linux/drivers/spi/spi-sh-msiof.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
  17#include <linux/gpio.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/iopoll.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/sh_dma.h>
  29
  30#include <linux/spi/sh_msiof.h>
  31#include <linux/spi/spi.h>
  32
  33#include <asm/unaligned.h>
  34
  35struct sh_msiof_chipdata {
  36        u32 bits_per_word_mask;
  37        u16 tx_fifo_size;
  38        u16 rx_fifo_size;
  39        u16 ctlr_flags;
  40        u16 min_div_pow;
  41};
  42
  43struct sh_msiof_spi_priv {
  44        struct spi_controller *ctlr;
  45        void __iomem *mapbase;
  46        struct clk *clk;
  47        struct platform_device *pdev;
  48        struct sh_msiof_spi_info *info;
  49        struct completion done;
  50        struct completion done_txdma;
  51        unsigned int tx_fifo_size;
  52        unsigned int rx_fifo_size;
  53        unsigned int min_div_pow;
  54        void *tx_dma_page;
  55        void *rx_dma_page;
  56        dma_addr_t tx_dma_addr;
  57        dma_addr_t rx_dma_addr;
  58        unsigned short unused_ss;
  59        bool native_cs_inited;
  60        bool native_cs_high;
  61        bool slave_aborted;
  62};
  63
  64#define MAX_SS  3       /* Maximum number of native chip selects */
  65
  66#define TMDR1   0x00    /* Transmit Mode Register 1 */
  67#define TMDR2   0x04    /* Transmit Mode Register 2 */
  68#define TMDR3   0x08    /* Transmit Mode Register 3 */
  69#define RMDR1   0x10    /* Receive Mode Register 1 */
  70#define RMDR2   0x14    /* Receive Mode Register 2 */
  71#define RMDR3   0x18    /* Receive Mode Register 3 */
  72#define TSCR    0x20    /* Transmit Clock Select Register */
  73#define RSCR    0x22    /* Receive Clock Select Register (SH, A1, APE6) */
  74#define CTR     0x28    /* Control Register */
  75#define FCTR    0x30    /* FIFO Control Register */
  76#define STR     0x40    /* Status Register */
  77#define IER     0x44    /* Interrupt Enable Register */
  78#define TDR1    0x48    /* Transmit Control Data Register 1 (SH, A1) */
  79#define TDR2    0x4c    /* Transmit Control Data Register 2 (SH, A1) */
  80#define TFDR    0x50    /* Transmit FIFO Data Register */
  81#define RDR1    0x58    /* Receive Control Data Register 1 (SH, A1) */
  82#define RDR2    0x5c    /* Receive Control Data Register 2 (SH, A1) */
  83#define RFDR    0x60    /* Receive FIFO Data Register */
  84
  85/* TMDR1 and RMDR1 */
  86#define MDR1_TRMD          BIT(31)  /* Transfer Mode (1 = Master mode) */
  87#define MDR1_SYNCMD_MASK   GENMASK(29, 28) /* SYNC Mode */
  88#define MDR1_SYNCMD_SPI    (2 << 28)/*   Level mode/SPI */
  89#define MDR1_SYNCMD_LR     (3 << 28)/*   L/R mode */
  90#define MDR1_SYNCAC_SHIFT  25       /* Sync Polarity (1 = Active-low) */
  91#define MDR1_BITLSB_SHIFT  24       /* MSB/LSB First (1 = LSB first) */
  92#define MDR1_DTDL_SHIFT    20       /* Data Pin Bit Delay for MSIOF_SYNC */
  93#define MDR1_SYNCDL_SHIFT  16       /* Frame Sync Signal Timing Delay */
  94#define MDR1_FLD_MASK      GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
  95#define MDR1_FLD_SHIFT     2
  96#define MDR1_XXSTP         BIT(0)   /* Transmission/Reception Stop on FIFO */
  97/* TMDR1 */
  98#define TMDR1_PCON         BIT(30)  /* Transfer Signal Connection */
  99#define TMDR1_SYNCCH_MASK  GENMASK(27, 26) /* Sync Signal Channel Select */
 100#define TMDR1_SYNCCH_SHIFT 26       /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
 101
 102/* TMDR2 and RMDR2 */
 103#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
 104#define MDR2_WDLEN1(i)  (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 105#define MDR2_GRPMASK1   BIT(0)      /* Group Output Mask 1 (SH, A1) */
 106
 107/* TSCR and RSCR */
 108#define SCR_BRPS_MASK   GENMASK(12, 8) /* Prescaler Setting (1-32) */
 109#define SCR_BRPS(i)     (((i) - 1) << 8)
 110#define SCR_BRDV_MASK   GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
 111#define SCR_BRDV_DIV_2  0
 112#define SCR_BRDV_DIV_4  1
 113#define SCR_BRDV_DIV_8  2
 114#define SCR_BRDV_DIV_16 3
 115#define SCR_BRDV_DIV_32 4
 116#define SCR_BRDV_DIV_1  7
 117
 118/* CTR */
 119#define CTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
 120#define CTR_TSCKIZ_SCK  BIT(31)   /*   Disable SCK when TX disabled */
 121#define CTR_TSCKIZ_POL_SHIFT 30   /*   Transmit Clock Polarity */
 122#define CTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
 123#define CTR_RSCKIZ_SCK  BIT(29)   /*   Must match CTR_TSCKIZ_SCK */
 124#define CTR_RSCKIZ_POL_SHIFT 28   /*   Receive Clock Polarity */
 125#define CTR_TEDG_SHIFT       27   /* Transmit Timing (1 = falling edge) */
 126#define CTR_REDG_SHIFT       26   /* Receive Timing (1 = falling edge) */
 127#define CTR_TXDIZ_MASK  GENMASK(23, 22) /* Pin Output When TX is Disabled */
 128#define CTR_TXDIZ_LOW   (0 << 22) /*   0 */
 129#define CTR_TXDIZ_HIGH  (1 << 22) /*   1 */
 130#define CTR_TXDIZ_HIZ   (2 << 22) /*   High-impedance */
 131#define CTR_TSCKE       BIT(15)   /* Transmit Serial Clock Output Enable */
 132#define CTR_TFSE        BIT(14)   /* Transmit Frame Sync Signal Output Enable */
 133#define CTR_TXE         BIT(9)    /* Transmit Enable */
 134#define CTR_RXE         BIT(8)    /* Receive Enable */
 135#define CTR_TXRST       BIT(1)    /* Transmit Reset */
 136#define CTR_RXRST       BIT(0)    /* Receive Reset */
 137
 138/* FCTR */
 139#define FCTR_TFWM_MASK  GENMASK(31, 29) /* Transmit FIFO Watermark */
 140#define FCTR_TFWM_64    (0 << 29) /*  Transfer Request when 64 empty stages */
 141#define FCTR_TFWM_32    (1 << 29) /*  Transfer Request when 32 empty stages */
 142#define FCTR_TFWM_24    (2 << 29) /*  Transfer Request when 24 empty stages */
 143#define FCTR_TFWM_16    (3 << 29) /*  Transfer Request when 16 empty stages */
 144#define FCTR_TFWM_12    (4 << 29) /*  Transfer Request when 12 empty stages */
 145#define FCTR_TFWM_8     (5 << 29) /*  Transfer Request when 8 empty stages */
 146#define FCTR_TFWM_4     (6 << 29) /*  Transfer Request when 4 empty stages */
 147#define FCTR_TFWM_1     (7 << 29) /*  Transfer Request when 1 empty stage */
 148#define FCTR_TFUA_MASK  GENMASK(26, 20) /* Transmit FIFO Usable Area */
 149#define FCTR_TFUA_SHIFT 20
 150#define FCTR_TFUA(i)    ((i) << FCTR_TFUA_SHIFT)
 151#define FCTR_RFWM_MASK  GENMASK(15, 13) /* Receive FIFO Watermark */
 152#define FCTR_RFWM_1     (0 << 13) /*  Transfer Request when 1 valid stages */
 153#define FCTR_RFWM_4     (1 << 13) /*  Transfer Request when 4 valid stages */
 154#define FCTR_RFWM_8     (2 << 13) /*  Transfer Request when 8 valid stages */
 155#define FCTR_RFWM_16    (3 << 13) /*  Transfer Request when 16 valid stages */
 156#define FCTR_RFWM_32    (4 << 13) /*  Transfer Request when 32 valid stages */
 157#define FCTR_RFWM_64    (5 << 13) /*  Transfer Request when 64 valid stages */
 158#define FCTR_RFWM_128   (6 << 13) /*  Transfer Request when 128 valid stages */
 159#define FCTR_RFWM_256   (7 << 13) /*  Transfer Request when 256 valid stages */
 160#define FCTR_RFUA_MASK  GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
 161#define FCTR_RFUA_SHIFT 4
 162#define FCTR_RFUA(i)    ((i) << FCTR_RFUA_SHIFT)
 163
 164/* STR */
 165#define STR_TFEMP       BIT(29) /* Transmit FIFO Empty */
 166#define STR_TDREQ       BIT(28) /* Transmit Data Transfer Request */
 167#define STR_TEOF        BIT(23) /* Frame Transmission End */
 168#define STR_TFSERR      BIT(21) /* Transmit Frame Synchronization Error */
 169#define STR_TFOVF       BIT(20) /* Transmit FIFO Overflow */
 170#define STR_TFUDF       BIT(19) /* Transmit FIFO Underflow */
 171#define STR_RFFUL       BIT(13) /* Receive FIFO Full */
 172#define STR_RDREQ       BIT(12) /* Receive Data Transfer Request */
 173#define STR_REOF        BIT(7)  /* Frame Reception End */
 174#define STR_RFSERR      BIT(5)  /* Receive Frame Synchronization Error */
 175#define STR_RFUDF       BIT(4)  /* Receive FIFO Underflow */
 176#define STR_RFOVF       BIT(3)  /* Receive FIFO Overflow */
 177
 178/* IER */
 179#define IER_TDMAE       BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 180#define IER_TFEMPE      BIT(29) /* Transmit FIFO Empty Enable */
 181#define IER_TDREQE      BIT(28) /* Transmit Data Transfer Request Enable */
 182#define IER_TEOFE       BIT(23) /* Frame Transmission End Enable */
 183#define IER_TFSERRE     BIT(21) /* Transmit Frame Sync Error Enable */
 184#define IER_TFOVFE      BIT(20) /* Transmit FIFO Overflow Enable */
 185#define IER_TFUDFE      BIT(19) /* Transmit FIFO Underflow Enable */
 186#define IER_RDMAE       BIT(15) /* Receive Data DMA Transfer Req. Enable */
 187#define IER_RFFULE      BIT(13) /* Receive FIFO Full Enable */
 188#define IER_RDREQE      BIT(12) /* Receive Data Transfer Request Enable */
 189#define IER_REOFE       BIT(7)  /* Frame Reception End Enable */
 190#define IER_RFSERRE     BIT(5)  /* Receive Frame Sync Error Enable */
 191#define IER_RFUDFE      BIT(4)  /* Receive FIFO Underflow Enable */
 192#define IER_RFOVFE      BIT(3)  /* Receive FIFO Overflow Enable */
 193
 194
 195static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 196{
 197        switch (reg_offs) {
 198        case TSCR:
 199        case RSCR:
 200                return ioread16(p->mapbase + reg_offs);
 201        default:
 202                return ioread32(p->mapbase + reg_offs);
 203        }
 204}
 205
 206static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 207                           u32 value)
 208{
 209        switch (reg_offs) {
 210        case TSCR:
 211        case RSCR:
 212                iowrite16(value, p->mapbase + reg_offs);
 213                break;
 214        default:
 215                iowrite32(value, p->mapbase + reg_offs);
 216                break;
 217        }
 218}
 219
 220static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 221                                    u32 clr, u32 set)
 222{
 223        u32 mask = clr | set;
 224        u32 data;
 225
 226        data = sh_msiof_read(p, CTR);
 227        data &= ~clr;
 228        data |= set;
 229        sh_msiof_write(p, CTR, data);
 230
 231        return readl_poll_timeout_atomic(p->mapbase + CTR, data,
 232                                         (data & mask) == set, 1, 100);
 233}
 234
 235static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 236{
 237        struct sh_msiof_spi_priv *p = data;
 238
 239        /* just disable the interrupt and wake up */
 240        sh_msiof_write(p, IER, 0);
 241        complete(&p->done);
 242
 243        return IRQ_HANDLED;
 244}
 245
 246static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 247{
 248        u32 mask = CTR_TXRST | CTR_RXRST;
 249        u32 data;
 250
 251        data = sh_msiof_read(p, CTR);
 252        data |= mask;
 253        sh_msiof_write(p, CTR, data);
 254
 255        readl_poll_timeout_atomic(p->mapbase + CTR, data, !(data & mask), 1,
 256                                  100);
 257}
 258
 259static const u32 sh_msiof_spi_div_array[] = {
 260        SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,  SCR_BRDV_DIV_4,
 261        SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
 262};
 263
 264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 265                                      unsigned long parent_rate, u32 spi_hz)
 266{
 267        unsigned long div;
 268        u32 brps, scr;
 269        unsigned int div_pow = p->min_div_pow;
 270
 271        if (!spi_hz || !parent_rate) {
 272                WARN(1, "Invalid clock rate parameters %lu and %u\n",
 273                     parent_rate, spi_hz);
 274                return;
 275        }
 276
 277        div = DIV_ROUND_UP(parent_rate, spi_hz);
 278        if (div <= 1024) {
 279                /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 280                if (!div_pow && div <= 32 && div > 2)
 281                        div_pow = 1;
 282
 283                if (div_pow)
 284                        brps = (div + 1) >> div_pow;
 285                else
 286                        brps = div;
 287
 288                for (; brps > 32; div_pow++)
 289                        brps = (brps + 1) >> 1;
 290        } else {
 291                /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 292                dev_err(&p->pdev->dev,
 293                        "Requested SPI transfer rate %d is too low\n", spi_hz);
 294                div_pow = 5;
 295                brps = 32;
 296        }
 297
 298        scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
 299        sh_msiof_write(p, TSCR, scr);
 300        if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 301                sh_msiof_write(p, RSCR, scr);
 302}
 303
 304static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 305{
 306        /*
 307         * DTDL/SYNCDL bit      : p->info->dtdl or p->info->syncdl
 308         * b'000                : 0
 309         * b'001                : 100
 310         * b'010                : 200
 311         * b'011 (SYNCDL only)  : 300
 312         * b'101                : 50
 313         * b'110                : 150
 314         */
 315        if (dtdl_or_syncdl % 100)
 316                return dtdl_or_syncdl / 100 + 5;
 317        else
 318                return dtdl_or_syncdl / 100;
 319}
 320
 321static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 322{
 323        u32 val;
 324
 325        if (!p->info)
 326                return 0;
 327
 328        /* check if DTDL and SYNCDL is allowed value */
 329        if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 330                dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 331                return 0;
 332        }
 333
 334        /* check if the sum of DTDL and SYNCDL becomes an integer value  */
 335        if ((p->info->dtdl + p->info->syncdl) % 100) {
 336                dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 337                return 0;
 338        }
 339
 340        val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 341        val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 342
 343        return val;
 344}
 345
 346static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 347                                      u32 cpol, u32 cpha,
 348                                      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 349{
 350        u32 tmp;
 351        int edge;
 352
 353        /*
 354         * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 355         *    0    0         10     10    1    1
 356         *    0    1         10     10    0    0
 357         *    1    0         11     11    0    0
 358         *    1    1         11     11    1    1
 359         */
 360        tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 361        tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 362        tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 363        tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 364        if (spi_controller_is_slave(p->ctlr)) {
 365                sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
 366        } else {
 367                sh_msiof_write(p, TMDR1,
 368                               tmp | MDR1_TRMD | TMDR1_PCON |
 369                               (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
 370        }
 371        if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 372                /* These bits are reserved if RX needs TX */
 373                tmp &= ~0x0000ffff;
 374        }
 375        sh_msiof_write(p, RMDR1, tmp);
 376
 377        tmp = 0;
 378        tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 379        tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 380
 381        edge = cpol ^ !cpha;
 382
 383        tmp |= edge << CTR_TEDG_SHIFT;
 384        tmp |= edge << CTR_REDG_SHIFT;
 385        tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 386        sh_msiof_write(p, CTR, tmp);
 387}
 388
 389static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 390                                       const void *tx_buf, void *rx_buf,
 391                                       u32 bits, u32 words)
 392{
 393        u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 394
 395        if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 396                sh_msiof_write(p, TMDR2, dr2);
 397        else
 398                sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 399
 400        if (rx_buf)
 401                sh_msiof_write(p, RMDR2, dr2);
 402}
 403
 404static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 405{
 406        sh_msiof_write(p, STR,
 407                       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
 408}
 409
 410static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 411                                      const void *tx_buf, int words, int fs)
 412{
 413        const u8 *buf_8 = tx_buf;
 414        int k;
 415
 416        for (k = 0; k < words; k++)
 417                sh_msiof_write(p, TFDR, buf_8[k] << fs);
 418}
 419
 420static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 421                                       const void *tx_buf, int words, int fs)
 422{
 423        const u16 *buf_16 = tx_buf;
 424        int k;
 425
 426        for (k = 0; k < words; k++)
 427                sh_msiof_write(p, TFDR, buf_16[k] << fs);
 428}
 429
 430static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 431                                        const void *tx_buf, int words, int fs)
 432{
 433        const u16 *buf_16 = tx_buf;
 434        int k;
 435
 436        for (k = 0; k < words; k++)
 437                sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 438}
 439
 440static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 441                                       const void *tx_buf, int words, int fs)
 442{
 443        const u32 *buf_32 = tx_buf;
 444        int k;
 445
 446        for (k = 0; k < words; k++)
 447                sh_msiof_write(p, TFDR, buf_32[k] << fs);
 448}
 449
 450static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 451                                        const void *tx_buf, int words, int fs)
 452{
 453        const u32 *buf_32 = tx_buf;
 454        int k;
 455
 456        for (k = 0; k < words; k++)
 457                sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 458}
 459
 460static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 461                                        const void *tx_buf, int words, int fs)
 462{
 463        const u32 *buf_32 = tx_buf;
 464        int k;
 465
 466        for (k = 0; k < words; k++)
 467                sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 468}
 469
 470static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 471                                         const void *tx_buf, int words, int fs)
 472{
 473        const u32 *buf_32 = tx_buf;
 474        int k;
 475
 476        for (k = 0; k < words; k++)
 477                sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 478}
 479
 480static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 481                                     void *rx_buf, int words, int fs)
 482{
 483        u8 *buf_8 = rx_buf;
 484        int k;
 485
 486        for (k = 0; k < words; k++)
 487                buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 488}
 489
 490static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 491                                      void *rx_buf, int words, int fs)
 492{
 493        u16 *buf_16 = rx_buf;
 494        int k;
 495
 496        for (k = 0; k < words; k++)
 497                buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 498}
 499
 500static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 501                                       void *rx_buf, int words, int fs)
 502{
 503        u16 *buf_16 = rx_buf;
 504        int k;
 505
 506        for (k = 0; k < words; k++)
 507                put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 508}
 509
 510static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 511                                      void *rx_buf, int words, int fs)
 512{
 513        u32 *buf_32 = rx_buf;
 514        int k;
 515
 516        for (k = 0; k < words; k++)
 517                buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 518}
 519
 520static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 521                                       void *rx_buf, int words, int fs)
 522{
 523        u32 *buf_32 = rx_buf;
 524        int k;
 525
 526        for (k = 0; k < words; k++)
 527                put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 528}
 529
 530static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 531                                       void *rx_buf, int words, int fs)
 532{
 533        u32 *buf_32 = rx_buf;
 534        int k;
 535
 536        for (k = 0; k < words; k++)
 537                buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 538}
 539
 540static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 541                                       void *rx_buf, int words, int fs)
 542{
 543        u32 *buf_32 = rx_buf;
 544        int k;
 545
 546        for (k = 0; k < words; k++)
 547                put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 548}
 549
 550static int sh_msiof_spi_setup(struct spi_device *spi)
 551{
 552        struct sh_msiof_spi_priv *p =
 553                spi_controller_get_devdata(spi->controller);
 554        u32 clr, set, tmp;
 555
 556        if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
 557                return 0;
 558
 559        if (p->native_cs_inited &&
 560            (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 561                return 0;
 562
 563        /* Configure native chip select mode/polarity early */
 564        clr = MDR1_SYNCMD_MASK;
 565        set = MDR1_SYNCMD_SPI;
 566        if (spi->mode & SPI_CS_HIGH)
 567                clr |= BIT(MDR1_SYNCAC_SHIFT);
 568        else
 569                set |= BIT(MDR1_SYNCAC_SHIFT);
 570        pm_runtime_get_sync(&p->pdev->dev);
 571        tmp = sh_msiof_read(p, TMDR1) & ~clr;
 572        sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
 573        tmp = sh_msiof_read(p, RMDR1) & ~clr;
 574        sh_msiof_write(p, RMDR1, tmp | set);
 575        pm_runtime_put(&p->pdev->dev);
 576        p->native_cs_high = spi->mode & SPI_CS_HIGH;
 577        p->native_cs_inited = true;
 578        return 0;
 579}
 580
 581static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 582                                    struct spi_message *msg)
 583{
 584        struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 585        const struct spi_device *spi = msg->spi;
 586        u32 ss, cs_high;
 587
 588        /* Configure pins before asserting CS */
 589        if (spi->cs_gpiod) {
 590                ss = p->unused_ss;
 591                cs_high = p->native_cs_high;
 592        } else {
 593                ss = spi->chip_select;
 594                cs_high = !!(spi->mode & SPI_CS_HIGH);
 595        }
 596        sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 597                                  !!(spi->mode & SPI_CPHA),
 598                                  !!(spi->mode & SPI_3WIRE),
 599                                  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 600        return 0;
 601}
 602
 603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 604{
 605        bool slave = spi_controller_is_slave(p->ctlr);
 606        int ret = 0;
 607
 608        /* setup clock and rx/tx signals */
 609        if (!slave)
 610                ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 611        if (rx_buf && !ret)
 612                ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 613        if (!ret)
 614                ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 615
 616        /* start by setting frame bit */
 617        if (!ret && !slave)
 618                ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 619
 620        return ret;
 621}
 622
 623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 624{
 625        bool slave = spi_controller_is_slave(p->ctlr);
 626        int ret = 0;
 627
 628        /* shut down frame, rx/tx and clock signals */
 629        if (!slave)
 630                ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 631        if (!ret)
 632                ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 633        if (rx_buf && !ret)
 634                ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 635        if (!ret && !slave)
 636                ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 637
 638        return ret;
 639}
 640
 641static int sh_msiof_slave_abort(struct spi_controller *ctlr)
 642{
 643        struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 644
 645        p->slave_aborted = true;
 646        complete(&p->done);
 647        complete(&p->done_txdma);
 648        return 0;
 649}
 650
 651static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 652                                        struct completion *x)
 653{
 654        if (spi_controller_is_slave(p->ctlr)) {
 655                if (wait_for_completion_interruptible(x) ||
 656                    p->slave_aborted) {
 657                        dev_dbg(&p->pdev->dev, "interrupted\n");
 658                        return -EINTR;
 659                }
 660        } else {
 661                if (!wait_for_completion_timeout(x, HZ)) {
 662                        dev_err(&p->pdev->dev, "timeout\n");
 663                        return -ETIMEDOUT;
 664                }
 665        }
 666
 667        return 0;
 668}
 669
 670static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 671                                  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 672                                                  const void *, int, int),
 673                                  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 674                                                  void *, int, int),
 675                                  const void *tx_buf, void *rx_buf,
 676                                  int words, int bits)
 677{
 678        int fifo_shift;
 679        int ret;
 680
 681        /* limit maximum word transfer to rx/tx fifo size */
 682        if (tx_buf)
 683                words = min_t(int, words, p->tx_fifo_size);
 684        if (rx_buf)
 685                words = min_t(int, words, p->rx_fifo_size);
 686
 687        /* the fifo contents need shifting */
 688        fifo_shift = 32 - bits;
 689
 690        /* default FIFO watermarks for PIO */
 691        sh_msiof_write(p, FCTR, 0);
 692
 693        /* setup msiof transfer mode registers */
 694        sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 695        sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 696
 697        /* write tx fifo */
 698        if (tx_buf)
 699                tx_fifo(p, tx_buf, words, fifo_shift);
 700
 701        reinit_completion(&p->done);
 702        p->slave_aborted = false;
 703
 704        ret = sh_msiof_spi_start(p, rx_buf);
 705        if (ret) {
 706                dev_err(&p->pdev->dev, "failed to start hardware\n");
 707                goto stop_ier;
 708        }
 709
 710        /* wait for tx fifo to be emptied / rx fifo to be filled */
 711        ret = sh_msiof_wait_for_completion(p, &p->done);
 712        if (ret)
 713                goto stop_reset;
 714
 715        /* read rx fifo */
 716        if (rx_buf)
 717                rx_fifo(p, rx_buf, words, fifo_shift);
 718
 719        /* clear status bits */
 720        sh_msiof_reset_str(p);
 721
 722        ret = sh_msiof_spi_stop(p, rx_buf);
 723        if (ret) {
 724                dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 725                return ret;
 726        }
 727
 728        return words;
 729
 730stop_reset:
 731        sh_msiof_reset_str(p);
 732        sh_msiof_spi_stop(p, rx_buf);
 733stop_ier:
 734        sh_msiof_write(p, IER, 0);
 735        return ret;
 736}
 737
 738static void sh_msiof_dma_complete(void *arg)
 739{
 740        complete(arg);
 741}
 742
 743static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 744                             void *rx, unsigned int len)
 745{
 746        u32 ier_bits = 0;
 747        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 748        dma_cookie_t cookie;
 749        int ret;
 750
 751        /* First prepare and submit the DMA request(s), as this may fail */
 752        if (rx) {
 753                ier_bits |= IER_RDREQE | IER_RDMAE;
 754                desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 755                                        p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 756                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 757                if (!desc_rx)
 758                        return -EAGAIN;
 759
 760                desc_rx->callback = sh_msiof_dma_complete;
 761                desc_rx->callback_param = &p->done;
 762                cookie = dmaengine_submit(desc_rx);
 763                if (dma_submit_error(cookie))
 764                        return cookie;
 765        }
 766
 767        if (tx) {
 768                ier_bits |= IER_TDREQE | IER_TDMAE;
 769                dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 770                                           p->tx_dma_addr, len, DMA_TO_DEVICE);
 771                desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 772                                        p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 773                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 774                if (!desc_tx) {
 775                        ret = -EAGAIN;
 776                        goto no_dma_tx;
 777                }
 778
 779                desc_tx->callback = sh_msiof_dma_complete;
 780                desc_tx->callback_param = &p->done_txdma;
 781                cookie = dmaengine_submit(desc_tx);
 782                if (dma_submit_error(cookie)) {
 783                        ret = cookie;
 784                        goto no_dma_tx;
 785                }
 786        }
 787
 788        /* 1 stage FIFO watermarks for DMA */
 789        sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 790
 791        /* setup msiof transfer mode registers (32-bit words) */
 792        sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 793
 794        sh_msiof_write(p, IER, ier_bits);
 795
 796        reinit_completion(&p->done);
 797        if (tx)
 798                reinit_completion(&p->done_txdma);
 799        p->slave_aborted = false;
 800
 801        /* Now start DMA */
 802        if (rx)
 803                dma_async_issue_pending(p->ctlr->dma_rx);
 804        if (tx)
 805                dma_async_issue_pending(p->ctlr->dma_tx);
 806
 807        ret = sh_msiof_spi_start(p, rx);
 808        if (ret) {
 809                dev_err(&p->pdev->dev, "failed to start hardware\n");
 810                goto stop_dma;
 811        }
 812
 813        if (tx) {
 814                /* wait for tx DMA completion */
 815                ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 816                if (ret)
 817                        goto stop_reset;
 818        }
 819
 820        if (rx) {
 821                /* wait for rx DMA completion */
 822                ret = sh_msiof_wait_for_completion(p, &p->done);
 823                if (ret)
 824                        goto stop_reset;
 825
 826                sh_msiof_write(p, IER, 0);
 827        } else {
 828                /* wait for tx fifo to be emptied */
 829                sh_msiof_write(p, IER, IER_TEOFE);
 830                ret = sh_msiof_wait_for_completion(p, &p->done);
 831                if (ret)
 832                        goto stop_reset;
 833        }
 834
 835        /* clear status bits */
 836        sh_msiof_reset_str(p);
 837
 838        ret = sh_msiof_spi_stop(p, rx);
 839        if (ret) {
 840                dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 841                return ret;
 842        }
 843
 844        if (rx)
 845                dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 846                                        p->rx_dma_addr, len, DMA_FROM_DEVICE);
 847
 848        return 0;
 849
 850stop_reset:
 851        sh_msiof_reset_str(p);
 852        sh_msiof_spi_stop(p, rx);
 853stop_dma:
 854        if (tx)
 855                dmaengine_terminate_all(p->ctlr->dma_tx);
 856no_dma_tx:
 857        if (rx)
 858                dmaengine_terminate_all(p->ctlr->dma_rx);
 859        sh_msiof_write(p, IER, 0);
 860        return ret;
 861}
 862
 863static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 864{
 865        /* src or dst can be unaligned, but not both */
 866        if ((unsigned long)src & 3) {
 867                while (words--) {
 868                        *dst++ = swab32(get_unaligned(src));
 869                        src++;
 870                }
 871        } else if ((unsigned long)dst & 3) {
 872                while (words--) {
 873                        put_unaligned(swab32(*src++), dst);
 874                        dst++;
 875                }
 876        } else {
 877                while (words--)
 878                        *dst++ = swab32(*src++);
 879        }
 880}
 881
 882static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 883{
 884        /* src or dst can be unaligned, but not both */
 885        if ((unsigned long)src & 3) {
 886                while (words--) {
 887                        *dst++ = swahw32(get_unaligned(src));
 888                        src++;
 889                }
 890        } else if ((unsigned long)dst & 3) {
 891                while (words--) {
 892                        put_unaligned(swahw32(*src++), dst);
 893                        dst++;
 894                }
 895        } else {
 896                while (words--)
 897                        *dst++ = swahw32(*src++);
 898        }
 899}
 900
 901static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 902{
 903        memcpy(dst, src, words * 4);
 904}
 905
 906static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 907                                 struct spi_device *spi,
 908                                 struct spi_transfer *t)
 909{
 910        struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 911        void (*copy32)(u32 *, const u32 *, unsigned int);
 912        void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 913        void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 914        const void *tx_buf = t->tx_buf;
 915        void *rx_buf = t->rx_buf;
 916        unsigned int len = t->len;
 917        unsigned int bits = t->bits_per_word;
 918        unsigned int bytes_per_word;
 919        unsigned int words;
 920        int n;
 921        bool swab;
 922        int ret;
 923
 924        /* reset registers */
 925        sh_msiof_spi_reset_regs(p);
 926
 927        /* setup clocks (clock already enabled in chipselect()) */
 928        if (!spi_controller_is_slave(p->ctlr))
 929                sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 930
 931        while (ctlr->dma_tx && len > 15) {
 932                /*
 933                 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 934                 *  words, with byte resp. word swapping.
 935                 */
 936                unsigned int l = 0;
 937
 938                if (tx_buf)
 939                        l = min(round_down(len, 4), p->tx_fifo_size * 4);
 940                if (rx_buf)
 941                        l = min(round_down(len, 4), p->rx_fifo_size * 4);
 942
 943                if (bits <= 8) {
 944                        copy32 = copy_bswap32;
 945                } else if (bits <= 16) {
 946                        copy32 = copy_wswap32;
 947                } else {
 948                        copy32 = copy_plain32;
 949                }
 950
 951                if (tx_buf)
 952                        copy32(p->tx_dma_page, tx_buf, l / 4);
 953
 954                ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 955                if (ret == -EAGAIN) {
 956                        dev_warn_once(&p->pdev->dev,
 957                                "DMA not available, falling back to PIO\n");
 958                        break;
 959                }
 960                if (ret)
 961                        return ret;
 962
 963                if (rx_buf) {
 964                        copy32(rx_buf, p->rx_dma_page, l / 4);
 965                        rx_buf += l;
 966                }
 967                if (tx_buf)
 968                        tx_buf += l;
 969
 970                len -= l;
 971                if (!len)
 972                        return 0;
 973        }
 974
 975        if (bits <= 8 && len > 15) {
 976                bits = 32;
 977                swab = true;
 978        } else {
 979                swab = false;
 980        }
 981
 982        /* setup bytes per word and fifo read/write functions */
 983        if (bits <= 8) {
 984                bytes_per_word = 1;
 985                tx_fifo = sh_msiof_spi_write_fifo_8;
 986                rx_fifo = sh_msiof_spi_read_fifo_8;
 987        } else if (bits <= 16) {
 988                bytes_per_word = 2;
 989                if ((unsigned long)tx_buf & 0x01)
 990                        tx_fifo = sh_msiof_spi_write_fifo_16u;
 991                else
 992                        tx_fifo = sh_msiof_spi_write_fifo_16;
 993
 994                if ((unsigned long)rx_buf & 0x01)
 995                        rx_fifo = sh_msiof_spi_read_fifo_16u;
 996                else
 997                        rx_fifo = sh_msiof_spi_read_fifo_16;
 998        } else if (swab) {
 999                bytes_per_word = 4;
1000                if ((unsigned long)tx_buf & 0x03)
1001                        tx_fifo = sh_msiof_spi_write_fifo_s32u;
1002                else
1003                        tx_fifo = sh_msiof_spi_write_fifo_s32;
1004
1005                if ((unsigned long)rx_buf & 0x03)
1006                        rx_fifo = sh_msiof_spi_read_fifo_s32u;
1007                else
1008                        rx_fifo = sh_msiof_spi_read_fifo_s32;
1009        } else {
1010                bytes_per_word = 4;
1011                if ((unsigned long)tx_buf & 0x03)
1012                        tx_fifo = sh_msiof_spi_write_fifo_32u;
1013                else
1014                        tx_fifo = sh_msiof_spi_write_fifo_32;
1015
1016                if ((unsigned long)rx_buf & 0x03)
1017                        rx_fifo = sh_msiof_spi_read_fifo_32u;
1018                else
1019                        rx_fifo = sh_msiof_spi_read_fifo_32;
1020        }
1021
1022        /* transfer in fifo sized chunks */
1023        words = len / bytes_per_word;
1024
1025        while (words > 0) {
1026                n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1027                                           words, bits);
1028                if (n < 0)
1029                        return n;
1030
1031                if (tx_buf)
1032                        tx_buf += n * bytes_per_word;
1033                if (rx_buf)
1034                        rx_buf += n * bytes_per_word;
1035                words -= n;
1036
1037                if (words == 0 && (len % bytes_per_word)) {
1038                        words = len % bytes_per_word;
1039                        bits = t->bits_per_word;
1040                        bytes_per_word = 1;
1041                        tx_fifo = sh_msiof_spi_write_fifo_8;
1042                        rx_fifo = sh_msiof_spi_read_fifo_8;
1043                }
1044        }
1045
1046        return 0;
1047}
1048
1049static const struct sh_msiof_chipdata sh_data = {
1050        .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1051        .tx_fifo_size = 64,
1052        .rx_fifo_size = 64,
1053        .ctlr_flags = 0,
1054        .min_div_pow = 0,
1055};
1056
1057static const struct sh_msiof_chipdata rcar_gen2_data = {
1058        .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1059                              SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1060        .tx_fifo_size = 64,
1061        .rx_fifo_size = 64,
1062        .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1063        .min_div_pow = 0,
1064};
1065
1066static const struct sh_msiof_chipdata rcar_gen3_data = {
1067        .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1068                              SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1069        .tx_fifo_size = 64,
1070        .rx_fifo_size = 64,
1071        .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1072        .min_div_pow = 1,
1073};
1074
1075static const struct of_device_id sh_msiof_match[] = {
1076        { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1077        { .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1078        { .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1079        { .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1080        { .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1081        { .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1082        { .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1083        { .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1084        { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1085        { .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1086        { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1087        { .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1088        {},
1089};
1090MODULE_DEVICE_TABLE(of, sh_msiof_match);
1091
1092#ifdef CONFIG_OF
1093static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1094{
1095        struct sh_msiof_spi_info *info;
1096        struct device_node *np = dev->of_node;
1097        u32 num_cs = 1;
1098
1099        info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1100        if (!info)
1101                return NULL;
1102
1103        info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1104                                                            : MSIOF_SPI_MASTER;
1105
1106        /* Parse the MSIOF properties */
1107        if (info->mode == MSIOF_SPI_MASTER)
1108                of_property_read_u32(np, "num-cs", &num_cs);
1109        of_property_read_u32(np, "renesas,tx-fifo-size",
1110                                        &info->tx_fifo_override);
1111        of_property_read_u32(np, "renesas,rx-fifo-size",
1112                                        &info->rx_fifo_override);
1113        of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1114        of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1115
1116        info->num_chipselect = num_cs;
1117
1118        return info;
1119}
1120#else
1121static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1122{
1123        return NULL;
1124}
1125#endif
1126
1127static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1128{
1129        struct device *dev = &p->pdev->dev;
1130        unsigned int used_ss_mask = 0;
1131        unsigned int cs_gpios = 0;
1132        unsigned int num_cs, i;
1133        int ret;
1134
1135        ret = gpiod_count(dev, "cs");
1136        if (ret <= 0)
1137                return 0;
1138
1139        num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect);
1140        for (i = 0; i < num_cs; i++) {
1141                struct gpio_desc *gpiod;
1142
1143                gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1144                if (!IS_ERR(gpiod)) {
1145                        devm_gpiod_put(dev, gpiod);
1146                        cs_gpios++;
1147                        continue;
1148                }
1149
1150                if (PTR_ERR(gpiod) != -ENOENT)
1151                        return PTR_ERR(gpiod);
1152
1153                if (i >= MAX_SS) {
1154                        dev_err(dev, "Invalid native chip select %d\n", i);
1155                        return -EINVAL;
1156                }
1157                used_ss_mask |= BIT(i);
1158        }
1159        p->unused_ss = ffz(used_ss_mask);
1160        if (cs_gpios && p->unused_ss >= MAX_SS) {
1161                dev_err(dev, "No unused native chip select available\n");
1162                return -EINVAL;
1163        }
1164        return 0;
1165}
1166
1167static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1168        enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1169{
1170        dma_cap_mask_t mask;
1171        struct dma_chan *chan;
1172        struct dma_slave_config cfg;
1173        int ret;
1174
1175        dma_cap_zero(mask);
1176        dma_cap_set(DMA_SLAVE, mask);
1177
1178        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1179                                (void *)(unsigned long)id, dev,
1180                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1181        if (!chan) {
1182                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1183                return NULL;
1184        }
1185
1186        memset(&cfg, 0, sizeof(cfg));
1187        cfg.direction = dir;
1188        if (dir == DMA_MEM_TO_DEV) {
1189                cfg.dst_addr = port_addr;
1190                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1191        } else {
1192                cfg.src_addr = port_addr;
1193                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1194        }
1195
1196        ret = dmaengine_slave_config(chan, &cfg);
1197        if (ret) {
1198                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1199                dma_release_channel(chan);
1200                return NULL;
1201        }
1202
1203        return chan;
1204}
1205
1206static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1207{
1208        struct platform_device *pdev = p->pdev;
1209        struct device *dev = &pdev->dev;
1210        const struct sh_msiof_spi_info *info = p->info;
1211        unsigned int dma_tx_id, dma_rx_id;
1212        const struct resource *res;
1213        struct spi_controller *ctlr;
1214        struct device *tx_dev, *rx_dev;
1215
1216        if (dev->of_node) {
1217                /* In the OF case we will get the slave IDs from the DT */
1218                dma_tx_id = 0;
1219                dma_rx_id = 0;
1220        } else if (info && info->dma_tx_id && info->dma_rx_id) {
1221                dma_tx_id = info->dma_tx_id;
1222                dma_rx_id = info->dma_rx_id;
1223        } else {
1224                /* The driver assumes no error */
1225                return 0;
1226        }
1227
1228        /* The DMA engine uses the second register set, if present */
1229        res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1230        if (!res)
1231                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1232
1233        ctlr = p->ctlr;
1234        ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1235                                                 dma_tx_id, res->start + TFDR);
1236        if (!ctlr->dma_tx)
1237                return -ENODEV;
1238
1239        ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1240                                                 dma_rx_id, res->start + RFDR);
1241        if (!ctlr->dma_rx)
1242                goto free_tx_chan;
1243
1244        p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1245        if (!p->tx_dma_page)
1246                goto free_rx_chan;
1247
1248        p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1249        if (!p->rx_dma_page)
1250                goto free_tx_page;
1251
1252        tx_dev = ctlr->dma_tx->device->dev;
1253        p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1254                                        DMA_TO_DEVICE);
1255        if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1256                goto free_rx_page;
1257
1258        rx_dev = ctlr->dma_rx->device->dev;
1259        p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1260                                        DMA_FROM_DEVICE);
1261        if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1262                goto unmap_tx_page;
1263
1264        dev_info(dev, "DMA available");
1265        return 0;
1266
1267unmap_tx_page:
1268        dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1269free_rx_page:
1270        free_page((unsigned long)p->rx_dma_page);
1271free_tx_page:
1272        free_page((unsigned long)p->tx_dma_page);
1273free_rx_chan:
1274        dma_release_channel(ctlr->dma_rx);
1275free_tx_chan:
1276        dma_release_channel(ctlr->dma_tx);
1277        ctlr->dma_tx = NULL;
1278        return -ENODEV;
1279}
1280
1281static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1282{
1283        struct spi_controller *ctlr = p->ctlr;
1284
1285        if (!ctlr->dma_tx)
1286                return;
1287
1288        dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1289                         DMA_FROM_DEVICE);
1290        dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1291                         DMA_TO_DEVICE);
1292        free_page((unsigned long)p->rx_dma_page);
1293        free_page((unsigned long)p->tx_dma_page);
1294        dma_release_channel(ctlr->dma_rx);
1295        dma_release_channel(ctlr->dma_tx);
1296}
1297
1298static int sh_msiof_spi_probe(struct platform_device *pdev)
1299{
1300        struct resource *r;
1301        struct spi_controller *ctlr;
1302        const struct sh_msiof_chipdata *chipdata;
1303        struct sh_msiof_spi_info *info;
1304        struct sh_msiof_spi_priv *p;
1305        int i;
1306        int ret;
1307
1308        chipdata = of_device_get_match_data(&pdev->dev);
1309        if (chipdata) {
1310                info = sh_msiof_spi_parse_dt(&pdev->dev);
1311        } else {
1312                chipdata = (const void *)pdev->id_entry->driver_data;
1313                info = dev_get_platdata(&pdev->dev);
1314        }
1315
1316        if (!info) {
1317                dev_err(&pdev->dev, "failed to obtain device info\n");
1318                return -ENXIO;
1319        }
1320
1321        if (info->mode == MSIOF_SPI_SLAVE)
1322                ctlr = spi_alloc_slave(&pdev->dev,
1323                                       sizeof(struct sh_msiof_spi_priv));
1324        else
1325                ctlr = spi_alloc_master(&pdev->dev,
1326                                        sizeof(struct sh_msiof_spi_priv));
1327        if (ctlr == NULL)
1328                return -ENOMEM;
1329
1330        p = spi_controller_get_devdata(ctlr);
1331
1332        platform_set_drvdata(pdev, p);
1333        p->ctlr = ctlr;
1334        p->info = info;
1335        p->min_div_pow = chipdata->min_div_pow;
1336
1337        init_completion(&p->done);
1338        init_completion(&p->done_txdma);
1339
1340        p->clk = devm_clk_get(&pdev->dev, NULL);
1341        if (IS_ERR(p->clk)) {
1342                dev_err(&pdev->dev, "cannot get clock\n");
1343                ret = PTR_ERR(p->clk);
1344                goto err1;
1345        }
1346
1347        i = platform_get_irq(pdev, 0);
1348        if (i < 0) {
1349                dev_err(&pdev->dev, "cannot get IRQ\n");
1350                ret = i;
1351                goto err1;
1352        }
1353
1354        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1355        p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1356        if (IS_ERR(p->mapbase)) {
1357                ret = PTR_ERR(p->mapbase);
1358                goto err1;
1359        }
1360
1361        ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1362                               dev_name(&pdev->dev), p);
1363        if (ret) {
1364                dev_err(&pdev->dev, "unable to request irq\n");
1365                goto err1;
1366        }
1367
1368        p->pdev = pdev;
1369        pm_runtime_enable(&pdev->dev);
1370
1371        /* Platform data may override FIFO sizes */
1372        p->tx_fifo_size = chipdata->tx_fifo_size;
1373        p->rx_fifo_size = chipdata->rx_fifo_size;
1374        if (p->info->tx_fifo_override)
1375                p->tx_fifo_size = p->info->tx_fifo_override;
1376        if (p->info->rx_fifo_override)
1377                p->rx_fifo_size = p->info->rx_fifo_override;
1378
1379        /* Setup GPIO chip selects */
1380        ctlr->num_chipselect = p->info->num_chipselect;
1381        ret = sh_msiof_get_cs_gpios(p);
1382        if (ret)
1383                goto err1;
1384
1385        /* init controller code */
1386        ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1387        ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1388        ctlr->flags = chipdata->ctlr_flags;
1389        ctlr->bus_num = pdev->id;
1390        ctlr->dev.of_node = pdev->dev.of_node;
1391        ctlr->setup = sh_msiof_spi_setup;
1392        ctlr->prepare_message = sh_msiof_prepare_message;
1393        ctlr->slave_abort = sh_msiof_slave_abort;
1394        ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1395        ctlr->auto_runtime_pm = true;
1396        ctlr->transfer_one = sh_msiof_transfer_one;
1397        ctlr->use_gpio_descriptors = true;
1398
1399        ret = sh_msiof_request_dma(p);
1400        if (ret < 0)
1401                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1402
1403        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1404        if (ret < 0) {
1405                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1406                goto err2;
1407        }
1408
1409        return 0;
1410
1411 err2:
1412        sh_msiof_release_dma(p);
1413        pm_runtime_disable(&pdev->dev);
1414 err1:
1415        spi_controller_put(ctlr);
1416        return ret;
1417}
1418
1419static int sh_msiof_spi_remove(struct platform_device *pdev)
1420{
1421        struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1422
1423        sh_msiof_release_dma(p);
1424        pm_runtime_disable(&pdev->dev);
1425        return 0;
1426}
1427
1428static const struct platform_device_id spi_driver_ids[] = {
1429        { "spi_sh_msiof",       (kernel_ulong_t)&sh_data },
1430        {},
1431};
1432MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1433
1434#ifdef CONFIG_PM_SLEEP
1435static int sh_msiof_spi_suspend(struct device *dev)
1436{
1437        struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1438
1439        return spi_controller_suspend(p->ctlr);
1440}
1441
1442static int sh_msiof_spi_resume(struct device *dev)
1443{
1444        struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1445
1446        return spi_controller_resume(p->ctlr);
1447}
1448
1449static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1450                         sh_msiof_spi_resume);
1451#define DEV_PM_OPS      &sh_msiof_spi_pm_ops
1452#else
1453#define DEV_PM_OPS      NULL
1454#endif /* CONFIG_PM_SLEEP */
1455
1456static struct platform_driver sh_msiof_spi_drv = {
1457        .probe          = sh_msiof_spi_probe,
1458        .remove         = sh_msiof_spi_remove,
1459        .id_table       = spi_driver_ids,
1460        .driver         = {
1461                .name           = "spi_sh_msiof",
1462                .pm             = DEV_PM_OPS,
1463                .of_match_table = of_match_ptr(sh_msiof_match),
1464        },
1465};
1466module_platform_driver(sh_msiof_spi_drv);
1467
1468MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1469MODULE_AUTHOR("Magnus Damm");
1470MODULE_LICENSE("GPL v2");
1471MODULE_ALIAS("platform:spi_sh_msiof");
1472