linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX                0
  55#define DO_NOT_DRIVE_TX         1
  56
  57#define DO_NOT_QUEUE_DMA        0
  58#define QUEUE_DMA               1
  59
  60#define RX_TRANSFER             1
  61#define TX_TRANSFER             2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)      (r + 0x000)
  67#define SSP_CR1(r)      (r + 0x004)
  68#define SSP_DR(r)       (r + 0x008)
  69#define SSP_SR(r)       (r + 0x00C)
  70#define SSP_CPSR(r)     (r + 0x010)
  71#define SSP_IMSC(r)     (r + 0x014)
  72#define SSP_RIS(r)      (r + 0x018)
  73#define SSP_MIS(r)      (r + 0x01C)
  74#define SSP_ICR(r)      (r + 0x020)
  75#define SSP_DMACR(r)    (r + 0x024)
  76#define SSP_CSR(r)      (r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)     (r + 0x080)
  78#define SSP_ITIP(r)     (r + 0x084)
  79#define SSP_ITOP(r)     (r + 0x088)
  80#define SSP_TDR(r)      (r + 0x08C)
  81
  82#define SSP_PID0(r)     (r + 0xFE0)
  83#define SSP_PID1(r)     (r + 0xFE4)
  84#define SSP_PID2(r)     (r + 0xFE8)
  85#define SSP_PID3(r)     (r + 0xFEC)
  86
  87#define SSP_CID0(r)     (r + 0xFF0)
  88#define SSP_CID1(r)     (r + 0xFF4)
  89#define SSP_CID2(r)     (r + 0xFF8)
  90#define SSP_CID3(r)     (r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF        (0x3UL << 4)
  97#define SSP_CR0_MASK_SPO        (0x1UL << 6)
  98#define SSP_CR0_MASK_SPH        (0x1UL << 7)
  99#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 114#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 115#define SSP_CR1_MASK_MS         (0x1UL << 2)
 116#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK            (0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 222#define ITOP_MASK_RORINTR                (0x1UL << 5)
 223#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 226#define ITOP_MASK_INTR                   (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START                     ((void *) 0)
 244#define STATE_RUNNING                   ((void *) 1)
 245#define STATE_DONE                      ((void *) 2)
 246#define STATE_ERROR                     ((void *) -1)
 247#define STATE_TIMEOUT                   ((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED                    (0)
 253#define SSP_ENABLED                     (1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED                (0)
 259#define SSP_DMA_ENABLED                 (1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281        SSP_IMSC_MASK_RORIM | \
 282        SSP_IMSC_MASK_RTIM | \
 283        SSP_IMSC_MASK_RXIM | \
 284        SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295        READING_NULL,
 296        READING_U8,
 297        READING_U16,
 298        READING_U32
 299};
 300
 301/**
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305        WRITING_NULL,
 306        WRITING_U8,
 307        WRITING_U16,
 308        WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323        int fifodepth;
 324        int max_bpw;
 325        bool unidir;
 326        bool extended_cr;
 327        bool pl023;
 328        bool loopback;
 329        bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @master: SPI framework hookup
 340 * @master_info: controller-specific data from machine setup
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @next_msg_cs_active: the next message in the queue has been examined
 346 *  and it was found that it uses the same chip select as the previous
 347 *  message, so we left it active after the previous transfer, and it's
 348 *  active already.
 349 * @tx: current position in TX buffer to be read
 350 * @tx_end: end position in TX buffer to be read
 351 * @rx: current position in RX buffer to be written
 352 * @rx_end: end position in RX buffer to be written
 353 * @read: the type of read currently going on
 354 * @write: the type of write currently going on
 355 * @exp_fifo_level: expected FIFO level
 356 * @dma_rx_channel: optional channel for RX DMA
 357 * @dma_tx_channel: optional channel for TX DMA
 358 * @sgt_rx: scattertable for the RX transfer
 359 * @sgt_tx: scattertable for the TX transfer
 360 * @dummypage: a dummy page used for driving data on the bus with DMA
 361 * @cur_cs: current chip select (gpio)
 362 * @chipselects: list of chipselects (gpios)
 363 */
 364struct pl022 {
 365        struct amba_device              *adev;
 366        struct vendor_data              *vendor;
 367        resource_size_t                 phybase;
 368        void __iomem                    *virtbase;
 369        struct clk                      *clk;
 370        struct spi_master               *master;
 371        struct pl022_ssp_controller     *master_info;
 372        /* Message per-transfer pump */
 373        struct tasklet_struct           pump_transfers;
 374        struct spi_message              *cur_msg;
 375        struct spi_transfer             *cur_transfer;
 376        struct chip_data                *cur_chip;
 377        bool                            next_msg_cs_active;
 378        void                            *tx;
 379        void                            *tx_end;
 380        void                            *rx;
 381        void                            *rx_end;
 382        enum ssp_reading                read;
 383        enum ssp_writing                write;
 384        u32                             exp_fifo_level;
 385        enum ssp_rx_level_trig          rx_lev_trig;
 386        enum ssp_tx_level_trig          tx_lev_trig;
 387        /* DMA settings */
 388#ifdef CONFIG_DMA_ENGINE
 389        struct dma_chan                 *dma_rx_channel;
 390        struct dma_chan                 *dma_tx_channel;
 391        struct sg_table                 sgt_rx;
 392        struct sg_table                 sgt_tx;
 393        char                            *dummypage;
 394        bool                            dma_running;
 395#endif
 396        int cur_cs;
 397        int *chipselects;
 398};
 399
 400/**
 401 * struct chip_data - To maintain runtime state of SSP for each client chip
 402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 403 *       register is 32 bits wide rather than just 16
 404 * @cr1: Value of control register CR1 of SSP
 405 * @dmacr: Value of DMA control Register of SSP
 406 * @cpsr: Value of Clock prescale register
 407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 408 * @enable_dma: Whether to enable DMA or not
 409 * @read: function ptr to be used to read when doing xfer for this chip
 410 * @write: function ptr to be used to write when doing xfer for this chip
 411 * @cs_control: chip select callback provided by chip
 412 * @xfer_type: polling/interrupt/DMA
 413 *
 414 * Runtime state of the SSP controller, maintained per chip,
 415 * This would be set according to the current message that would be served
 416 */
 417struct chip_data {
 418        u32 cr0;
 419        u16 cr1;
 420        u16 dmacr;
 421        u16 cpsr;
 422        u8 n_bytes;
 423        bool enable_dma;
 424        enum ssp_reading read;
 425        enum ssp_writing write;
 426        void (*cs_control) (u32 command);
 427        int xfer_type;
 428};
 429
 430/**
 431 * null_cs_control - Dummy chip select function
 432 * @command: select/delect the chip
 433 *
 434 * If no chip select function is provided by client this is used as dummy
 435 * chip select
 436 */
 437static void null_cs_control(u32 command)
 438{
 439        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 440}
 441
 442/**
 443 * internal_cs_control - Control chip select signals via SSP_CSR.
 444 * @pl022: SSP driver private data structure
 445 * @command: select/delect the chip
 446 *
 447 * Used on controller with internal chip select control via SSP_CSR register
 448 * (vendor extension). Each of the 5 LSB in the register controls one chip
 449 * select signal.
 450 */
 451static void internal_cs_control(struct pl022 *pl022, u32 command)
 452{
 453        u32 tmp;
 454
 455        tmp = readw(SSP_CSR(pl022->virtbase));
 456        if (command == SSP_CHIP_SELECT)
 457                tmp &= ~BIT(pl022->cur_cs);
 458        else
 459                tmp |= BIT(pl022->cur_cs);
 460        writew(tmp, SSP_CSR(pl022->virtbase));
 461}
 462
 463static void pl022_cs_control(struct pl022 *pl022, u32 command)
 464{
 465        if (pl022->vendor->internal_cs_ctrl)
 466                internal_cs_control(pl022, command);
 467        else if (gpio_is_valid(pl022->cur_cs))
 468                gpio_set_value(pl022->cur_cs, command);
 469        else
 470                pl022->cur_chip->cs_control(command);
 471}
 472
 473/**
 474 * giveback - current spi_message is over, schedule next message and call
 475 * callback of this message. Assumes that caller already
 476 * set message->status; dma and pio irqs are blocked
 477 * @pl022: SSP driver private data structure
 478 */
 479static void giveback(struct pl022 *pl022)
 480{
 481        struct spi_transfer *last_transfer;
 482        pl022->next_msg_cs_active = false;
 483
 484        last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 485                                        struct spi_transfer, transfer_list);
 486
 487        /* Delay if requested before any change in chip select */
 488        if (last_transfer->delay_usecs)
 489                /*
 490                 * FIXME: This runs in interrupt context.
 491                 * Is this really smart?
 492                 */
 493                udelay(last_transfer->delay_usecs);
 494
 495        if (!last_transfer->cs_change) {
 496                struct spi_message *next_msg;
 497
 498                /*
 499                 * cs_change was not set. We can keep the chip select
 500                 * enabled if there is message in the queue and it is
 501                 * for the same spi device.
 502                 *
 503                 * We cannot postpone this until pump_messages, because
 504                 * after calling msg->complete (below) the driver that
 505                 * sent the current message could be unloaded, which
 506                 * could invalidate the cs_control() callback...
 507                 */
 508                /* get a pointer to the next message, if any */
 509                next_msg = spi_get_next_queued_message(pl022->master);
 510
 511                /*
 512                 * see if the next and current messages point
 513                 * to the same spi device.
 514                 */
 515                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 516                        next_msg = NULL;
 517                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 518                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 519                else
 520                        pl022->next_msg_cs_active = true;
 521
 522        }
 523
 524        pl022->cur_msg = NULL;
 525        pl022->cur_transfer = NULL;
 526        pl022->cur_chip = NULL;
 527
 528        /* disable the SPI/SSP operation */
 529        writew((readw(SSP_CR1(pl022->virtbase)) &
 530                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 531
 532        spi_finalize_current_message(pl022->master);
 533}
 534
 535/**
 536 * flush - flush the FIFO to reach a clean state
 537 * @pl022: SSP driver private data structure
 538 */
 539static int flush(struct pl022 *pl022)
 540{
 541        unsigned long limit = loops_per_jiffy << 1;
 542
 543        dev_dbg(&pl022->adev->dev, "flush\n");
 544        do {
 545                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 546                        readw(SSP_DR(pl022->virtbase));
 547        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 548
 549        pl022->exp_fifo_level = 0;
 550
 551        return limit;
 552}
 553
 554/**
 555 * restore_state - Load configuration of current chip
 556 * @pl022: SSP driver private data structure
 557 */
 558static void restore_state(struct pl022 *pl022)
 559{
 560        struct chip_data *chip = pl022->cur_chip;
 561
 562        if (pl022->vendor->extended_cr)
 563                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 564        else
 565                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 566        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 567        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 568        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 569        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 570        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 571}
 572
 573/*
 574 * Default SSP Register Values
 575 */
 576#define DEFAULT_SSP_REG_CR0 ( \
 577        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 578        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 579        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 580        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 581        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 582)
 583
 584/* ST versions have slightly different bit layout */
 585#define DEFAULT_SSP_REG_CR0_ST ( \
 586        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 587        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 588        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 589        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 590        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 591        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 592        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 593)
 594
 595/* The PL023 version is slightly different again */
 596#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 597        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 598        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 599        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 600        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 601)
 602
 603#define DEFAULT_SSP_REG_CR1 ( \
 604        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 605        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 606        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 607        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 608)
 609
 610/* ST versions extend this register to use all 16 bits */
 611#define DEFAULT_SSP_REG_CR1_ST ( \
 612        DEFAULT_SSP_REG_CR1 | \
 613        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 614        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 615        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 616        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 617        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 618)
 619
 620/*
 621 * The PL023 variant has further differences: no loopback mode, no microwire
 622 * support, and a new clock feedback delay setting.
 623 */
 624#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 625        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 626        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 627        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 628        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 629        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 630        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 631        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 632        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 633)
 634
 635#define DEFAULT_SSP_REG_CPSR ( \
 636        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 637)
 638
 639#define DEFAULT_SSP_REG_DMACR (\
 640        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 641        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 642)
 643
 644/**
 645 * load_ssp_default_config - Load default configuration for SSP
 646 * @pl022: SSP driver private data structure
 647 */
 648static void load_ssp_default_config(struct pl022 *pl022)
 649{
 650        if (pl022->vendor->pl023) {
 651                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 652                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 653        } else if (pl022->vendor->extended_cr) {
 654                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 655                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 656        } else {
 657                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 658                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 659        }
 660        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 661        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 662        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 663        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 664}
 665
 666/**
 667 * This will write to TX and read from RX according to the parameters
 668 * set in pl022.
 669 */
 670static void readwriter(struct pl022 *pl022)
 671{
 672
 673        /*
 674         * The FIFO depth is different between primecell variants.
 675         * I believe filling in too much in the FIFO might cause
 676         * errons in 8bit wide transfers on ARM variants (just 8 words
 677         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 678         *
 679         * To prevent this issue, the TX FIFO is only filled to the
 680         * unused RX FIFO fill length, regardless of what the TX
 681         * FIFO status flag indicates.
 682         */
 683        dev_dbg(&pl022->adev->dev,
 684                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 685                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 686
 687        /* Read as much as you can */
 688        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 689               && (pl022->rx < pl022->rx_end)) {
 690                switch (pl022->read) {
 691                case READING_NULL:
 692                        readw(SSP_DR(pl022->virtbase));
 693                        break;
 694                case READING_U8:
 695                        *(u8 *) (pl022->rx) =
 696                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 697                        break;
 698                case READING_U16:
 699                        *(u16 *) (pl022->rx) =
 700                                (u16) readw(SSP_DR(pl022->virtbase));
 701                        break;
 702                case READING_U32:
 703                        *(u32 *) (pl022->rx) =
 704                                readl(SSP_DR(pl022->virtbase));
 705                        break;
 706                }
 707                pl022->rx += (pl022->cur_chip->n_bytes);
 708                pl022->exp_fifo_level--;
 709        }
 710        /*
 711         * Write as much as possible up to the RX FIFO size
 712         */
 713        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 714               && (pl022->tx < pl022->tx_end)) {
 715                switch (pl022->write) {
 716                case WRITING_NULL:
 717                        writew(0x0, SSP_DR(pl022->virtbase));
 718                        break;
 719                case WRITING_U8:
 720                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 721                        break;
 722                case WRITING_U16:
 723                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 724                        break;
 725                case WRITING_U32:
 726                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 727                        break;
 728                }
 729                pl022->tx += (pl022->cur_chip->n_bytes);
 730                pl022->exp_fifo_level++;
 731                /*
 732                 * This inner reader takes care of things appearing in the RX
 733                 * FIFO as we're transmitting. This will happen a lot since the
 734                 * clock starts running when you put things into the TX FIFO,
 735                 * and then things are continuously clocked into the RX FIFO.
 736                 */
 737                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 738                       && (pl022->rx < pl022->rx_end)) {
 739                        switch (pl022->read) {
 740                        case READING_NULL:
 741                                readw(SSP_DR(pl022->virtbase));
 742                                break;
 743                        case READING_U8:
 744                                *(u8 *) (pl022->rx) =
 745                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 746                                break;
 747                        case READING_U16:
 748                                *(u16 *) (pl022->rx) =
 749                                        (u16) readw(SSP_DR(pl022->virtbase));
 750                                break;
 751                        case READING_U32:
 752                                *(u32 *) (pl022->rx) =
 753                                        readl(SSP_DR(pl022->virtbase));
 754                                break;
 755                        }
 756                        pl022->rx += (pl022->cur_chip->n_bytes);
 757                        pl022->exp_fifo_level--;
 758                }
 759        }
 760        /*
 761         * When we exit here the TX FIFO should be full and the RX FIFO
 762         * should be empty
 763         */
 764}
 765
 766/**
 767 * next_transfer - Move to the Next transfer in the current spi message
 768 * @pl022: SSP driver private data structure
 769 *
 770 * This function moves though the linked list of spi transfers in the
 771 * current spi message and returns with the state of current spi
 772 * message i.e whether its last transfer is done(STATE_DONE) or
 773 * Next transfer is ready(STATE_RUNNING)
 774 */
 775static void *next_transfer(struct pl022 *pl022)
 776{
 777        struct spi_message *msg = pl022->cur_msg;
 778        struct spi_transfer *trans = pl022->cur_transfer;
 779
 780        /* Move to next transfer */
 781        if (trans->transfer_list.next != &msg->transfers) {
 782                pl022->cur_transfer =
 783                    list_entry(trans->transfer_list.next,
 784                               struct spi_transfer, transfer_list);
 785                return STATE_RUNNING;
 786        }
 787        return STATE_DONE;
 788}
 789
 790/*
 791 * This DMA functionality is only compiled in if we have
 792 * access to the generic DMA devices/DMA engine.
 793 */
 794#ifdef CONFIG_DMA_ENGINE
 795static void unmap_free_dma_scatter(struct pl022 *pl022)
 796{
 797        /* Unmap and free the SG tables */
 798        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 799                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 800        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 801                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 802        sg_free_table(&pl022->sgt_rx);
 803        sg_free_table(&pl022->sgt_tx);
 804}
 805
 806static void dma_callback(void *data)
 807{
 808        struct pl022 *pl022 = data;
 809        struct spi_message *msg = pl022->cur_msg;
 810
 811        BUG_ON(!pl022->sgt_rx.sgl);
 812
 813#ifdef VERBOSE_DEBUG
 814        /*
 815         * Optionally dump out buffers to inspect contents, this is
 816         * good if you want to convince yourself that the loopback
 817         * read/write contents are the same, when adopting to a new
 818         * DMA engine.
 819         */
 820        {
 821                struct scatterlist *sg;
 822                unsigned int i;
 823
 824                dma_sync_sg_for_cpu(&pl022->adev->dev,
 825                                    pl022->sgt_rx.sgl,
 826                                    pl022->sgt_rx.nents,
 827                                    DMA_FROM_DEVICE);
 828
 829                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 830                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 831                        print_hex_dump(KERN_ERR, "SPI RX: ",
 832                                       DUMP_PREFIX_OFFSET,
 833                                       16,
 834                                       1,
 835                                       sg_virt(sg),
 836                                       sg_dma_len(sg),
 837                                       1);
 838                }
 839                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 840                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 841                        print_hex_dump(KERN_ERR, "SPI TX: ",
 842                                       DUMP_PREFIX_OFFSET,
 843                                       16,
 844                                       1,
 845                                       sg_virt(sg),
 846                                       sg_dma_len(sg),
 847                                       1);
 848                }
 849        }
 850#endif
 851
 852        unmap_free_dma_scatter(pl022);
 853
 854        /* Update total bytes transferred */
 855        msg->actual_length += pl022->cur_transfer->len;
 856        /* Move to next transfer */
 857        msg->state = next_transfer(pl022);
 858        if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 859                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 860        tasklet_schedule(&pl022->pump_transfers);
 861}
 862
 863static void setup_dma_scatter(struct pl022 *pl022,
 864                              void *buffer,
 865                              unsigned int length,
 866                              struct sg_table *sgtab)
 867{
 868        struct scatterlist *sg;
 869        int bytesleft = length;
 870        void *bufp = buffer;
 871        int mapbytes;
 872        int i;
 873
 874        if (buffer) {
 875                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 876                        /*
 877                         * If there are less bytes left than what fits
 878                         * in the current page (plus page alignment offset)
 879                         * we just feed in this, else we stuff in as much
 880                         * as we can.
 881                         */
 882                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 883                                mapbytes = bytesleft;
 884                        else
 885                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 886                        sg_set_page(sg, virt_to_page(bufp),
 887                                    mapbytes, offset_in_page(bufp));
 888                        bufp += mapbytes;
 889                        bytesleft -= mapbytes;
 890                        dev_dbg(&pl022->adev->dev,
 891                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 892                                bufp, mapbytes, bytesleft);
 893                }
 894        } else {
 895                /* Map the dummy buffer on every page */
 896                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 897                        if (bytesleft < PAGE_SIZE)
 898                                mapbytes = bytesleft;
 899                        else
 900                                mapbytes = PAGE_SIZE;
 901                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 902                                    mapbytes, 0);
 903                        bytesleft -= mapbytes;
 904                        dev_dbg(&pl022->adev->dev,
 905                                "set RX/TX to dummy page %d bytes, %d left\n",
 906                                mapbytes, bytesleft);
 907
 908                }
 909        }
 910        BUG_ON(bytesleft);
 911}
 912
 913/**
 914 * configure_dma - configures the channels for the next transfer
 915 * @pl022: SSP driver's private data structure
 916 */
 917static int configure_dma(struct pl022 *pl022)
 918{
 919        struct dma_slave_config rx_conf = {
 920                .src_addr = SSP_DR(pl022->phybase),
 921                .direction = DMA_DEV_TO_MEM,
 922                .device_fc = false,
 923        };
 924        struct dma_slave_config tx_conf = {
 925                .dst_addr = SSP_DR(pl022->phybase),
 926                .direction = DMA_MEM_TO_DEV,
 927                .device_fc = false,
 928        };
 929        unsigned int pages;
 930        int ret;
 931        int rx_sglen, tx_sglen;
 932        struct dma_chan *rxchan = pl022->dma_rx_channel;
 933        struct dma_chan *txchan = pl022->dma_tx_channel;
 934        struct dma_async_tx_descriptor *rxdesc;
 935        struct dma_async_tx_descriptor *txdesc;
 936
 937        /* Check that the channels are available */
 938        if (!rxchan || !txchan)
 939                return -ENODEV;
 940
 941        /*
 942         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 943         * Notice that the DMA engine uses one-to-one mapping. Since we can
 944         * not trigger on 2 elements this needs explicit mapping rather than
 945         * calculation.
 946         */
 947        switch (pl022->rx_lev_trig) {
 948        case SSP_RX_1_OR_MORE_ELEM:
 949                rx_conf.src_maxburst = 1;
 950                break;
 951        case SSP_RX_4_OR_MORE_ELEM:
 952                rx_conf.src_maxburst = 4;
 953                break;
 954        case SSP_RX_8_OR_MORE_ELEM:
 955                rx_conf.src_maxburst = 8;
 956                break;
 957        case SSP_RX_16_OR_MORE_ELEM:
 958                rx_conf.src_maxburst = 16;
 959                break;
 960        case SSP_RX_32_OR_MORE_ELEM:
 961                rx_conf.src_maxburst = 32;
 962                break;
 963        default:
 964                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 965                break;
 966        }
 967
 968        switch (pl022->tx_lev_trig) {
 969        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 970                tx_conf.dst_maxburst = 1;
 971                break;
 972        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 973                tx_conf.dst_maxburst = 4;
 974                break;
 975        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 976                tx_conf.dst_maxburst = 8;
 977                break;
 978        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 979                tx_conf.dst_maxburst = 16;
 980                break;
 981        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 982                tx_conf.dst_maxburst = 32;
 983                break;
 984        default:
 985                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 986                break;
 987        }
 988
 989        switch (pl022->read) {
 990        case READING_NULL:
 991                /* Use the same as for writing */
 992                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 993                break;
 994        case READING_U8:
 995                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 996                break;
 997        case READING_U16:
 998                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 999                break;
1000        case READING_U32:
1001                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1002                break;
1003        }
1004
1005        switch (pl022->write) {
1006        case WRITING_NULL:
1007                /* Use the same as for reading */
1008                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1009                break;
1010        case WRITING_U8:
1011                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1012                break;
1013        case WRITING_U16:
1014                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1015                break;
1016        case WRITING_U32:
1017                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1018                break;
1019        }
1020
1021        /* SPI pecularity: we need to read and write the same width */
1022        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1023                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1024        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1025                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1026        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1027
1028        dmaengine_slave_config(rxchan, &rx_conf);
1029        dmaengine_slave_config(txchan, &tx_conf);
1030
1031        /* Create sglists for the transfers */
1032        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1033        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1034
1035        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1036        if (ret)
1037                goto err_alloc_rx_sg;
1038
1039        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1040        if (ret)
1041                goto err_alloc_tx_sg;
1042
1043        /* Fill in the scatterlists for the RX+TX buffers */
1044        setup_dma_scatter(pl022, pl022->rx,
1045                          pl022->cur_transfer->len, &pl022->sgt_rx);
1046        setup_dma_scatter(pl022, pl022->tx,
1047                          pl022->cur_transfer->len, &pl022->sgt_tx);
1048
1049        /* Map DMA buffers */
1050        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1051                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1052        if (!rx_sglen)
1053                goto err_rx_sgmap;
1054
1055        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1056                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1057        if (!tx_sglen)
1058                goto err_tx_sgmap;
1059
1060        /* Send both scatterlists */
1061        rxdesc = dmaengine_prep_slave_sg(rxchan,
1062                                      pl022->sgt_rx.sgl,
1063                                      rx_sglen,
1064                                      DMA_DEV_TO_MEM,
1065                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1066        if (!rxdesc)
1067                goto err_rxdesc;
1068
1069        txdesc = dmaengine_prep_slave_sg(txchan,
1070                                      pl022->sgt_tx.sgl,
1071                                      tx_sglen,
1072                                      DMA_MEM_TO_DEV,
1073                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1074        if (!txdesc)
1075                goto err_txdesc;
1076
1077        /* Put the callback on the RX transfer only, that should finish last */
1078        rxdesc->callback = dma_callback;
1079        rxdesc->callback_param = pl022;
1080
1081        /* Submit and fire RX and TX with TX last so we're ready to read! */
1082        dmaengine_submit(rxdesc);
1083        dmaengine_submit(txdesc);
1084        dma_async_issue_pending(rxchan);
1085        dma_async_issue_pending(txchan);
1086        pl022->dma_running = true;
1087
1088        return 0;
1089
1090err_txdesc:
1091        dmaengine_terminate_all(txchan);
1092err_rxdesc:
1093        dmaengine_terminate_all(rxchan);
1094        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1095                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1096err_tx_sgmap:
1097        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1098                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1099err_rx_sgmap:
1100        sg_free_table(&pl022->sgt_tx);
1101err_alloc_tx_sg:
1102        sg_free_table(&pl022->sgt_rx);
1103err_alloc_rx_sg:
1104        return -ENOMEM;
1105}
1106
1107static int pl022_dma_probe(struct pl022 *pl022)
1108{
1109        dma_cap_mask_t mask;
1110
1111        /* Try to acquire a generic DMA engine slave channel */
1112        dma_cap_zero(mask);
1113        dma_cap_set(DMA_SLAVE, mask);
1114        /*
1115         * We need both RX and TX channels to do DMA, else do none
1116         * of them.
1117         */
1118        pl022->dma_rx_channel = dma_request_channel(mask,
1119                                            pl022->master_info->dma_filter,
1120                                            pl022->master_info->dma_rx_param);
1121        if (!pl022->dma_rx_channel) {
1122                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1123                goto err_no_rxchan;
1124        }
1125
1126        pl022->dma_tx_channel = dma_request_channel(mask,
1127                                            pl022->master_info->dma_filter,
1128                                            pl022->master_info->dma_tx_param);
1129        if (!pl022->dma_tx_channel) {
1130                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1131                goto err_no_txchan;
1132        }
1133
1134        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1135        if (!pl022->dummypage)
1136                goto err_no_dummypage;
1137
1138        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1139                 dma_chan_name(pl022->dma_rx_channel),
1140                 dma_chan_name(pl022->dma_tx_channel));
1141
1142        return 0;
1143
1144err_no_dummypage:
1145        dma_release_channel(pl022->dma_tx_channel);
1146err_no_txchan:
1147        dma_release_channel(pl022->dma_rx_channel);
1148        pl022->dma_rx_channel = NULL;
1149err_no_rxchan:
1150        dev_err(&pl022->adev->dev,
1151                        "Failed to work in dma mode, work without dma!\n");
1152        return -ENODEV;
1153}
1154
1155static int pl022_dma_autoprobe(struct pl022 *pl022)
1156{
1157        struct device *dev = &pl022->adev->dev;
1158        struct dma_chan *chan;
1159        int err;
1160
1161        /* automatically configure DMA channels from platform, normally using DT */
1162        chan = dma_request_slave_channel_reason(dev, "rx");
1163        if (IS_ERR(chan)) {
1164                err = PTR_ERR(chan);
1165                goto err_no_rxchan;
1166        }
1167
1168        pl022->dma_rx_channel = chan;
1169
1170        chan = dma_request_slave_channel_reason(dev, "tx");
1171        if (IS_ERR(chan)) {
1172                err = PTR_ERR(chan);
1173                goto err_no_txchan;
1174        }
1175
1176        pl022->dma_tx_channel = chan;
1177
1178        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1179        if (!pl022->dummypage) {
1180                err = -ENOMEM;
1181                goto err_no_dummypage;
1182        }
1183
1184        return 0;
1185
1186err_no_dummypage:
1187        dma_release_channel(pl022->dma_tx_channel);
1188        pl022->dma_tx_channel = NULL;
1189err_no_txchan:
1190        dma_release_channel(pl022->dma_rx_channel);
1191        pl022->dma_rx_channel = NULL;
1192err_no_rxchan:
1193        return err;
1194}
1195                
1196static void terminate_dma(struct pl022 *pl022)
1197{
1198        struct dma_chan *rxchan = pl022->dma_rx_channel;
1199        struct dma_chan *txchan = pl022->dma_tx_channel;
1200
1201        dmaengine_terminate_all(rxchan);
1202        dmaengine_terminate_all(txchan);
1203        unmap_free_dma_scatter(pl022);
1204        pl022->dma_running = false;
1205}
1206
1207static void pl022_dma_remove(struct pl022 *pl022)
1208{
1209        if (pl022->dma_running)
1210                terminate_dma(pl022);
1211        if (pl022->dma_tx_channel)
1212                dma_release_channel(pl022->dma_tx_channel);
1213        if (pl022->dma_rx_channel)
1214                dma_release_channel(pl022->dma_rx_channel);
1215        kfree(pl022->dummypage);
1216}
1217
1218#else
1219static inline int configure_dma(struct pl022 *pl022)
1220{
1221        return -ENODEV;
1222}
1223
1224static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1225{
1226        return 0;
1227}
1228
1229static inline int pl022_dma_probe(struct pl022 *pl022)
1230{
1231        return 0;
1232}
1233
1234static inline void pl022_dma_remove(struct pl022 *pl022)
1235{
1236}
1237#endif
1238
1239/**
1240 * pl022_interrupt_handler - Interrupt handler for SSP controller
1241 *
1242 * This function handles interrupts generated for an interrupt based transfer.
1243 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1244 * current message's state as STATE_ERROR and schedule the tasklet
1245 * pump_transfers which will do the postprocessing of the current message by
1246 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1247 * more data, and writes data in TX FIFO till it is not full. If we complete
1248 * the transfer we move to the next transfer and schedule the tasklet.
1249 */
1250static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1251{
1252        struct pl022 *pl022 = dev_id;
1253        struct spi_message *msg = pl022->cur_msg;
1254        u16 irq_status = 0;
1255
1256        if (unlikely(!msg)) {
1257                dev_err(&pl022->adev->dev,
1258                        "bad message state in interrupt handler");
1259                /* Never fail */
1260                return IRQ_HANDLED;
1261        }
1262
1263        /* Read the Interrupt Status Register */
1264        irq_status = readw(SSP_MIS(pl022->virtbase));
1265
1266        if (unlikely(!irq_status))
1267                return IRQ_NONE;
1268
1269        /*
1270         * This handles the FIFO interrupts, the timeout
1271         * interrupts are flatly ignored, they cannot be
1272         * trusted.
1273         */
1274        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1275                /*
1276                 * Overrun interrupt - bail out since our Data has been
1277                 * corrupted
1278                 */
1279                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1280                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1281                        dev_err(&pl022->adev->dev,
1282                                "RXFIFO is full\n");
1283
1284                /*
1285                 * Disable and clear interrupts, disable SSP,
1286                 * mark message with bad status so it can be
1287                 * retried.
1288                 */
1289                writew(DISABLE_ALL_INTERRUPTS,
1290                       SSP_IMSC(pl022->virtbase));
1291                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1292                writew((readw(SSP_CR1(pl022->virtbase)) &
1293                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1294                msg->state = STATE_ERROR;
1295
1296                /* Schedule message queue handler */
1297                tasklet_schedule(&pl022->pump_transfers);
1298                return IRQ_HANDLED;
1299        }
1300
1301        readwriter(pl022);
1302
1303        if (pl022->tx == pl022->tx_end) {
1304                /* Disable Transmit interrupt, enable receive interrupt */
1305                writew((readw(SSP_IMSC(pl022->virtbase)) &
1306                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1307                       SSP_IMSC(pl022->virtbase));
1308        }
1309
1310        /*
1311         * Since all transactions must write as much as shall be read,
1312         * we can conclude the entire transaction once RX is complete.
1313         * At this point, all TX will always be finished.
1314         */
1315        if (pl022->rx >= pl022->rx_end) {
1316                writew(DISABLE_ALL_INTERRUPTS,
1317                       SSP_IMSC(pl022->virtbase));
1318                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1319                if (unlikely(pl022->rx > pl022->rx_end)) {
1320                        dev_warn(&pl022->adev->dev, "read %u surplus "
1321                                 "bytes (did you request an odd "
1322                                 "number of bytes on a 16bit bus?)\n",
1323                                 (u32) (pl022->rx - pl022->rx_end));
1324                }
1325                /* Update total bytes transferred */
1326                msg->actual_length += pl022->cur_transfer->len;
1327                /* Move to next transfer */
1328                msg->state = next_transfer(pl022);
1329                if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1330                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1331                tasklet_schedule(&pl022->pump_transfers);
1332                return IRQ_HANDLED;
1333        }
1334
1335        return IRQ_HANDLED;
1336}
1337
1338/**
1339 * This sets up the pointers to memory for the next message to
1340 * send out on the SPI bus.
1341 */
1342static int set_up_next_transfer(struct pl022 *pl022,
1343                                struct spi_transfer *transfer)
1344{
1345        int residue;
1346
1347        /* Sanity check the message for this bus width */
1348        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1349        if (unlikely(residue != 0)) {
1350                dev_err(&pl022->adev->dev,
1351                        "message of %u bytes to transmit but the current "
1352                        "chip bus has a data width of %u bytes!\n",
1353                        pl022->cur_transfer->len,
1354                        pl022->cur_chip->n_bytes);
1355                dev_err(&pl022->adev->dev, "skipping this message\n");
1356                return -EIO;
1357        }
1358        pl022->tx = (void *)transfer->tx_buf;
1359        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1360        pl022->rx = (void *)transfer->rx_buf;
1361        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1362        pl022->write =
1363            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1364        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1365        return 0;
1366}
1367
1368/**
1369 * pump_transfers - Tasklet function which schedules next transfer
1370 * when running in interrupt or DMA transfer mode.
1371 * @data: SSP driver private data structure
1372 *
1373 */
1374static void pump_transfers(unsigned long data)
1375{
1376        struct pl022 *pl022 = (struct pl022 *) data;
1377        struct spi_message *message = NULL;
1378        struct spi_transfer *transfer = NULL;
1379        struct spi_transfer *previous = NULL;
1380
1381        /* Get current state information */
1382        message = pl022->cur_msg;
1383        transfer = pl022->cur_transfer;
1384
1385        /* Handle for abort */
1386        if (message->state == STATE_ERROR) {
1387                message->status = -EIO;
1388                giveback(pl022);
1389                return;
1390        }
1391
1392        /* Handle end of message */
1393        if (message->state == STATE_DONE) {
1394                message->status = 0;
1395                giveback(pl022);
1396                return;
1397        }
1398
1399        /* Delay if requested at end of transfer before CS change */
1400        if (message->state == STATE_RUNNING) {
1401                previous = list_entry(transfer->transfer_list.prev,
1402                                        struct spi_transfer,
1403                                        transfer_list);
1404                if (previous->delay_usecs)
1405                        /*
1406                         * FIXME: This runs in interrupt context.
1407                         * Is this really smart?
1408                         */
1409                        udelay(previous->delay_usecs);
1410
1411                /* Reselect chip select only if cs_change was requested */
1412                if (previous->cs_change)
1413                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1414        } else {
1415                /* STATE_START */
1416                message->state = STATE_RUNNING;
1417        }
1418
1419        if (set_up_next_transfer(pl022, transfer)) {
1420                message->state = STATE_ERROR;
1421                message->status = -EIO;
1422                giveback(pl022);
1423                return;
1424        }
1425        /* Flush the FIFOs and let's go! */
1426        flush(pl022);
1427
1428        if (pl022->cur_chip->enable_dma) {
1429                if (configure_dma(pl022)) {
1430                        dev_dbg(&pl022->adev->dev,
1431                                "configuration of DMA failed, fall back to interrupt mode\n");
1432                        goto err_config_dma;
1433                }
1434                return;
1435        }
1436
1437err_config_dma:
1438        /* enable all interrupts except RX */
1439        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1440}
1441
1442static void do_interrupt_dma_transfer(struct pl022 *pl022)
1443{
1444        /*
1445         * Default is to enable all interrupts except RX -
1446         * this will be enabled once TX is complete
1447         */
1448        u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1449
1450        /* Enable target chip, if not already active */
1451        if (!pl022->next_msg_cs_active)
1452                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1453
1454        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1455                /* Error path */
1456                pl022->cur_msg->state = STATE_ERROR;
1457                pl022->cur_msg->status = -EIO;
1458                giveback(pl022);
1459                return;
1460        }
1461        /* If we're using DMA, set up DMA here */
1462        if (pl022->cur_chip->enable_dma) {
1463                /* Configure DMA transfer */
1464                if (configure_dma(pl022)) {
1465                        dev_dbg(&pl022->adev->dev,
1466                                "configuration of DMA failed, fall back to interrupt mode\n");
1467                        goto err_config_dma;
1468                }
1469                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1470                irqflags = DISABLE_ALL_INTERRUPTS;
1471        }
1472err_config_dma:
1473        /* Enable SSP, turn on interrupts */
1474        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1475               SSP_CR1(pl022->virtbase));
1476        writew(irqflags, SSP_IMSC(pl022->virtbase));
1477}
1478
1479static void print_current_status(struct pl022 *pl022)
1480{
1481        u32 read_cr0;
1482        u16 read_cr1, read_dmacr, read_sr;
1483
1484        if (pl022->vendor->extended_cr)
1485                read_cr0 = readl(SSP_CR0(pl022->virtbase));
1486        else
1487                read_cr0 = readw(SSP_CR0(pl022->virtbase));
1488        read_cr1 = readw(SSP_CR1(pl022->virtbase));
1489        read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1490        read_sr = readw(SSP_SR(pl022->virtbase));
1491
1492        dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1493        dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1494        dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1495        dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1496        dev_warn(&pl022->adev->dev,
1497                        "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1498                        pl022->exp_fifo_level,
1499                        pl022->vendor->fifodepth);
1500
1501}
1502
1503static void do_polling_transfer(struct pl022 *pl022)
1504{
1505        struct spi_message *message = NULL;
1506        struct spi_transfer *transfer = NULL;
1507        struct spi_transfer *previous = NULL;
1508        unsigned long time, timeout;
1509
1510        message = pl022->cur_msg;
1511
1512        while (message->state != STATE_DONE) {
1513                /* Handle for abort */
1514                if (message->state == STATE_ERROR)
1515                        break;
1516                transfer = pl022->cur_transfer;
1517
1518                /* Delay if requested at end of transfer */
1519                if (message->state == STATE_RUNNING) {
1520                        previous =
1521                            list_entry(transfer->transfer_list.prev,
1522                                       struct spi_transfer, transfer_list);
1523                        if (previous->delay_usecs)
1524                                udelay(previous->delay_usecs);
1525                        if (previous->cs_change)
1526                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1527                } else {
1528                        /* STATE_START */
1529                        message->state = STATE_RUNNING;
1530                        if (!pl022->next_msg_cs_active)
1531                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1532                }
1533
1534                /* Configuration Changing Per Transfer */
1535                if (set_up_next_transfer(pl022, transfer)) {
1536                        /* Error path */
1537                        message->state = STATE_ERROR;
1538                        break;
1539                }
1540                /* Flush FIFOs and enable SSP */
1541                flush(pl022);
1542                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1543                       SSP_CR1(pl022->virtbase));
1544
1545                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1546
1547                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1548                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1549                        time = jiffies;
1550                        readwriter(pl022);
1551                        if (time_after(time, timeout)) {
1552                                dev_warn(&pl022->adev->dev,
1553                                "%s: timeout!\n", __func__);
1554                                message->state = STATE_TIMEOUT;
1555                                print_current_status(pl022);
1556                                goto out;
1557                        }
1558                        cpu_relax();
1559                }
1560
1561                /* Update total byte transferred */
1562                message->actual_length += pl022->cur_transfer->len;
1563                /* Move to next transfer */
1564                message->state = next_transfer(pl022);
1565                if (message->state != STATE_DONE
1566                    && pl022->cur_transfer->cs_change)
1567                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1568        }
1569out:
1570        /* Handle end of message */
1571        if (message->state == STATE_DONE)
1572                message->status = 0;
1573        else if (message->state == STATE_TIMEOUT)
1574                message->status = -EAGAIN;
1575        else
1576                message->status = -EIO;
1577
1578        giveback(pl022);
1579        return;
1580}
1581
1582static int pl022_transfer_one_message(struct spi_master *master,
1583                                      struct spi_message *msg)
1584{
1585        struct pl022 *pl022 = spi_master_get_devdata(master);
1586
1587        /* Initial message state */
1588        pl022->cur_msg = msg;
1589        msg->state = STATE_START;
1590
1591        pl022->cur_transfer = list_entry(msg->transfers.next,
1592                                         struct spi_transfer, transfer_list);
1593
1594        /* Setup the SPI using the per chip configuration */
1595        pl022->cur_chip = spi_get_ctldata(msg->spi);
1596        pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1597
1598        restore_state(pl022);
1599        flush(pl022);
1600
1601        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1602                do_polling_transfer(pl022);
1603        else
1604                do_interrupt_dma_transfer(pl022);
1605
1606        return 0;
1607}
1608
1609static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1610{
1611        struct pl022 *pl022 = spi_master_get_devdata(master);
1612
1613        /* nothing more to do - disable spi/ssp and power off */
1614        writew((readw(SSP_CR1(pl022->virtbase)) &
1615                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1616
1617        return 0;
1618}
1619
1620static int verify_controller_parameters(struct pl022 *pl022,
1621                                struct pl022_config_chip const *chip_info)
1622{
1623        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1624            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1625                dev_err(&pl022->adev->dev,
1626                        "interface is configured incorrectly\n");
1627                return -EINVAL;
1628        }
1629        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1630            (!pl022->vendor->unidir)) {
1631                dev_err(&pl022->adev->dev,
1632                        "unidirectional mode not supported in this "
1633                        "hardware version\n");
1634                return -EINVAL;
1635        }
1636        if ((chip_info->hierarchy != SSP_MASTER)
1637            && (chip_info->hierarchy != SSP_SLAVE)) {
1638                dev_err(&pl022->adev->dev,
1639                        "hierarchy is configured incorrectly\n");
1640                return -EINVAL;
1641        }
1642        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1643            && (chip_info->com_mode != DMA_TRANSFER)
1644            && (chip_info->com_mode != POLLING_TRANSFER)) {
1645                dev_err(&pl022->adev->dev,
1646                        "Communication mode is configured incorrectly\n");
1647                return -EINVAL;
1648        }
1649        switch (chip_info->rx_lev_trig) {
1650        case SSP_RX_1_OR_MORE_ELEM:
1651        case SSP_RX_4_OR_MORE_ELEM:
1652        case SSP_RX_8_OR_MORE_ELEM:
1653                /* These are always OK, all variants can handle this */
1654                break;
1655        case SSP_RX_16_OR_MORE_ELEM:
1656                if (pl022->vendor->fifodepth < 16) {
1657                        dev_err(&pl022->adev->dev,
1658                        "RX FIFO Trigger Level is configured incorrectly\n");
1659                        return -EINVAL;
1660                }
1661                break;
1662        case SSP_RX_32_OR_MORE_ELEM:
1663                if (pl022->vendor->fifodepth < 32) {
1664                        dev_err(&pl022->adev->dev,
1665                        "RX FIFO Trigger Level is configured incorrectly\n");
1666                        return -EINVAL;
1667                }
1668                break;
1669        default:
1670                dev_err(&pl022->adev->dev,
1671                        "RX FIFO Trigger Level is configured incorrectly\n");
1672                return -EINVAL;
1673        }
1674        switch (chip_info->tx_lev_trig) {
1675        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1676        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1677        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1678                /* These are always OK, all variants can handle this */
1679                break;
1680        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1681                if (pl022->vendor->fifodepth < 16) {
1682                        dev_err(&pl022->adev->dev,
1683                        "TX FIFO Trigger Level is configured incorrectly\n");
1684                        return -EINVAL;
1685                }
1686                break;
1687        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1688                if (pl022->vendor->fifodepth < 32) {
1689                        dev_err(&pl022->adev->dev,
1690                        "TX FIFO Trigger Level is configured incorrectly\n");
1691                        return -EINVAL;
1692                }
1693                break;
1694        default:
1695                dev_err(&pl022->adev->dev,
1696                        "TX FIFO Trigger Level is configured incorrectly\n");
1697                return -EINVAL;
1698        }
1699        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1700                if ((chip_info->ctrl_len < SSP_BITS_4)
1701                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1702                        dev_err(&pl022->adev->dev,
1703                                "CTRL LEN is configured incorrectly\n");
1704                        return -EINVAL;
1705                }
1706                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1707                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1708                        dev_err(&pl022->adev->dev,
1709                                "Wait State is configured incorrectly\n");
1710                        return -EINVAL;
1711                }
1712                /* Half duplex is only available in the ST Micro version */
1713                if (pl022->vendor->extended_cr) {
1714                        if ((chip_info->duplex !=
1715                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1716                            && (chip_info->duplex !=
1717                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1718                                dev_err(&pl022->adev->dev,
1719                                        "Microwire duplex mode is configured incorrectly\n");
1720                                return -EINVAL;
1721                        }
1722                } else {
1723                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1724                                dev_err(&pl022->adev->dev,
1725                                        "Microwire half duplex mode requested,"
1726                                        " but this is only available in the"
1727                                        " ST version of PL022\n");
1728                        return -EINVAL;
1729                }
1730        }
1731        return 0;
1732}
1733
1734static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1735{
1736        return rate / (cpsdvsr * (1 + scr));
1737}
1738
1739static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1740                                    ssp_clock_params * clk_freq)
1741{
1742        /* Lets calculate the frequency parameters */
1743        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1744        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1745                best_scr = 0, tmp, found = 0;
1746
1747        rate = clk_get_rate(pl022->clk);
1748        /* cpsdvscr = 2 & scr 0 */
1749        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1750        /* cpsdvsr = 254 & scr = 255 */
1751        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1752
1753        if (freq > max_tclk)
1754                dev_warn(&pl022->adev->dev,
1755                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1756                        max_tclk, freq);
1757
1758        if (freq < min_tclk) {
1759                dev_err(&pl022->adev->dev,
1760                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1761                        freq, min_tclk);
1762                return -EINVAL;
1763        }
1764
1765        /*
1766         * best_freq will give closest possible available rate (<= requested
1767         * freq) for all values of scr & cpsdvsr.
1768         */
1769        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1770                while (scr <= SCR_MAX) {
1771                        tmp = spi_rate(rate, cpsdvsr, scr);
1772
1773                        if (tmp > freq) {
1774                                /* we need lower freq */
1775                                scr++;
1776                                continue;
1777                        }
1778
1779                        /*
1780                         * If found exact value, mark found and break.
1781                         * If found more closer value, update and break.
1782                         */
1783                        if (tmp > best_freq) {
1784                                best_freq = tmp;
1785                                best_cpsdvsr = cpsdvsr;
1786                                best_scr = scr;
1787
1788                                if (tmp == freq)
1789                                        found = 1;
1790                        }
1791                        /*
1792                         * increased scr will give lower rates, which are not
1793                         * required
1794                         */
1795                        break;
1796                }
1797                cpsdvsr += 2;
1798                scr = SCR_MIN;
1799        }
1800
1801        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1802                        freq);
1803
1804        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1805        clk_freq->scr = (u8) (best_scr & 0xFF);
1806        dev_dbg(&pl022->adev->dev,
1807                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1808                freq, best_freq);
1809        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1810                clk_freq->cpsdvsr, clk_freq->scr);
1811
1812        return 0;
1813}
1814
1815/*
1816 * A piece of default chip info unless the platform
1817 * supplies it.
1818 */
1819static const struct pl022_config_chip pl022_default_chip_info = {
1820        .com_mode = POLLING_TRANSFER,
1821        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1822        .hierarchy = SSP_SLAVE,
1823        .slave_tx_disable = DO_NOT_DRIVE_TX,
1824        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1825        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1826        .ctrl_len = SSP_BITS_8,
1827        .wait_state = SSP_MWIRE_WAIT_ZERO,
1828        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1829        .cs_control = null_cs_control,
1830};
1831
1832/**
1833 * pl022_setup - setup function registered to SPI master framework
1834 * @spi: spi device which is requesting setup
1835 *
1836 * This function is registered to the SPI framework for this SPI master
1837 * controller. If it is the first time when setup is called by this device,
1838 * this function will initialize the runtime state for this chip and save
1839 * the same in the device structure. Else it will update the runtime info
1840 * with the updated chip info. Nothing is really being written to the
1841 * controller hardware here, that is not done until the actual transfer
1842 * commence.
1843 */
1844static int pl022_setup(struct spi_device *spi)
1845{
1846        struct pl022_config_chip const *chip_info;
1847        struct pl022_config_chip chip_info_dt;
1848        struct chip_data *chip;
1849        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1850        int status = 0;
1851        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1852        unsigned int bits = spi->bits_per_word;
1853        u32 tmp;
1854        struct device_node *np = spi->dev.of_node;
1855
1856        if (!spi->max_speed_hz)
1857                return -EINVAL;
1858
1859        /* Get controller_state if one is supplied */
1860        chip = spi_get_ctldata(spi);
1861
1862        if (chip == NULL) {
1863                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1864                if (!chip)
1865                        return -ENOMEM;
1866                dev_dbg(&spi->dev,
1867                        "allocated memory for controller's runtime state\n");
1868        }
1869
1870        /* Get controller data if one is supplied */
1871        chip_info = spi->controller_data;
1872
1873        if (chip_info == NULL) {
1874                if (np) {
1875                        chip_info_dt = pl022_default_chip_info;
1876
1877                        chip_info_dt.hierarchy = SSP_MASTER;
1878                        of_property_read_u32(np, "pl022,interface",
1879                                &chip_info_dt.iface);
1880                        of_property_read_u32(np, "pl022,com-mode",
1881                                &chip_info_dt.com_mode);
1882                        of_property_read_u32(np, "pl022,rx-level-trig",
1883                                &chip_info_dt.rx_lev_trig);
1884                        of_property_read_u32(np, "pl022,tx-level-trig",
1885                                &chip_info_dt.tx_lev_trig);
1886                        of_property_read_u32(np, "pl022,ctrl-len",
1887                                &chip_info_dt.ctrl_len);
1888                        of_property_read_u32(np, "pl022,wait-state",
1889                                &chip_info_dt.wait_state);
1890                        of_property_read_u32(np, "pl022,duplex",
1891                                &chip_info_dt.duplex);
1892
1893                        chip_info = &chip_info_dt;
1894                } else {
1895                        chip_info = &pl022_default_chip_info;
1896                        /* spi_board_info.controller_data not is supplied */
1897                        dev_dbg(&spi->dev,
1898                                "using default controller_data settings\n");
1899                }
1900        } else
1901                dev_dbg(&spi->dev,
1902                        "using user supplied controller_data settings\n");
1903
1904        /*
1905         * We can override with custom divisors, else we use the board
1906         * frequency setting
1907         */
1908        if ((0 == chip_info->clk_freq.cpsdvsr)
1909            && (0 == chip_info->clk_freq.scr)) {
1910                status = calculate_effective_freq(pl022,
1911                                                  spi->max_speed_hz,
1912                                                  &clk_freq);
1913                if (status < 0)
1914                        goto err_config_params;
1915        } else {
1916                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1917                if ((clk_freq.cpsdvsr % 2) != 0)
1918                        clk_freq.cpsdvsr =
1919                                clk_freq.cpsdvsr - 1;
1920        }
1921        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1922            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1923                status = -EINVAL;
1924                dev_err(&spi->dev,
1925                        "cpsdvsr is configured incorrectly\n");
1926                goto err_config_params;
1927        }
1928
1929        status = verify_controller_parameters(pl022, chip_info);
1930        if (status) {
1931                dev_err(&spi->dev, "controller data is incorrect");
1932                goto err_config_params;
1933        }
1934
1935        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1936        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1937
1938        /* Now set controller state based on controller data */
1939        chip->xfer_type = chip_info->com_mode;
1940        if (!chip_info->cs_control) {
1941                chip->cs_control = null_cs_control;
1942                if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1943                        dev_warn(&spi->dev,
1944                                 "invalid chip select\n");
1945        } else
1946                chip->cs_control = chip_info->cs_control;
1947
1948        /* Check bits per word with vendor specific range */
1949        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1950                status = -ENOTSUPP;
1951                dev_err(&spi->dev, "illegal data size for this controller!\n");
1952                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1953                                pl022->vendor->max_bpw);
1954                goto err_config_params;
1955        } else if (bits <= 8) {
1956                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1957                chip->n_bytes = 1;
1958                chip->read = READING_U8;
1959                chip->write = WRITING_U8;
1960        } else if (bits <= 16) {
1961                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1962                chip->n_bytes = 2;
1963                chip->read = READING_U16;
1964                chip->write = WRITING_U16;
1965        } else {
1966                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1967                chip->n_bytes = 4;
1968                chip->read = READING_U32;
1969                chip->write = WRITING_U32;
1970        }
1971
1972        /* Now Initialize all register settings required for this chip */
1973        chip->cr0 = 0;
1974        chip->cr1 = 0;
1975        chip->dmacr = 0;
1976        chip->cpsr = 0;
1977        if ((chip_info->com_mode == DMA_TRANSFER)
1978            && ((pl022->master_info)->enable_dma)) {
1979                chip->enable_dma = true;
1980                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1981                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1982                               SSP_DMACR_MASK_RXDMAE, 0);
1983                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1984                               SSP_DMACR_MASK_TXDMAE, 1);
1985        } else {
1986                chip->enable_dma = false;
1987                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1988                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1989                               SSP_DMACR_MASK_RXDMAE, 0);
1990                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1991                               SSP_DMACR_MASK_TXDMAE, 1);
1992        }
1993
1994        chip->cpsr = clk_freq.cpsdvsr;
1995
1996        /* Special setup for the ST micro extended control registers */
1997        if (pl022->vendor->extended_cr) {
1998                u32 etx;
1999
2000                if (pl022->vendor->pl023) {
2001                        /* These bits are only in the PL023 */
2002                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2003                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2004                } else {
2005                        /* These bits are in the PL022 but not PL023 */
2006                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2007                                       SSP_CR0_MASK_HALFDUP_ST, 5);
2008                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2009                                       SSP_CR0_MASK_CSS_ST, 16);
2010                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2011                                       SSP_CR0_MASK_FRF_ST, 21);
2012                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2013                                       SSP_CR1_MASK_MWAIT_ST, 6);
2014                }
2015                SSP_WRITE_BITS(chip->cr0, bits - 1,
2016                               SSP_CR0_MASK_DSS_ST, 0);
2017
2018                if (spi->mode & SPI_LSB_FIRST) {
2019                        tmp = SSP_RX_LSB;
2020                        etx = SSP_TX_LSB;
2021                } else {
2022                        tmp = SSP_RX_MSB;
2023                        etx = SSP_TX_MSB;
2024                }
2025                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2026                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2027                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2028                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2029                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2030                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2031        } else {
2032                SSP_WRITE_BITS(chip->cr0, bits - 1,
2033                               SSP_CR0_MASK_DSS, 0);
2034                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2035                               SSP_CR0_MASK_FRF, 4);
2036        }
2037
2038        /* Stuff that is common for all versions */
2039        if (spi->mode & SPI_CPOL)
2040                tmp = SSP_CLK_POL_IDLE_HIGH;
2041        else
2042                tmp = SSP_CLK_POL_IDLE_LOW;
2043        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2044
2045        if (spi->mode & SPI_CPHA)
2046                tmp = SSP_CLK_SECOND_EDGE;
2047        else
2048                tmp = SSP_CLK_FIRST_EDGE;
2049        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2050
2051        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2052        /* Loopback is available on all versions except PL023 */
2053        if (pl022->vendor->loopback) {
2054                if (spi->mode & SPI_LOOP)
2055                        tmp = LOOPBACK_ENABLED;
2056                else
2057                        tmp = LOOPBACK_DISABLED;
2058                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2059        }
2060        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2061        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2062        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2063                3);
2064
2065        /* Save controller_state */
2066        spi_set_ctldata(spi, chip);
2067        return status;
2068 err_config_params:
2069        spi_set_ctldata(spi, NULL);
2070        kfree(chip);
2071        return status;
2072}
2073
2074/**
2075 * pl022_cleanup - cleanup function registered to SPI master framework
2076 * @spi: spi device which is requesting cleanup
2077 *
2078 * This function is registered to the SPI framework for this SPI master
2079 * controller. It will free the runtime state of chip.
2080 */
2081static void pl022_cleanup(struct spi_device *spi)
2082{
2083        struct chip_data *chip = spi_get_ctldata(spi);
2084
2085        spi_set_ctldata(spi, NULL);
2086        kfree(chip);
2087}
2088
2089static struct pl022_ssp_controller *
2090pl022_platform_data_dt_get(struct device *dev)
2091{
2092        struct device_node *np = dev->of_node;
2093        struct pl022_ssp_controller *pd;
2094        u32 tmp = 0;
2095
2096        if (!np) {
2097                dev_err(dev, "no dt node defined\n");
2098                return NULL;
2099        }
2100
2101        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2102        if (!pd)
2103                return NULL;
2104
2105        pd->bus_id = -1;
2106        pd->enable_dma = 1;
2107        of_property_read_u32(np, "num-cs", &tmp);
2108        pd->num_chipselect = tmp;
2109        of_property_read_u32(np, "pl022,autosuspend-delay",
2110                             &pd->autosuspend_delay);
2111        pd->rt = of_property_read_bool(np, "pl022,rt");
2112
2113        return pd;
2114}
2115
2116static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2117{
2118        struct device *dev = &adev->dev;
2119        struct pl022_ssp_controller *platform_info =
2120                        dev_get_platdata(&adev->dev);
2121        struct spi_master *master;
2122        struct pl022 *pl022 = NULL;     /*Data for this driver */
2123        struct device_node *np = adev->dev.of_node;
2124        int status = 0, i, num_cs;
2125
2126        dev_info(&adev->dev,
2127                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2128        if (!platform_info && IS_ENABLED(CONFIG_OF))
2129                platform_info = pl022_platform_data_dt_get(dev);
2130
2131        if (!platform_info) {
2132                dev_err(dev, "probe: no platform data defined\n");
2133                return -ENODEV;
2134        }
2135
2136        if (platform_info->num_chipselect) {
2137                num_cs = platform_info->num_chipselect;
2138        } else {
2139                dev_err(dev, "probe: no chip select defined\n");
2140                return -ENODEV;
2141        }
2142
2143        /* Allocate master with space for data */
2144        master = spi_alloc_master(dev, sizeof(struct pl022));
2145        if (master == NULL) {
2146                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147                return -ENOMEM;
2148        }
2149
2150        pl022 = spi_master_get_devdata(master);
2151        pl022->master = master;
2152        pl022->master_info = platform_info;
2153        pl022->adev = adev;
2154        pl022->vendor = id->data;
2155        pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2156                                          GFP_KERNEL);
2157        if (!pl022->chipselects) {
2158                status = -ENOMEM;
2159                goto err_no_mem;
2160        }
2161
2162        /*
2163         * Bus Number Which has been Assigned to this SSP controller
2164         * on this board
2165         */
2166        master->bus_num = platform_info->bus_id;
2167        master->num_chipselect = num_cs;
2168        master->cleanup = pl022_cleanup;
2169        master->setup = pl022_setup;
2170        master->auto_runtime_pm = true;
2171        master->transfer_one_message = pl022_transfer_one_message;
2172        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2173        master->rt = platform_info->rt;
2174        master->dev.of_node = dev->of_node;
2175
2176        if (platform_info->num_chipselect && platform_info->chipselects) {
2177                for (i = 0; i < num_cs; i++)
2178                        pl022->chipselects[i] = platform_info->chipselects[i];
2179        } else if (pl022->vendor->internal_cs_ctrl) {
2180                for (i = 0; i < num_cs; i++)
2181                        pl022->chipselects[i] = i;
2182        } else if (IS_ENABLED(CONFIG_OF)) {
2183                for (i = 0; i < num_cs; i++) {
2184                        int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2185
2186                        if (cs_gpio == -EPROBE_DEFER) {
2187                                status = -EPROBE_DEFER;
2188                                goto err_no_gpio;
2189                        }
2190
2191                        pl022->chipselects[i] = cs_gpio;
2192
2193                        if (gpio_is_valid(cs_gpio)) {
2194                                if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2195                                        dev_err(&adev->dev,
2196                                                "could not request %d gpio\n",
2197                                                cs_gpio);
2198                                else if (gpio_direction_output(cs_gpio, 1))
2199                                        dev_err(&adev->dev,
2200                                                "could not set gpio %d as output\n",
2201                                                cs_gpio);
2202                        }
2203                }
2204        }
2205
2206        /*
2207         * Supports mode 0-3, loopback, and active low CS. Transfers are
2208         * always MS bit first on the original pl022.
2209         */
2210        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2211        if (pl022->vendor->extended_cr)
2212                master->mode_bits |= SPI_LSB_FIRST;
2213
2214        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2215
2216        status = amba_request_regions(adev, NULL);
2217        if (status)
2218                goto err_no_ioregion;
2219
2220        pl022->phybase = adev->res.start;
2221        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2222                                       resource_size(&adev->res));
2223        if (pl022->virtbase == NULL) {
2224                status = -ENOMEM;
2225                goto err_no_ioremap;
2226        }
2227        dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2228                &adev->res.start, pl022->virtbase);
2229
2230        pl022->clk = devm_clk_get(&adev->dev, NULL);
2231        if (IS_ERR(pl022->clk)) {
2232                status = PTR_ERR(pl022->clk);
2233                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2234                goto err_no_clk;
2235        }
2236
2237        status = clk_prepare_enable(pl022->clk);
2238        if (status) {
2239                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2240                goto err_no_clk_en;
2241        }
2242
2243        /* Initialize transfer pump */
2244        tasklet_init(&pl022->pump_transfers, pump_transfers,
2245                     (unsigned long)pl022);
2246
2247        /* Disable SSP */
2248        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2249               SSP_CR1(pl022->virtbase));
2250        load_ssp_default_config(pl022);
2251
2252        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2253                                  0, "pl022", pl022);
2254        if (status < 0) {
2255                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2256                goto err_no_irq;
2257        }
2258
2259        /* Get DMA channels, try autoconfiguration first */
2260        status = pl022_dma_autoprobe(pl022);
2261        if (status == -EPROBE_DEFER) {
2262                dev_dbg(dev, "deferring probe to get DMA channel\n");
2263                goto err_no_irq;
2264        }
2265
2266        /* If that failed, use channels from platform_info */
2267        if (status == 0)
2268                platform_info->enable_dma = 1;
2269        else if (platform_info->enable_dma) {
2270                status = pl022_dma_probe(pl022);
2271                if (status != 0)
2272                        platform_info->enable_dma = 0;
2273        }
2274
2275        /* Register with the SPI framework */
2276        amba_set_drvdata(adev, pl022);
2277        status = devm_spi_register_master(&adev->dev, master);
2278        if (status != 0) {
2279                dev_err(&adev->dev,
2280                        "probe - problem registering spi master\n");
2281                goto err_spi_register;
2282        }
2283        dev_dbg(dev, "probe succeeded\n");
2284
2285        /* let runtime pm put suspend */
2286        if (platform_info->autosuspend_delay > 0) {
2287                dev_info(&adev->dev,
2288                        "will use autosuspend for runtime pm, delay %dms\n",
2289                        platform_info->autosuspend_delay);
2290                pm_runtime_set_autosuspend_delay(dev,
2291                        platform_info->autosuspend_delay);
2292                pm_runtime_use_autosuspend(dev);
2293        }
2294        pm_runtime_put(dev);
2295
2296        return 0;
2297
2298 err_spi_register:
2299        if (platform_info->enable_dma)
2300                pl022_dma_remove(pl022);
2301 err_no_irq:
2302        clk_disable_unprepare(pl022->clk);
2303 err_no_clk_en:
2304 err_no_clk:
2305 err_no_ioremap:
2306        amba_release_regions(adev);
2307 err_no_ioregion:
2308 err_no_gpio:
2309 err_no_mem:
2310        spi_master_put(master);
2311        return status;
2312}
2313
2314static int
2315pl022_remove(struct amba_device *adev)
2316{
2317        struct pl022 *pl022 = amba_get_drvdata(adev);
2318
2319        if (!pl022)
2320                return 0;
2321
2322        /*
2323         * undo pm_runtime_put() in probe.  I assume that we're not
2324         * accessing the primecell here.
2325         */
2326        pm_runtime_get_noresume(&adev->dev);
2327
2328        load_ssp_default_config(pl022);
2329        if (pl022->master_info->enable_dma)
2330                pl022_dma_remove(pl022);
2331
2332        clk_disable_unprepare(pl022->clk);
2333        amba_release_regions(adev);
2334        tasklet_disable(&pl022->pump_transfers);
2335        return 0;
2336}
2337
2338#ifdef CONFIG_PM_SLEEP
2339static int pl022_suspend(struct device *dev)
2340{
2341        struct pl022 *pl022 = dev_get_drvdata(dev);
2342        int ret;
2343
2344        ret = spi_master_suspend(pl022->master);
2345        if (ret)
2346                return ret;
2347
2348        ret = pm_runtime_force_suspend(dev);
2349        if (ret) {
2350                spi_master_resume(pl022->master);
2351                return ret;
2352        }
2353
2354        pinctrl_pm_select_sleep_state(dev);
2355
2356        dev_dbg(dev, "suspended\n");
2357        return 0;
2358}
2359
2360static int pl022_resume(struct device *dev)
2361{
2362        struct pl022 *pl022 = dev_get_drvdata(dev);
2363        int ret;
2364
2365        ret = pm_runtime_force_resume(dev);
2366        if (ret)
2367                dev_err(dev, "problem resuming\n");
2368
2369        /* Start the queue running */
2370        ret = spi_master_resume(pl022->master);
2371        if (!ret)
2372                dev_dbg(dev, "resumed\n");
2373
2374        return ret;
2375}
2376#endif
2377
2378#ifdef CONFIG_PM
2379static int pl022_runtime_suspend(struct device *dev)
2380{
2381        struct pl022 *pl022 = dev_get_drvdata(dev);
2382
2383        clk_disable_unprepare(pl022->clk);
2384        pinctrl_pm_select_idle_state(dev);
2385
2386        return 0;
2387}
2388
2389static int pl022_runtime_resume(struct device *dev)
2390{
2391        struct pl022 *pl022 = dev_get_drvdata(dev);
2392
2393        pinctrl_pm_select_default_state(dev);
2394        clk_prepare_enable(pl022->clk);
2395
2396        return 0;
2397}
2398#endif
2399
2400static const struct dev_pm_ops pl022_dev_pm_ops = {
2401        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2402        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2403};
2404
2405static struct vendor_data vendor_arm = {
2406        .fifodepth = 8,
2407        .max_bpw = 16,
2408        .unidir = false,
2409        .extended_cr = false,
2410        .pl023 = false,
2411        .loopback = true,
2412        .internal_cs_ctrl = false,
2413};
2414
2415static struct vendor_data vendor_st = {
2416        .fifodepth = 32,
2417        .max_bpw = 32,
2418        .unidir = false,
2419        .extended_cr = true,
2420        .pl023 = false,
2421        .loopback = true,
2422        .internal_cs_ctrl = false,
2423};
2424
2425static struct vendor_data vendor_st_pl023 = {
2426        .fifodepth = 32,
2427        .max_bpw = 32,
2428        .unidir = false,
2429        .extended_cr = true,
2430        .pl023 = true,
2431        .loopback = false,
2432        .internal_cs_ctrl = false,
2433};
2434
2435static struct vendor_data vendor_lsi = {
2436        .fifodepth = 8,
2437        .max_bpw = 16,
2438        .unidir = false,
2439        .extended_cr = false,
2440        .pl023 = false,
2441        .loopback = true,
2442        .internal_cs_ctrl = true,
2443};
2444
2445static const struct amba_id pl022_ids[] = {
2446        {
2447                /*
2448                 * ARM PL022 variant, this has a 16bit wide
2449                 * and 8 locations deep TX/RX FIFO
2450                 */
2451                .id     = 0x00041022,
2452                .mask   = 0x000fffff,
2453                .data   = &vendor_arm,
2454        },
2455        {
2456                /*
2457                 * ST Micro derivative, this has 32bit wide
2458                 * and 32 locations deep TX/RX FIFO
2459                 */
2460                .id     = 0x01080022,
2461                .mask   = 0xffffffff,
2462                .data   = &vendor_st,
2463        },
2464        {
2465                /*
2466                 * ST-Ericsson derivative "PL023" (this is not
2467                 * an official ARM number), this is a PL022 SSP block
2468                 * stripped to SPI mode only, it has 32bit wide
2469                 * and 32 locations deep TX/RX FIFO but no extended
2470                 * CR0/CR1 register
2471                 */
2472                .id     = 0x00080023,
2473                .mask   = 0xffffffff,
2474                .data   = &vendor_st_pl023,
2475        },
2476        {
2477                /*
2478                 * PL022 variant that has a chip select control register whih
2479                 * allows control of 5 output signals nCS[0:4].
2480                 */
2481                .id     = 0x000b6022,
2482                .mask   = 0x000fffff,
2483                .data   = &vendor_lsi,
2484        },
2485        { 0, 0 },
2486};
2487
2488MODULE_DEVICE_TABLE(amba, pl022_ids);
2489
2490static struct amba_driver pl022_driver = {
2491        .drv = {
2492                .name   = "ssp-pl022",
2493                .pm     = &pl022_dev_pm_ops,
2494        },
2495        .id_table       = pl022_ids,
2496        .probe          = pl022_probe,
2497        .remove         = pl022_remove,
2498};
2499
2500static int __init pl022_init(void)
2501{
2502        return amba_driver_register(&pl022_driver);
2503}
2504subsys_initcall(pl022_init);
2505
2506static void __exit pl022_exit(void)
2507{
2508        amba_driver_unregister(&pl022_driver);
2509}
2510module_exit(pl022_exit);
2511
2512MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2513MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2514MODULE_LICENSE("GPL");
2515