linux/drivers/spi/spi-bitbang.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * polling/bitbanging SPI master controller driver utilities
   4 */
   5
   6#include <linux/spinlock.h>
   7#include <linux/workqueue.h>
   8#include <linux/interrupt.h>
   9#include <linux/module.h>
  10#include <linux/delay.h>
  11#include <linux/errno.h>
  12#include <linux/platform_device.h>
  13#include <linux/slab.h>
  14
  15#include <linux/spi/spi.h>
  16#include <linux/spi/spi_bitbang.h>
  17
  18#define SPI_BITBANG_CS_DELAY    100
  19
  20
  21/*----------------------------------------------------------------------*/
  22
  23/*
  24 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
  25 * Use this for GPIO or shift-register level hardware APIs.
  26 *
  27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
  28 * to glue code.  These bitbang setup() and cleanup() routines are always
  29 * used, though maybe they're called from controller-aware code.
  30 *
  31 * chipselect() and friends may use spi_device->controller_data and
  32 * controller registers as appropriate.
  33 *
  34 *
  35 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
  36 * which means you could use a bitbang driver either to get hardware
  37 * working quickly, or testing for differences that aren't speed related.
  38 */
  39
  40struct spi_bitbang_cs {
  41        unsigned        nsecs;  /* (clock cycle time)/2 */
  42        u32             (*txrx_word)(struct spi_device *spi, unsigned nsecs,
  43                                        u32 word, u8 bits, unsigned flags);
  44        unsigned        (*txrx_bufs)(struct spi_device *,
  45                                        u32 (*txrx_word)(
  46                                                struct spi_device *spi,
  47                                                unsigned nsecs,
  48                                                u32 word, u8 bits,
  49                                                unsigned flags),
  50                                        unsigned, struct spi_transfer *,
  51                                        unsigned);
  52};
  53
  54static unsigned bitbang_txrx_8(
  55        struct spi_device       *spi,
  56        u32                     (*txrx_word)(struct spi_device *spi,
  57                                        unsigned nsecs,
  58                                        u32 word, u8 bits,
  59                                        unsigned flags),
  60        unsigned                ns,
  61        struct spi_transfer     *t,
  62        unsigned flags
  63) {
  64        unsigned                bits = t->bits_per_word;
  65        unsigned                count = t->len;
  66        const u8                *tx = t->tx_buf;
  67        u8                      *rx = t->rx_buf;
  68
  69        while (likely(count > 0)) {
  70                u8              word = 0;
  71
  72                if (tx)
  73                        word = *tx++;
  74                word = txrx_word(spi, ns, word, bits, flags);
  75                if (rx)
  76                        *rx++ = word;
  77                count -= 1;
  78        }
  79        return t->len - count;
  80}
  81
  82static unsigned bitbang_txrx_16(
  83        struct spi_device       *spi,
  84        u32                     (*txrx_word)(struct spi_device *spi,
  85                                        unsigned nsecs,
  86                                        u32 word, u8 bits,
  87                                        unsigned flags),
  88        unsigned                ns,
  89        struct spi_transfer     *t,
  90        unsigned flags
  91) {
  92        unsigned                bits = t->bits_per_word;
  93        unsigned                count = t->len;
  94        const u16               *tx = t->tx_buf;
  95        u16                     *rx = t->rx_buf;
  96
  97        while (likely(count > 1)) {
  98                u16             word = 0;
  99
 100                if (tx)
 101                        word = *tx++;
 102                word = txrx_word(spi, ns, word, bits, flags);
 103                if (rx)
 104                        *rx++ = word;
 105                count -= 2;
 106        }
 107        return t->len - count;
 108}
 109
 110static unsigned bitbang_txrx_32(
 111        struct spi_device       *spi,
 112        u32                     (*txrx_word)(struct spi_device *spi,
 113                                        unsigned nsecs,
 114                                        u32 word, u8 bits,
 115                                        unsigned flags),
 116        unsigned                ns,
 117        struct spi_transfer     *t,
 118        unsigned flags
 119) {
 120        unsigned                bits = t->bits_per_word;
 121        unsigned                count = t->len;
 122        const u32               *tx = t->tx_buf;
 123        u32                     *rx = t->rx_buf;
 124
 125        while (likely(count > 3)) {
 126                u32             word = 0;
 127
 128                if (tx)
 129                        word = *tx++;
 130                word = txrx_word(spi, ns, word, bits, flags);
 131                if (rx)
 132                        *rx++ = word;
 133                count -= 4;
 134        }
 135        return t->len - count;
 136}
 137
 138int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
 139{
 140        struct spi_bitbang_cs   *cs = spi->controller_state;
 141        u8                      bits_per_word;
 142        u32                     hz;
 143
 144        if (t) {
 145                bits_per_word = t->bits_per_word;
 146                hz = t->speed_hz;
 147        } else {
 148                bits_per_word = 0;
 149                hz = 0;
 150        }
 151
 152        /* spi_transfer level calls that work per-word */
 153        if (!bits_per_word)
 154                bits_per_word = spi->bits_per_word;
 155        if (bits_per_word <= 8)
 156                cs->txrx_bufs = bitbang_txrx_8;
 157        else if (bits_per_word <= 16)
 158                cs->txrx_bufs = bitbang_txrx_16;
 159        else if (bits_per_word <= 32)
 160                cs->txrx_bufs = bitbang_txrx_32;
 161        else
 162                return -EINVAL;
 163
 164        /* nsecs = (clock period)/2 */
 165        if (!hz)
 166                hz = spi->max_speed_hz;
 167        if (hz) {
 168                cs->nsecs = (1000000000/2) / hz;
 169                if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
 170                        return -EINVAL;
 171        }
 172
 173        return 0;
 174}
 175EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
 176
 177/**
 178 * spi_bitbang_setup - default setup for per-word I/O loops
 179 */
 180int spi_bitbang_setup(struct spi_device *spi)
 181{
 182        struct spi_bitbang_cs   *cs = spi->controller_state;
 183        struct spi_bitbang      *bitbang;
 184
 185        bitbang = spi_master_get_devdata(spi->master);
 186
 187        if (!cs) {
 188                cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 189                if (!cs)
 190                        return -ENOMEM;
 191                spi->controller_state = cs;
 192        }
 193
 194        /* per-word shift register access, in hardware or bitbanging */
 195        cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
 196        if (!cs->txrx_word)
 197                return -EINVAL;
 198
 199        if (bitbang->setup_transfer) {
 200                int retval = bitbang->setup_transfer(spi, NULL);
 201                if (retval < 0)
 202                        return retval;
 203        }
 204
 205        dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
 206
 207        return 0;
 208}
 209EXPORT_SYMBOL_GPL(spi_bitbang_setup);
 210
 211/**
 212 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
 213 */
 214void spi_bitbang_cleanup(struct spi_device *spi)
 215{
 216        kfree(spi->controller_state);
 217}
 218EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
 219
 220static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
 221{
 222        struct spi_bitbang_cs   *cs = spi->controller_state;
 223        unsigned                nsecs = cs->nsecs;
 224        struct spi_bitbang      *bitbang;
 225
 226        bitbang = spi_master_get_devdata(spi->master);
 227        if (bitbang->set_line_direction) {
 228                int err;
 229
 230                err = bitbang->set_line_direction(spi, !!(t->tx_buf));
 231                if (err < 0)
 232                        return err;
 233        }
 234
 235        if (spi->mode & SPI_3WIRE) {
 236                unsigned flags;
 237
 238                flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
 239                return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
 240        }
 241        return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
 242}
 243
 244/*----------------------------------------------------------------------*/
 245
 246/*
 247 * SECOND PART ... simple transfer queue runner.
 248 *
 249 * This costs a task context per controller, running the queue by
 250 * performing each transfer in sequence.  Smarter hardware can queue
 251 * several DMA transfers at once, and process several controller queues
 252 * in parallel; this driver doesn't match such hardware very well.
 253 *
 254 * Drivers can provide word-at-a-time i/o primitives, or provide
 255 * transfer-at-a-time ones to leverage dma or fifo hardware.
 256 */
 257
 258static int spi_bitbang_prepare_hardware(struct spi_master *spi)
 259{
 260        struct spi_bitbang      *bitbang;
 261
 262        bitbang = spi_master_get_devdata(spi);
 263
 264        mutex_lock(&bitbang->lock);
 265        bitbang->busy = 1;
 266        mutex_unlock(&bitbang->lock);
 267
 268        return 0;
 269}
 270
 271static int spi_bitbang_transfer_one(struct spi_master *master,
 272                                    struct spi_device *spi,
 273                                    struct spi_transfer *transfer)
 274{
 275        struct spi_bitbang *bitbang = spi_master_get_devdata(master);
 276        int status = 0;
 277
 278        if (bitbang->setup_transfer) {
 279                status = bitbang->setup_transfer(spi, transfer);
 280                if (status < 0)
 281                        goto out;
 282        }
 283
 284        if (transfer->len)
 285                status = bitbang->txrx_bufs(spi, transfer);
 286
 287        if (status == transfer->len)
 288                status = 0;
 289        else if (status >= 0)
 290                status = -EREMOTEIO;
 291
 292out:
 293        spi_finalize_current_transfer(master);
 294
 295        return status;
 296}
 297
 298static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
 299{
 300        struct spi_bitbang      *bitbang;
 301
 302        bitbang = spi_master_get_devdata(spi);
 303
 304        mutex_lock(&bitbang->lock);
 305        bitbang->busy = 0;
 306        mutex_unlock(&bitbang->lock);
 307
 308        return 0;
 309}
 310
 311static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
 312{
 313        struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
 314
 315        /* SPI core provides CS high / low, but bitbang driver
 316         * expects CS active
 317         * spi device driver takes care of handling SPI_CS_HIGH
 318         */
 319        enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
 320
 321        ndelay(SPI_BITBANG_CS_DELAY);
 322        bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
 323                            BITBANG_CS_INACTIVE);
 324        ndelay(SPI_BITBANG_CS_DELAY);
 325}
 326
 327/*----------------------------------------------------------------------*/
 328
 329int spi_bitbang_init(struct spi_bitbang *bitbang)
 330{
 331        struct spi_master *master = bitbang->master;
 332
 333        if (!master || !bitbang->chipselect)
 334                return -EINVAL;
 335
 336        mutex_init(&bitbang->lock);
 337
 338        if (!master->mode_bits)
 339                master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
 340
 341        if (master->transfer || master->transfer_one_message)
 342                return -EINVAL;
 343
 344        master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
 345        master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
 346        master->transfer_one = spi_bitbang_transfer_one;
 347        master->set_cs = spi_bitbang_set_cs;
 348
 349        if (!bitbang->txrx_bufs) {
 350                bitbang->use_dma = 0;
 351                bitbang->txrx_bufs = spi_bitbang_bufs;
 352                if (!master->setup) {
 353                        if (!bitbang->setup_transfer)
 354                                bitbang->setup_transfer =
 355                                         spi_bitbang_setup_transfer;
 356                        master->setup = spi_bitbang_setup;
 357                        master->cleanup = spi_bitbang_cleanup;
 358                }
 359        }
 360
 361        return 0;
 362}
 363EXPORT_SYMBOL_GPL(spi_bitbang_init);
 364
 365/**
 366 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
 367 * @bitbang: driver handle
 368 *
 369 * Caller should have zero-initialized all parts of the structure, and then
 370 * provided callbacks for chip selection and I/O loops.  If the master has
 371 * a transfer method, its final step should call spi_bitbang_transfer; or,
 372 * that's the default if the transfer routine is not initialized.  It should
 373 * also set up the bus number and number of chipselects.
 374 *
 375 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
 376 * hardware that basically exposes a shift register) or per-spi_transfer
 377 * (which takes better advantage of hardware like fifos or DMA engines).
 378 *
 379 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
 380 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
 381 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
 382 * routine isn't initialized.
 383 *
 384 * This routine registers the spi_master, which will process requests in a
 385 * dedicated task, keeping IRQs unblocked most of the time.  To stop
 386 * processing those requests, call spi_bitbang_stop().
 387 *
 388 * On success, this routine will take a reference to master. The caller is
 389 * responsible for calling spi_bitbang_stop() to decrement the reference and
 390 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
 391 * leak.
 392 */
 393int spi_bitbang_start(struct spi_bitbang *bitbang)
 394{
 395        struct spi_master *master = bitbang->master;
 396        int ret;
 397
 398        ret = spi_bitbang_init(bitbang);
 399        if (ret)
 400                return ret;
 401
 402        /* driver may get busy before register() returns, especially
 403         * if someone registered boardinfo for devices
 404         */
 405        ret = spi_register_master(spi_master_get(master));
 406        if (ret)
 407                spi_master_put(master);
 408
 409        return ret;
 410}
 411EXPORT_SYMBOL_GPL(spi_bitbang_start);
 412
 413/**
 414 * spi_bitbang_stop - stops the task providing spi communication
 415 */
 416void spi_bitbang_stop(struct spi_bitbang *bitbang)
 417{
 418        spi_unregister_master(bitbang->master);
 419}
 420EXPORT_SYMBOL_GPL(spi_bitbang_stop);
 421
 422MODULE_LICENSE("GPL");
 423
 424