linux/drivers/spi/spi-pxa2xx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, Intel Corporation
   5 */
   6
   7#include <linux/bitops.h>
   8#include <linux/init.h>
   9#include <linux/module.h>
  10#include <linux/device.h>
  11#include <linux/ioport.h>
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/platform_device.h>
  18#include <linux/spi/pxa2xx_spi.h>
  19#include <linux/spi/spi.h>
  20#include <linux/delay.h>
  21#include <linux/gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/slab.h>
  24#include <linux/clk.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/acpi.h>
  27#include <linux/of_device.h>
  28
  29#include "spi-pxa2xx.h"
  30
  31MODULE_AUTHOR("Stephen Street");
  32MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  33MODULE_LICENSE("GPL");
  34MODULE_ALIAS("platform:pxa2xx-spi");
  35
  36#define TIMOUT_DFLT             1000
  37
  38/*
  39 * for testing SSCR1 changes that require SSP restart, basically
  40 * everything except the service and interrupt enables, the pxa270 developer
  41 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  42 * list, but the PXA255 dev man says all bits without really meaning the
  43 * service and interrupt enables
  44 */
  45#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  46                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  47                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  48                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  49                                | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  50                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  51
  52#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
  53                                | QUARK_X1000_SSCR1_EFWR        \
  54                                | QUARK_X1000_SSCR1_RFT         \
  55                                | QUARK_X1000_SSCR1_TFT         \
  56                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  57
  58#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  59                                | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  60                                | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  61                                | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  62                                | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  63                                | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  64
  65#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
  66#define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
  67#define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
  68#define LPSS_CAPS_CS_EN_SHIFT                   9
  69#define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
  70
  71struct lpss_config {
  72        /* LPSS offset from drv_data->ioaddr */
  73        unsigned offset;
  74        /* Register offsets from drv_data->lpss_base or -1 */
  75        int reg_general;
  76        int reg_ssp;
  77        int reg_cs_ctrl;
  78        int reg_capabilities;
  79        /* FIFO thresholds */
  80        u32 rx_threshold;
  81        u32 tx_threshold_lo;
  82        u32 tx_threshold_hi;
  83        /* Chip select control */
  84        unsigned cs_sel_shift;
  85        unsigned cs_sel_mask;
  86        unsigned cs_num;
  87};
  88
  89/* Keep these sorted with enum pxa_ssp_type */
  90static const struct lpss_config lpss_platforms[] = {
  91        {       /* LPSS_LPT_SSP */
  92                .offset = 0x800,
  93                .reg_general = 0x08,
  94                .reg_ssp = 0x0c,
  95                .reg_cs_ctrl = 0x18,
  96                .reg_capabilities = -1,
  97                .rx_threshold = 64,
  98                .tx_threshold_lo = 160,
  99                .tx_threshold_hi = 224,
 100        },
 101        {       /* LPSS_BYT_SSP */
 102                .offset = 0x400,
 103                .reg_general = 0x08,
 104                .reg_ssp = 0x0c,
 105                .reg_cs_ctrl = 0x18,
 106                .reg_capabilities = -1,
 107                .rx_threshold = 64,
 108                .tx_threshold_lo = 160,
 109                .tx_threshold_hi = 224,
 110        },
 111        {       /* LPSS_BSW_SSP */
 112                .offset = 0x400,
 113                .reg_general = 0x08,
 114                .reg_ssp = 0x0c,
 115                .reg_cs_ctrl = 0x18,
 116                .reg_capabilities = -1,
 117                .rx_threshold = 64,
 118                .tx_threshold_lo = 160,
 119                .tx_threshold_hi = 224,
 120                .cs_sel_shift = 2,
 121                .cs_sel_mask = 1 << 2,
 122                .cs_num = 2,
 123        },
 124        {       /* LPSS_SPT_SSP */
 125                .offset = 0x200,
 126                .reg_general = -1,
 127                .reg_ssp = 0x20,
 128                .reg_cs_ctrl = 0x24,
 129                .reg_capabilities = -1,
 130                .rx_threshold = 1,
 131                .tx_threshold_lo = 32,
 132                .tx_threshold_hi = 56,
 133        },
 134        {       /* LPSS_BXT_SSP */
 135                .offset = 0x200,
 136                .reg_general = -1,
 137                .reg_ssp = 0x20,
 138                .reg_cs_ctrl = 0x24,
 139                .reg_capabilities = 0xfc,
 140                .rx_threshold = 1,
 141                .tx_threshold_lo = 16,
 142                .tx_threshold_hi = 48,
 143                .cs_sel_shift = 8,
 144                .cs_sel_mask = 3 << 8,
 145        },
 146        {       /* LPSS_CNL_SSP */
 147                .offset = 0x200,
 148                .reg_general = -1,
 149                .reg_ssp = 0x20,
 150                .reg_cs_ctrl = 0x24,
 151                .reg_capabilities = 0xfc,
 152                .rx_threshold = 1,
 153                .tx_threshold_lo = 32,
 154                .tx_threshold_hi = 56,
 155                .cs_sel_shift = 8,
 156                .cs_sel_mask = 3 << 8,
 157        },
 158};
 159
 160static inline const struct lpss_config
 161*lpss_get_config(const struct driver_data *drv_data)
 162{
 163        return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 164}
 165
 166static bool is_lpss_ssp(const struct driver_data *drv_data)
 167{
 168        switch (drv_data->ssp_type) {
 169        case LPSS_LPT_SSP:
 170        case LPSS_BYT_SSP:
 171        case LPSS_BSW_SSP:
 172        case LPSS_SPT_SSP:
 173        case LPSS_BXT_SSP:
 174        case LPSS_CNL_SSP:
 175                return true;
 176        default:
 177                return false;
 178        }
 179}
 180
 181static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 182{
 183        return drv_data->ssp_type == QUARK_X1000_SSP;
 184}
 185
 186static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 187{
 188        switch (drv_data->ssp_type) {
 189        case QUARK_X1000_SSP:
 190                return QUARK_X1000_SSCR1_CHANGE_MASK;
 191        case CE4100_SSP:
 192                return CE4100_SSCR1_CHANGE_MASK;
 193        default:
 194                return SSCR1_CHANGE_MASK;
 195        }
 196}
 197
 198static u32
 199pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 200{
 201        switch (drv_data->ssp_type) {
 202        case QUARK_X1000_SSP:
 203                return RX_THRESH_QUARK_X1000_DFLT;
 204        case CE4100_SSP:
 205                return RX_THRESH_CE4100_DFLT;
 206        default:
 207                return RX_THRESH_DFLT;
 208        }
 209}
 210
 211static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 212{
 213        u32 mask;
 214
 215        switch (drv_data->ssp_type) {
 216        case QUARK_X1000_SSP:
 217                mask = QUARK_X1000_SSSR_TFL_MASK;
 218                break;
 219        case CE4100_SSP:
 220                mask = CE4100_SSSR_TFL_MASK;
 221                break;
 222        default:
 223                mask = SSSR_TFL_MASK;
 224                break;
 225        }
 226
 227        return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 228}
 229
 230static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 231                                     u32 *sccr1_reg)
 232{
 233        u32 mask;
 234
 235        switch (drv_data->ssp_type) {
 236        case QUARK_X1000_SSP:
 237                mask = QUARK_X1000_SSCR1_RFT;
 238                break;
 239        case CE4100_SSP:
 240                mask = CE4100_SSCR1_RFT;
 241                break;
 242        default:
 243                mask = SSCR1_RFT;
 244                break;
 245        }
 246        *sccr1_reg &= ~mask;
 247}
 248
 249static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 250                                   u32 *sccr1_reg, u32 threshold)
 251{
 252        switch (drv_data->ssp_type) {
 253        case QUARK_X1000_SSP:
 254                *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 255                break;
 256        case CE4100_SSP:
 257                *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 258                break;
 259        default:
 260                *sccr1_reg |= SSCR1_RxTresh(threshold);
 261                break;
 262        }
 263}
 264
 265static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 266                                  u32 clk_div, u8 bits)
 267{
 268        switch (drv_data->ssp_type) {
 269        case QUARK_X1000_SSP:
 270                return clk_div
 271                        | QUARK_X1000_SSCR0_Motorola
 272                        | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 273                        | SSCR0_SSE;
 274        default:
 275                return clk_div
 276                        | SSCR0_Motorola
 277                        | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 278                        | SSCR0_SSE
 279                        | (bits > 16 ? SSCR0_EDSS : 0);
 280        }
 281}
 282
 283/*
 284 * Read and write LPSS SSP private registers. Caller must first check that
 285 * is_lpss_ssp() returns true before these can be called.
 286 */
 287static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 288{
 289        WARN_ON(!drv_data->lpss_base);
 290        return readl(drv_data->lpss_base + offset);
 291}
 292
 293static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 294                                  unsigned offset, u32 value)
 295{
 296        WARN_ON(!drv_data->lpss_base);
 297        writel(value, drv_data->lpss_base + offset);
 298}
 299
 300/*
 301 * lpss_ssp_setup - perform LPSS SSP specific setup
 302 * @drv_data: pointer to the driver private data
 303 *
 304 * Perform LPSS SSP specific setup. This function must be called first if
 305 * one is going to use LPSS SSP private registers.
 306 */
 307static void lpss_ssp_setup(struct driver_data *drv_data)
 308{
 309        const struct lpss_config *config;
 310        u32 value;
 311
 312        config = lpss_get_config(drv_data);
 313        drv_data->lpss_base = drv_data->ioaddr + config->offset;
 314
 315        /* Enable software chip select control */
 316        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 317        value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 318        value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 319        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 320
 321        /* Enable multiblock DMA transfers */
 322        if (drv_data->controller_info->enable_dma) {
 323                __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 324
 325                if (config->reg_general >= 0) {
 326                        value = __lpss_ssp_read_priv(drv_data,
 327                                                     config->reg_general);
 328                        value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 329                        __lpss_ssp_write_priv(drv_data,
 330                                              config->reg_general, value);
 331                }
 332        }
 333}
 334
 335static void lpss_ssp_select_cs(struct spi_device *spi,
 336                               const struct lpss_config *config)
 337{
 338        struct driver_data *drv_data =
 339                spi_controller_get_devdata(spi->controller);
 340        u32 value, cs;
 341
 342        if (!config->cs_sel_mask)
 343                return;
 344
 345        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 346
 347        cs = spi->chip_select;
 348        cs <<= config->cs_sel_shift;
 349        if (cs != (value & config->cs_sel_mask)) {
 350                /*
 351                 * When switching another chip select output active the
 352                 * output must be selected first and wait 2 ssp_clk cycles
 353                 * before changing state to active. Otherwise a short
 354                 * glitch will occur on the previous chip select since
 355                 * output select is latched but state control is not.
 356                 */
 357                value &= ~config->cs_sel_mask;
 358                value |= cs;
 359                __lpss_ssp_write_priv(drv_data,
 360                                      config->reg_cs_ctrl, value);
 361                ndelay(1000000000 /
 362                       (drv_data->controller->max_speed_hz / 2));
 363        }
 364}
 365
 366static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 367{
 368        struct driver_data *drv_data =
 369                spi_controller_get_devdata(spi->controller);
 370        const struct lpss_config *config;
 371        u32 value;
 372
 373        config = lpss_get_config(drv_data);
 374
 375        if (enable)
 376                lpss_ssp_select_cs(spi, config);
 377
 378        value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 379        if (enable)
 380                value &= ~LPSS_CS_CONTROL_CS_HIGH;
 381        else
 382                value |= LPSS_CS_CONTROL_CS_HIGH;
 383        __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 384}
 385
 386static void cs_assert(struct spi_device *spi)
 387{
 388        struct chip_data *chip = spi_get_ctldata(spi);
 389        struct driver_data *drv_data =
 390                spi_controller_get_devdata(spi->controller);
 391
 392        if (drv_data->ssp_type == CE4100_SSP) {
 393                pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 394                return;
 395        }
 396
 397        if (chip->cs_control) {
 398                chip->cs_control(PXA2XX_CS_ASSERT);
 399                return;
 400        }
 401
 402        if (chip->gpiod_cs) {
 403                gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 404                return;
 405        }
 406
 407        if (is_lpss_ssp(drv_data))
 408                lpss_ssp_cs_control(spi, true);
 409}
 410
 411static void cs_deassert(struct spi_device *spi)
 412{
 413        struct chip_data *chip = spi_get_ctldata(spi);
 414        struct driver_data *drv_data =
 415                spi_controller_get_devdata(spi->controller);
 416        unsigned long timeout;
 417
 418        if (drv_data->ssp_type == CE4100_SSP)
 419                return;
 420
 421        /* Wait until SSP becomes idle before deasserting the CS */
 422        timeout = jiffies + msecs_to_jiffies(10);
 423        while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 424               !time_after(jiffies, timeout))
 425                cpu_relax();
 426
 427        if (chip->cs_control) {
 428                chip->cs_control(PXA2XX_CS_DEASSERT);
 429                return;
 430        }
 431
 432        if (chip->gpiod_cs) {
 433                gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 434                return;
 435        }
 436
 437        if (is_lpss_ssp(drv_data))
 438                lpss_ssp_cs_control(spi, false);
 439}
 440
 441static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 442{
 443        if (level)
 444                cs_deassert(spi);
 445        else
 446                cs_assert(spi);
 447}
 448
 449int pxa2xx_spi_flush(struct driver_data *drv_data)
 450{
 451        unsigned long limit = loops_per_jiffy << 1;
 452
 453        do {
 454                while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 455                        pxa2xx_spi_read(drv_data, SSDR);
 456        } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 457        write_SSSR_CS(drv_data, SSSR_ROR);
 458
 459        return limit;
 460}
 461
 462static int null_writer(struct driver_data *drv_data)
 463{
 464        u8 n_bytes = drv_data->n_bytes;
 465
 466        if (pxa2xx_spi_txfifo_full(drv_data)
 467                || (drv_data->tx == drv_data->tx_end))
 468                return 0;
 469
 470        pxa2xx_spi_write(drv_data, SSDR, 0);
 471        drv_data->tx += n_bytes;
 472
 473        return 1;
 474}
 475
 476static int null_reader(struct driver_data *drv_data)
 477{
 478        u8 n_bytes = drv_data->n_bytes;
 479
 480        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 481               && (drv_data->rx < drv_data->rx_end)) {
 482                pxa2xx_spi_read(drv_data, SSDR);
 483                drv_data->rx += n_bytes;
 484        }
 485
 486        return drv_data->rx == drv_data->rx_end;
 487}
 488
 489static int u8_writer(struct driver_data *drv_data)
 490{
 491        if (pxa2xx_spi_txfifo_full(drv_data)
 492                || (drv_data->tx == drv_data->tx_end))
 493                return 0;
 494
 495        pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 496        ++drv_data->tx;
 497
 498        return 1;
 499}
 500
 501static int u8_reader(struct driver_data *drv_data)
 502{
 503        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 504               && (drv_data->rx < drv_data->rx_end)) {
 505                *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 506                ++drv_data->rx;
 507        }
 508
 509        return drv_data->rx == drv_data->rx_end;
 510}
 511
 512static int u16_writer(struct driver_data *drv_data)
 513{
 514        if (pxa2xx_spi_txfifo_full(drv_data)
 515                || (drv_data->tx == drv_data->tx_end))
 516                return 0;
 517
 518        pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 519        drv_data->tx += 2;
 520
 521        return 1;
 522}
 523
 524static int u16_reader(struct driver_data *drv_data)
 525{
 526        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 527               && (drv_data->rx < drv_data->rx_end)) {
 528                *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 529                drv_data->rx += 2;
 530        }
 531
 532        return drv_data->rx == drv_data->rx_end;
 533}
 534
 535static int u32_writer(struct driver_data *drv_data)
 536{
 537        if (pxa2xx_spi_txfifo_full(drv_data)
 538                || (drv_data->tx == drv_data->tx_end))
 539                return 0;
 540
 541        pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 542        drv_data->tx += 4;
 543
 544        return 1;
 545}
 546
 547static int u32_reader(struct driver_data *drv_data)
 548{
 549        while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 550               && (drv_data->rx < drv_data->rx_end)) {
 551                *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 552                drv_data->rx += 4;
 553        }
 554
 555        return drv_data->rx == drv_data->rx_end;
 556}
 557
 558static void reset_sccr1(struct driver_data *drv_data)
 559{
 560        struct chip_data *chip =
 561                spi_get_ctldata(drv_data->controller->cur_msg->spi);
 562        u32 sccr1_reg;
 563
 564        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 565        switch (drv_data->ssp_type) {
 566        case QUARK_X1000_SSP:
 567                sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 568                break;
 569        case CE4100_SSP:
 570                sccr1_reg &= ~CE4100_SSCR1_RFT;
 571                break;
 572        default:
 573                sccr1_reg &= ~SSCR1_RFT;
 574                break;
 575        }
 576        sccr1_reg |= chip->threshold;
 577        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 578}
 579
 580static void int_error_stop(struct driver_data *drv_data, const char* msg)
 581{
 582        /* Stop and reset SSP */
 583        write_SSSR_CS(drv_data, drv_data->clear_sr);
 584        reset_sccr1(drv_data);
 585        if (!pxa25x_ssp_comp(drv_data))
 586                pxa2xx_spi_write(drv_data, SSTO, 0);
 587        pxa2xx_spi_flush(drv_data);
 588        pxa2xx_spi_write(drv_data, SSCR0,
 589                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 590
 591        dev_err(&drv_data->pdev->dev, "%s\n", msg);
 592
 593        drv_data->controller->cur_msg->status = -EIO;
 594        spi_finalize_current_transfer(drv_data->controller);
 595}
 596
 597static void int_transfer_complete(struct driver_data *drv_data)
 598{
 599        /* Clear and disable interrupts */
 600        write_SSSR_CS(drv_data, drv_data->clear_sr);
 601        reset_sccr1(drv_data);
 602        if (!pxa25x_ssp_comp(drv_data))
 603                pxa2xx_spi_write(drv_data, SSTO, 0);
 604
 605        spi_finalize_current_transfer(drv_data->controller);
 606}
 607
 608static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 609{
 610        u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 611                       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 612
 613        u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 614
 615        if (irq_status & SSSR_ROR) {
 616                int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 617                return IRQ_HANDLED;
 618        }
 619
 620        if (irq_status & SSSR_TUR) {
 621                int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
 622                return IRQ_HANDLED;
 623        }
 624
 625        if (irq_status & SSSR_TINT) {
 626                pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 627                if (drv_data->read(drv_data)) {
 628                        int_transfer_complete(drv_data);
 629                        return IRQ_HANDLED;
 630                }
 631        }
 632
 633        /* Drain rx fifo, Fill tx fifo and prevent overruns */
 634        do {
 635                if (drv_data->read(drv_data)) {
 636                        int_transfer_complete(drv_data);
 637                        return IRQ_HANDLED;
 638                }
 639        } while (drv_data->write(drv_data));
 640
 641        if (drv_data->read(drv_data)) {
 642                int_transfer_complete(drv_data);
 643                return IRQ_HANDLED;
 644        }
 645
 646        if (drv_data->tx == drv_data->tx_end) {
 647                u32 bytes_left;
 648                u32 sccr1_reg;
 649
 650                sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 651                sccr1_reg &= ~SSCR1_TIE;
 652
 653                /*
 654                 * PXA25x_SSP has no timeout, set up rx threshould for the
 655                 * remaining RX bytes.
 656                 */
 657                if (pxa25x_ssp_comp(drv_data)) {
 658                        u32 rx_thre;
 659
 660                        pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 661
 662                        bytes_left = drv_data->rx_end - drv_data->rx;
 663                        switch (drv_data->n_bytes) {
 664                        case 4:
 665                                bytes_left >>= 2;
 666                                break;
 667                        case 2:
 668                                bytes_left >>= 1;
 669                                break;
 670                        }
 671
 672                        rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 673                        if (rx_thre > bytes_left)
 674                                rx_thre = bytes_left;
 675
 676                        pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 677                }
 678                pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 679        }
 680
 681        /* We did something */
 682        return IRQ_HANDLED;
 683}
 684
 685static void handle_bad_msg(struct driver_data *drv_data)
 686{
 687        pxa2xx_spi_write(drv_data, SSCR0,
 688                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 689        pxa2xx_spi_write(drv_data, SSCR1,
 690                         pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 691        if (!pxa25x_ssp_comp(drv_data))
 692                pxa2xx_spi_write(drv_data, SSTO, 0);
 693        write_SSSR_CS(drv_data, drv_data->clear_sr);
 694
 695        dev_err(&drv_data->pdev->dev,
 696                "bad message state in interrupt handler\n");
 697}
 698
 699static irqreturn_t ssp_int(int irq, void *dev_id)
 700{
 701        struct driver_data *drv_data = dev_id;
 702        u32 sccr1_reg;
 703        u32 mask = drv_data->mask_sr;
 704        u32 status;
 705
 706        /*
 707         * The IRQ might be shared with other peripherals so we must first
 708         * check that are we RPM suspended or not. If we are we assume that
 709         * the IRQ was not for us (we shouldn't be RPM suspended when the
 710         * interrupt is enabled).
 711         */
 712        if (pm_runtime_suspended(&drv_data->pdev->dev))
 713                return IRQ_NONE;
 714
 715        /*
 716         * If the device is not yet in RPM suspended state and we get an
 717         * interrupt that is meant for another device, check if status bits
 718         * are all set to one. That means that the device is already
 719         * powered off.
 720         */
 721        status = pxa2xx_spi_read(drv_data, SSSR);
 722        if (status == ~0)
 723                return IRQ_NONE;
 724
 725        sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 726
 727        /* Ignore possible writes if we don't need to write */
 728        if (!(sccr1_reg & SSCR1_TIE))
 729                mask &= ~SSSR_TFS;
 730
 731        /* Ignore RX timeout interrupt if it is disabled */
 732        if (!(sccr1_reg & SSCR1_TINTE))
 733                mask &= ~SSSR_TINT;
 734
 735        if (!(status & mask))
 736                return IRQ_NONE;
 737
 738        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 739        pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 740
 741        if (!drv_data->controller->cur_msg) {
 742                handle_bad_msg(drv_data);
 743                /* Never fail */
 744                return IRQ_HANDLED;
 745        }
 746
 747        return drv_data->transfer_handler(drv_data);
 748}
 749
 750/*
 751 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 752 * input frequency by fractions of 2^24. It also has a divider by 5.
 753 *
 754 * There are formulas to get baud rate value for given input frequency and
 755 * divider parameters, such as DDS_CLK_RATE and SCR:
 756 *
 757 * Fsys = 200MHz
 758 *
 759 * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
 760 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
 761 *
 762 * DDS_CLK_RATE either 2^n or 2^n / 5.
 763 * SCR is in range 0 .. 255
 764 *
 765 * Divisor = 5^i * 2^j * 2 * k
 766 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 767 *       j = [0, 23]     j = 0 iff i = 1
 768 *       k = [1, 256]
 769 * Special case: j = 0, i = 1: Divisor = 2 / 5
 770 *
 771 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 772 * are:
 773 *      Case 1:         2^n, n = [0, 23]
 774 *      Case 2:         2^24 * 2 / 5 (0x666666)
 775 *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
 776 *
 777 * In all cases the lowest possible value is better.
 778 *
 779 * The function calculates parameters for all cases and chooses the one closest
 780 * to the asked baud rate.
 781 */
 782static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 783{
 784        unsigned long xtal = 200000000;
 785        unsigned long fref = xtal / 2;          /* mandatory division by 2,
 786                                                   see (2) */
 787                                                /* case 3 */
 788        unsigned long fref1 = fref / 2;         /* case 1 */
 789        unsigned long fref2 = fref * 2 / 5;     /* case 2 */
 790        unsigned long scale;
 791        unsigned long q, q1, q2;
 792        long r, r1, r2;
 793        u32 mul;
 794
 795        /* Case 1 */
 796
 797        /* Set initial value for DDS_CLK_RATE */
 798        mul = (1 << 24) >> 1;
 799
 800        /* Calculate initial quot */
 801        q1 = DIV_ROUND_UP(fref1, rate);
 802
 803        /* Scale q1 if it's too big */
 804        if (q1 > 256) {
 805                /* Scale q1 to range [1, 512] */
 806                scale = fls_long(q1 - 1);
 807                if (scale > 9) {
 808                        q1 >>= scale - 9;
 809                        mul >>= scale - 9;
 810                }
 811
 812                /* Round the result if we have a remainder */
 813                q1 += q1 & 1;
 814        }
 815
 816        /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 817        scale = __ffs(q1);
 818        q1 >>= scale;
 819        mul >>= scale;
 820
 821        /* Get the remainder */
 822        r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 823
 824        /* Case 2 */
 825
 826        q2 = DIV_ROUND_UP(fref2, rate);
 827        r2 = abs(fref2 / q2 - rate);
 828
 829        /*
 830         * Choose the best between two: less remainder we have the better. We
 831         * can't go case 2 if q2 is greater than 256 since SCR register can
 832         * hold only values 0 .. 255.
 833         */
 834        if (r2 >= r1 || q2 > 256) {
 835                /* case 1 is better */
 836                r = r1;
 837                q = q1;
 838        } else {
 839                /* case 2 is better */
 840                r = r2;
 841                q = q2;
 842                mul = (1 << 24) * 2 / 5;
 843        }
 844
 845        /* Check case 3 only if the divisor is big enough */
 846        if (fref / rate >= 80) {
 847                u64 fssp;
 848                u32 m;
 849
 850                /* Calculate initial quot */
 851                q1 = DIV_ROUND_UP(fref, rate);
 852                m = (1 << 24) / q1;
 853
 854                /* Get the remainder */
 855                fssp = (u64)fref * m;
 856                do_div(fssp, 1 << 24);
 857                r1 = abs(fssp - rate);
 858
 859                /* Choose this one if it suits better */
 860                if (r1 < r) {
 861                        /* case 3 is better */
 862                        q = 1;
 863                        mul = m;
 864                }
 865        }
 866
 867        *dds = mul;
 868        return q - 1;
 869}
 870
 871static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 872{
 873        unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 874        const struct ssp_device *ssp = drv_data->ssp;
 875
 876        rate = min_t(int, ssp_clk, rate);
 877
 878        /*
 879         * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 880         * that the SSP transmission rate can be greater than the device rate
 881         */
 882        if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 883                return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 884        else
 885                return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 886}
 887
 888static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 889                                           int rate)
 890{
 891        struct chip_data *chip =
 892                spi_get_ctldata(drv_data->controller->cur_msg->spi);
 893        unsigned int clk_div;
 894
 895        switch (drv_data->ssp_type) {
 896        case QUARK_X1000_SSP:
 897                clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 898                break;
 899        default:
 900                clk_div = ssp_get_clk_div(drv_data, rate);
 901                break;
 902        }
 903        return clk_div << 8;
 904}
 905
 906static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 907                               struct spi_device *spi,
 908                               struct spi_transfer *xfer)
 909{
 910        struct chip_data *chip = spi_get_ctldata(spi);
 911
 912        return chip->enable_dma &&
 913               xfer->len <= MAX_DMA_LEN &&
 914               xfer->len >= chip->dma_burst_size;
 915}
 916
 917static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 918                                   struct spi_device *spi,
 919                                   struct spi_transfer *transfer)
 920{
 921        struct driver_data *drv_data = spi_controller_get_devdata(controller);
 922        struct spi_message *message = controller->cur_msg;
 923        struct chip_data *chip = spi_get_ctldata(spi);
 924        u32 dma_thresh = chip->dma_threshold;
 925        u32 dma_burst = chip->dma_burst_size;
 926        u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 927        u32 clk_div;
 928        u8 bits;
 929        u32 speed;
 930        u32 cr0;
 931        u32 cr1;
 932        int err;
 933        int dma_mapped;
 934
 935        /* Check if we can DMA this transfer */
 936        if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 937
 938                /* reject already-mapped transfers; PIO won't always work */
 939                if (message->is_dma_mapped
 940                                || transfer->rx_dma || transfer->tx_dma) {
 941                        dev_err(&spi->dev,
 942                                "Mapped transfer length of %u is greater than %d\n",
 943                                transfer->len, MAX_DMA_LEN);
 944                        return -EINVAL;
 945                }
 946
 947                /* warn ... we force this to PIO mode */
 948                dev_warn_ratelimited(&spi->dev,
 949                                     "DMA disabled for transfer length %ld greater than %d\n",
 950                                     (long)transfer->len, MAX_DMA_LEN);
 951        }
 952
 953        /* Setup the transfer state based on the type of transfer */
 954        if (pxa2xx_spi_flush(drv_data) == 0) {
 955                dev_err(&spi->dev, "Flush failed\n");
 956                return -EIO;
 957        }
 958        drv_data->n_bytes = chip->n_bytes;
 959        drv_data->tx = (void *)transfer->tx_buf;
 960        drv_data->tx_end = drv_data->tx + transfer->len;
 961        drv_data->rx = transfer->rx_buf;
 962        drv_data->rx_end = drv_data->rx + transfer->len;
 963        drv_data->write = drv_data->tx ? chip->write : null_writer;
 964        drv_data->read = drv_data->rx ? chip->read : null_reader;
 965
 966        /* Change speed and bit per word on a per transfer */
 967        bits = transfer->bits_per_word;
 968        speed = transfer->speed_hz;
 969
 970        clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 971
 972        if (bits <= 8) {
 973                drv_data->n_bytes = 1;
 974                drv_data->read = drv_data->read != null_reader ?
 975                                        u8_reader : null_reader;
 976                drv_data->write = drv_data->write != null_writer ?
 977                                        u8_writer : null_writer;
 978        } else if (bits <= 16) {
 979                drv_data->n_bytes = 2;
 980                drv_data->read = drv_data->read != null_reader ?
 981                                        u16_reader : null_reader;
 982                drv_data->write = drv_data->write != null_writer ?
 983                                        u16_writer : null_writer;
 984        } else if (bits <= 32) {
 985                drv_data->n_bytes = 4;
 986                drv_data->read = drv_data->read != null_reader ?
 987                                        u32_reader : null_reader;
 988                drv_data->write = drv_data->write != null_writer ?
 989                                        u32_writer : null_writer;
 990        }
 991        /*
 992         * if bits/word is changed in dma mode, then must check the
 993         * thresholds and burst also
 994         */
 995        if (chip->enable_dma) {
 996                if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
 997                                                spi,
 998                                                bits, &dma_burst,
 999                                                &dma_thresh))
1000                        dev_warn_ratelimited(&spi->dev,
1001                                             "DMA burst size reduced to match bits_per_word\n");
1002        }
1003
1004        dma_mapped = controller->can_dma &&
1005                     controller->can_dma(controller, spi, transfer) &&
1006                     controller->cur_msg_mapped;
1007        if (dma_mapped) {
1008
1009                /* Ensure we have the correct interrupt handler */
1010                drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1011
1012                err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1013                if (err)
1014                        return err;
1015
1016                /* Clear status and start DMA engine */
1017                cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1018                pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1019
1020                pxa2xx_spi_dma_start(drv_data);
1021        } else {
1022                /* Ensure we have the correct interrupt handler */
1023                drv_data->transfer_handler = interrupt_transfer;
1024
1025                /* Clear status  */
1026                cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1027                write_SSSR_CS(drv_data, drv_data->clear_sr);
1028        }
1029
1030        /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1031        cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1032        if (!pxa25x_ssp_comp(drv_data))
1033                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1034                        controller->max_speed_hz
1035                                / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1036                        dma_mapped ? "DMA" : "PIO");
1037        else
1038                dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1039                        controller->max_speed_hz / 2
1040                                / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1041                        dma_mapped ? "DMA" : "PIO");
1042
1043        if (is_lpss_ssp(drv_data)) {
1044                if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045                    != chip->lpss_rx_threshold)
1046                        pxa2xx_spi_write(drv_data, SSIRF,
1047                                         chip->lpss_rx_threshold);
1048                if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049                    != chip->lpss_tx_threshold)
1050                        pxa2xx_spi_write(drv_data, SSITF,
1051                                         chip->lpss_tx_threshold);
1052        }
1053
1054        if (is_quark_x1000_ssp(drv_data) &&
1055            (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056                pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1057
1058        /* see if we need to reload the config registers */
1059        if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060            || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061            != (cr1 & change_mask)) {
1062                /* stop the SSP, and update the other bits */
1063                pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064                if (!pxa25x_ssp_comp(drv_data))
1065                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066                /* first set CR1 without interrupt and service enables */
1067                pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068                /* restart the SSP */
1069                pxa2xx_spi_write(drv_data, SSCR0, cr0);
1070
1071        } else {
1072                if (!pxa25x_ssp_comp(drv_data))
1073                        pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1074        }
1075
1076        if (drv_data->ssp_type == MMP2_SSP) {
1077                u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1078                                        & SSSR_TFL_MASK) >> 8;
1079
1080                if (tx_level) {
1081                        /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1082                        dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1083                                                                tx_level);
1084                        if (tx_level > transfer->len)
1085                                tx_level = transfer->len;
1086                        drv_data->tx += tx_level;
1087                }
1088        }
1089
1090        if (spi_controller_is_slave(controller)) {
1091                while (drv_data->write(drv_data))
1092                        ;
1093                if (drv_data->gpiod_ready) {
1094                        gpiod_set_value(drv_data->gpiod_ready, 1);
1095                        udelay(1);
1096                        gpiod_set_value(drv_data->gpiod_ready, 0);
1097                }
1098        }
1099
1100        /*
1101         * Release the data by enabling service requests and interrupts,
1102         * without changing any mode bits
1103         */
1104        pxa2xx_spi_write(drv_data, SSCR1, cr1);
1105
1106        return 1;
1107}
1108
1109static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1110{
1111        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1112
1113        /* Stop and reset SSP */
1114        write_SSSR_CS(drv_data, drv_data->clear_sr);
1115        reset_sccr1(drv_data);
1116        if (!pxa25x_ssp_comp(drv_data))
1117                pxa2xx_spi_write(drv_data, SSTO, 0);
1118        pxa2xx_spi_flush(drv_data);
1119        pxa2xx_spi_write(drv_data, SSCR0,
1120                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1121
1122        dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1123
1124        drv_data->controller->cur_msg->status = -EINTR;
1125        spi_finalize_current_transfer(drv_data->controller);
1126
1127        return 0;
1128}
1129
1130static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1131                                 struct spi_message *msg)
1132{
1133        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1134
1135        /* Disable the SSP */
1136        pxa2xx_spi_write(drv_data, SSCR0,
1137                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1138        /* Clear and disable interrupts and service requests */
1139        write_SSSR_CS(drv_data, drv_data->clear_sr);
1140        pxa2xx_spi_write(drv_data, SSCR1,
1141                         pxa2xx_spi_read(drv_data, SSCR1)
1142                         & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1143        if (!pxa25x_ssp_comp(drv_data))
1144                pxa2xx_spi_write(drv_data, SSTO, 0);
1145
1146        /*
1147         * Stop the DMA if running. Note DMA callback handler may have unset
1148         * the dma_running already, which is fine as stopping is not needed
1149         * then but we shouldn't rely this flag for anything else than
1150         * stopping. For instance to differentiate between PIO and DMA
1151         * transfers.
1152         */
1153        if (atomic_read(&drv_data->dma_running))
1154                pxa2xx_spi_dma_stop(drv_data);
1155}
1156
1157static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1158{
1159        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1160
1161        /* Disable the SSP now */
1162        pxa2xx_spi_write(drv_data, SSCR0,
1163                         pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1164
1165        return 0;
1166}
1167
1168static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1169                    struct pxa2xx_spi_chip *chip_info)
1170{
1171        struct driver_data *drv_data =
1172                spi_controller_get_devdata(spi->controller);
1173        struct gpio_desc *gpiod;
1174        int err = 0;
1175
1176        if (chip == NULL)
1177                return 0;
1178
1179        if (drv_data->cs_gpiods) {
1180                gpiod = drv_data->cs_gpiods[spi->chip_select];
1181                if (gpiod) {
1182                        chip->gpiod_cs = gpiod;
1183                        chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1184                        gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1185                }
1186
1187                return 0;
1188        }
1189
1190        if (chip_info == NULL)
1191                return 0;
1192
1193        /* NOTE: setup() can be called multiple times, possibly with
1194         * different chip_info, release previously requested GPIO
1195         */
1196        if (chip->gpiod_cs) {
1197                gpiod_put(chip->gpiod_cs);
1198                chip->gpiod_cs = NULL;
1199        }
1200
1201        /* If (*cs_control) is provided, ignore GPIO chip select */
1202        if (chip_info->cs_control) {
1203                chip->cs_control = chip_info->cs_control;
1204                return 0;
1205        }
1206
1207        if (gpio_is_valid(chip_info->gpio_cs)) {
1208                err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1209                if (err) {
1210                        dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1211                                chip_info->gpio_cs);
1212                        return err;
1213                }
1214
1215                gpiod = gpio_to_desc(chip_info->gpio_cs);
1216                chip->gpiod_cs = gpiod;
1217                chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1218
1219                err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1220        }
1221
1222        return err;
1223}
1224
1225static int setup(struct spi_device *spi)
1226{
1227        struct pxa2xx_spi_chip *chip_info;
1228        struct chip_data *chip;
1229        const struct lpss_config *config;
1230        struct driver_data *drv_data =
1231                spi_controller_get_devdata(spi->controller);
1232        uint tx_thres, tx_hi_thres, rx_thres;
1233
1234        switch (drv_data->ssp_type) {
1235        case QUARK_X1000_SSP:
1236                tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1237                tx_hi_thres = 0;
1238                rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1239                break;
1240        case CE4100_SSP:
1241                tx_thres = TX_THRESH_CE4100_DFLT;
1242                tx_hi_thres = 0;
1243                rx_thres = RX_THRESH_CE4100_DFLT;
1244                break;
1245        case LPSS_LPT_SSP:
1246        case LPSS_BYT_SSP:
1247        case LPSS_BSW_SSP:
1248        case LPSS_SPT_SSP:
1249        case LPSS_BXT_SSP:
1250        case LPSS_CNL_SSP:
1251                config = lpss_get_config(drv_data);
1252                tx_thres = config->tx_threshold_lo;
1253                tx_hi_thres = config->tx_threshold_hi;
1254                rx_thres = config->rx_threshold;
1255                break;
1256        default:
1257                tx_hi_thres = 0;
1258                if (spi_controller_is_slave(drv_data->controller)) {
1259                        tx_thres = 1;
1260                        rx_thres = 2;
1261                } else {
1262                        tx_thres = TX_THRESH_DFLT;
1263                        rx_thres = RX_THRESH_DFLT;
1264                }
1265                break;
1266        }
1267
1268        /* Only alloc on first setup */
1269        chip = spi_get_ctldata(spi);
1270        if (!chip) {
1271                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1272                if (!chip)
1273                        return -ENOMEM;
1274
1275                if (drv_data->ssp_type == CE4100_SSP) {
1276                        if (spi->chip_select > 4) {
1277                                dev_err(&spi->dev,
1278                                        "failed setup: cs number must not be > 4.\n");
1279                                kfree(chip);
1280                                return -EINVAL;
1281                        }
1282
1283                        chip->frm = spi->chip_select;
1284                }
1285                chip->enable_dma = drv_data->controller_info->enable_dma;
1286                chip->timeout = TIMOUT_DFLT;
1287        }
1288
1289        /* protocol drivers may change the chip settings, so...
1290         * if chip_info exists, use it */
1291        chip_info = spi->controller_data;
1292
1293        /* chip_info isn't always needed */
1294        chip->cr1 = 0;
1295        if (chip_info) {
1296                if (chip_info->timeout)
1297                        chip->timeout = chip_info->timeout;
1298                if (chip_info->tx_threshold)
1299                        tx_thres = chip_info->tx_threshold;
1300                if (chip_info->tx_hi_threshold)
1301                        tx_hi_thres = chip_info->tx_hi_threshold;
1302                if (chip_info->rx_threshold)
1303                        rx_thres = chip_info->rx_threshold;
1304                chip->dma_threshold = 0;
1305                if (chip_info->enable_loopback)
1306                        chip->cr1 = SSCR1_LBM;
1307        }
1308        if (spi_controller_is_slave(drv_data->controller)) {
1309                chip->cr1 |= SSCR1_SCFR;
1310                chip->cr1 |= SSCR1_SCLKDIR;
1311                chip->cr1 |= SSCR1_SFRMDIR;
1312                chip->cr1 |= SSCR1_SPH;
1313        }
1314
1315        chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1316        chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1317                                | SSITF_TxHiThresh(tx_hi_thres);
1318
1319        /* set dma burst and threshold outside of chip_info path so that if
1320         * chip_info goes away after setting chip->enable_dma, the
1321         * burst and threshold can still respond to changes in bits_per_word */
1322        if (chip->enable_dma) {
1323                /* set up legal burst and threshold for dma */
1324                if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1325                                                spi->bits_per_word,
1326                                                &chip->dma_burst_size,
1327                                                &chip->dma_threshold)) {
1328                        dev_warn(&spi->dev,
1329                                 "in setup: DMA burst size reduced to match bits_per_word\n");
1330                }
1331                dev_dbg(&spi->dev,
1332                        "in setup: DMA burst size set to %u\n",
1333                        chip->dma_burst_size);
1334        }
1335
1336        switch (drv_data->ssp_type) {
1337        case QUARK_X1000_SSP:
1338                chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1339                                   & QUARK_X1000_SSCR1_RFT)
1340                                   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1341                                   & QUARK_X1000_SSCR1_TFT);
1342                break;
1343        case CE4100_SSP:
1344                chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1345                        (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1346                break;
1347        default:
1348                chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1349                        (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1350                break;
1351        }
1352
1353        chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1354        chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1355                        | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1356
1357        if (spi->mode & SPI_LOOP)
1358                chip->cr1 |= SSCR1_LBM;
1359
1360        if (spi->bits_per_word <= 8) {
1361                chip->n_bytes = 1;
1362                chip->read = u8_reader;
1363                chip->write = u8_writer;
1364        } else if (spi->bits_per_word <= 16) {
1365                chip->n_bytes = 2;
1366                chip->read = u16_reader;
1367                chip->write = u16_writer;
1368        } else if (spi->bits_per_word <= 32) {
1369                chip->n_bytes = 4;
1370                chip->read = u32_reader;
1371                chip->write = u32_writer;
1372        }
1373
1374        spi_set_ctldata(spi, chip);
1375
1376        if (drv_data->ssp_type == CE4100_SSP)
1377                return 0;
1378
1379        return setup_cs(spi, chip, chip_info);
1380}
1381
1382static void cleanup(struct spi_device *spi)
1383{
1384        struct chip_data *chip = spi_get_ctldata(spi);
1385        struct driver_data *drv_data =
1386                spi_controller_get_devdata(spi->controller);
1387
1388        if (!chip)
1389                return;
1390
1391        if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1392            chip->gpiod_cs)
1393                gpiod_put(chip->gpiod_cs);
1394
1395        kfree(chip);
1396}
1397
1398static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1399        { "INT33C0", LPSS_LPT_SSP },
1400        { "INT33C1", LPSS_LPT_SSP },
1401        { "INT3430", LPSS_LPT_SSP },
1402        { "INT3431", LPSS_LPT_SSP },
1403        { "80860F0E", LPSS_BYT_SSP },
1404        { "8086228E", LPSS_BSW_SSP },
1405        { },
1406};
1407MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1408
1409/*
1410 * PCI IDs of compound devices that integrate both host controller and private
1411 * integrated DMA engine. Please note these are not used in module
1412 * autoloading and probing in this module but matching the LPSS SSP type.
1413 */
1414static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1415        /* SPT-LP */
1416        { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1417        { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1418        /* SPT-H */
1419        { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1420        { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1421        /* KBL-H */
1422        { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1423        { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1424        /* BXT A-Step */
1425        { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1426        { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1427        { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1428        /* BXT B-Step */
1429        { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1430        { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1431        { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1432        /* GLK */
1433        { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1434        { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1435        { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1436        /* ICL-LP */
1437        { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1438        { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1439        { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1440        /* EHL */
1441        { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1442        { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1443        { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1444        /* APL */
1445        { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1446        { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1447        { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1448        /* CNL-LP */
1449        { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1450        { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1451        { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1452        /* CNL-H */
1453        { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1454        { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1455        { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1456        /* CML-LP */
1457        { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1458        { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1459        { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1460        /* TGL-LP */
1461        { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1462        { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1463        { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1464        { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1465        { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1466        { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1467        { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1468        { },
1469};
1470
1471static const struct of_device_id pxa2xx_spi_of_match[] = {
1472        { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1473        {},
1474};
1475MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1476
1477#ifdef CONFIG_ACPI
1478
1479static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1480{
1481        unsigned int devid;
1482        int port_id = -1;
1483
1484        if (adev && adev->pnp.unique_id &&
1485            !kstrtouint(adev->pnp.unique_id, 0, &devid))
1486                port_id = devid;
1487        return port_id;
1488}
1489
1490#else /* !CONFIG_ACPI */
1491
1492static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1493{
1494        return -1;
1495}
1496
1497#endif /* CONFIG_ACPI */
1498
1499
1500#ifdef CONFIG_PCI
1501
1502static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1503{
1504        return param == chan->device->dev;
1505}
1506
1507#endif /* CONFIG_PCI */
1508
1509static struct pxa2xx_spi_controller *
1510pxa2xx_spi_init_pdata(struct platform_device *pdev)
1511{
1512        struct pxa2xx_spi_controller *pdata;
1513        struct acpi_device *adev;
1514        struct ssp_device *ssp;
1515        struct resource *res;
1516        const struct acpi_device_id *adev_id = NULL;
1517        const struct pci_device_id *pcidev_id = NULL;
1518        const struct of_device_id *of_id = NULL;
1519        enum pxa_ssp_type type;
1520
1521        adev = ACPI_COMPANION(&pdev->dev);
1522
1523        if (pdev->dev.of_node)
1524                of_id = of_match_device(pdev->dev.driver->of_match_table,
1525                                        &pdev->dev);
1526        else if (dev_is_pci(pdev->dev.parent))
1527                pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1528                                         to_pci_dev(pdev->dev.parent));
1529        else if (adev)
1530                adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1531                                            &pdev->dev);
1532        else
1533                return NULL;
1534
1535        if (adev_id)
1536                type = (enum pxa_ssp_type)adev_id->driver_data;
1537        else if (pcidev_id)
1538                type = (enum pxa_ssp_type)pcidev_id->driver_data;
1539        else if (of_id)
1540                type = (enum pxa_ssp_type)of_id->data;
1541        else
1542                return NULL;
1543
1544        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1545        if (!pdata)
1546                return NULL;
1547
1548        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1549        if (!res)
1550                return NULL;
1551
1552        ssp = &pdata->ssp;
1553
1554        ssp->phys_base = res->start;
1555        ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1556        if (IS_ERR(ssp->mmio_base))
1557                return NULL;
1558
1559#ifdef CONFIG_PCI
1560        if (pcidev_id) {
1561                pdata->tx_param = pdev->dev.parent;
1562                pdata->rx_param = pdev->dev.parent;
1563                pdata->dma_filter = pxa2xx_spi_idma_filter;
1564        }
1565#endif
1566
1567        ssp->clk = devm_clk_get(&pdev->dev, NULL);
1568        ssp->irq = platform_get_irq(pdev, 0);
1569        ssp->type = type;
1570        ssp->pdev = pdev;
1571        ssp->port_id = pxa2xx_spi_get_port_id(adev);
1572
1573        pdata->is_slave = of_property_read_bool(pdev->dev.of_node, "spi-slave");
1574        pdata->num_chipselect = 1;
1575        pdata->enable_dma = true;
1576        pdata->dma_burst_size = 1;
1577
1578        return pdata;
1579}
1580
1581static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1582                                      unsigned int cs)
1583{
1584        struct driver_data *drv_data = spi_controller_get_devdata(controller);
1585
1586        if (has_acpi_companion(&drv_data->pdev->dev)) {
1587                switch (drv_data->ssp_type) {
1588                /*
1589                 * For Atoms the ACPI DeviceSelection used by the Windows
1590                 * driver starts from 1 instead of 0 so translate it here
1591                 * to match what Linux expects.
1592                 */
1593                case LPSS_BYT_SSP:
1594                case LPSS_BSW_SSP:
1595                        return cs - 1;
1596
1597                default:
1598                        break;
1599                }
1600        }
1601
1602        return cs;
1603}
1604
1605static int pxa2xx_spi_probe(struct platform_device *pdev)
1606{
1607        struct device *dev = &pdev->dev;
1608        struct pxa2xx_spi_controller *platform_info;
1609        struct spi_controller *controller;
1610        struct driver_data *drv_data;
1611        struct ssp_device *ssp;
1612        const struct lpss_config *config;
1613        int status, count;
1614        u32 tmp;
1615
1616        platform_info = dev_get_platdata(dev);
1617        if (!platform_info) {
1618                platform_info = pxa2xx_spi_init_pdata(pdev);
1619                if (!platform_info) {
1620                        dev_err(&pdev->dev, "missing platform data\n");
1621                        return -ENODEV;
1622                }
1623        }
1624
1625        ssp = pxa_ssp_request(pdev->id, pdev->name);
1626        if (!ssp)
1627                ssp = &platform_info->ssp;
1628
1629        if (!ssp->mmio_base) {
1630                dev_err(&pdev->dev, "failed to get ssp\n");
1631                return -ENODEV;
1632        }
1633
1634        if (platform_info->is_slave)
1635                controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1636        else
1637                controller = spi_alloc_master(dev, sizeof(struct driver_data));
1638
1639        if (!controller) {
1640                dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1641                pxa_ssp_free(ssp);
1642                return -ENOMEM;
1643        }
1644        drv_data = spi_controller_get_devdata(controller);
1645        drv_data->controller = controller;
1646        drv_data->controller_info = platform_info;
1647        drv_data->pdev = pdev;
1648        drv_data->ssp = ssp;
1649
1650        controller->dev.of_node = pdev->dev.of_node;
1651        /* the spi->mode bits understood by this driver: */
1652        controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1653
1654        controller->bus_num = ssp->port_id;
1655        controller->dma_alignment = DMA_ALIGNMENT;
1656        controller->cleanup = cleanup;
1657        controller->setup = setup;
1658        controller->set_cs = pxa2xx_spi_set_cs;
1659        controller->transfer_one = pxa2xx_spi_transfer_one;
1660        controller->slave_abort = pxa2xx_spi_slave_abort;
1661        controller->handle_err = pxa2xx_spi_handle_err;
1662        controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1663        controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1664        controller->auto_runtime_pm = true;
1665        controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1666
1667        drv_data->ssp_type = ssp->type;
1668
1669        drv_data->ioaddr = ssp->mmio_base;
1670        drv_data->ssdr_physical = ssp->phys_base + SSDR;
1671        if (pxa25x_ssp_comp(drv_data)) {
1672                switch (drv_data->ssp_type) {
1673                case QUARK_X1000_SSP:
1674                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1675                        break;
1676                default:
1677                        controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1678                        break;
1679                }
1680
1681                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1682                drv_data->dma_cr1 = 0;
1683                drv_data->clear_sr = SSSR_ROR;
1684                drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1685        } else {
1686                controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1687                drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1688                drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1689                drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1690                drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1691                                                | SSSR_ROR | SSSR_TUR;
1692        }
1693
1694        status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1695                        drv_data);
1696        if (status < 0) {
1697                dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1698                goto out_error_controller_alloc;
1699        }
1700
1701        /* Setup DMA if requested */
1702        if (platform_info->enable_dma) {
1703                status = pxa2xx_spi_dma_setup(drv_data);
1704                if (status) {
1705                        dev_warn(dev, "no DMA channels available, using PIO\n");
1706                        platform_info->enable_dma = false;
1707                } else {
1708                        controller->can_dma = pxa2xx_spi_can_dma;
1709                        controller->max_dma_len = MAX_DMA_LEN;
1710                }
1711        }
1712
1713        /* Enable SOC clock */
1714        status = clk_prepare_enable(ssp->clk);
1715        if (status)
1716                goto out_error_dma_irq_alloc;
1717
1718        controller->max_speed_hz = clk_get_rate(ssp->clk);
1719        /*
1720         * Set minimum speed for all other platforms than Intel Quark which is
1721         * able do under 1 Hz transfers.
1722         */
1723        if (!pxa25x_ssp_comp(drv_data))
1724                controller->min_speed_hz =
1725                        DIV_ROUND_UP(controller->max_speed_hz, 4096);
1726        else if (!is_quark_x1000_ssp(drv_data))
1727                controller->min_speed_hz =
1728                        DIV_ROUND_UP(controller->max_speed_hz, 512);
1729
1730        /* Load default SSP configuration */
1731        pxa2xx_spi_write(drv_data, SSCR0, 0);
1732        switch (drv_data->ssp_type) {
1733        case QUARK_X1000_SSP:
1734                tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1735                      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1736                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1737
1738                /* using the Motorola SPI protocol and use 8 bit frame */
1739                tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1740                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1741                break;
1742        case CE4100_SSP:
1743                tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1744                      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1745                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1746                tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1747                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1748                break;
1749        default:
1750
1751                if (spi_controller_is_slave(controller)) {
1752                        tmp = SSCR1_SCFR |
1753                              SSCR1_SCLKDIR |
1754                              SSCR1_SFRMDIR |
1755                              SSCR1_RxTresh(2) |
1756                              SSCR1_TxTresh(1) |
1757                              SSCR1_SPH;
1758                } else {
1759                        tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1760                              SSCR1_TxTresh(TX_THRESH_DFLT);
1761                }
1762                pxa2xx_spi_write(drv_data, SSCR1, tmp);
1763                tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1764                if (!spi_controller_is_slave(controller))
1765                        tmp |= SSCR0_SCR(2);
1766                pxa2xx_spi_write(drv_data, SSCR0, tmp);
1767                break;
1768        }
1769
1770        if (!pxa25x_ssp_comp(drv_data))
1771                pxa2xx_spi_write(drv_data, SSTO, 0);
1772
1773        if (!is_quark_x1000_ssp(drv_data))
1774                pxa2xx_spi_write(drv_data, SSPSP, 0);
1775
1776        if (is_lpss_ssp(drv_data)) {
1777                lpss_ssp_setup(drv_data);
1778                config = lpss_get_config(drv_data);
1779                if (config->reg_capabilities >= 0) {
1780                        tmp = __lpss_ssp_read_priv(drv_data,
1781                                                   config->reg_capabilities);
1782                        tmp &= LPSS_CAPS_CS_EN_MASK;
1783                        tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1784                        platform_info->num_chipselect = ffz(tmp);
1785                } else if (config->cs_num) {
1786                        platform_info->num_chipselect = config->cs_num;
1787                }
1788        }
1789        controller->num_chipselect = platform_info->num_chipselect;
1790
1791        count = gpiod_count(&pdev->dev, "cs");
1792        if (count > 0) {
1793                int i;
1794
1795                controller->num_chipselect = max_t(int, count,
1796                        controller->num_chipselect);
1797
1798                drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1799                        controller->num_chipselect, sizeof(struct gpio_desc *),
1800                        GFP_KERNEL);
1801                if (!drv_data->cs_gpiods) {
1802                        status = -ENOMEM;
1803                        goto out_error_clock_enabled;
1804                }
1805
1806                for (i = 0; i < controller->num_chipselect; i++) {
1807                        struct gpio_desc *gpiod;
1808
1809                        gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1810                        if (IS_ERR(gpiod)) {
1811                                /* Means use native chip select */
1812                                if (PTR_ERR(gpiod) == -ENOENT)
1813                                        continue;
1814
1815                                status = PTR_ERR(gpiod);
1816                                goto out_error_clock_enabled;
1817                        } else {
1818                                drv_data->cs_gpiods[i] = gpiod;
1819                        }
1820                }
1821        }
1822
1823        if (platform_info->is_slave) {
1824                drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1825                                                "ready", GPIOD_OUT_LOW);
1826                if (IS_ERR(drv_data->gpiod_ready)) {
1827                        status = PTR_ERR(drv_data->gpiod_ready);
1828                        goto out_error_clock_enabled;
1829                }
1830        }
1831
1832        pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1833        pm_runtime_use_autosuspend(&pdev->dev);
1834        pm_runtime_set_active(&pdev->dev);
1835        pm_runtime_enable(&pdev->dev);
1836
1837        /* Register with the SPI framework */
1838        platform_set_drvdata(pdev, drv_data);
1839        status = devm_spi_register_controller(&pdev->dev, controller);
1840        if (status != 0) {
1841                dev_err(&pdev->dev, "problem registering spi controller\n");
1842                goto out_error_pm_runtime_enabled;
1843        }
1844
1845        return status;
1846
1847out_error_pm_runtime_enabled:
1848        pm_runtime_put_noidle(&pdev->dev);
1849        pm_runtime_disable(&pdev->dev);
1850
1851out_error_clock_enabled:
1852        clk_disable_unprepare(ssp->clk);
1853
1854out_error_dma_irq_alloc:
1855        pxa2xx_spi_dma_release(drv_data);
1856        free_irq(ssp->irq, drv_data);
1857
1858out_error_controller_alloc:
1859        spi_controller_put(controller);
1860        pxa_ssp_free(ssp);
1861        return status;
1862}
1863
1864static int pxa2xx_spi_remove(struct platform_device *pdev)
1865{
1866        struct driver_data *drv_data = platform_get_drvdata(pdev);
1867        struct ssp_device *ssp;
1868
1869        if (!drv_data)
1870                return 0;
1871        ssp = drv_data->ssp;
1872
1873        pm_runtime_get_sync(&pdev->dev);
1874
1875        /* Disable the SSP at the peripheral and SOC level */
1876        pxa2xx_spi_write(drv_data, SSCR0, 0);
1877        clk_disable_unprepare(ssp->clk);
1878
1879        /* Release DMA */
1880        if (drv_data->controller_info->enable_dma)
1881                pxa2xx_spi_dma_release(drv_data);
1882
1883        pm_runtime_put_noidle(&pdev->dev);
1884        pm_runtime_disable(&pdev->dev);
1885
1886        /* Release IRQ */
1887        free_irq(ssp->irq, drv_data);
1888
1889        /* Release SSP */
1890        pxa_ssp_free(ssp);
1891
1892        return 0;
1893}
1894
1895#ifdef CONFIG_PM_SLEEP
1896static int pxa2xx_spi_suspend(struct device *dev)
1897{
1898        struct driver_data *drv_data = dev_get_drvdata(dev);
1899        struct ssp_device *ssp = drv_data->ssp;
1900        int status;
1901
1902        status = spi_controller_suspend(drv_data->controller);
1903        if (status != 0)
1904                return status;
1905        pxa2xx_spi_write(drv_data, SSCR0, 0);
1906
1907        if (!pm_runtime_suspended(dev))
1908                clk_disable_unprepare(ssp->clk);
1909
1910        return 0;
1911}
1912
1913static int pxa2xx_spi_resume(struct device *dev)
1914{
1915        struct driver_data *drv_data = dev_get_drvdata(dev);
1916        struct ssp_device *ssp = drv_data->ssp;
1917        int status;
1918
1919        /* Enable the SSP clock */
1920        if (!pm_runtime_suspended(dev)) {
1921                status = clk_prepare_enable(ssp->clk);
1922                if (status)
1923                        return status;
1924        }
1925
1926        /* Start the queue running */
1927        return spi_controller_resume(drv_data->controller);
1928}
1929#endif
1930
1931#ifdef CONFIG_PM
1932static int pxa2xx_spi_runtime_suspend(struct device *dev)
1933{
1934        struct driver_data *drv_data = dev_get_drvdata(dev);
1935
1936        clk_disable_unprepare(drv_data->ssp->clk);
1937        return 0;
1938}
1939
1940static int pxa2xx_spi_runtime_resume(struct device *dev)
1941{
1942        struct driver_data *drv_data = dev_get_drvdata(dev);
1943        int status;
1944
1945        status = clk_prepare_enable(drv_data->ssp->clk);
1946        return status;
1947}
1948#endif
1949
1950static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1951        SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1952        SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1953                           pxa2xx_spi_runtime_resume, NULL)
1954};
1955
1956static struct platform_driver driver = {
1957        .driver = {
1958                .name   = "pxa2xx-spi",
1959                .pm     = &pxa2xx_spi_pm_ops,
1960                .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1961                .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1962        },
1963        .probe = pxa2xx_spi_probe,
1964        .remove = pxa2xx_spi_remove,
1965};
1966
1967static int __init pxa2xx_spi_init(void)
1968{
1969        return platform_driver_register(&driver);
1970}
1971subsys_initcall(pxa2xx_spi_init);
1972
1973static void __exit pxa2xx_spi_exit(void)
1974{
1975        platform_driver_unregister(&driver);
1976}
1977module_exit(pxa2xx_spi_exit);
1978
1979MODULE_SOFTDEP("pre: dw_dmac");
1980