reply_map);
8580        kfree(h);
8581}
8582
8583static struct ctlr_info *hpda_alloc_ctlr_info(void)
8584{
8585        struct ctlr_info *h;
8586
8587        h = kzalloc(sizeof(*h), GFP_KERNEL);
8588        if (!h)
8589                return NULL;
8590
8591        h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8592        if (!h->reply_map) {
8593                kfree(h);
8594                return NULL;
8595        }
8596        return h;
8597}
8598
8599static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8600{
8601        int dac, rc;
8602        struct ctlr_info *h;
8603        int try_soft_reset = 0;
8604        unsigned long flags;
8605        u32 board_id;
8606
8607        if (number_of_controllers == 0)
8608                printk(KERN_INFO DRIVER_NAME "\n");
8609
8610        rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8611        if (rc < 0) {
8612                dev_warn(&pdev->dev, "Board ID not found\n");
8613                return rc;
8614        }
8615
8616        rc = hpsa_init_reset_devices(pdev, board_id);
8617        if (rc) {
8618                if (rc != -ENOTSUPP)
8619                        return rc;
8620                /* If the reset fails in a particular way (it has no way to do
8621                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8622                 * a soft reset once we get the controller configured up to the
8623                 * point that it can accept a command.
8624                 */
8625                try_soft_reset = 1;
8626                rc = 0;
8627        }
8628
8629reinit_after_soft_reset:
8630
8631        /* Command structures must be aligned on a 32-byte boundary because
8632         * the 5 lower bits of the address are used by the hardware. and by
8633         * the driver.  See comments in hpsa.h for more info.
8634         */
8635        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8636        h = hpda_alloc_ctlr_info();
8637        if (!h) {
8638                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8639                return -ENOMEM;
8640        }
8641
8642        h->pdev = pdev;
8643
8644        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8645        INIT_LIST_HEAD(&h->offline_device_list);
8646        spin_lock_init(&h->lock);
8647        spin_lock_init(&h->offline_device_lock);
8648        spin_lock_init(&h->scan_lock);
8649        spin_lock_init(&h->reset_lock);
8650        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8651
8652        /* Allocate and clear per-cpu variable lockup_detected */
8653        h->lockup_detected = alloc_percpu(u32);
8654        if (!h->lockup_detected) {
8655                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8656                rc = -ENOMEM;
8657                goto clean1;    /* aer/h */
8658        }
8659        set_lockup_detected_for_all_cpus(h, 0);
8660
8661        rc = hpsa_pci_init(h);
8662        if (rc)
8663                goto clean2;    /* lu, aer/h */
8664
8665        /* relies on h-> settings made by hpsa_pci_init, including
8666         * interrupt_mode h->intr */
8667        rc = hpsa_scsi_host_alloc(h);
8668        if (rc)
8669                goto clean2_5;  /* pci, lu, aer/h */
8670
8671        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8672        h->ctlr = number_of_controllers;
8673        number_of_controllers++;
8674
8675        /* configure PCI DMA stuff */
8676        rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8677        if (rc == 0) {
8678                dac = 1;
8679        } else {
8680                rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8681                if (rc == 0) {
8682                        dac = 0;
8683                } else {
8684                        dev_err(&pdev->dev, "no suitable DMA available\n");
8685                        goto clean3;    /* shost, pci, lu, aer/h */
8686                }
8687        }
8688
8689        /* make sure the board interrupts are off */
8690        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8691
8692        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8693        if (rc)
8694                goto clean3;    /* shost, pci, lu, aer/h */
8695        rc = hpsa_alloc_cmd_pool(h);
8696        if (rc)
8697                goto clean4;    /* irq, shost, pci, lu, aer/h */
8698        rc = hpsa_alloc_sg_chain_blocks(h);
8699        if (rc)
8700                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8701        init_waitqueue_head(&h->scan_wait_queue);
8702        init_waitqueue_head(&h->event_sync_wait_queue);
8703        mutex_init(&h->reset_mutex);
8704        h->scan_finished = 1; /* no scan currently in progress */
8705        h->scan_waiting = 0;
8706
8707        pci_set_drvdata(pdev, h);
8708        h->ndevices = 0;
8709
8710        spin_lock_init(&h->devlock);
8711        rc = hpsa_put_ctlr_into_performant_mode(h);
8712        if (rc)
8713                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8714
8715        /* create the resubmit workqueue */
8716        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8717        if (!h->rescan_ctlr_wq) {
8718                rc = -ENOMEM;
8719                goto clean7;
8720        }
8721
8722        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8723        if (!h->resubmit_wq) {
8724                rc = -ENOMEM;
8725                goto clean7;    /* aer/h */
8726        }
8727
8728        h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8729        if (!h->monitor_ctlr_wq) {
8730                rc = -ENOMEM;
8731                goto clean7;
8732        }
8733
8734        /*
8735         * At this point, the controller is ready to take commands.
8736         * Now, if reset_devices and the hard reset didn't work, try
8737         * the soft reset and see if that works.
8738         */
8739        if (try_soft_reset) {
8740
8741                /* This is kind of gross.  We may or may not get a completion
8742                 * from the soft reset command, and if we do, then the value
8743                 * from the fifo may or may not be valid.  So, we wait 10 secs
8744                 * after the reset throwing away any completions we get during
8745                 * that time.  Unregister the interrupt handler and register
8746                 * fake ones to scoop up any residual completions.
8747                 */
8748                spin_lock_irqsave(&h->lock, flags);
8749                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750                spin_unlock_irqrestore(&h->lock, flags);
8751                hpsa_free_irqs(h);
8752                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8753                                        hpsa_intx_discard_completions);
8754                if (rc) {
8755                        dev_warn(&h->pdev->dev,
8756                                "Failed to request_irq after soft reset.\n");
8757                        /*
8758                         * cannot goto clean7 or free_irqs will be called
8759                         * again. Instead, do its work
8760                         */
8761                        hpsa_free_performant_mode(h);   /* clean7 */
8762                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8763                        hpsa_free_cmd_pool(h);          /* clean5 */
8764                        /*
8765                         * skip hpsa_free_irqs(h) clean4 since that
8766                         * was just called before request_irqs failed
8767                         */
8768                        goto clean3;
8769                }
8770
8771                rc = hpsa_kdump_soft_reset(h);
8772                if (rc)
8773                        /* Neither hard nor soft reset worked, we're hosed. */
8774                        goto clean7;
8775
8776                dev_info(&h->pdev->dev, "Board READY.\n");
8777                dev_info(&h->pdev->dev,
8778                        "Waiting for stale completions to drain.\n");
8779                h->access.set_intr_mask(h, HPSA_INTR_ON);
8780                msleep(10000);
8781                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8782
8783                rc = controller_reset_failed(h->cfgtable);
8784                if (rc)
8785                        dev_info(&h->pdev->dev,
8786                                "Soft reset appears to have failed.\n");
8787
8788                /* since the controller's reset, we have to go back and re-init
8789                 * everything.  Easiest to just forget what we've done and do it
8790                 * all over again.
8791                 */
8792                hpsa_undo_allocations_after_kdump_soft_reset(h);
8793                try_soft_reset = 0;
8794                if (rc)
8795                        /* don't goto clean, we already unallocated */
8796                        return -ENODEV;
8797
8798                goto reinit_after_soft_reset;
8799        }
8800
8801        /* Enable Accelerated IO path at driver layer */
8802        h->acciopath_status = 1;
8803        /* Disable discovery polling.*/
8804        h->discovery_polling = 0;
8805
8806
8807        /* Turn the interrupts on so we can service requests */
8808        h->access.set_intr_mask(h, HPSA_INTR_ON);
8809
8810        hpsa_hba_inquiry(h);
8811
8812        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8813        if (!h->lastlogicals)
8814                dev_info(&h->pdev->dev,
8815                        "Can't track change to report lun data\n");
8816
8817        /* hook into SCSI subsystem */
8818        rc = hpsa_scsi_add_host(h);
8819        if (rc)
8820                goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8821
8822        /* Monitor the controller for firmware lockups */
8823        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8824        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8825        schedule_delayed_work(&h->monitor_ctlr_work,
8826                                h->heartbeat_sample_interval);
8827        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8828        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8829                                h->heartbeat_sample_interval);
8830        INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8831        schedule_delayed_work(&h->event_monitor_work,
8832                                HPSA_EVENT_MONITOR_INTERVAL);
8833        return 0;
8834
8835clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8836        hpsa_free_performant_mode(h);
8837        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8838clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8839        hpsa_free_sg_chain_blocks(h);
8840clean5: /* cmd, irq, shost, pci, lu, aer/h */
8841        hpsa_free_cmd_pool(h);
8842clean4: /* irq, shost, pci, lu, aer/h */
8843        hpsa_free_irqs(h);
8844clean3: /* shost, pci, lu, aer/h */
8845        scsi_host_put(h->scsi_host);
8846        h->scsi_host = NULL;
8847clean2_5: /* pci, lu, aer/h */
8848        hpsa_free_pci_init(h);
8849clean2: /* lu, aer/h */
8850        if (h->lockup_detected) {
8851                free_percpu(h->lockup_detected);
8852                h->lockup_detected = NULL;
8853        }
8854clean1: /* wq/aer/h */
8855        if (h->resubmit_wq) {
8856                destroy_workqueue(h->resubmit_wq);
8857                h->resubmit_wq = NULL;
8858        }
8859        if (h->rescan_ctlr_wq) {
8860                destroy_workqueue(h->rescan_ctlr_wq);
8861                h->rescan_ctlr_wq = NULL;
8862        }
8863        if (h->monitor_ctlr_wq) {
8864                destroy_workqueue(h->monitor_ctlr_wq);
8865                h->monitor_ctlr_wq = NULL;
8866        }
8867        kfree(h);
8868        return rc;
8869}
8870
8871static void hpsa_flush_cache(struct ctlr_info *h)
8872{
8873        char *flush_buf;
8874        struct CommandList *c;
8875        int rc;
8876
8877        if (unlikely(lockup_detected(h)))
8878                return;
8879        flush_buf = kzalloc(4, GFP_KERNEL);
8880        if (!flush_buf)
8881                return;
8882
8883        c = cmd_alloc(h);
8884
8885        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8886                RAID_CTLR_LUNID, TYPE_CMD)) {
8887                goto out;
8888        }
8889        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8890                        DEFAULT_TIMEOUT);
8891        if (rc)
8892                goto out;
8893        if (c->err_info->CommandStatus != 0)
8894out:
8895                dev_warn(&h->pdev->dev,
8896                        "error flushing cache on controller\n");
8897        cmd_free(h, c);
8898        kfree(flush_buf);
8899}
8900
8901/* Make controller gather fresh report lun data each time we
8902 * send down a report luns request
8903 */
8904static void hpsa_disable_rld_caching(struct ctlr_info *h)
8905{
8906        u32 *options;
8907        struct CommandList *c;
8908        int rc;
8909
8910        /* Don't bother trying to set diag options if locked up */
8911        if (unlikely(h->lockup_detected))
8912                return;
8913
8914        options = kzalloc(sizeof(*options), GFP_KERNEL);
8915        if (!options)
8916                return;
8917
8918        c = cmd_alloc(h);
8919
8920        /* first, get the current diag options settings */
8921        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8922                RAID_CTLR_LUNID, TYPE_CMD))
8923                goto errout;
8924
8925        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8926                        NO_TIMEOUT);
8927        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8928                goto errout;
8929
8930        /* Now, set the bit for disabling the RLD caching */
8931        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8932
8933        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8934                RAID_CTLR_LUNID, TYPE_CMD))
8935                goto errout;
8936
8937        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8938                        NO_TIMEOUT);
8939        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8940                goto errout;
8941
8942        /* Now verify that it got set: */
8943        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8944                RAID_CTLR_LUNID, TYPE_CMD))
8945                goto errout;
8946
8947        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8948                        NO_TIMEOUT);
8949        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8950                goto errout;
8951
8952        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8953                goto out;
8954
8955errout:
8956        dev_err(&h->pdev->dev,
8957                        "Error: failed to disable report lun data caching.\n");
8958out:
8959        cmd_free(h, c);
8960        kfree(options);
8961}
8962
8963static void __hpsa_shutdown(struct pci_dev *pdev)
8964{
8965        struct ctlr_info *h;
8966
8967        h = pci_get_drvdata(pdev);
8968        /* Turn board interrupts off  and send the flush cache command
8969         * sendcmd will turn off interrupt, and send the flush...
8970         * To write all data in the battery backed cache to disks
8971         */
8972        hpsa_flush_cache(h);
8973        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8974        hpsa_free_irqs(h);                      /* init_one 4 */
8975        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8976}
8977
8978static void hpsa_shutdown(struct pci_dev *pdev)
8979{
8980        __hpsa_shutdown(pdev);
8981        pci_disable_device(pdev);
8982}
8983
8984static void hpsa_free_device_info(struct ctlr_info *h)
8985{
8986        int i;
8987
8988        for (i = 0; i < h->ndevices; i++) {
8989                kfree(h->dev[i]);
8990                h->dev[i] = NULL;
8991        }
8992}
8993
8994static void hpsa_remove_one(struct pci_dev *pdev)
8995{
8996        struct ctlr_info *h;
8997        unsigned long flags;
8998
8999        if (pci_get_drvdata(pdev) == NULL) {
9000                dev_err(&pdev->dev, "unable to remove device\n");
9001                return;
9002        }
9003        h = pci_get_drvdata(pdev);
9004
9005        /* Get rid of any controller monitoring work items */
9006        spin_lock_irqsave(&h->lock, flags);
9007        h->remove_in_progress = 1;
9008        spin_unlock_irqrestore(&h->lock, flags);
9009        cancel_delayed_work_sync(&h->monitor_ctlr_work);
9010        cancel_delayed_work_sync(&h->rescan_ctlr_work);
9011        cancel_delayed_work_sync(&h->event_monitor_work);
9012        destroy_workqueue(h->rescan_ctlr_wq);
9013        destroy_workqueue(h->resubmit_wq);
9014        destroy_workqueue(h->monitor_ctlr_wq);
9015
9016        hpsa_delete_sas_host(h);
9017
9018        /*
9019         * Call before disabling interrupts.
9020         * scsi_remove_host can trigger I/O operations especially
9021         * when multipath is enabled. There can be SYNCHRONIZE CACHE
9022         * operations which cannot complete and will hang the system.
9023         */
9024        if (h->scsi_host)
9025                scsi_remove_host(h->scsi_host);         /* init_one 8 */
9026        /* includes hpsa_free_irqs - init_one 4 */
9027        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9028        __hpsa_shutdown(pdev);
9029
9030        hpsa_free_device_info(h);               /* scan */
9031
9032        kfree(h->hba_inquiry_data);                     /* init_one 10 */
9033        h->hba_inquiry_data = NULL;                     /* init_one 10 */
9034        hpsa_free_ioaccel2_sg_chain_blocks(h);
9035        hpsa_free_performant_mode(h);                   /* init_one 7 */
9036        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9037        hpsa_free_cmd_pool(h);                          /* init_one 5 */
9038        kfree(h->lastlogicals);
9039
9040        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9041
9042        scsi_host_put(h->scsi_host);                    /* init_one 3 */
9043        h->scsi_host = NULL;                            /* init_one 3 */
9044
9045        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9046        hpsa_free_pci_init(h);                          /* init_one 2.5 */
9047
9048        free_percpu(h->lockup_detected);                /* init_one 2 */
9049        h->lockup_detected = NULL;                      /* init_one 2 */
9050        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9051
9052        hpda_free_ctlr_info(h);                         /* init_one 1 */
9053}
9054
9055static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9056        __attribute__((unused)) pm_message_t state)
9057{
9058        return -ENOSYS;
9059}
9060
9061static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9062{
9063        return -ENOSYS;
9064}
9065
9066static struct pci_driver hpsa_pci_driver = {
9067        .name = HPSA,
9068        .probe = hpsa_init_one,
9069        .remove = hpsa_remove_one,
9070        .id_table = hpsa_pci_device_id, /* id_table */
9071        .shutdown = hpsa_shutdown,
9072        .suspend = hpsa_suspend,
9073        .resume = hpsa_resume,
9074};
9075
9076/* Fill in bucket_map[], given nsgs (the max number of
9077 * scatter gather elements supported) and bucket[],
9078 * which is an array of 8 integers.  The bucket[] array
9079 * contains 8 different DMA transfer sizes (in 16
9080 * byte increments) which the controller uses to fetch
9081 * commands.  This function fills in bucket_map[], which
9082 * maps a given number of scatter gather elements to one of
9083 * the 8 DMA transfer sizes.  The point of it is to allow the
9084 * controller to only do as much DMA as needed to fetch the
9085 * command, with the DMA transfer size encoded in the lower
9086 * bits of the command address.
9087 */
9088static void  calc_bucket_map(int bucket[], int num_buckets,
9089        int nsgs, int min_blocks, u32 *bucket_map)
9090{
9091        int i, j, b, size;
9092
9093        /* Note, bucket_map must have nsgs+1 entries. */
9094        for (i = 0; i <= nsgs; i++) {
9095                /* Compute size of a command with i SG entries */
9096                size = i + min_blocks;
9097                b = num_buckets; /* Assume the biggest bucket */
9098                /* Find the bucket that is just big enough */
9099                for (j = 0; j < num_buckets; j++) {
9100                        if (bucket[j] >= size) {
9101                                b = j;
9102                                break;
9103                        }
9104                }
9105                /* for a command with i SG entries, use bucket b. */
9106                bucket_map[i] = b;
9107        }
9108}
9109
9110/*
9111 * return -ENODEV on err, 0 on success (or no action)
9112 * allocates numerous items that must be freed later
9113 */
9114static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9115{
9116        int i;
9117        unsigned long register_value;
9118        unsigned long transMethod = CFGTBL_Trans_Performant |
9119                        (trans_support & CFGTBL_Trans_use_short_tags) |
9120                                CFGTBL_Trans_enable_directed_msix |
9121                        (trans_support & (CFGTBL_Trans_io_accel1 |
9122                                CFGTBL_Trans_io_accel2));
9123        struct access_method access = SA5_performant_access;
9124
9125        /* This is a bit complicated.  There are 8 registers on
9126         * the controller which we write to to tell it 8 different
9127         * sizes of commands which there may be.  It's a way of
9128         * reducing the DMA done to fetch each command.  Encoded into
9129         * each command's tag are 3 bits which communicate to the controller
9130         * which of the eight sizes that command fits within.  The size of
9131         * each command depends on how many scatter gather entries there are.
9132         * Each SG entry requires 16 bytes.  The eight registers are programmed
9133         * with the number of 16-byte blocks a command of that size requires.
9134         * The smallest command possible requires 5 such 16 byte blocks.
9135         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9136         * blocks.  Note, this only extends to the SG entries contained
9137         * within the command block, and does not extend to chained blocks
9138         * of SG elements.   bft[] contains the eight values we write to
9139         * the registers.  They are not evenly distributed, but have more
9140         * sizes for small commands, and fewer sizes for larger commands.
9141         */
9142        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9143#define MIN_IOACCEL2_BFT_ENTRY 5
9144#define HPSA_IOACCEL2_HEADER_SZ 4
9145        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9146                        13, 14, 15, 16, 17, 18, 19,
9147                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9148        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9149        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9150        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9151                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9152        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9153        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9154        /*  5 = 1 s/g entry or 4k
9155         *  6 = 2 s/g entry or 8k
9156         *  8 = 4 s/g entry or 16k
9157         * 10 = 6 s/g entry or 24k
9158         */
9159
9160        /* If the controller supports either ioaccel method then
9161         * we can also use the RAID stack submit path that does not
9162         * perform the superfluous readl() after each command submission.
9163         */
9164        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9165                access = SA5_performant_access_no_read;
9166
9167        /* Controller spec: zero out this buffer. */
9168        for (i = 0; i < h->nreply_queues; i++)
9169                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9170
9171        bft[7] = SG_ENTRIES_IN_CMD + 4;
9172        calc_bucket_map(bft, ARRAY_SIZE(bft),
9173                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9174        for (i = 0; i < 8; i++)
9175                writel(bft[i], &h->transtable->BlockFetch[i]);
9176
9177        /* size of controller ring buffer */
9178        writel(h->max_commands, &h->transtable->RepQSize);
9179        writel(h->nreply_queues, &h->transtable->RepQCount);
9180        writel(0, &h->transtable->RepQCtrAddrLow32);
9181        writel(0, &h->transtable->RepQCtrAddrHigh32);
9182
9183        for (i = 0; i < h->nreply_queues; i++) {
9184                writel(0, &h->transtable->RepQAddr[i].upper);
9185                writel(h->reply_queue[i].busaddr,
9186                        &h->transtable->RepQAddr[i].lower);
9187        }
9188
9189        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9190        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9191        /*
9192         * enable outbound interrupt coalescing in accelerator mode;
9193         */
9194        if (trans_support & CFGTBL_Trans_io_accel1) {
9195                access = SA5_ioaccel_mode1_access;
9196                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9197                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9198        } else
9199                if (trans_support & CFGTBL_Trans_io_accel2)
9200                        access = SA5_ioaccel_mode2_access;
9201        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9202        if (hpsa_wait_for_mode_change_ack(h)) {
9203                dev_err(&h->pdev->dev,
9204                        "performant mode problem - doorbell timeout\n");
9205                return -ENODEV;
9206        }
9207        register_value = readl(&(h->cfgtable->TransportActive));
9208        if (!(register_value & CFGTBL_Trans_Performant)) {
9209                dev_err(&h->pdev->dev,
9210                        "performant mode problem - transport not active\n");
9211                return -ENODEV;
9212        }
9213        /* Change the access methods to the performant access methods */
9214        h->access = access;
9215        h->transMethod = transMethod;
9216
9217        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9218                (trans_support & CFGTBL_Trans_io_accel2)))
9219                return 0;
9220
9221        if (trans_support & CFGTBL_Trans_io_accel1) {
9222                /* Set up I/O accelerator mode */
9223                for (i = 0; i < h->nreply_queues; i++) {
9224                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9225                        h->reply_queue[i].current_entry =
9226                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9227                }
9228                bft[7] = h->ioaccel_maxsg + 8;
9229                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9230                                h->ioaccel1_blockFetchTable);
9231
9232                /* initialize all reply queue entries to unused */
9233                for (i = 0; i < h->nreply_queues; i++)
9234                        memset(h->reply_queue[i].head,
9235                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9236                                h->reply_queue_size);
9237
9238                /* set all the constant fields in the accelerator command
9239                 * frames once at init time to save CPU cycles later.
9240                 */
9241                for (i = 0; i < h->nr_cmds; i++) {
9242                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9243
9244                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9245                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9246                                        (i * sizeof(struct ErrorInfo)));
9247                        cp->err_info_len = sizeof(struct ErrorInfo);
9248                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9249                        cp->host_context_flags =
9250                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9251                        cp->timeout_sec = 0;
9252                        cp->ReplyQueue = 0;
9253                        cp->tag =
9254                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9255                        cp->host_addr =
9256                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9257                                        (i * sizeof(struct io_accel1_cmd)));
9258                }
9259        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9260                u64 cfg_offset, cfg_base_addr_index;
9261                u32 bft2_offset, cfg_base_addr;
9262                int rc;
9263
9264                rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9265                        &cfg_base_addr_index, &cfg_offset);
9266                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9267                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9268                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9269                                4, h->ioaccel2_blockFetchTable);
9270                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9271                BUILD_BUG_ON(offsetof(struct CfgTable,
9272                                io_accel_request_size_offset) != 0xb8);
9273                h->ioaccel2_bft2_regs =
9274                        remap_pci_mem(pci_resource_start(h->pdev,
9275                                        cfg_base_addr_index) +
9276                                        cfg_offset + bft2_offset,
9277                                        ARRAY_SIZE(bft2) *
9278                                        sizeof(*h->ioaccel2_bft2_regs));
9279                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9280                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9281        }
9282        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9283        if (hpsa_wait_for_mode_change_ack(h)) {
9284                dev_err(&h->pdev->dev,
9285                        "performant mode problem - enabling ioaccel mode\n");
9286                return -ENODEV;
9287        }
9288        return 0;
9289}
9290
9291/* Free ioaccel1 mode command blocks and block fetch table */
9292static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9293{
9294        if (h->ioaccel_cmd_pool) {
9295                pci_free_consistent(h->pdev,
9296                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9297                        h->ioaccel_cmd_pool,
9298                        h->ioaccel_cmd_pool_dhandle);
9299                h->ioaccel_cmd_pool = NULL;
9300                h->ioaccel_cmd_pool_dhandle = 0;
9301        }
9302        kfree(h->ioaccel1_blockFetchTable);
9303        h->ioaccel1_blockFetchTable = NULL;
9304}
9305
9306/* Allocate ioaccel1 mode command blocks and block fetch table */
9307static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9308{
9309        h->ioaccel_maxsg =
9310                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9311        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9312                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9313
9314        /* Command structures must be aligned on a 128-byte boundary
9315         * because the 7 lower bits of the address are used by the
9316         * hardware.
9317         */
9318        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9319                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9320        h->ioaccel_cmd_pool =
9321                dma_alloc_coherent(&h->pdev->dev,
9322                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9323                        &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9324
9325        h->ioaccel1_blockFetchTable =
9326                kmalloc(((h->ioaccel_maxsg + 1) *
9327                                sizeof(u32)), GFP_KERNEL);
9328
9329        if ((h->ioaccel_cmd_pool == NULL) ||
9330                (h->ioaccel1_blockFetchTable == NULL))
9331                goto clean_up;
9332
9333        memset(h->ioaccel_cmd_pool, 0,
9334                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9335        return 0;
9336
9337clean_up:
9338        hpsa_free_ioaccel1_cmd_and_bft(h);
9339        return -ENOMEM;
9340}
9341
9342/* Free ioaccel2 mode command blocks and block fetch table */
9343static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9344{
9345        hpsa_free_ioaccel2_sg_chain_blocks(h);
9346
9347        if (h->ioaccel2_cmd_pool) {
9348                pci_free_consistent(h->pdev,
9349                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9350                        h->ioaccel2_cmd_pool,
9351                        h->ioaccel2_cmd_pool_dhandle);
9352                h->ioaccel2_cmd_pool = NULL;
9353                h->ioaccel2_cmd_pool_dhandle = 0;
9354        }
9355        kfree(h->ioaccel2_blockFetchTable);
9356        h->ioaccel2_blockFetchTable = NULL;
9357}
9358
9359/* Allocate ioaccel2 mode command blocks and block fetch table */
9360static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9361{
9362        int rc;
9363
9364        /* Allocate ioaccel2 mode command blocks and block fetch table */
9365
9366        h->ioaccel_maxsg =
9367                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9368        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9369                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9370
9371        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9372                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9373        h->ioaccel2_cmd_pool =
9374                dma_alloc_coherent(&h->pdev->dev,
9375                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9376                        &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9377
9378        h->ioaccel2_blockFetchTable =
9379                kmalloc(((h->ioaccel_maxsg + 1) *
9380                                sizeof(u32)), GFP_KERNEL);
9381
9382        if ((h->ioaccel2_cmd_pool == NULL) ||
9383                (h->ioaccel2_blockFetchTable == NULL)) {
9384                rc = -ENOMEM;
9385                goto clean_up;
9386        }
9387
9388        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9389        if (rc)
9390                goto clean_up;
9391
9392        memset(h->ioaccel2_cmd_pool, 0,
9393                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9394        return 0;
9395
9396clean_up:
9397        hpsa_free_ioaccel2_cmd_and_bft(h);
9398        return rc;
9399}
9400
9401/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9402static void hpsa_free_performant_mode(struct ctlr_info *h)
9403{
9404        kfree(h->blockFetchTable);
9405        h->blockFetchTable = NULL;
9406        hpsa_free_reply_queues(h);
9407        hpsa_free_ioaccel1_cmd_and_bft(h);
9408        hpsa_free_ioaccel2_cmd_and_bft(h);
9409}
9410
9411/* return -ENODEV on error, 0 on success (or no action)
9412 * allocates numerous items that must be freed later
9413 */
9414static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9415{
9416        u32 trans_support;
9417        unsigned long transMethod = CFGTBL_Trans_Performant |
9418                                        CFGTBL_Trans_use_short_tags;
9419        int i, rc;
9420
9421        if (hpsa_simple_mode)
9422                return 0;
9423
9424        trans_support = readl(&(h->cfgtable->TransportSupport));
9425        if (!(trans_support & PERFORMANT_MODE))
9426                return 0;
9427
9428        /* Check for I/O accelerator mode support */
9429        if (trans_support & CFGTBL_Trans_io_accel1) {
9430                transMethod |= CFGTBL_Trans_io_accel1 |
9431                                CFGTBL_Trans_enable_directed_msix;
9432                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9433                if (rc)
9434                        return rc;
9435        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9436                transMethod |= CFGTBL_Trans_io_accel2 |
9437                                CFGTBL_Trans_enable_directed_msix;
9438                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9439                if (rc)
9440                        return rc;
9441        }
9442
9443        h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9444        hpsa_get_max_perf_mode_cmds(h);
9445        /* Performant mode ring buffer and supporting data structures */
9446        h->reply_queue_size = h->max_commands * sizeof(u64);
9447
9448        for (i = 0; i < h->nreply_queues; i++) {
9449                h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9450                                                h->reply_queue_size,
9451                                                &h->reply_queue[i].busaddr,
9452                                                GFP_KERNEL);
9453                if (!h->reply_queue[i].head) {
9454                        rc = -ENOMEM;
9455                        goto clean1;    /* rq, ioaccel */
9456                }
9457                h->reply_queue[i].size = h->max_commands;
9458                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9459                h->reply_queue[i].current_entry = 0;
9460        }
9461
9462        /* Need a block fetch table for performant mode */
9463        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9464                                sizeof(u32)), GFP_KERNEL);
9465        if (!h->blockFetchTable) {
9466                rc = -ENOMEM;
9467                goto clean1;    /* rq, ioaccel */
9468        }
9469
9470        rc = hpsa_enter_performant_mode(h, trans_support);
9471        if (rc)
9472                goto clean2;    /* bft, rq, ioaccel */
9473        return 0;
9474
9475clean2: /* bft, rq, ioaccel */
9476        kfree(h->blockFetchTable);
9477        h->blockFetchTable = NULL;
9478clean1: /* rq, ioaccel */
9479        hpsa_free_reply_queues(h);
9480        hpsa_free_ioaccel1_cmd_and_bft(h);
9481        hpsa_free_ioaccel2_cmd_and_bft(h);
9482        return rc;
9483}
9484
9485static int is_accelerated_cmd(struct CommandList *c)
9486{
9487        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9488}
9489
9490static void hpsa_drain_accel_commands(struct ctlr_info *h)
9491{
9492        struct CommandList *c = NULL;
9493        int i, accel_cmds_out;
9494        int refcount;
9495
9496        do { /* wait for all outstanding ioaccel commands to drain out */
9497                accel_cmds_out = 0;
9498                for (i = 0; i < h->nr_cmds; i++) {
9499                        c = h->cmd_pool + i;
9500                        refcount = atomic_inc_return(&c->refcount);
9501                        if (refcount > 1) /* Command is allocated */
9502                                accel_cmds_out += is_accelerated_cmd(c);
9503                        cmd_free(h, c);
9504                }
9505                if (accel_cmds_out <= 0)
9506                        break;
9507                msleep(100);
9508        } while (1);
9509}
9510
9511static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9512                                struct hpsa_sas_port *hpsa_sas_port)
9513{
9514        struct hpsa_sas_phy *hpsa_sas_phy;
9515        struct sas_phy *phy;
9516
9517        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9518        if (!hpsa_sas_phy)
9519                return NULL;
9520
9521        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9522                hpsa_sas_port->next_phy_index);
9523        if (!phy) {
9524                kfree(hpsa_sas_phy);
9525                return NULL;
9526        }
9527
9528        hpsa_sas_port->next_phy_index++;
9529        hpsa_sas_phy->phy = phy;
9530        hpsa_sas_phy->parent_port = hpsa_sas_port;
9531
9532        return hpsa_sas_phy;
9533}
9534
9535static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9536{
9537        struct sas_phy *phy = hpsa_sas_phy->phy;
9538
9539        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9540        if (hpsa_sas_phy->added_to_port)
9541                list_del(&hpsa_sas_phy->phy_list_entry);
9542        sas_phy_delete(phy);
9543        kfree(hpsa_sas_phy);
9544}
9545
9546static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9547{
9548        int rc;
9549        struct hpsa_sas_port *hpsa_sas_port;
9550        struct sas_phy *phy;
9551        struct sas_identify *identify;
9552
9553        hpsa_sas_port = hpsa_sas_phy->parent_port;
9554        phy = hpsa_sas_phy->phy;
9555
9556        identify = &phy->identify;
9557        memset(identify, 0, sizeof(*identify));
9558        identify->sas_address = hpsa_sas_port->sas_address;
9559        identify->device_type = SAS_END_DEVICE;
9560        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9561        identify->target_port_protocols = SAS_PROTOCOL_STP;
9562        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9563        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9564        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9565        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9566        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9567
9568        rc = sas_phy_add(hpsa_sas_phy->phy);
9569        if (rc)
9570                return rc;
9571
9572        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9573        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9574                        &hpsa_sas_port->phy_list_head);
9575        hpsa_sas_phy->added_to_port = true;
9576
9577        return 0;
9578}
9579
9580static int
9581        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9582                                struct sas_rphy *rphy)
9583{
9584        struct sas_identify *identify;
9585
9586        identify = &rphy->identify;
9587        identify->sas_address = hpsa_sas_port->sas_address;
9588        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9589        identify->target_port_protocols = SAS_PROTOCOL_STP;
9590
9591        return sas_rphy_add(rphy);
9592}
9593
9594static struct hpsa_sas_port
9595        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9596                                u64 sas_address)
9597{
9598        int rc;
9599        struct hpsa_sas_port *hpsa_sas_port;
9600        struct sas_port *port;
9601
9602        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9603        if (!hpsa_sas_port)
9604                return NULL;
9605
9606        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9607        hpsa_sas_port->parent_node = hpsa_sas_node;
9608
9609        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9610        if (!port)
9611                goto free_hpsa_port;
9612
9613        rc = sas_port_add(port);
9614        if (rc)
9615                goto free_sas_port;
9616
9617        hpsa_sas_port->port = port;
9618        hpsa_sas_port->sas_address = sas_address;
9619        list_add_tail(&hpsa_sas_port->port_list_entry,
9620                        &hpsa_sas_node->port_list_head);
9621
9622        return hpsa_sas_port;
9623
9624free_sas_port:
9625        sas_port_free(port);
9626free_hpsa_port:
9627        kfree(hpsa_sas_port);
9628
9629        return NULL;
9630}
9631
9632static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9633{
9634        struct hpsa_sas_phy *hpsa_sas_phy;
9635        struct hpsa_sas_phy *next;
9636
9637        list_for_each_entry_safe(hpsa_sas_phy, next,
9638                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9639                hpsa_free_sas_phy(hpsa_sas_phy);
9640
9641        sas_port_delete(hpsa_sas_port->port);
9642        list_del(&hpsa_sas_port->port_list_entry);
9643        kfree(hpsa_sas_port);
9644}
9645
9646static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9647{
9648        struct hpsa_sas_node *hpsa_sas_node;
9649
9650        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9651        if (hpsa_sas_node) {
9652                hpsa_sas_node->parent_dev = parent_dev;
9653                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9654        }
9655
9656        return hpsa_sas_node;
9657}
9658
9659static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9660{
9661        struct hpsa_sas_port *hpsa_sas_port;
9662        struct hpsa_sas_port *next;
9663
9664        if (!hpsa_sas_node)
9665                return;
9666
9667        list_for_each_entry_safe(hpsa_sas_port, next,
9668                        &hpsa_sas_node->port_list_head, port_list_entry)
9669                hpsa_free_sas_port(hpsa_sas_port);
9670
9671        kfree(hpsa_sas_node);
9672}
9673
9674static struct hpsa_scsi_dev_t
9675        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9676                                        struct sas_rphy *rphy)
9677{
9678        int i;
9679        struct hpsa_scsi_dev_t *device;
9680
9681        for (i = 0; i < h->ndevices; i++) {
9682                device = h->dev[i];
9683                if (!device->sas_port)
9684                        continue;
9685                if (device->sas_port->rphy == rphy)
9686                        return device;
9687        }
9688
9689        return NULL;
9690}
9691
9692static int hpsa_add_sas_host(struct ctlr_info *h)
9693{
9694        int rc;
9695        struct device *parent_dev;
9696        struct hpsa_sas_node *hpsa_sas_node;
9697        struct hpsa_sas_port *hpsa_sas_port;
9698        struct hpsa_sas_phy *hpsa_sas_phy;
9699
9700        parent_dev = &h->scsi_host->shost_dev;
9701
9702        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9703        if (!hpsa_sas_node)
9704                return -ENOMEM;
9705
9706        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9707        if (!hpsa_sas_port) {
9708                rc = -ENODEV;
9709                goto free_sas_node;
9710        }
9711
9712        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9713        if (!hpsa_sas_phy) {
9714                rc = -ENODEV;
9715                goto free_sas_port;
9716        }
9717
9718        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9719        if (rc)
9720                goto free_sas_phy;
9721
9722        h->sas_host = hpsa_sas_node;
9723
9724        return 0;
9725
9726free_sas_phy:
9727        hpsa_free_sas_phy(hpsa_sas_phy);
9728free_sas_port:
9729        hpsa_free_sas_port(hpsa_sas_port);
9730free_sas_node:
9731        hpsa_free_sas_node(hpsa_sas_node);
9732
9733        return rc;
9734}
9735
9736static void hpsa_delete_sas_host(struct ctlr_info *h)
9737{
9738        hpsa_free_sas_node(h->sas_host);
9739}
9740
9741static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9742                                struct hpsa_scsi_dev_t *device)
9743{
9744        int rc;
9745        struct hpsa_sas_port *hpsa_sas_port;
9746        struct sas_rphy *rphy;
9747
9748        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9749        if (!hpsa_sas_port)
9750                return -ENOMEM;
9751
9752        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9753        if (!rphy) {
9754                rc = -ENODEV;
9755                goto free_sas_port;
9756        }
9757
9758        hpsa_sas_port->rphy = rphy;
9759        device->sas_port = hpsa_sas_port;
9760
9761        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9762        if (rc)
9763                goto free_sas_port;
9764
9765        return 0;
9766
9767free_sas_port:
9768        hpsa_free_sas_port(hpsa_sas_port);
9769        device->sas_port = NULL;
9770
9771        return rc;
9772}
9773
9774static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9775{
9776        if (device->sas_port) {
9777                hpsa_free_sas_port(device->sas_port);
9778                device->sas_port = NULL;
9779        }
9780}
9781
9782static int
9783hpsa_sas_get_linkerrors(struct sas_phy *phy)
9784{
9785        return 0;
9786}
9787
9788static int
9789hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9790{
9791        struct Scsi_Host *shost = phy_to_shost(rphy);
9792        struct ctlr_info *h;
9793        struct hpsa_scsi_dev_t *sd;
9794
9795        if (!shost)
9796                return -ENXIO;
9797
9798        h = shost_to_hba(shost);
9799
9800        if (!h)
9801                return -ENXIO;
9802
9803        sd = hpsa_find_device_by_sas_rphy(h, rphy);
9804        if (!sd)
9805                return -ENXIO;
9806
9807        *identifier = sd->eli;
9808
9809        return 0;
9810}
9811
9812static int
9813hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9814{
9815        return -ENXIO;
9816}
9817
9818static int
9819hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9820{
9821        return 0;
9822}
9823
9824static int
9825hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9826{
9827        return 0;
9828}
9829
9830static int
9831hpsa_sas_phy_setup(struct sas_phy *phy)
9832{
9833        return 0;
9834}
9835
9836static void
9837hpsa_sas_phy_release(struct sas_phy *phy)
9838{
9839}
9840
9841static int
9842hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9843{
9844        return -EINVAL;
9845}
9846
9847static struct sas_function_template hpsa_sas_transport_functions = {
9848        .get_linkerrors = hpsa_sas_get_linkerrors,
9849        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9850        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9851        .phy_reset = hpsa_sas_phy_reset,
9852        .phy_enable = hpsa_sas_phy_enable,
9853        .phy_setup = hpsa_sas_phy_setup,
9854        .phy_release = hpsa_sas_phy_release,
9855        .set_phy_speed = hpsa_sas_phy_speed,
9856};
9857
9858/*
9859 *  This is it.  Register the PCI driver information for the cards we control
9860 *  the OS will call our registered routines when it finds one of our cards.
9861 */
9862static int __init hpsa_init(void)
9863{
9864        int rc;
9865
9866        hpsa_sas_transport_template =
9867                sas_attach_transport(&hpsa_sas_transport_functions);
9868        if (!hpsa_sas_transport_template)
9869                return -ENODEV;
9870
9871        rc = pci_register_driver(&hpsa_pci_driver);
9872
9873        if (rc)
9874                sas_release_transport(hpsa_sas_transport_template);
9875
9876        return rc;
9877}
9878
9879static void __exit hpsa_cleanup(void)
9880{
9881        pci_unregister_driver(&hpsa_pci_driver);
9882        sas_release_transport(hpsa_sas_transport_template);
9883}
9884
9885static void __attribute__((unused)) verify_offsets(void)
9886{
9887#define VERIFY_OFFSET(member, offset) \
9888        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9889
9890        VERIFY_OFFSET(structure_size, 0);
9891        VERIFY_OFFSET(volume_blk_size, 4);
9892        VERIFY_OFFSET(volume_blk_cnt, 8);
9893        VERIFY_OFFSET(phys_blk_shift, 16);
9894        VERIFY_OFFSET(parity_rotation_shift, 17);
9895        VERIFY_OFFSET(strip_size, 18);
9896        VERIFY_OFFSET(disk_starting_blk, 20);
9897        VERIFY_OFFSET(disk_blk_cnt, 28);
9898        VERIFY_OFFSET(data_disks_per_row, 36);
9899        VERIFY_OFFSET(metadata_disks_per_row, 38);
9900        VERIFY_OFFSET(row_cnt, 40);
9901        VERIFY_OFFSET(layout_map_count, 42);
9902        VERIFY_OFFSET(flags, 44);
9903        VERIFY_OFFSET(dekindex, 46);
9904        /* VERIFY_OFFSET(reserved, 48 */
9905        VERIFY_OFFSET(data, 64);
9906
9907#undef VERIFY_OFFSET
9908
9909#define VERIFY_OFFSET(member, offset) \
9910        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9911
9912        VERIFY_OFFSET(IU_type, 0);
9913        VERIFY_OFFSET(direction, 1);
9914        VERIFY_OFFSET(reply_queue, 2);
9915        /* VERIFY_OFFSET(reserved1, 3);  */
9916        VERIFY_OFFSET(scsi_nexus, 4);
9917        VERIFY_OFFSET(Tag, 8);
9918        VERIFY_OFFSET(cdb, 16);
9919        VERIFY_OFFSET(cciss_lun, 32);
9920        VERIFY_OFFSET(data_len, 40);
9921        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9922        VERIFY_OFFSET(sg_count, 45);
9923        /* VERIFY_OFFSET(reserved3 */
9924        VERIFY_OFFSET(err_ptr, 48);
9925        VERIFY_OFFSET(err_len, 56);
9926        /* VERIFY_OFFSET(reserved4  */
9927        VERIFY_OFFSET(sg, 64);
9928
9929#undef VERIFY_OFFSET
9930
9931#define VERIFY_OFFSET(member, offset) \
9932        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9933
9934        VERIFY_OFFSET(dev_handle, 0x00);
9935        VERIFY_OFFSET(reserved1, 0x02);
9936        VERIFY_OFFSET(function, 0x03);
9937        VERIFY_OFFSET(reserved2, 0x04);
9938        VERIFY_OFFSET(err_info, 0x0C);
9939        VERIFY_OFFSET(reserved3, 0x10);
9940        VERIFY_OFFSET(err_info_len, 0x12);
9941        VERIFY_OFFSET(reserved4, 0x13);
9942        VERIFY_OFFSET(sgl_offset, 0x14);
9943        VERIFY_OFFSET(reserved5, 0x15);
9944        VERIFY_OFFSET(transfer_len, 0x1C);
9945        VERIFY_OFFSET(reserved6, 0x20);
9946        VERIFY_OFFSET(io_flags, 0x24);
9947        VERIFY_OFFSET(reserved7, 0x26);
9948        VERIFY_OFFSET(LUN, 0x34);
9949        VERIFY_OFFSET(control, 0x3C);
9950        VERIFY_OFFSET(CDB, 0x40);
9951        VERIFY_OFFSET(reserved8, 0x50);
9952        VERIFY_OFFSET(host_context_flags, 0x60);
9953        VERIFY_OFFSET(timeout_sec, 0x62);
9954        VERIFY_OFFSET(ReplyQueue, 0x64);
9955        VERIFY_OFFSET(reserved9, 0x65);
9956        VERIFY_OFFSET(tag, 0x68);
9957        VERIFY_OFFSET(host_addr, 0x70);
9958        VERIFY_OFFSET(CISS_LUN, 0x78);
9959        VERIFY_OFFSET(SG, 0x78 + 8);
9960#undef VERIFY_OFFSET
9961}
9962
9963module_init(hpsa_init);
9964module_exit(hpsa_cleanup);
9965