linux/drivers/spi/spi-nxp-fspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019 NXP.
   7 *
   8 * FlexSPI is a flexsible SPI host controller which supports two SPI
   9 * channels and up to 4 external devices. Each channel supports
  10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  11 * data lines).
  12 *
  13 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  14 * LUT registers are a look-up-table for sequences of instructions.
  15 * A valid sequence consists of four LUT registers.
  16 * Maximum 32 LUT sequences can be programmed simultaneously.
  17 *
  18 * LUTs are being created at run-time based on the commands passed
  19 * from the spi-mem framework, thus using single LUT index.
  20 *
  21 * Software triggered Flash read/write access by IP Bus.
  22 *
  23 * Memory mapped read access by AHB Bus.
  24 *
  25 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  26 *
  27 * Author:
  28 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  29 *     Boris Brezillon <bbrezillon@kernel.org>
  30 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  31 */
  32
  33#include <linux/bitops.h>
  34#include <linux/clk.h>
  35#include <linux/completion.h>
  36#include <linux/delay.h>
  37#include <linux/err.h>
  38#include <linux/errno.h>
  39#include <linux/interrupt.h>
  40#include <linux/io.h>
  41#include <linux/iopoll.h>
  42#include <linux/jiffies.h>
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/mutex.h>
  46#include <linux/of.h>
  47#include <linux/of_device.h>
  48#include <linux/platform_device.h>
  49#include <linux/pm_qos.h>
  50#include <linux/sizes.h>
  51
  52#include <linux/spi/spi.h>
  53#include <linux/spi/spi-mem.h>
  54
  55/*
  56 * The driver only uses one single LUT entry, that is updated on
  57 * each call of exec_op(). Index 0 is preset at boot with a basic
  58 * read operation, so let's use the last entry (31).
  59 */
  60#define SEQID_LUT                       31
  61
  62/* Registers used by the driver */
  63#define FSPI_MCR0                       0x00
  64#define FSPI_MCR0_AHB_TIMEOUT(x)        ((x) << 24)
  65#define FSPI_MCR0_IP_TIMEOUT(x)         ((x) << 16)
  66#define FSPI_MCR0_LEARN_EN              BIT(15)
  67#define FSPI_MCR0_SCRFRUN_EN            BIT(14)
  68#define FSPI_MCR0_OCTCOMB_EN            BIT(13)
  69#define FSPI_MCR0_DOZE_EN               BIT(12)
  70#define FSPI_MCR0_HSEN                  BIT(11)
  71#define FSPI_MCR0_SERCLKDIV             BIT(8)
  72#define FSPI_MCR0_ATDF_EN               BIT(7)
  73#define FSPI_MCR0_ARDF_EN               BIT(6)
  74#define FSPI_MCR0_RXCLKSRC(x)           ((x) << 4)
  75#define FSPI_MCR0_END_CFG(x)            ((x) << 2)
  76#define FSPI_MCR0_MDIS                  BIT(1)
  77#define FSPI_MCR0_SWRST                 BIT(0)
  78
  79#define FSPI_MCR1                       0x04
  80#define FSPI_MCR1_SEQ_TIMEOUT(x)        ((x) << 16)
  81#define FSPI_MCR1_AHB_TIMEOUT(x)        (x)
  82
  83#define FSPI_MCR2                       0x08
  84#define FSPI_MCR2_IDLE_WAIT(x)          ((x) << 24)
  85#define FSPI_MCR2_SAMEDEVICEEN          BIT(15)
  86#define FSPI_MCR2_CLRLRPHS              BIT(14)
  87#define FSPI_MCR2_ABRDATSZ              BIT(8)
  88#define FSPI_MCR2_ABRLEARN              BIT(7)
  89#define FSPI_MCR2_ABR_READ              BIT(6)
  90#define FSPI_MCR2_ABRWRITE              BIT(5)
  91#define FSPI_MCR2_ABRDUMMY              BIT(4)
  92#define FSPI_MCR2_ABR_MODE              BIT(3)
  93#define FSPI_MCR2_ABRCADDR              BIT(2)
  94#define FSPI_MCR2_ABRRADDR              BIT(1)
  95#define FSPI_MCR2_ABR_CMD               BIT(0)
  96
  97#define FSPI_AHBCR                      0x0c
  98#define FSPI_AHBCR_RDADDROPT            BIT(6)
  99#define FSPI_AHBCR_PREF_EN              BIT(5)
 100#define FSPI_AHBCR_BUFF_EN              BIT(4)
 101#define FSPI_AHBCR_CACH_EN              BIT(3)
 102#define FSPI_AHBCR_CLRTXBUF             BIT(2)
 103#define FSPI_AHBCR_CLRRXBUF             BIT(1)
 104#define FSPI_AHBCR_PAR_EN               BIT(0)
 105
 106#define FSPI_INTEN                      0x10
 107#define FSPI_INTEN_SCLKSBWR             BIT(9)
 108#define FSPI_INTEN_SCLKSBRD             BIT(8)
 109#define FSPI_INTEN_DATALRNFL            BIT(7)
 110#define FSPI_INTEN_IPTXWE               BIT(6)
 111#define FSPI_INTEN_IPRXWA               BIT(5)
 112#define FSPI_INTEN_AHBCMDERR            BIT(4)
 113#define FSPI_INTEN_IPCMDERR             BIT(3)
 114#define FSPI_INTEN_AHBCMDGE             BIT(2)
 115#define FSPI_INTEN_IPCMDGE              BIT(1)
 116#define FSPI_INTEN_IPCMDDONE            BIT(0)
 117
 118#define FSPI_INTR                       0x14
 119#define FSPI_INTR_SCLKSBWR              BIT(9)
 120#define FSPI_INTR_SCLKSBRD              BIT(8)
 121#define FSPI_INTR_DATALRNFL             BIT(7)
 122#define FSPI_INTR_IPTXWE                BIT(6)
 123#define FSPI_INTR_IPRXWA                BIT(5)
 124#define FSPI_INTR_AHBCMDERR             BIT(4)
 125#define FSPI_INTR_IPCMDERR              BIT(3)
 126#define FSPI_INTR_AHBCMDGE              BIT(2)
 127#define FSPI_INTR_IPCMDGE               BIT(1)
 128#define FSPI_INTR_IPCMDDONE             BIT(0)
 129
 130#define FSPI_LUTKEY                     0x18
 131#define FSPI_LUTKEY_VALUE               0x5AF05AF0
 132
 133#define FSPI_LCKCR                      0x1C
 134
 135#define FSPI_LCKER_LOCK                 0x1
 136#define FSPI_LCKER_UNLOCK               0x2
 137
 138#define FSPI_BUFXCR_INVALID_MSTRID      0xE
 139#define FSPI_AHBRX_BUF0CR0              0x20
 140#define FSPI_AHBRX_BUF1CR0              0x24
 141#define FSPI_AHBRX_BUF2CR0              0x28
 142#define FSPI_AHBRX_BUF3CR0              0x2C
 143#define FSPI_AHBRX_BUF4CR0              0x30
 144#define FSPI_AHBRX_BUF5CR0              0x34
 145#define FSPI_AHBRX_BUF6CR0              0x38
 146#define FSPI_AHBRX_BUF7CR0              0x3C
 147#define FSPI_AHBRXBUF0CR7_PREF          BIT(31)
 148
 149#define FSPI_AHBRX_BUF0CR1              0x40
 150#define FSPI_AHBRX_BUF1CR1              0x44
 151#define FSPI_AHBRX_BUF2CR1              0x48
 152#define FSPI_AHBRX_BUF3CR1              0x4C
 153#define FSPI_AHBRX_BUF4CR1              0x50
 154#define FSPI_AHBRX_BUF5CR1              0x54
 155#define FSPI_AHBRX_BUF6CR1              0x58
 156#define FSPI_AHBRX_BUF7CR1              0x5C
 157
 158#define FSPI_FLSHA1CR0                  0x60
 159#define FSPI_FLSHA2CR0                  0x64
 160#define FSPI_FLSHB1CR0                  0x68
 161#define FSPI_FLSHB2CR0                  0x6C
 162#define FSPI_FLSHXCR0_SZ_KB             10
 163#define FSPI_FLSHXCR0_SZ(x)             ((x) >> FSPI_FLSHXCR0_SZ_KB)
 164
 165#define FSPI_FLSHA1CR1                  0x70
 166#define FSPI_FLSHA2CR1                  0x74
 167#define FSPI_FLSHB1CR1                  0x78
 168#define FSPI_FLSHB2CR1                  0x7C
 169#define FSPI_FLSHXCR1_CSINTR(x)         ((x) << 16)
 170#define FSPI_FLSHXCR1_CAS(x)            ((x) << 11)
 171#define FSPI_FLSHXCR1_WA                BIT(10)
 172#define FSPI_FLSHXCR1_TCSH(x)           ((x) << 5)
 173#define FSPI_FLSHXCR1_TCSS(x)           (x)
 174
 175#define FSPI_FLSHA1CR2                  0x80
 176#define FSPI_FLSHA2CR2                  0x84
 177#define FSPI_FLSHB1CR2                  0x88
 178#define FSPI_FLSHB2CR2                  0x8C
 179#define FSPI_FLSHXCR2_CLRINSP           BIT(24)
 180#define FSPI_FLSHXCR2_AWRWAIT           BIT(16)
 181#define FSPI_FLSHXCR2_AWRSEQN_SHIFT     13
 182#define FSPI_FLSHXCR2_AWRSEQI_SHIFT     8
 183#define FSPI_FLSHXCR2_ARDSEQN_SHIFT     5
 184#define FSPI_FLSHXCR2_ARDSEQI_SHIFT     0
 185
 186#define FSPI_IPCR0                      0xA0
 187
 188#define FSPI_IPCR1                      0xA4
 189#define FSPI_IPCR1_IPAREN               BIT(31)
 190#define FSPI_IPCR1_SEQNUM_SHIFT         24
 191#define FSPI_IPCR1_SEQID_SHIFT          16
 192#define FSPI_IPCR1_IDATSZ(x)            (x)
 193
 194#define FSPI_IPCMD                      0xB0
 195#define FSPI_IPCMD_TRG                  BIT(0)
 196
 197#define FSPI_DLPR                       0xB4
 198
 199#define FSPI_IPRXFCR                    0xB8
 200#define FSPI_IPRXFCR_CLR                BIT(0)
 201#define FSPI_IPRXFCR_DMA_EN             BIT(1)
 202#define FSPI_IPRXFCR_WMRK(x)            ((x) << 2)
 203
 204#define FSPI_IPTXFCR                    0xBC
 205#define FSPI_IPTXFCR_CLR                BIT(0)
 206#define FSPI_IPTXFCR_DMA_EN             BIT(1)
 207#define FSPI_IPTXFCR_WMRK(x)            ((x) << 2)
 208
 209#define FSPI_DLLACR                     0xC0
 210#define FSPI_DLLACR_OVRDEN              BIT(8)
 211
 212#define FSPI_DLLBCR                     0xC4
 213#define FSPI_DLLBCR_OVRDEN              BIT(8)
 214
 215#define FSPI_STS0                       0xE0
 216#define FSPI_STS0_DLPHB(x)              ((x) << 8)
 217#define FSPI_STS0_DLPHA(x)              ((x) << 4)
 218#define FSPI_STS0_CMD_SRC(x)            ((x) << 2)
 219#define FSPI_STS0_ARB_IDLE              BIT(1)
 220#define FSPI_STS0_SEQ_IDLE              BIT(0)
 221
 222#define FSPI_STS1                       0xE4
 223#define FSPI_STS1_IP_ERRCD(x)           ((x) << 24)
 224#define FSPI_STS1_IP_ERRID(x)           ((x) << 16)
 225#define FSPI_STS1_AHB_ERRCD(x)          ((x) << 8)
 226#define FSPI_STS1_AHB_ERRID(x)          (x)
 227
 228#define FSPI_AHBSPNST                   0xEC
 229#define FSPI_AHBSPNST_DATLFT(x)         ((x) << 16)
 230#define FSPI_AHBSPNST_BUFID(x)          ((x) << 1)
 231#define FSPI_AHBSPNST_ACTIVE            BIT(0)
 232
 233#define FSPI_IPRXFSTS                   0xF0
 234#define FSPI_IPRXFSTS_RDCNTR(x)         ((x) << 16)
 235#define FSPI_IPRXFSTS_FILL(x)           (x)
 236
 237#define FSPI_IPTXFSTS                   0xF4
 238#define FSPI_IPTXFSTS_WRCNTR(x)         ((x) << 16)
 239#define FSPI_IPTXFSTS_FILL(x)           (x)
 240
 241#define FSPI_RFDR                       0x100
 242#define FSPI_TFDR                       0x180
 243
 244#define FSPI_LUT_BASE                   0x200
 245#define FSPI_LUT_OFFSET                 (SEQID_LUT * 4 * 4)
 246#define FSPI_LUT_REG(idx) \
 247        (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 248
 249/* register map end */
 250
 251/* Instruction set for the LUT register. */
 252#define LUT_STOP                        0x00
 253#define LUT_CMD                         0x01
 254#define LUT_ADDR                        0x02
 255#define LUT_CADDR_SDR                   0x03
 256#define LUT_MODE                        0x04
 257#define LUT_MODE2                       0x05
 258#define LUT_MODE4                       0x06
 259#define LUT_MODE8                       0x07
 260#define LUT_NXP_WRITE                   0x08
 261#define LUT_NXP_READ                    0x09
 262#define LUT_LEARN_SDR                   0x0A
 263#define LUT_DATSZ_SDR                   0x0B
 264#define LUT_DUMMY                       0x0C
 265#define LUT_DUMMY_RWDS_SDR              0x0D
 266#define LUT_JMP_ON_CS                   0x1F
 267#define LUT_CMD_DDR                     0x21
 268#define LUT_ADDR_DDR                    0x22
 269#define LUT_CADDR_DDR                   0x23
 270#define LUT_MODE_DDR                    0x24
 271#define LUT_MODE2_DDR                   0x25
 272#define LUT_MODE4_DDR                   0x26
 273#define LUT_MODE8_DDR                   0x27
 274#define LUT_WRITE_DDR                   0x28
 275#define LUT_READ_DDR                    0x29
 276#define LUT_LEARN_DDR                   0x2A
 277#define LUT_DATSZ_DDR                   0x2B
 278#define LUT_DUMMY_DDR                   0x2C
 279#define LUT_DUMMY_RWDS_DDR              0x2D
 280
 281/*
 282 * Calculate number of required PAD bits for LUT register.
 283 *
 284 * The pad stands for the number of IO lines [0:7].
 285 * For example, the octal read needs eight IO lines,
 286 * so you should use LUT_PAD(8). This macro
 287 * returns 3 i.e. use eight (2^3) IP lines for read.
 288 */
 289#define LUT_PAD(x) (fls(x) - 1)
 290
 291/*
 292 * Macro for constructing the LUT entries with the following
 293 * register layout:
 294 *
 295 *  ---------------------------------------------------
 296 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 297 *  ---------------------------------------------------
 298 */
 299#define PAD_SHIFT               8
 300#define INSTR_SHIFT             10
 301#define OPRND_SHIFT             16
 302
 303/* Macros for constructing the LUT register. */
 304#define LUT_DEF(idx, ins, pad, opr)                       \
 305        ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 306        (opr)) << (((idx) % 2) * OPRND_SHIFT))
 307
 308#define POLL_TOUT               5000
 309#define NXP_FSPI_MAX_CHIPSELECT         4
 310
 311struct nxp_fspi_devtype_data {
 312        unsigned int rxfifo;
 313        unsigned int txfifo;
 314        unsigned int ahb_buf_size;
 315        unsigned int quirks;
 316        bool little_endian;
 317};
 318
 319static const struct nxp_fspi_devtype_data lx2160a_data = {
 320        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 321        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 322        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 323        .quirks = 0,
 324        .little_endian = true,  /* little-endian    */
 325};
 326
 327struct nxp_fspi {
 328        void __iomem *iobase;
 329        void __iomem *ahb_addr;
 330        u32 memmap_phy;
 331        u32 memmap_phy_size;
 332        struct clk *clk, *clk_en;
 333        struct device *dev;
 334        struct completion c;
 335        const struct nxp_fspi_devtype_data *devtype_data;
 336        struct mutex lock;
 337        struct pm_qos_request pm_qos_req;
 338        int selected;
 339};
 340
 341/*
 342 * R/W functions for big- or little-endian registers:
 343 * The FSPI controller's endianness is independent of
 344 * the CPU core's endianness. So far, although the CPU
 345 * core is little-endian the FSPI controller can use
 346 * big-endian or little-endian.
 347 */
 348static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 349{
 350        if (f->devtype_data->little_endian)
 351                iowrite32(val, addr);
 352        else
 353                iowrite32be(val, addr);
 354}
 355
 356static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 357{
 358        if (f->devtype_data->little_endian)
 359                return ioread32(addr);
 360        else
 361                return ioread32be(addr);
 362}
 363
 364static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 365{
 366        struct nxp_fspi *f = dev_id;
 367        u32 reg;
 368
 369        /* clear interrupt */
 370        reg = fspi_readl(f, f->iobase + FSPI_INTR);
 371        fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 372
 373        if (reg & FSPI_INTR_IPCMDDONE)
 374                complete(&f->c);
 375
 376        return IRQ_HANDLED;
 377}
 378
 379static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 380{
 381        switch (width) {
 382        case 1:
 383        case 2:
 384        case 4:
 385        case 8:
 386                return 0;
 387        }
 388
 389        return -ENOTSUPP;
 390}
 391
 392static bool nxp_fspi_supports_op(struct spi_mem *mem,
 393                                 const struct spi_mem_op *op)
 394{
 395        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 396        int ret;
 397
 398        ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 399
 400        if (op->addr.nbytes)
 401                ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 402
 403        if (op->dummy.nbytes)
 404                ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 405
 406        if (op->data.nbytes)
 407                ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 408
 409        if (ret)
 410                return false;
 411
 412        /*
 413         * The number of address bytes should be equal to or less than 4 bytes.
 414         */
 415        if (op->addr.nbytes > 4)
 416                return false;
 417
 418        /*
 419         * If requested address value is greater than controller assigned
 420         * memory mapped space, return error as it didn't fit in the range
 421         * of assigned address space.
 422         */
 423        if (op->addr.val >= f->memmap_phy_size)
 424                return false;
 425
 426        /* Max 64 dummy clock cycles supported */
 427        if (op->dummy.buswidth &&
 428            (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 429                return false;
 430
 431        /* Max data length, check controller limits and alignment */
 432        if (op->data.dir == SPI_MEM_DATA_IN &&
 433            (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 434             (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 435              !IS_ALIGNED(op->data.nbytes, 8))))
 436                return false;
 437
 438        if (op->data.dir == SPI_MEM_DATA_OUT &&
 439            op->data.nbytes > f->devtype_data->txfifo)
 440                return false;
 441
 442        return true;
 443}
 444
 445/* Instead of busy looping invoke readl_poll_timeout functionality. */
 446static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 447                                u32 mask, u32 delay_us,
 448                                u32 timeout_us, bool c)
 449{
 450        u32 reg;
 451
 452        if (!f->devtype_data->little_endian)
 453                mask = (u32)cpu_to_be32(mask);
 454
 455        if (c)
 456                return readl_poll_timeout(base, reg, (reg & mask),
 457                                          delay_us, timeout_us);
 458        else
 459                return readl_poll_timeout(base, reg, !(reg & mask),
 460                                          delay_us, timeout_us);
 461}
 462
 463/*
 464 * If the slave device content being changed by Write/Erase, need to
 465 * invalidate the AHB buffer. This can be achieved by doing the reset
 466 * of controller after setting MCR0[SWRESET] bit.
 467 */
 468static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 469{
 470        u32 reg;
 471        int ret;
 472
 473        reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 474        fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 475
 476        /* w1c register, wait unit clear */
 477        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 478                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 479        WARN_ON(ret);
 480}
 481
 482static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 483                                 const struct spi_mem_op *op)
 484{
 485        void __iomem *base = f->iobase;
 486        u32 lutval[4] = {};
 487        int lutidx = 1, i;
 488
 489        /* cmd */
 490        lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 491                             op->cmd.opcode);
 492
 493        /* addr bytes */
 494        if (op->addr.nbytes) {
 495                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 496                                              LUT_PAD(op->addr.buswidth),
 497                                              op->addr.nbytes * 8);
 498                lutidx++;
 499        }
 500
 501        /* dummy bytes, if needed */
 502        if (op->dummy.nbytes) {
 503                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 504                /*
 505                 * Due to FlexSPI controller limitation number of PAD for dummy
 506                 * buswidth needs to be programmed as equal to data buswidth.
 507                 */
 508                                              LUT_PAD(op->data.buswidth),
 509                                              op->dummy.nbytes * 8 /
 510                                              op->dummy.buswidth);
 511                lutidx++;
 512        }
 513
 514        /* read/write data bytes */
 515        if (op->data.nbytes) {
 516                lutval[lutidx / 2] |= LUT_DEF(lutidx,
 517                                              op->data.dir == SPI_MEM_DATA_IN ?
 518                                              LUT_NXP_READ : LUT_NXP_WRITE,
 519                                              LUT_PAD(op->data.buswidth),
 520                                              0);
 521                lutidx++;
 522        }
 523
 524        /* stop condition. */
 525        lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 526
 527        /* unlock LUT */
 528        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 529        fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 530
 531        /* fill LUT */
 532        for (i = 0; i < ARRAY_SIZE(lutval); i++)
 533                fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 534
 535        dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
 536                op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
 537
 538        /* lock LUT */
 539        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 540        fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 541}
 542
 543static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 544{
 545        int ret;
 546
 547        ret = clk_prepare_enable(f->clk_en);
 548        if (ret)
 549                return ret;
 550
 551        ret = clk_prepare_enable(f->clk);
 552        if (ret) {
 553                clk_disable_unprepare(f->clk_en);
 554                return ret;
 555        }
 556
 557        return 0;
 558}
 559
 560static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 561{
 562        clk_disable_unprepare(f->clk);
 563        clk_disable_unprepare(f->clk_en);
 564}
 565
 566/*
 567 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 568 * register and start base address of the slave device.
 569 *
 570 *                                                          (Higher address)
 571 *                              --------    <-- FLSHB2CR0
 572 *                              |  B2  |
 573 *                              |      |
 574 *      B2 start address -->    --------    <-- FLSHB1CR0
 575 *                              |  B1  |
 576 *                              |      |
 577 *      B1 start address -->    --------    <-- FLSHA2CR0
 578 *                              |  A2  |
 579 *                              |      |
 580 *      A2 start address -->    --------    <-- FLSHA1CR0
 581 *                              |  A1  |
 582 *                              |      |
 583 *      A1 start address -->    --------                    (Lower address)
 584 *
 585 *
 586 * Start base address defines the starting address range for given CS and
 587 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 588 *
 589 * But, different targets are having different combinations of number of CS,
 590 * some targets only have single CS or two CS covering controller's full
 591 * memory mapped space area.
 592 * Thus, implementation is being done as independent of the size and number
 593 * of the connected slave device.
 594 * Assign controller memory mapped space size as the size to the connected
 595 * slave device.
 596 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 597 * chip-select Flash configuration register.
 598 *
 599 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 600 * memory mapped size of the controller.
 601 * Value for rest of the CS FLSHxxCR0 register would be zero.
 602 *
 603 */
 604static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 605{
 606        unsigned long rate = spi->max_speed_hz;
 607        int ret;
 608        uint64_t size_kb;
 609
 610        /*
 611         * Return, if previously selected slave device is same as current
 612         * requested slave device.
 613         */
 614        if (f->selected == spi->chip_select)
 615                return;
 616
 617        /* Reset FLSHxxCR0 registers */
 618        fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 619        fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 620        fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 621        fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 622
 623        /* Assign controller memory mapped space as size, KBytes, of flash. */
 624        size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 625
 626        fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 627                    4 * spi->chip_select);
 628
 629        dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 630
 631        nxp_fspi_clk_disable_unprep(f);
 632
 633        ret = clk_set_rate(f->clk, rate);
 634        if (ret)
 635                return;
 636
 637        ret = nxp_fspi_clk_prep_enable(f);
 638        if (ret)
 639                return;
 640
 641        f->selected = spi->chip_select;
 642}
 643
 644static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 645{
 646        u32 len = op->data.nbytes;
 647
 648        /* Read out the data directly from the AHB buffer. */
 649        memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
 650}
 651
 652static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 653                                 const struct spi_mem_op *op)
 654{
 655        void __iomem *base = f->iobase;
 656        int i, ret;
 657        u8 *buf = (u8 *) op->data.buf.out;
 658
 659        /* clear the TX FIFO. */
 660        fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 661
 662        /*
 663         * Default value of water mark level is 8 bytes, hence in single
 664         * write request controller can write max 8 bytes of data.
 665         */
 666
 667        for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 668                /* Wait for TXFIFO empty */
 669                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 670                                           FSPI_INTR_IPTXWE, 0,
 671                                           POLL_TOUT, true);
 672                WARN_ON(ret);
 673
 674                fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 675                fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 676                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 677        }
 678
 679        if (i < op->data.nbytes) {
 680                u32 data = 0;
 681                int j;
 682                /* Wait for TXFIFO empty */
 683                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 684                                           FSPI_INTR_IPTXWE, 0,
 685                                           POLL_TOUT, true);
 686                WARN_ON(ret);
 687
 688                for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 689                        memcpy(&data, buf + i + j, 4);
 690                        fspi_writel(f, data, base + FSPI_TFDR + j);
 691                }
 692                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 693        }
 694}
 695
 696static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 697                          const struct spi_mem_op *op)
 698{
 699        void __iomem *base = f->iobase;
 700        int i, ret;
 701        int len = op->data.nbytes;
 702        u8 *buf = (u8 *) op->data.buf.in;
 703
 704        /*
 705         * Default value of water mark level is 8 bytes, hence in single
 706         * read request controller can read max 8 bytes of data.
 707         */
 708        for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 709                /* Wait for RXFIFO available */
 710                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 711                                           FSPI_INTR_IPRXWA, 0,
 712                                           POLL_TOUT, true);
 713                WARN_ON(ret);
 714
 715                *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 716                *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 717                /* move the FIFO pointer */
 718                fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 719        }
 720
 721        if (i < len) {
 722                u32 tmp;
 723                int size, j;
 724
 725                buf = op->data.buf.in + i;
 726                /* Wait for RXFIFO available */
 727                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 728                                           FSPI_INTR_IPRXWA, 0,
 729                                           POLL_TOUT, true);
 730                WARN_ON(ret);
 731
 732                len = op->data.nbytes - i;
 733                for (j = 0; j < op->data.nbytes - i; j += 4) {
 734                        tmp = fspi_readl(f, base + FSPI_RFDR + j);
 735                        size = min(len, 4);
 736                        memcpy(buf + j, &tmp, size);
 737                        len -= size;
 738                }
 739        }
 740
 741        /* invalid the RXFIFO */
 742        fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 743        /* move the FIFO pointer */
 744        fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 745}
 746
 747static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 748{
 749        void __iomem *base = f->iobase;
 750        int seqnum = 0;
 751        int err = 0;
 752        u32 reg;
 753
 754        reg = fspi_readl(f, base + FSPI_IPRXFCR);
 755        /* invalid RXFIFO first */
 756        reg &= ~FSPI_IPRXFCR_DMA_EN;
 757        reg = reg | FSPI_IPRXFCR_CLR;
 758        fspi_writel(f, reg, base + FSPI_IPRXFCR);
 759
 760        init_completion(&f->c);
 761
 762        fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 763        /*
 764         * Always start the sequence at the same index since we update
 765         * the LUT at each exec_op() call. And also specify the DATA
 766         * length, since it's has not been specified in the LUT.
 767         */
 768        fspi_writel(f, op->data.nbytes |
 769                 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 770                 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 771                 base + FSPI_IPCR1);
 772
 773        /* Trigger the LUT now. */
 774        fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 775
 776        /* Wait for the interrupt. */
 777        if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 778                err = -ETIMEDOUT;
 779
 780        /* Invoke IP data read, if request is of data read. */
 781        if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 782                nxp_fspi_read_rxfifo(f, op);
 783
 784        return err;
 785}
 786
 787static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 788{
 789        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 790        int err = 0;
 791
 792        mutex_lock(&f->lock);
 793
 794        /* Wait for controller being ready. */
 795        err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 796                                   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 797        WARN_ON(err);
 798
 799        nxp_fspi_select_mem(f, mem->spi);
 800
 801        nxp_fspi_prepare_lut(f, op);
 802        /*
 803         * If we have large chunks of data, we read them through the AHB bus
 804         * by accessing the mapped memory. In all other cases we use
 805         * IP commands to access the flash.
 806         */
 807        if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 808            op->data.dir == SPI_MEM_DATA_IN) {
 809                nxp_fspi_read_ahb(f, op);
 810        } else {
 811                if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 812                        nxp_fspi_fill_txfifo(f, op);
 813
 814                err = nxp_fspi_do_op(f, op);
 815        }
 816
 817        /* Invalidate the data in the AHB buffer. */
 818        nxp_fspi_invalid(f);
 819
 820        mutex_unlock(&f->lock);
 821
 822        return err;
 823}
 824
 825static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 826{
 827        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 828
 829        if (op->data.dir == SPI_MEM_DATA_OUT) {
 830                if (op->data.nbytes > f->devtype_data->txfifo)
 831                        op->data.nbytes = f->devtype_data->txfifo;
 832        } else {
 833                if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 834                        op->data.nbytes = f->devtype_data->ahb_buf_size;
 835                else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 836                        op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 837        }
 838
 839        return 0;
 840}
 841
 842static int nxp_fspi_default_setup(struct nxp_fspi *f)
 843{
 844        void __iomem *base = f->iobase;
 845        int ret, i;
 846        u32 reg;
 847
 848        /* disable and unprepare clock to avoid glitch pass to controller */
 849        nxp_fspi_clk_disable_unprep(f);
 850
 851        /* the default frequency, we will change it later if necessary. */
 852        ret = clk_set_rate(f->clk, 20000000);
 853        if (ret)
 854                return ret;
 855
 856        ret = nxp_fspi_clk_prep_enable(f);
 857        if (ret)
 858                return ret;
 859
 860        /* Reset the module */
 861        /* w1c register, wait unit clear */
 862        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 863                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 864        WARN_ON(ret);
 865
 866        /* Disable the module */
 867        fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 868
 869        /* Reset the DLL register to default value */
 870        fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 871        fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 872
 873        /* enable module */
 874        fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
 875                 base + FSPI_MCR0);
 876
 877        /*
 878         * Disable same device enable bit and configure all slave devices
 879         * independently.
 880         */
 881        reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 882        reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 883        fspi_writel(f, reg, base + FSPI_MCR2);
 884
 885        /* AHB configuration for access buffer 0~7. */
 886        for (i = 0; i < 7; i++)
 887                fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 888
 889        /*
 890         * Set ADATSZ with the maximum AHB buffer size to improve the read
 891         * performance.
 892         */
 893        fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 894                  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 895
 896        /* prefetch and no start address alignment limitation */
 897        fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 898                 base + FSPI_AHBCR);
 899
 900        /* AHB Read - Set lut sequence ID for all CS. */
 901        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 902        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 903        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 904        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 905
 906        f->selected = -1;
 907
 908        /* enable the interrupt */
 909        fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 910
 911        return 0;
 912}
 913
 914static const char *nxp_fspi_get_name(struct spi_mem *mem)
 915{
 916        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 917        struct device *dev = &mem->spi->dev;
 918        const char *name;
 919
 920        // Set custom name derived from the platform_device of the controller.
 921        if (of_get_available_child_count(f->dev->of_node) == 1)
 922                return dev_name(f->dev);
 923
 924        name = devm_kasprintf(dev, GFP_KERNEL,
 925                              "%s-%d", dev_name(f->dev),
 926                              mem->spi->chip_select);
 927
 928        if (!name) {
 929                dev_err(dev, "failed to get memory for custom flash name\n");
 930                return ERR_PTR(-ENOMEM);
 931        }
 932
 933        return name;
 934}
 935
 936static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 937        .adjust_op_size = nxp_fspi_adjust_op_size,
 938        .supports_op = nxp_fspi_supports_op,
 939        .exec_op = nxp_fspi_exec_op,
 940        .get_name = nxp_fspi_get_name,
 941};
 942
 943static int nxp_fspi_probe(struct platform_device *pdev)
 944{
 945        struct spi_controller *ctlr;
 946        struct device *dev = &pdev->dev;
 947        struct device_node *np = dev->of_node;
 948        struct resource *res;
 949        struct nxp_fspi *f;
 950        int ret;
 951
 952        ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
 953        if (!ctlr)
 954                return -ENOMEM;
 955
 956        ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
 957                          SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
 958
 959        f = spi_controller_get_devdata(ctlr);
 960        f->dev = dev;
 961        f->devtype_data = of_device_get_match_data(dev);
 962        if (!f->devtype_data) {
 963                ret = -ENODEV;
 964                goto err_put_ctrl;
 965        }
 966
 967        platform_set_drvdata(pdev, f);
 968
 969        /* find the resources - configuration register address space */
 970        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
 971        f->iobase = devm_ioremap_resource(dev, res);
 972        if (IS_ERR(f->iobase)) {
 973                ret = PTR_ERR(f->iobase);
 974                goto err_put_ctrl;
 975        }
 976
 977        /* find the resources - controller memory mapped space */
 978        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
 979        f->ahb_addr = devm_ioremap_resource(dev, res);
 980        if (IS_ERR(f->ahb_addr)) {
 981                ret = PTR_ERR(f->ahb_addr);
 982                goto err_put_ctrl;
 983        }
 984
 985        /* assign memory mapped starting address and mapped size. */
 986        f->memmap_phy = res->start;
 987        f->memmap_phy_size = resource_size(res);
 988
 989        /* find the clocks */
 990        f->clk_en = devm_clk_get(dev, "fspi_en");
 991        if (IS_ERR(f->clk_en)) {
 992                ret = PTR_ERR(f->clk_en);
 993                goto err_put_ctrl;
 994        }
 995
 996        f->clk = devm_clk_get(dev, "fspi");
 997        if (IS_ERR(f->clk)) {
 998                ret = PTR_ERR(f->clk);
 999                goto err_put_ctrl;
1000        }
1001
1002        ret = nxp_fspi_clk_prep_enable(f);
1003        if (ret) {
1004                dev_err(dev, "can not enable the clock\n");
1005                goto err_put_ctrl;
1006        }
1007
1008        /* find the irq */
1009        ret = platform_get_irq(pdev, 0);
1010        if (ret < 0) {
1011                dev_err(dev, "failed to get the irq: %d\n", ret);
1012                goto err_disable_clk;
1013        }
1014
1015        ret = devm_request_irq(dev, ret,
1016                        nxp_fspi_irq_handler, 0, pdev->name, f);
1017        if (ret) {
1018                dev_err(dev, "failed to request irq: %d\n", ret);
1019                goto err_disable_clk;
1020        }
1021
1022        mutex_init(&f->lock);
1023
1024        ctlr->bus_num = -1;
1025        ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1026        ctlr->mem_ops = &nxp_fspi_mem_ops;
1027
1028        nxp_fspi_default_setup(f);
1029
1030        ctlr->dev.of_node = np;
1031
1032        ret = spi_register_controller(ctlr);
1033        if (ret)
1034                goto err_destroy_mutex;
1035
1036        return 0;
1037
1038err_destroy_mutex:
1039        mutex_destroy(&f->lock);
1040
1041err_disable_clk:
1042        nxp_fspi_clk_disable_unprep(f);
1043
1044err_put_ctrl:
1045        spi_controller_put(ctlr);
1046
1047        dev_err(dev, "NXP FSPI probe failed\n");
1048        return ret;
1049}
1050
1051static int nxp_fspi_remove(struct platform_device *pdev)
1052{
1053        struct nxp_fspi *f = platform_get_drvdata(pdev);
1054
1055        /* disable the hardware */
1056        fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1057
1058        nxp_fspi_clk_disable_unprep(f);
1059
1060        mutex_destroy(&f->lock);
1061
1062        return 0;
1063}
1064
1065static int nxp_fspi_suspend(struct device *dev)
1066{
1067        return 0;
1068}
1069
1070static int nxp_fspi_resume(struct device *dev)
1071{
1072        struct nxp_fspi *f = dev_get_drvdata(dev);
1073
1074        nxp_fspi_default_setup(f);
1075
1076        return 0;
1077}
1078
1079static const struct of_device_id nxp_fspi_dt_ids[] = {
1080        { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1081        { /* sentinel */ }
1082};
1083MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1084
1085static const struct dev_pm_ops nxp_fspi_pm_ops = {
1086        .suspend        = nxp_fspi_suspend,
1087        .resume         = nxp_fspi_resume,
1088};
1089
1090static struct platform_driver nxp_fspi_driver = {
1091        .driver = {
1092                .name   = "nxp-fspi",
1093                .of_match_table = nxp_fspi_dt_ids,
1094                .pm =   &nxp_fspi_pm_ops,
1095        },
1096        .probe          = nxp_fspi_probe,
1097        .remove         = nxp_fspi_remove,
1098};
1099module_platform_driver(nxp_fspi_driver);
1100
1101MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1102MODULE_AUTHOR("NXP Semiconductor");
1103MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1104MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1105MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1106MODULE_LICENSE("GPL v2");
1107