linux/drivers/staging/rtl8723bs/hal/rtl8723b_hal_init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/******************************************************************************
   3 *
   4 * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
   5 *
   6 ******************************************************************************/
   7#define _HAL_INIT_C_
   8
   9#include <linux/firmware.h>
  10#include <linux/slab.h>
  11#include <drv_types.h>
  12#include <rtw_debug.h>
  13#include <rtl8723b_hal.h>
  14#include "hal_com_h2c.h"
  15
  16static void _FWDownloadEnable(struct adapter *padapter, bool enable)
  17{
  18        u8 tmp, count = 0;
  19
  20        if (enable) {
  21                /*  8051 enable */
  22                tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
  23                rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
  24
  25                tmp = rtw_read8(padapter, REG_MCUFWDL);
  26                rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
  27
  28                do {
  29                        tmp = rtw_read8(padapter, REG_MCUFWDL);
  30                        if (tmp & 0x01)
  31                                break;
  32                        rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
  33                        msleep(1);
  34                } while (count++ < 100);
  35
  36                if (count > 0)
  37                        DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
  38
  39                /*  8051 reset */
  40                tmp = rtw_read8(padapter, REG_MCUFWDL+2);
  41                rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
  42        } else {
  43                /*  MCU firmware download disable. */
  44                tmp = rtw_read8(padapter, REG_MCUFWDL);
  45                rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
  46        }
  47}
  48
  49static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
  50{
  51        int ret = _SUCCESS;
  52
  53        u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
  54        u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
  55        u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
  56        u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
  57        u32 remainSize_p1 = 0, remainSize_p2 = 0;
  58        u8 *bufferPtr = buffer;
  59        u32 i = 0, offset = 0;
  60
  61/*      printk("====>%s %d\n", __func__, __LINE__); */
  62
  63        /* 3 Phase #1 */
  64        blockCount_p1 = buffSize / blockSize_p1;
  65        remainSize_p1 = buffSize % blockSize_p1;
  66
  67        if (blockCount_p1) {
  68                RT_TRACE(
  69                        _module_hal_init_c_,
  70                        _drv_notice_,
  71                        (
  72                                "_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
  73                                buffSize,
  74                                blockSize_p1,
  75                                blockCount_p1,
  76                                remainSize_p1
  77                        )
  78                );
  79        }
  80
  81        for (i = 0; i < blockCount_p1; i++) {
  82                ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
  83                if (ret == _FAIL) {
  84                        printk("====>%s %d i:%d\n", __func__, __LINE__, i);
  85                        goto exit;
  86                }
  87        }
  88
  89        /* 3 Phase #2 */
  90        if (remainSize_p1) {
  91                offset = blockCount_p1 * blockSize_p1;
  92
  93                blockCount_p2 = remainSize_p1/blockSize_p2;
  94                remainSize_p2 = remainSize_p1%blockSize_p2;
  95
  96                if (blockCount_p2) {
  97                                RT_TRACE(
  98                                        _module_hal_init_c_,
  99                                        _drv_notice_,
 100                                        (
 101                                                "_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
 102                                                (buffSize-offset),
 103                                                blockSize_p2,
 104                                                blockCount_p2,
 105                                                remainSize_p2
 106                                        )
 107                                );
 108                }
 109
 110        }
 111
 112        /* 3 Phase #3 */
 113        if (remainSize_p2) {
 114                offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
 115
 116                blockCount_p3 = remainSize_p2 / blockSize_p3;
 117
 118                RT_TRACE(_module_hal_init_c_, _drv_notice_,
 119                                ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
 120                                (buffSize-offset), blockSize_p3, blockCount_p3));
 121
 122                for (i = 0; i < blockCount_p3; i++) {
 123                        ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
 124
 125                        if (ret == _FAIL) {
 126                                printk("====>%s %d i:%d\n", __func__, __LINE__, i);
 127                                goto exit;
 128                        }
 129                }
 130        }
 131exit:
 132        return ret;
 133}
 134
 135static int _PageWrite(
 136        struct adapter *padapter,
 137        u32 page,
 138        void *buffer,
 139        u32 size
 140)
 141{
 142        u8 value8;
 143        u8 u8Page = (u8) (page & 0x07);
 144
 145        value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
 146        rtw_write8(padapter, REG_MCUFWDL+2, value8);
 147
 148        return _BlockWrite(padapter, buffer, size);
 149}
 150
 151static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
 152{
 153        /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
 154        /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
 155        int ret = _SUCCESS;
 156        u32 pageNums, remainSize;
 157        u32 page, offset;
 158        u8 *bufferPtr = buffer;
 159
 160        pageNums = size / MAX_DLFW_PAGE_SIZE;
 161        /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
 162        remainSize = size % MAX_DLFW_PAGE_SIZE;
 163
 164        for (page = 0; page < pageNums; page++) {
 165                offset = page * MAX_DLFW_PAGE_SIZE;
 166                ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
 167
 168                if (ret == _FAIL) {
 169                        printk("====>%s %d\n", __func__, __LINE__);
 170                        goto exit;
 171                }
 172        }
 173
 174        if (remainSize) {
 175                offset = pageNums * MAX_DLFW_PAGE_SIZE;
 176                page = pageNums;
 177                ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
 178
 179                if (ret == _FAIL) {
 180                        printk("====>%s %d\n", __func__, __LINE__);
 181                        goto exit;
 182                }
 183        }
 184        RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
 185
 186exit:
 187        return ret;
 188}
 189
 190void _8051Reset8723(struct adapter *padapter)
 191{
 192        u8 cpu_rst;
 193        u8 io_rst;
 194
 195
 196        /*  Reset 8051(WLMCU) IO wrapper */
 197        /*  0x1c[8] = 0 */
 198        /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
 199        io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
 200        io_rst &= ~BIT(0);
 201        rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
 202
 203        cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
 204        cpu_rst &= ~BIT(2);
 205        rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
 206
 207        /*  Enable 8051 IO wrapper */
 208        /*  0x1c[8] = 1 */
 209        io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
 210        io_rst |= BIT(0);
 211        rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
 212
 213        cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
 214        cpu_rst |= BIT(2);
 215        rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
 216
 217        DBG_8192C("%s: Finish\n", __func__);
 218}
 219
 220u8 g_fwdl_chksum_fail;
 221
 222static s32 polling_fwdl_chksum(
 223        struct adapter *adapter, u32 min_cnt, u32 timeout_ms
 224)
 225{
 226        s32 ret = _FAIL;
 227        u32 value32;
 228        unsigned long start = jiffies;
 229        u32 cnt = 0;
 230
 231        /* polling CheckSum report */
 232        do {
 233                cnt++;
 234                value32 = rtw_read32(adapter, REG_MCUFWDL);
 235                if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
 236                        break;
 237                yield();
 238        } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
 239
 240        if (!(value32 & FWDL_ChkSum_rpt)) {
 241                goto exit;
 242        }
 243
 244        if (g_fwdl_chksum_fail) {
 245                DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
 246                g_fwdl_chksum_fail--;
 247                goto exit;
 248        }
 249
 250        ret = _SUCCESS;
 251
 252exit:
 253        DBG_871X(
 254                "%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
 255                __func__,
 256                (ret == _SUCCESS) ? "OK" : "Fail",
 257                cnt,
 258                jiffies_to_msecs(jiffies-start),
 259                value32
 260        );
 261
 262        return ret;
 263}
 264
 265u8 g_fwdl_wintint_rdy_fail;
 266
 267static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
 268{
 269        s32 ret = _FAIL;
 270        u32 value32;
 271        unsigned long start = jiffies;
 272        u32 cnt = 0;
 273
 274        value32 = rtw_read32(adapter, REG_MCUFWDL);
 275        value32 |= MCUFWDL_RDY;
 276        value32 &= ~WINTINI_RDY;
 277        rtw_write32(adapter, REG_MCUFWDL, value32);
 278
 279        _8051Reset8723(adapter);
 280
 281        /*  polling for FW ready */
 282        do {
 283                cnt++;
 284                value32 = rtw_read32(adapter, REG_MCUFWDL);
 285                if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
 286                        break;
 287                yield();
 288        } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
 289
 290        if (!(value32 & WINTINI_RDY)) {
 291                goto exit;
 292        }
 293
 294        if (g_fwdl_wintint_rdy_fail) {
 295                DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
 296                g_fwdl_wintint_rdy_fail--;
 297                goto exit;
 298        }
 299
 300        ret = _SUCCESS;
 301
 302exit:
 303        DBG_871X(
 304                "%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
 305                __func__,
 306                (ret == _SUCCESS) ? "OK" : "Fail",
 307                cnt,
 308                jiffies_to_msecs(jiffies-start),
 309                value32
 310        );
 311
 312        return ret;
 313}
 314
 315#define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
 316
 317void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
 318{
 319        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
 320        u8 u1bTmp;
 321        u8 Delay = 100;
 322
 323        if (
 324                !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
 325        ) { /*  after 88C Fw v33.1 */
 326                /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
 327                rtw_write8(padapter, REG_HMETFR+3, 0x20);
 328
 329                u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
 330                while (u1bTmp & BIT2) {
 331                        Delay--;
 332                        if (Delay == 0)
 333                                break;
 334                        udelay(50);
 335                        u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
 336                }
 337                RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
 338
 339                if (Delay == 0) {
 340                        RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
 341                        /* force firmware reset */
 342                        u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
 343                        rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
 344                }
 345        }
 346}
 347
 348/*  */
 349/*      Description: */
 350/*              Download 8192C firmware code. */
 351/*  */
 352/*  */
 353s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
 354{
 355        s32 rtStatus = _SUCCESS;
 356        u8 write_fw = 0;
 357        unsigned long fwdl_start_time;
 358        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
 359        struct rt_firmware *pFirmware;
 360        struct rt_firmware *pBTFirmware;
 361        struct rt_firmware_hdr *pFwHdr = NULL;
 362        u8 *pFirmwareBuf;
 363        u32 FirmwareLen;
 364        const struct firmware *fw;
 365        struct device *device = dvobj_to_dev(padapter->dvobj);
 366        u8 *fwfilepath;
 367        struct dvobj_priv *psdpriv = padapter->dvobj;
 368        struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
 369        u8 tmp_ps;
 370
 371        RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
 372#ifdef CONFIG_WOWLAN
 373        RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
 374#endif
 375        pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
 376        if (!pFirmware)
 377                return _FAIL;
 378        pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
 379        if (!pBTFirmware) {
 380                kfree(pFirmware);
 381                return _FAIL;
 382        }
 383        tmp_ps = rtw_read8(padapter, 0xa3);
 384        tmp_ps &= 0xf8;
 385        tmp_ps |= 0x02;
 386        /* 1. write 0xA3[:2:0] = 3b'010 */
 387        rtw_write8(padapter, 0xa3, tmp_ps);
 388        /* 2. read power_state = 0xA0[1:0] */
 389        tmp_ps = rtw_read8(padapter, 0xa0);
 390        tmp_ps &= 0x03;
 391        if (tmp_ps != 0x01) {
 392                DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
 393                pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
 394        }
 395
 396#ifdef CONFIG_WOWLAN
 397        if (bUsedWoWLANFw)
 398                fwfilepath = "rtlwifi/rtl8723bs_wowlan.bin";
 399        else
 400#endif /*  CONFIG_WOWLAN */
 401                fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
 402
 403        pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
 404
 405        rtStatus = request_firmware(&fw, fwfilepath, device);
 406        if (rtStatus) {
 407                pr_err("Request firmware failed with error 0x%x\n", rtStatus);
 408                rtStatus = _FAIL;
 409                goto exit;
 410        }
 411
 412        if (!fw) {
 413                pr_err("Firmware %s not available\n", fwfilepath);
 414                rtStatus = _FAIL;
 415                goto exit;
 416        }
 417
 418        if (fw->size > FW_8723B_SIZE) {
 419                rtStatus = _FAIL;
 420                RT_TRACE(
 421                        _module_hal_init_c_,
 422                        _drv_err_,
 423                        ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
 424                );
 425                goto exit;
 426        }
 427
 428        pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
 429        if (!pFirmware->fw_buffer_sz) {
 430                rtStatus = _FAIL;
 431                goto exit;
 432        }
 433
 434        pFirmware->fw_length = fw->size;
 435        release_firmware(fw);
 436        if (pFirmware->fw_length > FW_8723B_SIZE) {
 437                rtStatus = _FAIL;
 438                DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->fw_length, FW_8723B_SIZE);
 439                goto release_fw1;
 440        }
 441
 442        pFirmwareBuf = pFirmware->fw_buffer_sz;
 443        FirmwareLen = pFirmware->fw_length;
 444
 445        /*  To Check Fw header. Added by tynli. 2009.12.04. */
 446        pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
 447
 448        pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
 449        pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
 450        pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
 451
 452        DBG_871X(
 453                "%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
 454                __func__,
 455                pHalData->FirmwareVersion,
 456                pHalData->FirmwareSubVersion,
 457                pHalData->FirmwareSignature,
 458                pFwHdr->month,
 459                pFwHdr->date,
 460                pFwHdr->hour,
 461                pFwHdr->minute
 462        );
 463
 464        if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
 465                DBG_871X("%s(): Shift for fw header!\n", __func__);
 466                /*  Shift 32 bytes for FW header */
 467                pFirmwareBuf = pFirmwareBuf + 32;
 468                FirmwareLen = FirmwareLen - 32;
 469        }
 470
 471        /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
 472        /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
 473        if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
 474                rtw_write8(padapter, REG_MCUFWDL, 0x00);
 475                rtl8723b_FirmwareSelfReset(padapter);
 476        }
 477
 478        _FWDownloadEnable(padapter, true);
 479        fwdl_start_time = jiffies;
 480        while (
 481                !padapter->bDriverStopped &&
 482                !padapter->bSurpriseRemoved &&
 483                (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
 484        ) {
 485                /* reset FWDL chksum */
 486                rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
 487
 488                rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
 489                if (rtStatus != _SUCCESS)
 490                        continue;
 491
 492                rtStatus = polling_fwdl_chksum(padapter, 5, 50);
 493                if (rtStatus == _SUCCESS)
 494                        break;
 495        }
 496        _FWDownloadEnable(padapter, false);
 497        if (_SUCCESS != rtStatus)
 498                goto fwdl_stat;
 499
 500        rtStatus = _FWFreeToGo(padapter, 10, 200);
 501        if (_SUCCESS != rtStatus)
 502                goto fwdl_stat;
 503
 504fwdl_stat:
 505        DBG_871X(
 506                "FWDL %s. write_fw:%u, %dms\n",
 507                (rtStatus == _SUCCESS)?"success":"fail",
 508                write_fw,
 509                jiffies_to_msecs(jiffies - fwdl_start_time)
 510        );
 511
 512exit:
 513        kfree(pFirmware->fw_buffer_sz);
 514        kfree(pFirmware);
 515release_fw1:
 516        kfree(pBTFirmware);
 517        DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
 518        return rtStatus;
 519}
 520
 521void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
 522{
 523        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
 524
 525        /*  Init Fw LPS related. */
 526        adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
 527
 528        /* Init H2C cmd. */
 529        rtw_write8(padapter, REG_HMETFR, 0x0f);
 530
 531        /*  Init H2C counter. by tynli. 2009.12.09. */
 532        pHalData->LastHMEBoxNum = 0;
 533/* pHalData->H2CQueueHead = 0; */
 534/* pHalData->H2CQueueTail = 0; */
 535/* pHalData->H2CStopInsertQueue = false; */
 536}
 537
 538#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
 539/*  */
 540
 541/*  */
 542/*  Description: Prepare some information to Fw for WoWLAN. */
 543/* (1) Download wowlan Fw. */
 544/* (2) Download RSVD page packets. */
 545/* (3) Enable AP offload if needed. */
 546/*  */
 547/*  2011.04.12 by tynli. */
 548/*  */
 549void SetFwRelatedForWoWLAN8723b(
 550        struct adapter *padapter, u8 bHostIsGoingtoSleep
 551)
 552{
 553        int     status = _FAIL;
 554        /*  */
 555        /*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
 556        /*  */
 557        status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
 558        if (status != _SUCCESS) {
 559                DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
 560                return;
 561        } else {
 562                DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
 563        }
 564        /*  */
 565        /*  2. Re-Init the variables about Fw related setting. */
 566        /*  */
 567        rtl8723b_InitializeFirmwareVars(padapter);
 568}
 569#endif /* CONFIG_WOWLAN */
 570
 571static void rtl8723b_free_hal_data(struct adapter *padapter)
 572{
 573}
 574
 575/*  */
 576/*                              Efuse related code */
 577/*  */
 578static u8 hal_EfuseSwitchToBank(
 579        struct adapter *padapter, u8 bank, bool bPseudoTest
 580)
 581{
 582        u8 bRet = false;
 583        u32 value32 = 0;
 584#ifdef HAL_EFUSE_MEMORY
 585        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
 586        PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
 587#endif
 588
 589
 590        DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
 591        if (bPseudoTest) {
 592#ifdef HAL_EFUSE_MEMORY
 593                pEfuseHal->fakeEfuseBank = bank;
 594#else
 595                fakeEfuseBank = bank;
 596#endif
 597                bRet = true;
 598        } else {
 599                value32 = rtw_read32(padapter, EFUSE_TEST);
 600                bRet = true;
 601                switch (bank) {
 602                case 0:
 603                        value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
 604                        break;
 605                case 1:
 606                        value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
 607                        break;
 608                case 2:
 609                        value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
 610                        break;
 611                case 3:
 612                        value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
 613                        break;
 614                default:
 615                        value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
 616                        bRet = false;
 617                        break;
 618                }
 619                rtw_write32(padapter, EFUSE_TEST, value32);
 620        }
 621
 622        return bRet;
 623}
 624
 625static void Hal_GetEfuseDefinition(
 626        struct adapter *padapter,
 627        u8 efuseType,
 628        u8 type,
 629        void *pOut,
 630        bool bPseudoTest
 631)
 632{
 633        switch (type) {
 634        case TYPE_EFUSE_MAX_SECTION:
 635                {
 636                        u8 *pMax_section;
 637                        pMax_section = pOut;
 638
 639                        if (efuseType == EFUSE_WIFI)
 640                                *pMax_section = EFUSE_MAX_SECTION_8723B;
 641                        else
 642                                *pMax_section = EFUSE_BT_MAX_SECTION;
 643                }
 644                break;
 645
 646        case TYPE_EFUSE_REAL_CONTENT_LEN:
 647                {
 648                        u16 *pu2Tmp;
 649                        pu2Tmp = pOut;
 650
 651                        if (efuseType == EFUSE_WIFI)
 652                                *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
 653                        else
 654                                *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
 655                }
 656                break;
 657
 658        case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
 659                {
 660                        u16 *pu2Tmp;
 661                        pu2Tmp = pOut;
 662
 663                        if (efuseType == EFUSE_WIFI)
 664                                *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
 665                        else
 666                                *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
 667                }
 668                break;
 669
 670        case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
 671                {
 672                        u16 *pu2Tmp;
 673                        pu2Tmp = pOut;
 674
 675                        if (efuseType == EFUSE_WIFI)
 676                                *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
 677                        else
 678                                *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
 679                }
 680                break;
 681
 682        case TYPE_EFUSE_MAP_LEN:
 683                {
 684                        u16 *pu2Tmp;
 685                        pu2Tmp = pOut;
 686
 687                        if (efuseType == EFUSE_WIFI)
 688                                *pu2Tmp = EFUSE_MAX_MAP_LEN;
 689                        else
 690                                *pu2Tmp = EFUSE_BT_MAP_LEN;
 691                }
 692                break;
 693
 694        case TYPE_EFUSE_PROTECT_BYTES_BANK:
 695                {
 696                        u8 *pu1Tmp;
 697                        pu1Tmp = pOut;
 698
 699                        if (efuseType == EFUSE_WIFI)
 700                                *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
 701                        else
 702                                *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
 703                }
 704                break;
 705
 706        case TYPE_EFUSE_CONTENT_LEN_BANK:
 707                {
 708                        u16 *pu2Tmp;
 709                        pu2Tmp = pOut;
 710
 711                        if (efuseType == EFUSE_WIFI)
 712                                *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
 713                        else
 714                                *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
 715                }
 716                break;
 717
 718        default:
 719                {
 720                        u8 *pu1Tmp;
 721                        pu1Tmp = pOut;
 722                        *pu1Tmp = 0;
 723                }
 724                break;
 725        }
 726}
 727
 728#define VOLTAGE_V25             0x03
 729#define LDOE25_SHIFT    28
 730
 731/*  */
 732/*      The following is for compile ok */
 733/*      That should be merged with the original in the future */
 734/*  */
 735#define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
 736#define EFUSE_ACCESS_OFF_8723                   0x00    /*  For RTL8723 only. */
 737#define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
 738
 739/*  */
 740static void Hal_BT_EfusePowerSwitch(
 741        struct adapter *padapter, u8 bWrite, u8 PwrState
 742)
 743{
 744        u8 tempval;
 745        if (PwrState) {
 746                /*  enable BT power cut */
 747                /*  0x6A[14] = 1 */
 748                tempval = rtw_read8(padapter, 0x6B);
 749                tempval |= BIT(6);
 750                rtw_write8(padapter, 0x6B, tempval);
 751
 752                /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
 753                /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
 754                msleep(1);
 755                /*  disable BT output isolation */
 756                /*  0x6A[15] = 0 */
 757                tempval = rtw_read8(padapter, 0x6B);
 758                tempval &= ~BIT(7);
 759                rtw_write8(padapter, 0x6B, tempval);
 760        } else {
 761                /*  enable BT output isolation */
 762                /*  0x6A[15] = 1 */
 763                tempval = rtw_read8(padapter, 0x6B);
 764                tempval |= BIT(7);
 765                rtw_write8(padapter, 0x6B, tempval);
 766
 767                /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
 768                /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
 769
 770                /*  disable BT power cut */
 771                /*  0x6A[14] = 1 */
 772                tempval = rtw_read8(padapter, 0x6B);
 773                tempval &= ~BIT(6);
 774                rtw_write8(padapter, 0x6B, tempval);
 775        }
 776
 777}
 778static void Hal_EfusePowerSwitch(
 779        struct adapter *padapter, u8 bWrite, u8 PwrState
 780)
 781{
 782        u8 tempval;
 783        u16 tmpV16;
 784
 785
 786        if (PwrState) {
 787                /*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
 788                /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
 789                tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
 790                if (tempval & BIT(0)) { /*  SDIO local register is suspend */
 791                        u8 count = 0;
 792
 793
 794                        tempval &= ~BIT(0);
 795                        rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
 796
 797                        /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
 798                        do {
 799                                tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
 800                                tempval &= 0x3;
 801                                if (tempval == 0x02)
 802                                        break;
 803
 804                                count++;
 805                                if (count >= 100)
 806                                        break;
 807
 808                                mdelay(10);
 809                        } while (1);
 810
 811                        if (count >= 100) {
 812                                DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
 813                                        FUNC_ADPT_ARG(padapter), tempval);
 814                        } else {
 815                                DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
 816                                        FUNC_ADPT_ARG(padapter), tempval);
 817                        }
 818                }
 819
 820                rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
 821
 822                /*  Reset: 0x0000h[28], default valid */
 823                tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
 824                if (!(tmpV16 & FEN_ELDR)) {
 825                        tmpV16 |= FEN_ELDR;
 826                        rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
 827                }
 828
 829                /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
 830                tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
 831                if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
 832                        tmpV16 |= (LOADER_CLK_EN | ANA8M);
 833                        rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
 834                }
 835
 836                if (bWrite) {
 837                        /*  Enable LDO 2.5V before read/write action */
 838                        tempval = rtw_read8(padapter, EFUSE_TEST+3);
 839                        tempval &= 0x0F;
 840                        tempval |= (VOLTAGE_V25 << 4);
 841                        rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
 842
 843                        /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
 844                }
 845        } else {
 846                rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
 847
 848                if (bWrite) {
 849                        /*  Disable LDO 2.5V after read/write action */
 850                        tempval = rtw_read8(padapter, EFUSE_TEST+3);
 851                        rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
 852                }
 853
 854        }
 855}
 856
 857static void hal_ReadEFuse_WiFi(
 858        struct adapter *padapter,
 859        u16 _offset,
 860        u16 _size_byte,
 861        u8 *pbuf,
 862        bool bPseudoTest
 863)
 864{
 865#ifdef HAL_EFUSE_MEMORY
 866        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
 867        PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
 868#endif
 869        u8 *efuseTbl = NULL;
 870        u16 eFuse_Addr = 0;
 871        u8 offset, wden;
 872        u8 efuseHeader, efuseExtHdr, efuseData;
 873        u16 i, total, used;
 874        u8 efuse_usage = 0;
 875
 876        /* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
 877        /*  */
 878        /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
 879        /*  */
 880        if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
 881                DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
 882                return;
 883        }
 884
 885        efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
 886        if (!efuseTbl) {
 887                DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
 888                return;
 889        }
 890        /*  0xff will be efuse default value instead of 0x00. */
 891        memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
 892
 893
 894#ifdef DEBUG
 895if (0) {
 896        for (i = 0; i < 256; i++)
 897                efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
 898        DBG_871X("Efuse Content:\n");
 899        for (i = 0; i < 256; i++) {
 900                if (i % 16 == 0)
 901                        printk("\n");
 902                printk("%02X ", efuseTbl[i]);
 903        }
 904        printk("\n");
 905}
 906#endif
 907
 908
 909        /*  switch bank back to bank 0 for later BT and wifi use. */
 910        hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
 911
 912        while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
 913                efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
 914                if (efuseHeader == 0xFF) {
 915                        DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
 916                        break;
 917                }
 918                /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
 919
 920                /*  Check PG header for section num. */
 921                if (EXT_HEADER(efuseHeader)) { /* extended header */
 922                        offset = GET_HDR_OFFSET_2_0(efuseHeader);
 923                        /* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
 924
 925                        efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
 926                        /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
 927                        if (ALL_WORDS_DISABLED(efuseExtHdr))
 928                                continue;
 929
 930                        offset |= ((efuseExtHdr & 0xF0) >> 1);
 931                        wden = (efuseExtHdr & 0x0F);
 932                } else {
 933                        offset = ((efuseHeader >> 4) & 0x0f);
 934                        wden = (efuseHeader & 0x0f);
 935                }
 936                /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
 937
 938                if (offset < EFUSE_MAX_SECTION_8723B) {
 939                        u16 addr;
 940                        /*  Get word enable value from PG header */
 941/*                      DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
 942
 943                        addr = offset * PGPKT_DATA_SIZE;
 944                        for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
 945                                /*  Check word enable condition in the section */
 946                                if (!(wden & (0x01<<i))) {
 947                                        efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
 948/*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
 949                                        efuseTbl[addr] = efuseData;
 950
 951                                        efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
 952/*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
 953                                        efuseTbl[addr+1] = efuseData;
 954                                }
 955                                addr += 2;
 956                        }
 957                } else {
 958                        DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
 959                        eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
 960                }
 961        }
 962
 963        /*  Copy from Efuse map to output pointer memory!!! */
 964        for (i = 0; i < _size_byte; i++)
 965                pbuf[i] = efuseTbl[_offset+i];
 966
 967#ifdef DEBUG
 968if (1) {
 969        DBG_871X("Efuse Realmap:\n");
 970        for (i = 0; i < _size_byte; i++) {
 971                if (i % 16 == 0)
 972                        printk("\n");
 973                printk("%02X ", pbuf[i]);
 974        }
 975        printk("\n");
 976}
 977#endif
 978        /*  Calculate Efuse utilization */
 979        EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
 980        used = eFuse_Addr - 1;
 981        efuse_usage = (u8)((used*100)/total);
 982        if (bPseudoTest) {
 983#ifdef HAL_EFUSE_MEMORY
 984                pEfuseHal->fakeEfuseUsedBytes = used;
 985#else
 986                fakeEfuseUsedBytes = used;
 987#endif
 988        } else {
 989                rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
 990                rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
 991        }
 992
 993        kfree(efuseTbl);
 994}
 995
 996static void hal_ReadEFuse_BT(
 997        struct adapter *padapter,
 998        u16 _offset,
 999        u16 _size_byte,
1000        u8 *pbuf,
1001        bool bPseudoTest
1002)
1003{
1004#ifdef HAL_EFUSE_MEMORY
1005        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1006        PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1007#endif
1008        u8 *efuseTbl;
1009        u8 bank;
1010        u16 eFuse_Addr;
1011        u8 efuseHeader, efuseExtHdr, efuseData;
1012        u8 offset, wden;
1013        u16 i, total, used;
1014        u8 efuse_usage;
1015
1016
1017        /*  */
1018        /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1019        /*  */
1020        if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1021                DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1022                return;
1023        }
1024
1025        efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1026        if (!efuseTbl) {
1027                DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1028                return;
1029        }
1030        /*  0xff will be efuse default value instead of 0x00. */
1031        memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1032
1033        EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1034
1035        for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1036                if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1037                        DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1038                        goto exit;
1039                }
1040
1041                eFuse_Addr = 0;
1042
1043                while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1044                        efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1045                        if (efuseHeader == 0xFF)
1046                                break;
1047                        DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1048
1049                        /*  Check PG header for section num. */
1050                        if (EXT_HEADER(efuseHeader)) { /* extended header */
1051                                offset = GET_HDR_OFFSET_2_0(efuseHeader);
1052                                DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1053
1054                                efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1055                                DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1056                                if (ALL_WORDS_DISABLED(efuseExtHdr))
1057                                        continue;
1058
1059
1060                                offset |= ((efuseExtHdr & 0xF0) >> 1);
1061                                wden = (efuseExtHdr & 0x0F);
1062                        } else {
1063                                offset = ((efuseHeader >> 4) & 0x0f);
1064                                wden = (efuseHeader & 0x0f);
1065                        }
1066
1067                        if (offset < EFUSE_BT_MAX_SECTION) {
1068                                u16 addr;
1069
1070                                /*  Get word enable value from PG header */
1071                                DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1072
1073                                addr = offset * PGPKT_DATA_SIZE;
1074                                for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1075                                        /*  Check word enable condition in the section */
1076                                        if (!(wden & (0x01<<i))) {
1077                                                efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1078                                                DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1079                                                efuseTbl[addr] = efuseData;
1080
1081                                                efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1082                                                DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1083                                                efuseTbl[addr+1] = efuseData;
1084                                        }
1085                                        addr += 2;
1086                                }
1087                        } else {
1088                                DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1089                                eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1090                        }
1091                }
1092
1093                if ((eFuse_Addr-1) < total) {
1094                        DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1095                        break;
1096                }
1097        }
1098
1099        /*  switch bank back to bank 0 for later BT and wifi use. */
1100        hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1101
1102        /*  Copy from Efuse map to output pointer memory!!! */
1103        for (i = 0; i < _size_byte; i++)
1104                pbuf[i] = efuseTbl[_offset+i];
1105
1106        /*  */
1107        /*  Calculate Efuse utilization. */
1108        /*  */
1109        EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1110        used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1111        DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1112        efuse_usage = (u8)((used*100)/total);
1113        if (bPseudoTest) {
1114#ifdef HAL_EFUSE_MEMORY
1115                pEfuseHal->fakeBTEfuseUsedBytes = used;
1116#else
1117                fakeBTEfuseUsedBytes = used;
1118#endif
1119        } else {
1120                rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1121                rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1122        }
1123
1124exit:
1125        kfree(efuseTbl);
1126}
1127
1128static void Hal_ReadEFuse(
1129        struct adapter *padapter,
1130        u8 efuseType,
1131        u16 _offset,
1132        u16 _size_byte,
1133        u8 *pbuf,
1134        bool bPseudoTest
1135)
1136{
1137        if (efuseType == EFUSE_WIFI)
1138                hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1139        else
1140                hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1141}
1142
1143static u16 hal_EfuseGetCurrentSize_WiFi(
1144        struct adapter *padapter, bool bPseudoTest
1145)
1146{
1147#ifdef HAL_EFUSE_MEMORY
1148        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1149        PEFUSE_HAL              pEfuseHal = &pHalData->EfuseHal;
1150#endif
1151        u16 efuse_addr = 0;
1152        u16 start_addr = 0; /*  for debug */
1153        u8 hoffset = 0, hworden = 0;
1154        u8 efuse_data, word_cnts = 0;
1155        u32 count = 0; /*  for debug */
1156
1157
1158        if (bPseudoTest) {
1159#ifdef HAL_EFUSE_MEMORY
1160                efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1161#else
1162                efuse_addr = (u16)fakeEfuseUsedBytes;
1163#endif
1164        } else
1165                rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1166
1167        start_addr = efuse_addr;
1168        DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1169
1170        /*  switch bank back to bank 0 for later BT and wifi use. */
1171        hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1172
1173        count = 0;
1174        while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1175                if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1176                        DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1177                        goto error;
1178                }
1179
1180                if (efuse_data == 0xFF)
1181                        break;
1182
1183                if ((start_addr != 0) && (efuse_addr == start_addr)) {
1184                        count++;
1185                        DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1186                                FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1187
1188                        efuse_data = 0xFF;
1189                        if (count < 4) {
1190                                /*  try again! */
1191
1192                                if (count > 2) {
1193                                        /*  try again form address 0 */
1194                                        efuse_addr = 0;
1195                                        start_addr = 0;
1196                                }
1197
1198                                continue;
1199                        }
1200
1201                        goto error;
1202                }
1203
1204                if (EXT_HEADER(efuse_data)) {
1205                        hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1206                        efuse_addr++;
1207                        efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1208                        if (ALL_WORDS_DISABLED(efuse_data))
1209                                continue;
1210
1211                        hoffset |= ((efuse_data & 0xF0) >> 1);
1212                        hworden = efuse_data & 0x0F;
1213                } else {
1214                        hoffset = (efuse_data>>4) & 0x0F;
1215                        hworden = efuse_data & 0x0F;
1216                }
1217
1218                word_cnts = Efuse_CalculateWordCnts(hworden);
1219                efuse_addr += (word_cnts*2)+1;
1220        }
1221
1222        if (bPseudoTest) {
1223#ifdef HAL_EFUSE_MEMORY
1224                pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1225#else
1226                fakeEfuseUsedBytes = efuse_addr;
1227#endif
1228        } else
1229                rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1230
1231        goto exit;
1232
1233error:
1234        /*  report max size to prevent wirte efuse */
1235        EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1236
1237exit:
1238        DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1239
1240        return efuse_addr;
1241}
1242
1243static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1244{
1245#ifdef HAL_EFUSE_MEMORY
1246        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1247        PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1248#endif
1249        u16 btusedbytes;
1250        u16 efuse_addr;
1251        u8 bank, startBank;
1252        u8 hoffset = 0, hworden = 0;
1253        u8 efuse_data, word_cnts = 0;
1254        u16 retU2 = 0;
1255
1256        if (bPseudoTest) {
1257#ifdef HAL_EFUSE_MEMORY
1258                btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1259#else
1260                btusedbytes = fakeBTEfuseUsedBytes;
1261#endif
1262        } else
1263                rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1264
1265        efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1266        startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1267
1268        DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1269
1270        EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1271
1272        for (bank = startBank; bank < 3; bank++) {
1273                if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1274                        DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1275                        /* bank = EFUSE_MAX_BANK; */
1276                        break;
1277                }
1278
1279                /*  only when bank is switched we have to reset the efuse_addr. */
1280                if (bank != startBank)
1281                        efuse_addr = 0;
1282#if 1
1283
1284                while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1285                        if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1286                                DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1287                                /* bank = EFUSE_MAX_BANK; */
1288                                break;
1289                        }
1290                        DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1291
1292                        if (efuse_data == 0xFF)
1293                                break;
1294
1295                        if (EXT_HEADER(efuse_data)) {
1296                                hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1297                                efuse_addr++;
1298                                efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1299                                DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300
1301                                if (ALL_WORDS_DISABLED(efuse_data)) {
1302                                        efuse_addr++;
1303                                        continue;
1304                                }
1305
1306/*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1307                                hoffset |= ((efuse_data & 0xF0) >> 1);
1308                                hworden = efuse_data & 0x0F;
1309                        } else {
1310                                hoffset = (efuse_data>>4) & 0x0F;
1311                                hworden =  efuse_data & 0x0F;
1312                        }
1313
1314                        DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1315                                FUNC_ADPT_ARG(padapter), hoffset, hworden);
1316
1317                        word_cnts = Efuse_CalculateWordCnts(hworden);
1318                        /* read next header */
1319                        efuse_addr += (word_cnts*2)+1;
1320                }
1321#else
1322        while (
1323                bContinual &&
1324                efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1325                AVAILABLE_EFUSE_ADDR(efuse_addr)
1326        ) {
1327                        if (efuse_data != 0xFF) {
1328                                if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1329                                        hoffset = efuse_data;
1330                                        efuse_addr++;
1331                                        efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1332                                        if ((efuse_data & 0x0F) == 0x0F) {
1333                                                efuse_addr++;
1334                                                continue;
1335                                        } else {
1336                                                hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1337                                                hworden = efuse_data & 0x0F;
1338                                        }
1339                                } else {
1340                                        hoffset = (efuse_data>>4) & 0x0F;
1341                                        hworden =  efuse_data & 0x0F;
1342                                }
1343                                word_cnts = Efuse_CalculateWordCnts(hworden);
1344                                /* read next header */
1345                                efuse_addr = efuse_addr + (word_cnts*2)+1;
1346                        } else
1347                                bContinual = false;
1348                }
1349#endif
1350
1351
1352                /*  Check if we need to check next bank efuse */
1353                if (efuse_addr < retU2)
1354                        break; /*  don't need to check next bank. */
1355        }
1356
1357        retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1358        if (bPseudoTest) {
1359                pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1360                /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1361        } else {
1362                pEfuseHal->BTEfuseUsedBytes = retU2;
1363                /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1364        }
1365
1366        DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1367        return retU2;
1368}
1369
1370static u16 Hal_EfuseGetCurrentSize(
1371        struct adapter *padapter, u8 efuseType, bool bPseudoTest
1372)
1373{
1374        u16 ret = 0;
1375
1376        if (efuseType == EFUSE_WIFI)
1377                ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1378        else
1379                ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1380
1381        return ret;
1382}
1383
1384static u8 Hal_EfuseWordEnableDataWrite(
1385        struct adapter *padapter,
1386        u16 efuse_addr,
1387        u8 word_en,
1388        u8 *data,
1389        bool bPseudoTest
1390)
1391{
1392        u16 tmpaddr = 0;
1393        u16 start_addr = efuse_addr;
1394        u8 badworden = 0x0F;
1395        u8 tmpdata[PGPKT_DATA_SIZE];
1396
1397
1398/*      DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1399        memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1400
1401        if (!(word_en & BIT(0))) {
1402                tmpaddr = start_addr;
1403                efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1404                efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1405
1406                efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1407                efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1408                if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1409                        badworden &= (~BIT(0));
1410                }
1411        }
1412        if (!(word_en & BIT(1))) {
1413                tmpaddr = start_addr;
1414                efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1415                efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1416
1417                efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1418                efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1419                if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1420                        badworden &= (~BIT(1));
1421                }
1422        }
1423
1424        if (!(word_en & BIT(2))) {
1425                tmpaddr = start_addr;
1426                efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1427                efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1428
1429                efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1430                efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1431                if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1432                        badworden &= (~BIT(2));
1433                }
1434        }
1435
1436        if (!(word_en & BIT(3))) {
1437                tmpaddr = start_addr;
1438                efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1439                efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1440
1441                efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1442                efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1443                if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1444                        badworden &= (~BIT(3));
1445                }
1446        }
1447
1448        return badworden;
1449}
1450
1451static s32 Hal_EfusePgPacketRead(
1452        struct adapter *padapter,
1453        u8 offset,
1454        u8 *data,
1455        bool bPseudoTest
1456)
1457{
1458        u8 efuse_data, word_cnts = 0;
1459        u16 efuse_addr = 0;
1460        u8 hoffset = 0, hworden = 0;
1461        u8 i;
1462        u8 max_section = 0;
1463        s32     ret;
1464
1465
1466        if (!data)
1467                return false;
1468
1469        EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1470        if (offset > max_section) {
1471                DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1472                return false;
1473        }
1474
1475        memset(data, 0xFF, PGPKT_DATA_SIZE);
1476        ret = true;
1477
1478        /*  */
1479        /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1480        /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1481        /*  By pass right now. 2009.02.19. */
1482        /*  */
1483        while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1484                if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1485                        ret = false;
1486                        break;
1487                }
1488
1489                if (efuse_data == 0xFF)
1490                        break;
1491
1492                if (EXT_HEADER(efuse_data)) {
1493                        hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1494                        efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1495                        if (ALL_WORDS_DISABLED(efuse_data)) {
1496                                DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1497                                continue;
1498                        }
1499
1500                        hoffset |= ((efuse_data & 0xF0) >> 1);
1501                        hworden = efuse_data & 0x0F;
1502                } else {
1503                        hoffset = (efuse_data>>4) & 0x0F;
1504                        hworden =  efuse_data & 0x0F;
1505                }
1506
1507                if (hoffset == offset) {
1508                        for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1509                                /*  Check word enable condition in the section */
1510                                if (!(hworden & (0x01<<i))) {
1511                                        efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1512/*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1513                                        data[i*2] = efuse_data;
1514
1515                                        efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1516/*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1517                                        data[(i*2)+1] = efuse_data;
1518                                }
1519                        }
1520                } else {
1521                        word_cnts = Efuse_CalculateWordCnts(hworden);
1522                        efuse_addr += word_cnts*2;
1523                }
1524        }
1525
1526        return ret;
1527}
1528
1529static u8 hal_EfusePgCheckAvailableAddr(
1530        struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1531)
1532{
1533        u16 max_available = 0;
1534        u16 current_size;
1535
1536
1537        EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1538/*      DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1539
1540        current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1541        if (current_size >= max_available) {
1542                DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1543                return false;
1544        }
1545        return true;
1546}
1547
1548static void hal_EfuseConstructPGPkt(
1549        u8 offset,
1550        u8 word_en,
1551        u8 *pData,
1552        PPGPKT_STRUCT pTargetPkt
1553)
1554{
1555        memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1556        pTargetPkt->offset = offset;
1557        pTargetPkt->word_en = word_en;
1558        efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1559        pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1560}
1561
1562static u8 hal_EfusePartialWriteCheck(
1563        struct adapter *padapter,
1564        u8 efuseType,
1565        u16 *pAddr,
1566        PPGPKT_STRUCT pTargetPkt,
1567        u8 bPseudoTest
1568)
1569{
1570        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1571        PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1572        u8 bRet = false;
1573        u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1574        u8 efuse_data = 0;
1575
1576        EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1577        EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1578
1579        if (efuseType == EFUSE_WIFI) {
1580                if (bPseudoTest) {
1581#ifdef HAL_EFUSE_MEMORY
1582                        startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1583#else
1584                        startAddr = (u16)fakeEfuseUsedBytes;
1585#endif
1586                } else
1587                        rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1588        } else {
1589                if (bPseudoTest) {
1590#ifdef HAL_EFUSE_MEMORY
1591                        startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1592#else
1593                        startAddr = (u16)fakeBTEfuseUsedBytes;
1594#endif
1595                } else
1596                        rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1597        }
1598        startAddr %= efuse_max;
1599        DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1600
1601        while (1) {
1602                if (startAddr >= efuse_max_available_len) {
1603                        bRet = false;
1604                        DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1605                        break;
1606                }
1607
1608                if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1609#if 1
1610                        bRet = false;
1611                        DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1612                                __func__, startAddr, efuse_data);
1613                        break;
1614#else
1615                        if (EXT_HEADER(efuse_data)) {
1616                                cur_header = efuse_data;
1617                                startAddr++;
1618                                efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1619                                if (ALL_WORDS_DISABLED(efuse_data)) {
1620                                        DBG_8192C("%s: Error condition, all words disabled!", __func__);
1621                                        bRet = false;
1622                                        break;
1623                                } else {
1624                                        curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1625                                        curPkt.word_en = efuse_data & 0x0F;
1626                                }
1627                        } else {
1628                                cur_header  =  efuse_data;
1629                                curPkt.offset = (cur_header>>4) & 0x0F;
1630                                curPkt.word_en = cur_header & 0x0F;
1631                        }
1632
1633                        curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1634                        /*  if same header is found but no data followed */
1635                        /*  write some part of data followed by the header. */
1636                        if (
1637                                (curPkt.offset == pTargetPkt->offset) &&
1638                                (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1639                                wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1640                        ) {
1641                                DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1642                                /*  Here to write partial data */
1643                                badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1644                                if (badworden != 0x0F) {
1645                                        u32 PgWriteSuccess = 0;
1646                                        /*  if write fail on some words, write these bad words again */
1647                                        if (efuseType == EFUSE_WIFI)
1648                                                PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1649                                        else
1650                                                PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1651
1652                                        if (!PgWriteSuccess) {
1653                                                bRet = false;   /*  write fail, return */
1654                                                break;
1655                                        }
1656                                }
1657                                /*  partial write ok, update the target packet for later use */
1658                                for (i = 0; i < 4; i++) {
1659                                        if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1660                                                pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1661                                        }
1662                                }
1663                                pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1664                        }
1665                        /*  read from next header */
1666                        startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1667#endif
1668                } else {
1669                        /*  not used header, 0xff */
1670                        *pAddr = startAddr;
1671/*                      DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1672                        bRet = true;
1673                        break;
1674                }
1675        }
1676
1677        return bRet;
1678}
1679
1680static u8 hal_EfusePgPacketWrite1ByteHeader(
1681        struct adapter *padapter,
1682        u8 efuseType,
1683        u16 *pAddr,
1684        PPGPKT_STRUCT pTargetPkt,
1685        u8 bPseudoTest
1686)
1687{
1688        u8 pg_header = 0, tmp_header = 0;
1689        u16 efuse_addr = *pAddr;
1690        u8 repeatcnt = 0;
1691
1692
1693/*      DBG_8192C("%s\n", __func__); */
1694        pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1695
1696        do {
1697                efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1698                efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1699                if (tmp_header != 0xFF)
1700                        break;
1701                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1702                        DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1703                        return false;
1704                }
1705        } while (1);
1706
1707        if (tmp_header != pg_header) {
1708                DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1709                return false;
1710        }
1711
1712        *pAddr = efuse_addr;
1713
1714        return true;
1715}
1716
1717static u8 hal_EfusePgPacketWrite2ByteHeader(
1718        struct adapter *padapter,
1719        u8 efuseType,
1720        u16 *pAddr,
1721        PPGPKT_STRUCT pTargetPkt,
1722        u8 bPseudoTest
1723)
1724{
1725        u16 efuse_addr, efuse_max_available_len = 0;
1726        u8 pg_header = 0, tmp_header = 0;
1727        u8 repeatcnt = 0;
1728
1729
1730/*      DBG_8192C("%s\n", __func__); */
1731        EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1732
1733        efuse_addr = *pAddr;
1734        if (efuse_addr >= efuse_max_available_len) {
1735                DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1736                          efuse_addr, efuse_max_available_len);
1737                return false;
1738        }
1739
1740        pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1741/*      DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1742
1743        do {
1744                efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1745                efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1746                if (tmp_header != 0xFF)
1747                        break;
1748                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1749                        DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1750                        return false;
1751                }
1752        } while (1);
1753
1754        if (tmp_header != pg_header) {
1755                DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1756                return false;
1757        }
1758
1759        /*  to write ext_header */
1760        efuse_addr++;
1761        pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1762
1763        do {
1764                efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1765                efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1766                if (tmp_header != 0xFF)
1767                        break;
1768                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1769                        DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1770                        return false;
1771                }
1772        } while (1);
1773
1774        if (tmp_header != pg_header) { /* offset PG fail */
1775                DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1776                return false;
1777        }
1778
1779        *pAddr = efuse_addr;
1780
1781        return true;
1782}
1783
1784static u8 hal_EfusePgPacketWriteHeader(
1785        struct adapter *padapter,
1786        u8 efuseType,
1787        u16 *pAddr,
1788        PPGPKT_STRUCT pTargetPkt,
1789        u8 bPseudoTest
1790)
1791{
1792        u8 bRet = false;
1793
1794        if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1795                bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1796        else
1797                bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1798
1799        return bRet;
1800}
1801
1802static u8 hal_EfusePgPacketWriteData(
1803        struct adapter *padapter,
1804        u8 efuseType,
1805        u16 *pAddr,
1806        PPGPKT_STRUCT pTargetPkt,
1807        u8 bPseudoTest
1808)
1809{
1810        u16 efuse_addr;
1811        u8 badworden;
1812
1813
1814        efuse_addr = *pAddr;
1815        badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1816        if (badworden != 0x0F) {
1817                DBG_8192C("%s: Fail!!\n", __func__);
1818                return false;
1819        }
1820
1821/*      DBG_8192C("%s: ok\n", __func__); */
1822        return true;
1823}
1824
1825static s32 Hal_EfusePgPacketWrite(
1826        struct adapter *padapter,
1827        u8 offset,
1828        u8 word_en,
1829        u8 *pData,
1830        bool bPseudoTest
1831)
1832{
1833        PGPKT_STRUCT targetPkt;
1834        u16 startAddr = 0;
1835        u8 efuseType = EFUSE_WIFI;
1836
1837        if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1838                return false;
1839
1840        hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1841
1842        if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1843                return false;
1844
1845        if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1846                return false;
1847
1848        if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1849                return false;
1850
1851        return true;
1852}
1853
1854static bool Hal_EfusePgPacketWrite_BT(
1855        struct adapter *padapter,
1856        u8 offset,
1857        u8 word_en,
1858        u8 *pData,
1859        bool bPseudoTest
1860)
1861{
1862        PGPKT_STRUCT targetPkt;
1863        u16 startAddr = 0;
1864        u8 efuseType = EFUSE_BT;
1865
1866        if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1867                return false;
1868
1869        hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1870
1871        if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1872                return false;
1873
1874        if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1875                return false;
1876
1877        if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1878                return false;
1879
1880        return true;
1881}
1882
1883static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1884{
1885        u32 value32;
1886        HAL_VERSION ChipVersion;
1887        struct hal_com_data *pHalData;
1888
1889/* YJ, TODO, move read chip type here */
1890        pHalData = GET_HAL_DATA(padapter);
1891
1892        value32 = rtw_read32(padapter, REG_SYS_CFG);
1893        ChipVersion.ICType = CHIP_8723B;
1894        ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1895        ChipVersion.RFType = RF_TYPE_1T1R;
1896        ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1897        ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1898
1899        /*  For regulator mode. by tynli. 2011.01.14 */
1900        pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1901
1902        value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1903        ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1904
1905        /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1906        pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1907        value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1908        pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1909        pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1910        pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1911        pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1912#if 1
1913        dump_chip_info(ChipVersion);
1914#endif
1915        pHalData->VersionID = ChipVersion;
1916        if (IS_1T2R(ChipVersion))
1917                pHalData->rf_type = RF_1T2R;
1918        else if (IS_2T2R(ChipVersion))
1919                pHalData->rf_type = RF_2T2R;
1920        else
1921                pHalData->rf_type = RF_1T1R;
1922
1923        MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1924
1925        return ChipVersion;
1926}
1927
1928static void rtl8723b_read_chip_version(struct adapter *padapter)
1929{
1930        ReadChipVersion8723B(padapter);
1931}
1932
1933void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1934{
1935        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1936        u16 val16;
1937        u8 val8;
1938
1939
1940        val8 = DIS_TSF_UDT;
1941        val16 = val8 | (val8 << 8); /*  port0 and port1 */
1942
1943        /*  Enable prot0 beacon function for PSTDMA */
1944        val16 |= EN_BCN_FUNCTION;
1945
1946        rtw_write16(padapter, REG_BCN_CTRL, val16);
1947
1948        /*  TODO: Remove these magic number */
1949        rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1950        /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1951        /*  so don't set this register on STA mode. */
1952        if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1953                rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1954        rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1955
1956        /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1957        /*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1958        rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1959
1960        pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1961        pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1962        pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1963        pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1964        pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1965}
1966
1967void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1968{
1969        struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1970
1971        rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1972        rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1973        rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1974        rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1975        rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1976        if (pHalData->AMPDUBurstMode)
1977                rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1978        rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1979
1980        /*  ARFB table 9 for 11ac 5G 2SS */
1981        rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1982        if (IS_NORMAL_CHIP(pHalData->VersionID))
1983                rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1984        else
1985                rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1986
1987        /*  ARFB table 10 for 11ac 5G 1SS */
1988        rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1989        rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1990}
1991
1992static void ResumeTxBeacon(struct adapter *padapter)
1993{
1994        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1995
1996
1997        /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1998        /*  which should be read from register to a global variable. */
1999
2000        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2001
2002        pHalData->RegFwHwTxQCtrl |= BIT(6);
2003        rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2004        rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2005        pHalData->RegReg542 |= BIT(0);
2006        rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2007}
2008
2009static void StopTxBeacon(struct adapter *padapter)
2010{
2011        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2012
2013
2014        /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2015        /*  which should be read from register to a global variable. */
2016
2017        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2018
2019        pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2020        rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2021        rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2022        pHalData->RegReg542 &= ~BIT(0);
2023        rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2024
2025        CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2026}
2027
2028static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2029{
2030        rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2031        rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2032}
2033
2034static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2035{
2036        u8 val8;
2037        u32 value32;
2038        struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2039        struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2040        u32 bcn_ctrl_reg;
2041
2042        /* reset TSF, enable update TSF, correcting TSF On Beacon */
2043
2044        /* REG_BCN_INTERVAL */
2045        /* REG_BCNDMATIM */
2046        /* REG_ATIMWND */
2047        /* REG_TBTT_PROHIBIT */
2048        /* REG_DRVERLYINT */
2049        /* REG_BCN_MAX_ERR */
2050        /* REG_BCNTCFG (0x510) */
2051        /* REG_DUAL_TSF_RST */
2052        /* REG_BCN_CTRL (0x550) */
2053
2054
2055        bcn_ctrl_reg = REG_BCN_CTRL;
2056
2057        /*  */
2058        /*  ATIM window */
2059        /*  */
2060        rtw_write16(padapter, REG_ATIMWND, 2);
2061
2062        /*  */
2063        /*  Beacon interval (in unit of TU). */
2064        /*  */
2065        rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2066
2067        rtl8723b_InitBeaconParameters(padapter);
2068
2069        rtw_write8(padapter, REG_SLOT, 0x09);
2070
2071        /*  */
2072        /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2073        /*  */
2074        value32 = rtw_read32(padapter, REG_TCR);
2075        value32 &= ~TSFRST;
2076        rtw_write32(padapter, REG_TCR, value32);
2077
2078        value32 |= TSFRST;
2079        rtw_write32(padapter, REG_TCR, value32);
2080
2081        /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2082        if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2083                rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2084                rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2085        }
2086
2087        _BeaconFunctionEnable(padapter, true, true);
2088
2089        ResumeTxBeacon(padapter);
2090        val8 = rtw_read8(padapter, bcn_ctrl_reg);
2091        val8 |= DIS_BCNQ_SUB;
2092        rtw_write8(padapter, bcn_ctrl_reg, val8);
2093}
2094
2095static void rtl8723b_GetHalODMVar(
2096        struct adapter *Adapter,
2097        enum HAL_ODM_VARIABLE eVariable,
2098        void *pValue1,
2099        void *pValue2
2100)
2101{
2102        GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2103}
2104
2105static void rtl8723b_SetHalODMVar(
2106        struct adapter *Adapter,
2107        enum HAL_ODM_VARIABLE eVariable,
2108        void *pValue1,
2109        bool bSet
2110)
2111{
2112        SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2113}
2114
2115static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2116{
2117        if (enable) {
2118                DBG_871X("Enable notch filter\n");
2119                rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2120        } else {
2121                DBG_871X("Disable notch filter\n");
2122                rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2123        }
2124}
2125
2126static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2127{
2128        u32 mask, rate_bitmap;
2129        u8 shortGIrate = false;
2130        struct sta_info *psta;
2131        struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2132        struct dm_priv *pdmpriv = &pHalData->dmpriv;
2133        struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2134        struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2135
2136        DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2137
2138        if (mac_id >= NUM_STA) /* CAM_SIZE */
2139                return;
2140
2141        psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2142        if (!psta)
2143                return;
2144
2145        shortGIrate = query_ra_short_GI(psta);
2146
2147        mask = psta->ra_mask;
2148
2149        rate_bitmap = 0xffffffff;
2150        rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2151        DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2152                        __func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2153
2154        mask &= rate_bitmap;
2155
2156        rate_bitmap = hal_btcoex_GetRaMask(padapter);
2157        mask &= ~rate_bitmap;
2158
2159#ifdef CONFIG_CMCC_TEST
2160        if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2161                if (mac_id == 0) {
2162                        DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2163                        mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2164                        DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2165                }
2166        }
2167#endif
2168
2169        if (pHalData->fw_ractrl) {
2170                rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2171        }
2172
2173        /* set correct initial date rate for each mac_id */
2174        pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2175        DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2176}
2177
2178
2179void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2180{
2181        pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2182
2183        pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2184
2185        pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2186
2187        pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2188
2189        pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2190        pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2191        pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2192
2193        pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2194        pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2195
2196        pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2197        pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2198
2199
2200        pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2201
2202        pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2203
2204        pHalFunc->run_thread = &rtl8723b_start_thread;
2205        pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2206
2207        pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2208        pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2209        pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2210        pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2211
2212        /*  Efuse related function */
2213        pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2214        pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2215        pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2216        pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2217        pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2218        pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2219        pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2220        pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2221        pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2222
2223        pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2224        pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2225
2226        pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2227        pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2228
2229        pHalFunc->c2h_handler = c2h_handler_8723b;
2230        pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2231
2232        pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2233}
2234
2235void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2236{
2237        struct hal_com_data *pHalData;
2238        u8 val;
2239
2240
2241        pHalData = GET_HAL_DATA(padapter);
2242
2243        val = rtw_read8(padapter, REG_LEDCFG2);
2244        /*  Let 8051 take control antenna settting */
2245        val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2246        rtw_write8(padapter, REG_LEDCFG2, val);
2247}
2248
2249void rtl8723b_init_default_value(struct adapter *padapter)
2250{
2251        struct hal_com_data *pHalData;
2252        struct dm_priv *pdmpriv;
2253        u8 i;
2254
2255
2256        pHalData = GET_HAL_DATA(padapter);
2257        pdmpriv = &pHalData->dmpriv;
2258
2259        padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2260
2261        /*  init default value */
2262        pHalData->fw_ractrl = false;
2263        pHalData->bIQKInitialized = false;
2264        if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2265                pHalData->LastHMEBoxNum = 0;
2266
2267        pHalData->bIQKInitialized = false;
2268
2269        /*  init dm default value */
2270        pdmpriv->TM_Trigger = 0;/* for IQK */
2271/*      pdmpriv->binitialized = false; */
2272/*      pdmpriv->prv_traffic_idx = 3; */
2273/*      pdmpriv->initialize = 0; */
2274
2275        pdmpriv->ThermalValue_HP_index = 0;
2276        for (i = 0; i < HP_THERMAL_NUM; i++)
2277                pdmpriv->ThermalValue_HP[i] = 0;
2278
2279        /*  init Efuse variables */
2280        pHalData->EfuseUsedBytes = 0;
2281        pHalData->EfuseUsedPercentage = 0;
2282#ifdef HAL_EFUSE_MEMORY
2283        pHalData->EfuseHal.fakeEfuseBank = 0;
2284        pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2285        memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2286        memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2287        memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2288        pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2289        pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2290        memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2291        memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2292        memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2293        pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2294        memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2295        memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2296        memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2297#endif
2298}
2299
2300u8 GetEEPROMSize8723B(struct adapter *padapter)
2301{
2302        u8 size = 0;
2303        u32 cr;
2304
2305        cr = rtw_read16(padapter, REG_9346CR);
2306        /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2307        size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2308
2309        MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2310
2311        return size;
2312}
2313
2314/*  */
2315/*  */
2316/*  LLT R/W/Init function */
2317/*  */
2318/*  */
2319s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2320{
2321        unsigned long start, passing_time;
2322        u32 val32;
2323        s32 ret;
2324
2325
2326        ret = _FAIL;
2327
2328        val32 = rtw_read32(padapter, REG_AUTO_LLT);
2329        val32 |= BIT_AUTO_INIT_LLT;
2330        rtw_write32(padapter, REG_AUTO_LLT, val32);
2331
2332        start = jiffies;
2333
2334        do {
2335                val32 = rtw_read32(padapter, REG_AUTO_LLT);
2336                if (!(val32 & BIT_AUTO_INIT_LLT)) {
2337                        ret = _SUCCESS;
2338                        break;
2339                }
2340
2341                passing_time = jiffies_to_msecs(jiffies - start);
2342                if (passing_time > 1000) {
2343                        DBG_8192C(
2344                                "%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2345                                __func__,
2346                                REG_AUTO_LLT,
2347                                val32
2348                        );
2349                        break;
2350                }
2351
2352                msleep(1);
2353        } while (1);
2354
2355        return ret;
2356}
2357
2358static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2359{
2360        bool bIn24G = true;
2361
2362        if (Channel <= 14) {
2363                bIn24G = true;
2364
2365                if (1  <= Channel && Channel <= 2)
2366                        *pGroup = 0;
2367                else if (3  <= Channel && Channel <= 5)
2368                        *pGroup = 1;
2369                else if (6  <= Channel && Channel <= 8)
2370                        *pGroup = 2;
2371                else if (9  <= Channel && Channel <= 11)
2372                        *pGroup = 3;
2373                else if (12 <= Channel && Channel <= 14)
2374                        *pGroup = 4;
2375                else {
2376                        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2377                }
2378        } else {
2379                bIn24G = false;
2380
2381                if (36   <= Channel && Channel <=  42)
2382                        *pGroup = 0;
2383                else if (44   <= Channel && Channel <=  48)
2384                        *pGroup = 1;
2385                else if (50   <= Channel && Channel <=  58)
2386                        *pGroup = 2;
2387                else if (60   <= Channel && Channel <=  64)
2388                        *pGroup = 3;
2389                else if (100  <= Channel && Channel <= 106)
2390                        *pGroup = 4;
2391                else if (108  <= Channel && Channel <= 114)
2392                        *pGroup = 5;
2393                else if (116  <= Channel && Channel <= 122)
2394                        *pGroup = 6;
2395                else if (124  <= Channel && Channel <= 130)
2396                        *pGroup = 7;
2397                else if (132  <= Channel && Channel <= 138)
2398                        *pGroup = 8;
2399                else if (140  <= Channel && Channel <= 144)
2400                        *pGroup = 9;
2401                else if (149  <= Channel && Channel <= 155)
2402                        *pGroup = 10;
2403                else if (157  <= Channel && Channel <= 161)
2404                        *pGroup = 11;
2405                else if (165  <= Channel && Channel <= 171)
2406                        *pGroup = 12;
2407                else if (173  <= Channel && Channel <= 177)
2408                        *pGroup = 13;
2409                else {
2410                        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2411                }
2412
2413        }
2414        RT_TRACE(
2415                _module_hci_hal_init_c_,
2416                _drv_info_,
2417                (
2418                        "<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2419                        bIn24G ? "2.4G" : "5G",
2420                        Channel,
2421                        *pGroup
2422                )
2423        );
2424        return bIn24G;
2425}
2426
2427void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2428{
2429        struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2430
2431        if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2432                if (!pEEPROM->EepromOrEfuse) {
2433                        /*  Read EFUSE real map to shadow. */
2434                        EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2435                        memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2436                }
2437        } else {/* autoload fail */
2438                RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2439                if (!pEEPROM->EepromOrEfuse)
2440                        EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2441                memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2442        }
2443}
2444
2445void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2446{
2447        struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2448/*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2449        u16 EEPROMId;
2450
2451
2452        /*  Checl 0x8129 again for making sure autoload status!! */
2453        EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2454        if (EEPROMId != RTL_EEPROM_ID) {
2455                DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2456                pEEPROM->bautoload_fail_flag = true;
2457        } else
2458                pEEPROM->bautoload_fail_flag = false;
2459
2460        RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2461}
2462
2463static void Hal_ReadPowerValueFromPROM_8723B(
2464        struct adapter *Adapter,
2465        struct TxPowerInfo24G *pwrInfo24G,
2466        u8 *PROMContent,
2467        bool AutoLoadFail
2468)
2469{
2470        struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2471        u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2472
2473        memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2474
2475        if (0xFF == PROMContent[eeAddr+1])
2476                AutoLoadFail = true;
2477
2478        if (AutoLoadFail) {
2479                DBG_871X("%s(): Use Default value!\n", __func__);
2480                for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2481                        /* 2.4G default value */
2482                        for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2483                                pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2484                                pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2485                        }
2486
2487                        for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2488                                if (TxCount == 0) {
2489                                        pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2490                                        pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2491                                } else {
2492                                        pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2493                                        pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2494                                        pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2495                                        pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2496                                }
2497                        }
2498                }
2499
2500                return;
2501        }
2502
2503        pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2504
2505        for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2506                /* 2 2.4G default value */
2507                for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2508                        pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2509                        if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2510                                pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2511                }
2512
2513                for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2514                        pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2515                        if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2516                                pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2517                }
2518
2519                for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2520                        if (TxCount == 0) {
2521                                pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2522                                if (PROMContent[eeAddr] == 0xFF)
2523                                        pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2524                                else {
2525                                        pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2526                                        if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2527                                                pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2528                                }
2529
2530                                if (PROMContent[eeAddr] == 0xFF)
2531                                        pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2532                                else {
2533                                        pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2534                                        if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2535                                                pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2536                                }
2537                                pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2538                                eeAddr++;
2539                        } else {
2540                                if (PROMContent[eeAddr] == 0xFF)
2541                                        pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2542                                else {
2543                                        pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2544                                        if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2545                                                pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2546                                }
2547
2548                                if (PROMContent[eeAddr] == 0xFF)
2549                                        pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2550                                else {
2551                                        pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2552                                        if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2553                                                pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2554                                }
2555                                eeAddr++;
2556
2557                                if (PROMContent[eeAddr] == 0xFF)
2558                                        pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559                                else {
2560                                        pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2561                                        if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2562                                                pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2563                                }
2564
2565                                if (PROMContent[eeAddr] == 0xFF)
2566                                        pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2567                                else {
2568                                        pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2569                                        if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2570                                                pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2571                                }
2572                                eeAddr++;
2573                        }
2574                }
2575        }
2576}
2577
2578
2579void Hal_EfuseParseTxPowerInfo_8723B(
2580        struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2581)
2582{
2583        struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2584        struct TxPowerInfo24G   pwrInfo24G;
2585        u8      rfPath, ch, TxCount = 1;
2586
2587        Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2588        for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2589                for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2590                        u8 group = 0;
2591
2592                        Hal_GetChnlGroup8723B(ch+1, &group);
2593
2594                        if (ch == 14-1) {
2595                                pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2596                                pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2597                        } else {
2598                                pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2599                                pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2600                        }
2601#ifdef DEBUG
2602                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2603                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2604                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2605#endif
2606                }
2607
2608                for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2609                        pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2610                        pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2611                        pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2612                        pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2613
2614#ifdef DEBUG
2615                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2616                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2617                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2618                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2619                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2620#endif
2621                }
2622        }
2623
2624        /*  2010/10/19 MH Add Regulator recognize for CU. */
2625        if (!AutoLoadFail) {
2626                pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2627                if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2628                        pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2629        } else
2630                pHalData->EEPROMRegulatory = 0;
2631
2632        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2633}
2634
2635void Hal_EfuseParseBTCoexistInfo_8723B(
2636        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2637)
2638{
2639        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2640        u8 tempval;
2641        u32 tmpu4;
2642
2643        if (!AutoLoadFail) {
2644                tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2645                if (tmpu4 & BT_FUNC_EN)
2646                        pHalData->EEPROMBluetoothCoexist = true;
2647                else
2648                        pHalData->EEPROMBluetoothCoexist = false;
2649
2650                pHalData->EEPROMBluetoothType = BT_RTL8723B;
2651
2652                tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2653                if (tempval != 0xFF) {
2654                        pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2655                        /*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2656                        /*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2657                        pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2658                } else {
2659                        pHalData->EEPROMBluetoothAntNum = Ant_x1;
2660                        if (pHalData->PackageType == PACKAGE_QFN68)
2661                                pHalData->ant_path = ODM_RF_PATH_B;
2662                        else
2663                                pHalData->ant_path = ODM_RF_PATH_A;
2664                }
2665        } else {
2666                pHalData->EEPROMBluetoothCoexist = false;
2667                pHalData->EEPROMBluetoothType = BT_RTL8723B;
2668                pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669                pHalData->ant_path = ODM_RF_PATH_A;
2670        }
2671
2672        if (padapter->registrypriv.ant_num > 0) {
2673                DBG_8192C(
2674                        "%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2675                        __func__,
2676                        padapter->registrypriv.ant_num,
2677                        pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2678                );
2679
2680                switch (padapter->registrypriv.ant_num) {
2681                case 1:
2682                        pHalData->EEPROMBluetoothAntNum = Ant_x1;
2683                        break;
2684                case 2:
2685                        pHalData->EEPROMBluetoothAntNum = Ant_x2;
2686                        break;
2687                default:
2688                        DBG_8192C(
2689                                "%s: Discard invalid driver defined antenna number(%d)!\n",
2690                                __func__,
2691                                padapter->registrypriv.ant_num
2692                        );
2693                        break;
2694                }
2695        }
2696
2697        hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2698        hal_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2699        hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2700        if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2701                hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2702
2703        DBG_8192C(
2704                "%s: %s BT-coex, ant_num =%d\n",
2705                __func__,
2706                pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2707                pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2708        );
2709}
2710
2711void Hal_EfuseParseEEPROMVer_8723B(
2712        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2713)
2714{
2715        struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2716
2717/*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2718        if (!AutoLoadFail)
2719                pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2720        else
2721                pHalData->EEPROMVersion = 1;
2722        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2723                pHalData->EEPROMVersion));
2724}
2725
2726
2727
2728void Hal_EfuseParsePackageType_8723B(
2729        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2730)
2731{
2732        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2733        u8 package;
2734        u8 efuseContent;
2735
2736        Efuse_PowerSwitch(padapter, false, true);
2737        efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2738        DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2739        Efuse_PowerSwitch(padapter, false, false);
2740
2741        package = efuseContent & 0x7;
2742        switch (package) {
2743        case 0x4:
2744                pHalData->PackageType = PACKAGE_TFBGA79;
2745                break;
2746        case 0x5:
2747                pHalData->PackageType = PACKAGE_TFBGA90;
2748                break;
2749        case 0x6:
2750                pHalData->PackageType = PACKAGE_QFN68;
2751                break;
2752        case 0x7:
2753                pHalData->PackageType = PACKAGE_TFBGA80;
2754                break;
2755
2756        default:
2757                pHalData->PackageType = PACKAGE_DEFAULT;
2758                break;
2759        }
2760
2761        DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2762}
2763
2764
2765void Hal_EfuseParseVoltage_8723B(
2766        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2767)
2768{
2769        struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2770
2771        /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2772        DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2773        pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2774        DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2775}
2776
2777void Hal_EfuseParseChnlPlan_8723B(
2778        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2779)
2780{
2781        padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2782                padapter,
2783                hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2784                padapter->registrypriv.channel_plan,
2785                RT_CHANNEL_DOMAIN_WORLD_NULL,
2786                AutoLoadFail
2787        );
2788
2789        Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2790
2791        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2792}
2793
2794void Hal_EfuseParseCustomerID_8723B(
2795        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2796)
2797{
2798        struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2799
2800/*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2801        if (!AutoLoadFail)
2802                pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2803        else
2804                pHalData->EEPROMCustomerID = 0;
2805
2806        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2807}
2808
2809void Hal_EfuseParseAntennaDiversity_8723B(
2810        struct adapter *padapter,
2811        u8 *hwinfo,
2812        bool AutoLoadFail
2813)
2814{
2815}
2816
2817void Hal_EfuseParseXtal_8723B(
2818        struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2819)
2820{
2821        struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2822
2823/*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2824        if (!AutoLoadFail) {
2825                pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2826                if (pHalData->CrystalCap == 0xFF)
2827                        pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2828        } else
2829                pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2830
2831        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2832}
2833
2834
2835void Hal_EfuseParseThermalMeter_8723B(
2836        struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2837)
2838{
2839        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2840
2841/*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2842        /*  */
2843        /*  ThermalMeter from EEPROM */
2844        /*  */
2845        if (!AutoLoadFail)
2846                pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2847        else
2848                pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2849
2850        if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
2851                pHalData->bAPKThermalMeterIgnore = true;
2852                pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2853        }
2854
2855        RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2856}
2857
2858
2859void Hal_ReadRFGainOffset(
2860        struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2861)
2862{
2863        /*  */
2864        /*  BB_RF Gain Offset from EEPROM */
2865        /*  */
2866
2867        if (!AutoloadFail) {
2868                Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2869                DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2870                Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2871                DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2872        } else {
2873                Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2874                Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2875                DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2876        }
2877        DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2878}
2879
2880u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2881{
2882        u8 BWSettingOfDesc = 0;
2883        struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2884
2885        /* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2886
2887        if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2888                if (pattrib->bwmode == CHANNEL_WIDTH_80)
2889                        BWSettingOfDesc = 2;
2890                else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2891                        BWSettingOfDesc = 1;
2892                else
2893                        BWSettingOfDesc = 0;
2894        } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2895                if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2896                        BWSettingOfDesc = 1;
2897                else
2898                        BWSettingOfDesc = 0;
2899        } else
2900                BWSettingOfDesc = 0;
2901
2902        /* if (pTcb->bBTTxPacket) */
2903        /*      BWSettingOfDesc = 0; */
2904
2905        return BWSettingOfDesc;
2906}
2907
2908u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2909{
2910        u8 SCSettingOfDesc = 0;
2911        struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2912
2913        /* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2914
2915        if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2916                if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2917                        SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2918                } else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2919                        if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2920                                SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2921                        else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2922                                SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2923                        else
2924                                DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2925                } else {
2926                        if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2927                                SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2928                        else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2929                                SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2930                        else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2931                                SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2932                        else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2933                                SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2934                        else
2935                                DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2936                }
2937        } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2938                /* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2939
2940                if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2941                        SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2942                } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2943                        if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2944                                SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2945                        } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2946                                SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2947                        } else {
2948                                SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2949                        }
2950                }
2951        } else {
2952                SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2953        }
2954
2955        return SCSettingOfDesc;
2956}
2957
2958static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2959{
2960        u16 *usPtr = (u16 *)ptxdesc;
2961        u32 count;
2962        u32 index;
2963        u16 checksum = 0;
2964
2965
2966        /*  Clear first */
2967        ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2968
2969        /*  checksume is always calculated by first 32 bytes, */
2970        /*  and it doesn't depend on TX DESC length. */
2971        /*  Thomas, Lucas@SD4, 20130515 */
2972        count = 16;
2973
2974        for (index = 0; index < count; index++) {
2975                checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2976        }
2977
2978        ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2979}
2980
2981static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2982{
2983        u8 sectype = 0;
2984        if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2985                switch (pattrib->encrypt) {
2986                /*  SEC_TYPE */
2987                case _WEP40_:
2988                case _WEP104_:
2989                case _TKIP_:
2990                case _TKIP_WTMIC_:
2991                        sectype = 1;
2992                        break;
2993
2994                case _AES_:
2995                        sectype = 3;
2996                        break;
2997
2998                case _NO_PRIVACY_:
2999                default:
3000                        break;
3001                }
3002        }
3003        return sectype;
3004}
3005
3006static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3007{
3008        /* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3009
3010        if (pattrib->vcs_mode) {
3011                switch (pattrib->vcs_mode) {
3012                case RTS_CTS:
3013                        ptxdesc->rtsen = 1;
3014                        /*  ENABLE HW RTS */
3015                        ptxdesc->hw_rts_en = 1;
3016                        break;
3017
3018                case CTS_TO_SELF:
3019                        ptxdesc->cts2self = 1;
3020                        break;
3021
3022                case NONE_VCS:
3023                default:
3024                        break;
3025                }
3026
3027                ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3028                ptxdesc->rts_ratefb_lmt = 0xF;
3029
3030                if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3031                        ptxdesc->rts_short = 1;
3032
3033                /*  Set RTS BW */
3034                if (pattrib->ht_en)
3035                        ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3036        }
3037}
3038
3039static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3040{
3041        /* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3042
3043        if (pattrib->ht_en) {
3044                ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3045
3046                ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3047        }
3048}
3049
3050static void rtl8723b_fill_default_txdesc(
3051        struct xmit_frame *pxmitframe, u8 *pbuf
3052)
3053{
3054        struct adapter *padapter;
3055        struct hal_com_data *pHalData;
3056        struct dm_priv *pdmpriv;
3057        struct mlme_ext_priv *pmlmeext;
3058        struct mlme_ext_info *pmlmeinfo;
3059        struct pkt_attrib *pattrib;
3060        PTXDESC_8723B ptxdesc;
3061        s32 bmcst;
3062
3063        memset(pbuf, 0, TXDESC_SIZE);
3064
3065        padapter = pxmitframe->padapter;
3066        pHalData = GET_HAL_DATA(padapter);
3067        pdmpriv = &pHalData->dmpriv;
3068        pmlmeext = &padapter->mlmeextpriv;
3069        pmlmeinfo = &(pmlmeext->mlmext_info);
3070
3071        pattrib = &pxmitframe->attrib;
3072        bmcst = IS_MCAST(pattrib->ra);
3073
3074        ptxdesc = (PTXDESC_8723B)pbuf;
3075
3076        if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3077                u8 drv_userate = 0;
3078
3079                ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3080                ptxdesc->rate_id = pattrib->raid;
3081                ptxdesc->qsel = pattrib->qsel;
3082                ptxdesc->seq = pattrib->seqnum;
3083
3084                ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3085                fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3086
3087                if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3088                        drv_userate = 1;
3089
3090                if (
3091                        (pattrib->ether_type != 0x888e) &&
3092                        (pattrib->ether_type != 0x0806) &&
3093                        (pattrib->ether_type != 0x88B4) &&
3094                        (pattrib->dhcp_pkt != 1) &&
3095                        (drv_userate != 1)
3096#ifdef CONFIG_AUTO_AP_MODE
3097                        && (!pattrib->pctrl)
3098#endif
3099                ) {
3100                        /*  Non EAP & ARP & DHCP type data packet */
3101
3102                        if (pattrib->ampdu_en) {
3103                                ptxdesc->agg_en = 1; /*  AGG EN */
3104                                ptxdesc->max_agg_num = 0x1f;
3105                                ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3106                        } else
3107                                ptxdesc->bk = 1; /*  AGG BK */
3108
3109                        fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3110
3111                        ptxdesc->data_ratefb_lmt = 0x1F;
3112
3113                        if (!pHalData->fw_ractrl) {
3114                                ptxdesc->userate = 1;
3115
3116                                if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3117                                        ptxdesc->data_short = 1;
3118
3119                                ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3120                        }
3121
3122                        if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3123                                ptxdesc->userate = 1;
3124                                if (padapter->fix_rate & BIT(7))
3125                                        ptxdesc->data_short = 1;
3126
3127                                ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3128                                ptxdesc->disdatafb = 1;
3129                        }
3130
3131                        if (pattrib->ldpc)
3132                                ptxdesc->data_ldpc = 1;
3133                        if (pattrib->stbc)
3134                                ptxdesc->data_stbc = 1;
3135
3136#ifdef CONFIG_CMCC_TEST
3137                        ptxdesc->data_short = 1; /* use cck short premble */
3138#endif
3139                } else {
3140                        /*  EAP data packet and ARP packet. */
3141                        /*  Use the 1M data rate to send the EAP/ARP packet. */
3142                        /*  This will maybe make the handshake smooth. */
3143
3144                        ptxdesc->bk = 1; /*  AGG BK */
3145                        ptxdesc->userate = 1; /*  driver uses rate */
3146                        if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3147                                ptxdesc->data_short = 1;/*  DATA_SHORT */
3148                        ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3149                        DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3150                }
3151
3152                ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3153        } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3154/*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3155
3156                ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3157                ptxdesc->qsel = pattrib->qsel;
3158                ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3159                ptxdesc->seq = pattrib->seqnum;
3160                ptxdesc->userate = 1; /*  driver uses rate, 1M */
3161
3162                ptxdesc->mbssid = pattrib->mbssid & 0xF;
3163
3164                ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3165                if (pattrib->retry_ctrl) {
3166                        ptxdesc->data_rt_lmt = 6;
3167                } else {
3168                        ptxdesc->data_rt_lmt = 12;
3169                }
3170
3171                ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3172
3173                /*  CCX-TXRPT ack for xmit mgmt frames. */
3174                if (pxmitframe->ack_report) {
3175                        #ifdef DBG_CCX
3176                        DBG_8192C("%s set spe_rpt\n", __func__);
3177                        #endif
3178                        ptxdesc->spe_rpt = 1;
3179                        ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3180                }
3181        } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3182                RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3183        } else {
3184                RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3185
3186                ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3187                ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3188                ptxdesc->qsel = pattrib->qsel;
3189                ptxdesc->seq = pattrib->seqnum;
3190                ptxdesc->userate = 1; /*  driver uses rate */
3191                ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3192        }
3193
3194        ptxdesc->pktlen = pattrib->last_txcmdsz;
3195        ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3196
3197        if (bmcst)
3198                ptxdesc->bmc = 1;
3199
3200        /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3201        /*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3202        /*  mgnt frame should be controled by Hw because Fw will also send null data */
3203        /*  which we cannot control when Fw LPS enable. */
3204        /*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3205        /*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3206        /*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3207        /*  2010.06.23. Added by tynli. */
3208        if (!pattrib->qos_en) /*  Hw set sequence number */
3209                ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3210}
3211
3212/*
3213 *Description:
3214 *
3215 *Parameters:
3216 *      pxmitframe      xmitframe
3217 *      pbuf            where to fill tx desc
3218 */
3219void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3220{
3221        struct tx_desc *pdesc;
3222
3223        rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3224
3225        pdesc = (struct tx_desc *)pbuf;
3226        pdesc->txdw0 = pdesc->txdw0;
3227        pdesc->txdw1 = pdesc->txdw1;
3228        pdesc->txdw2 = pdesc->txdw2;
3229        pdesc->txdw3 = pdesc->txdw3;
3230        pdesc->txdw4 = pdesc->txdw4;
3231        pdesc->txdw5 = pdesc->txdw5;
3232        pdesc->txdw6 = pdesc->txdw6;
3233        pdesc->txdw7 = pdesc->txdw7;
3234        pdesc->txdw8 = pdesc->txdw8;
3235        pdesc->txdw9 = pdesc->txdw9;
3236
3237        rtl8723b_cal_txdesc_chksum(pdesc);
3238}
3239
3240/*  */
3241/*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3242/*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3243/*                      Fw can tell Hw to send these packet derectly. */
3244/*  Added by tynli. 2009.10.15. */
3245/*  */
3246/* type1:pspoll, type2:null */
3247void rtl8723b_fill_fake_txdesc(
3248        struct adapter *padapter,
3249        u8 *pDesc,
3250        u32 BufferLen,
3251        u8 IsPsPoll,
3252        u8 IsBTQosNull,
3253        u8 bDataFrame
3254)
3255{
3256        /*  Clear all status */
3257        memset(pDesc, 0, TXDESC_SIZE);
3258
3259        SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3260        SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3261
3262        SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3263
3264        SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3265        SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3266
3267        /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3268        if (IsPsPoll) {
3269                SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3270        } else {
3271                SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3272                SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3273        }
3274
3275        if (IsBTQosNull) {
3276                SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3277        }
3278
3279        SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3280        SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3281
3282        SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3283
3284        /*  */
3285        /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3286        /*  */
3287        if (bDataFrame) {
3288                u32 EncAlg;
3289
3290                EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3291                switch (EncAlg) {
3292                case _NO_PRIVACY_:
3293                        SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3294                        break;
3295                case _WEP40_:
3296                case _WEP104_:
3297                case _TKIP_:
3298                        SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3299                        break;
3300                case _SMS4_:
3301                        SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3302                        break;
3303                case _AES_:
3304                        SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3305                        break;
3306                default:
3307                        SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3308                        break;
3309                }
3310        }
3311
3312        /*  USB interface drop packet if the checksum of descriptor isn't correct. */
3313        /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3314        rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3315}
3316
3317static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3318{
3319        u8 val8;
3320        u8 mode = *((u8 *)val);
3321
3322        {
3323                /*  disable Port0 TSF update */
3324                val8 = rtw_read8(padapter, REG_BCN_CTRL);
3325                val8 |= DIS_TSF_UDT;
3326                rtw_write8(padapter, REG_BCN_CTRL, val8);
3327
3328                /*  set net_type */
3329                Set_MSR(padapter, mode);
3330                DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3331
3332                if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3333                        {
3334                                StopTxBeacon(padapter);
3335#ifdef CONFIG_INTERRUPT_BASED_TXBCN
3336#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3337                                rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3338                                UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3339#endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3340
3341#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3342                                UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3343#endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3344
3345#endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3346                        }
3347
3348                        /*  disable atim wnd */
3349                        rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3350                        /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3351                } else if (mode == _HW_STATE_ADHOC_) {
3352                        ResumeTxBeacon(padapter);
3353                        rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3354                } else if (mode == _HW_STATE_AP_) {
3355#ifdef CONFIG_INTERRUPT_BASED_TXBCN
3356#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3357                        UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3358#endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3359
3360#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3361                        UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3362#endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3363
3364#endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3365
3366                        ResumeTxBeacon(padapter);
3367
3368                        rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3369
3370                        /* Set RCR */
3371                        rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3372                        /* enable to rx data frame */
3373                        rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3374                        /* enable to rx ps-poll */
3375                        rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3376
3377                        /* Beacon Control related register for first time */
3378                        rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3379
3380                        /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3381                        rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3382                        rtw_write16(padapter, REG_BCNTCFG, 0x00);
3383                        rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3384                        rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3385
3386                        /* reset TSF */
3387                        rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3388
3389                        /* enable BCN0 Function for if1 */
3390                        /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3391                        rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3392
3393                        /* SW_BCN_SEL - Port0 */
3394                        /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3395                        rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3396
3397                        /*  select BCN on port 0 */
3398                        rtw_write8(
3399                                padapter,
3400                                REG_CCK_CHECK_8723B,
3401                                (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3402                        );
3403
3404                        /*  dis BCN1 ATIM  WND if if2 is station */
3405                        val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3406                        val8 |= DIS_ATIM;
3407                        rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3408                }
3409        }
3410}
3411
3412static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3413{
3414        u8 idx = 0;
3415        u32 reg_macid;
3416
3417        reg_macid = REG_MACID;
3418
3419        for (idx = 0 ; idx < 6; idx++)
3420                rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3421}
3422
3423static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3424{
3425        u8 idx = 0;
3426        u32 reg_bssid;
3427
3428        reg_bssid = REG_BSSID;
3429
3430        for (idx = 0 ; idx < 6; idx++)
3431                rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3432}
3433
3434static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3435{
3436        u32 bcn_ctrl_reg;
3437
3438        bcn_ctrl_reg = REG_BCN_CTRL;
3439
3440        if (*(u8 *)val)
3441                rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3442        else {
3443                u8 val8;
3444                val8 = rtw_read8(padapter, bcn_ctrl_reg);
3445                val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3446
3447                /*  Always enable port0 beacon function for PSTDMA */
3448                if (REG_BCN_CTRL == bcn_ctrl_reg)
3449                        val8 |= EN_BCN_FUNCTION;
3450
3451                rtw_write8(padapter, bcn_ctrl_reg, val8);
3452        }
3453}
3454
3455static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3456{
3457        u8 val8;
3458        u64 tsf;
3459        struct mlme_ext_priv *pmlmeext;
3460        struct mlme_ext_info *pmlmeinfo;
3461
3462
3463        pmlmeext = &padapter->mlmeextpriv;
3464        pmlmeinfo = &pmlmeext->mlmext_info;
3465
3466        tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3467
3468        if (
3469                ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3470                ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3471        )
3472                StopTxBeacon(padapter);
3473
3474        {
3475                /*  disable related TSF function */
3476                val8 = rtw_read8(padapter, REG_BCN_CTRL);
3477                val8 &= ~EN_BCN_FUNCTION;
3478                rtw_write8(padapter, REG_BCN_CTRL, val8);
3479
3480                rtw_write32(padapter, REG_TSFTR, tsf);
3481                rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3482
3483                /*  enable related TSF function */
3484                val8 = rtw_read8(padapter, REG_BCN_CTRL);
3485                val8 |= EN_BCN_FUNCTION;
3486                rtw_write8(padapter, REG_BCN_CTRL, val8);
3487        }
3488
3489        if (
3490                ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3491                ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3492        )
3493                ResumeTxBeacon(padapter);
3494}
3495
3496static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3497{
3498        u8 val8;
3499
3500        /*  Set RCR to not to receive data frame when NO LINK state */
3501        /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3502        /*  reject all data frames */
3503        rtw_write16(padapter, REG_RXFLTMAP2, 0);
3504
3505        /*  reset TSF */
3506        rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3507
3508        /*  disable update TSF */
3509        val8 = rtw_read8(padapter, REG_BCN_CTRL);
3510        val8 |= DIS_TSF_UDT;
3511        rtw_write8(padapter, REG_BCN_CTRL, val8);
3512}
3513
3514static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3515{
3516        u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3517        u16 value_rxfltmap2;
3518        u8 val8;
3519        struct hal_com_data *pHalData;
3520        struct mlme_priv *pmlmepriv;
3521
3522
3523        pHalData = GET_HAL_DATA(padapter);
3524        pmlmepriv = &padapter->mlmepriv;
3525
3526        reg_bcn_ctl = REG_BCN_CTRL;
3527
3528        rcr_clear_bit = RCR_CBSSID_BCN;
3529
3530        /*  config RCR to receive different BSSID & not to receive data frame */
3531        value_rxfltmap2 = 0;
3532
3533        if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3534                rcr_clear_bit = RCR_CBSSID_BCN;
3535
3536        value_rcr = rtw_read32(padapter, REG_RCR);
3537
3538        if (*((u8 *)val)) {
3539                /*  under sitesurvey */
3540                value_rcr &= ~(rcr_clear_bit);
3541                rtw_write32(padapter, REG_RCR, value_rcr);
3542
3543                rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3544
3545                if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3546                        /*  disable update TSF */
3547                        val8 = rtw_read8(padapter, reg_bcn_ctl);
3548                        val8 |= DIS_TSF_UDT;
3549                        rtw_write8(padapter, reg_bcn_ctl, val8);
3550                }
3551
3552                /*  Save orignal RRSR setting. */
3553                pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3554        } else {
3555                /*  sitesurvey done */
3556                if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3557                        /*  enable to rx data frame */
3558                        rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3559
3560                if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3561                        /*  enable update TSF */
3562                        val8 = rtw_read8(padapter, reg_bcn_ctl);
3563                        val8 &= ~DIS_TSF_UDT;
3564                        rtw_write8(padapter, reg_bcn_ctl, val8);
3565                }
3566
3567                value_rcr |= rcr_clear_bit;
3568                rtw_write32(padapter, REG_RCR, value_rcr);
3569
3570                /*  Restore orignal RRSR setting. */
3571                rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3572        }
3573}
3574
3575static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3576{
3577        u8 val8;
3578        u16 val16;
3579        u32 val32;
3580        u8 RetryLimit;
3581        u8 type;
3582        struct mlme_priv *pmlmepriv;
3583        struct eeprom_priv *pEEPROM;
3584
3585
3586        RetryLimit = 0x30;
3587        type = *(u8 *)val;
3588        pmlmepriv = &padapter->mlmepriv;
3589        pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3590
3591        if (type == 0) { /*  prepare to join */
3592                /* enable to rx data frame.Accept all data frame */
3593                /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3594                rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3595
3596                val32 = rtw_read32(padapter, REG_RCR);
3597                if (padapter->in_cta_test)
3598                        val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3599                else
3600                        val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3601                rtw_write32(padapter, REG_RCR, val32);
3602
3603                if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3604                        RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3605                else /*  Ad-hoc Mode */
3606                        RetryLimit = 0x7;
3607        } else if (type == 1) /* joinbss_event call back when join res < 0 */
3608                rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3609        else if (type == 2) { /* sta add event call back */
3610                /* enable update TSF */
3611                val8 = rtw_read8(padapter, REG_BCN_CTRL);
3612                val8 &= ~DIS_TSF_UDT;
3613                rtw_write8(padapter, REG_BCN_CTRL, val8);
3614
3615                if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3616                        RetryLimit = 0x7;
3617        }
3618
3619        val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3620        rtw_write16(padapter, REG_RL, val16);
3621}
3622
3623void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3624{
3625        u8 seq_no;
3626
3627#define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3628#define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3629
3630        /* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3631        /*              *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3632
3633        seq_no = *(pdata+6);
3634
3635        if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3636                rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3637        }
3638/*
3639        else if (seq_no != padapter->xmitpriv.seq_no) {
3640                DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3641                rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3642        }
3643*/
3644        else
3645                rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3646}
3647
3648s32 c2h_id_filter_ccx_8723b(u8 *buf)
3649{
3650        struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3651        s32 ret = false;
3652        if (c2h_evt->id == C2H_CCX_TX_RPT)
3653                ret = true;
3654
3655        return ret;
3656}
3657
3658
3659s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3660{
3661        struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3662        s32 ret = _SUCCESS;
3663        u8 index = 0;
3664
3665        if (!pC2hEvent) {
3666                DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3667                ret = _FAIL;
3668                goto exit;
3669        }
3670
3671        switch (pC2hEvent->id) {
3672        case C2H_AP_RPT_RSP:
3673                break;
3674        case C2H_DBG:
3675                {
3676                        RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3677                }
3678                break;
3679
3680        case C2H_CCX_TX_RPT:
3681/*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3682                break;
3683
3684        case C2H_EXT_RA_RPT:
3685/*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3686                break;
3687
3688        case C2H_HW_INFO_EXCH:
3689                RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3690                for (index = 0; index < pC2hEvent->plen; index++) {
3691                        RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3692                }
3693                break;
3694
3695        case C2H_8723B_BT_INFO:
3696                hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3697                break;
3698
3699        default:
3700                break;
3701        }
3702
3703        /*  Clear event to notify FW we have read the command. */
3704        /*  Note: */
3705        /*      If this field isn't clear, the FW won't update the next command message. */
3706/*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3707exit:
3708        return ret;
3709}
3710
3711static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3712{
3713        u8 index = 0;
3714
3715        if (!c2hBuf) {
3716                DBG_8192C("%s c2hbuff is NULL\n", __func__);
3717                return;
3718        }
3719
3720        switch (pC2hEvent->CmdID) {
3721        case C2H_AP_RPT_RSP:
3722                break;
3723        case C2H_DBG:
3724                {
3725                        RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3726                }
3727                break;
3728
3729        case C2H_CCX_TX_RPT:
3730/*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3731                break;
3732
3733        case C2H_EXT_RA_RPT:
3734/*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3735                break;
3736
3737        case C2H_HW_INFO_EXCH:
3738                RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3739                for (index = 0; index < pC2hEvent->CmdLen; index++) {
3740                        RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3741                }
3742                break;
3743
3744        case C2H_8723B_BT_INFO:
3745                hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3746                break;
3747
3748        default:
3749                break;
3750        }
3751}
3752
3753void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3754{
3755        C2H_EVT_HDR     C2hEvent;
3756        u8 *tmpBuf = NULL;
3757#ifdef CONFIG_WOWLAN
3758        struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3759
3760        if (pwrpriv->wowlan_mode) {
3761                DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3762                return;
3763        }
3764#endif
3765        C2hEvent.CmdID = pbuffer[0];
3766        C2hEvent.CmdSeq = pbuffer[1];
3767        C2hEvent.CmdLen = length-2;
3768        tmpBuf = pbuffer+2;
3769
3770        /* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3771        /*              __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3772        RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3773
3774        process_c2h_event(padapter, &C2hEvent, tmpBuf);
3775        /* c2h_handler_8723b(padapter,&C2hEvent); */
3776        return;
3777}
3778
3779void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3780{
3781        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3782        u8 val8;
3783        u32 val32;
3784
3785        switch (variable) {
3786        case HW_VAR_MEDIA_STATUS:
3787                val8 = rtw_read8(padapter, MSR) & 0x0c;
3788                val8 |= *val;
3789                rtw_write8(padapter, MSR, val8);
3790                break;
3791
3792        case HW_VAR_MEDIA_STATUS1:
3793                val8 = rtw_read8(padapter, MSR) & 0x03;
3794                val8 |= *val << 2;
3795                rtw_write8(padapter, MSR, val8);
3796                break;
3797
3798        case HW_VAR_SET_OPMODE:
3799                hw_var_set_opmode(padapter, variable, val);
3800                break;
3801
3802        case HW_VAR_MAC_ADDR:
3803                hw_var_set_macaddr(padapter, variable, val);
3804                break;
3805
3806        case HW_VAR_BSSID:
3807                hw_var_set_bssid(padapter, variable, val);
3808                break;
3809
3810        case HW_VAR_BASIC_RATE:
3811        {
3812                struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3813                u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3814                u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3815                u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3816
3817                HalSetBrateCfg(padapter, val, &BrateCfg);
3818                input_b = BrateCfg;
3819
3820                /* apply force and allow mask */
3821                BrateCfg |= rrsr_2g_force_mask;
3822                BrateCfg &= rrsr_2g_allow_mask;
3823                masked = BrateCfg;
3824
3825                #ifdef CONFIG_CMCC_TEST
3826                BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3827                BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3828                #endif
3829
3830                /* IOT consideration */
3831                if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3832                        /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3833                        if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3834                                BrateCfg |= RRSR_6M;
3835                }
3836                ioted = BrateCfg;
3837
3838                pHalData->BasicRateSet = BrateCfg;
3839
3840                DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3841
3842                /*  Set RRSR rate table. */
3843                rtw_write16(padapter, REG_RRSR, BrateCfg);
3844                rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3845        }
3846                break;
3847
3848        case HW_VAR_TXPAUSE:
3849                rtw_write8(padapter, REG_TXPAUSE, *val);
3850                break;
3851
3852        case HW_VAR_BCN_FUNC:
3853                hw_var_set_bcn_func(padapter, variable, val);
3854                break;
3855
3856        case HW_VAR_CORRECT_TSF:
3857                hw_var_set_correct_tsf(padapter, variable, val);
3858                break;
3859
3860        case HW_VAR_CHECK_BSSID:
3861                {
3862                        u32 val32;
3863                        val32 = rtw_read32(padapter, REG_RCR);
3864                        if (*val)
3865                                val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3866                        else
3867                                val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3868                        rtw_write32(padapter, REG_RCR, val32);
3869                }
3870                break;
3871
3872        case HW_VAR_MLME_DISCONNECT:
3873                hw_var_set_mlme_disconnect(padapter, variable, val);
3874                break;
3875
3876        case HW_VAR_MLME_SITESURVEY:
3877                hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3878
3879                hal_btcoex_ScanNotify(padapter, *val?true:false);
3880                break;
3881
3882        case HW_VAR_MLME_JOIN:
3883                hw_var_set_mlme_join(padapter, variable, val);
3884
3885                switch (*val) {
3886                case 0:
3887                        /*  prepare to join */
3888                        hal_btcoex_ConnectNotify(padapter, true);
3889                        break;
3890                case 1:
3891                        /*  joinbss_event callback when join res < 0 */
3892                        hal_btcoex_ConnectNotify(padapter, false);
3893                        break;
3894                case 2:
3895                        /*  sta add event callback */
3896/*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3897                        break;
3898                }
3899                break;
3900
3901        case HW_VAR_ON_RCR_AM:
3902                val32 = rtw_read32(padapter, REG_RCR);
3903                val32 |= RCR_AM;
3904                rtw_write32(padapter, REG_RCR, val32);
3905                DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3906                break;
3907
3908        case HW_VAR_OFF_RCR_AM:
3909                val32 = rtw_read32(padapter, REG_RCR);
3910                val32 &= ~RCR_AM;
3911                rtw_write32(padapter, REG_RCR, val32);
3912                DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3913                break;
3914
3915        case HW_VAR_BEACON_INTERVAL:
3916                rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3917                break;
3918
3919        case HW_VAR_SLOT_TIME:
3920                rtw_write8(padapter, REG_SLOT, *val);
3921                break;
3922
3923        case HW_VAR_RESP_SIFS:
3924                /* SIFS_Timer = 0x0a0a0808; */
3925                /* RESP_SIFS for CCK */
3926                rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3927                rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3928                /* RESP_SIFS for OFDM */
3929                rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3930                rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3931                break;
3932
3933        case HW_VAR_ACK_PREAMBLE:
3934                {
3935                        u8 regTmp;
3936                        u8 bShortPreamble = *val;
3937
3938                        /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3939                        /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3940                        regTmp = 0;
3941                        if (bShortPreamble)
3942                                regTmp |= 0x80;
3943                        rtw_write8(padapter, REG_RRSR+2, regTmp);
3944                }
3945                break;
3946
3947        case HW_VAR_CAM_EMPTY_ENTRY:
3948                {
3949                        u8 ucIndex = *val;
3950                        u8 i;
3951                        u32 ulCommand = 0;
3952                        u32 ulContent = 0;
3953                        u32 ulEncAlgo = CAM_AES;
3954
3955                        for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3956                                /*  filled id in CAM config 2 byte */
3957                                if (i == 0) {
3958                                        ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3959                                        /* ulContent |= CAM_VALID; */
3960                                } else
3961                                        ulContent = 0;
3962
3963                                /*  polling bit, and No Write enable, and address */
3964                                ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3965                                ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3966                                /*  write content 0 is equall to mark invalid */
3967                                rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3968                                /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3969                                rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3970                                /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3971                        }
3972                }
3973                break;
3974
3975        case HW_VAR_CAM_INVALID_ALL:
3976                rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3977                break;
3978
3979        case HW_VAR_CAM_WRITE:
3980                {
3981                        u32 cmd;
3982                        u32 *cam_val = (u32 *)val;
3983
3984                        rtw_write32(padapter, WCAMI, cam_val[0]);
3985
3986                        cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3987                        rtw_write32(padapter, RWCAM, cmd);
3988                }
3989                break;
3990
3991        case HW_VAR_AC_PARAM_VO:
3992                rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3993                break;
3994
3995        case HW_VAR_AC_PARAM_VI:
3996                rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3997                break;
3998
3999        case HW_VAR_AC_PARAM_BE:
4000                pHalData->AcParam_BE = ((u32 *)(val))[0];
4001                rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4002                break;
4003
4004        case HW_VAR_AC_PARAM_BK:
4005                rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4006                break;
4007
4008        case HW_VAR_ACM_CTRL:
4009                {
4010                        u8 ctrl = *((u8 *)val);
4011                        u8 hwctrl = 0;
4012
4013                        if (ctrl != 0) {
4014                                hwctrl |= AcmHw_HwEn;
4015
4016                                if (ctrl & BIT(1)) /*  BE */
4017                                        hwctrl |= AcmHw_BeqEn;
4018
4019                                if (ctrl & BIT(2)) /*  VI */
4020                                        hwctrl |= AcmHw_ViqEn;
4021
4022                                if (ctrl & BIT(3)) /*  VO */
4023                                        hwctrl |= AcmHw_VoqEn;
4024                        }
4025
4026                        DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4027                        rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4028                }
4029                break;
4030
4031        case HW_VAR_AMPDU_FACTOR:
4032                {
4033                        u32 AMPDULen =  (*((u8 *)val));
4034
4035                        if (AMPDULen < HT_AGG_SIZE_32K)
4036                                AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4037                        else
4038                                AMPDULen = 0x7fff;
4039
4040                        rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4041                }
4042                break;
4043
4044        case HW_VAR_H2C_FW_PWRMODE:
4045                {
4046                        u8 psmode = *val;
4047
4048                        /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4049                        /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4050                        if (psmode != PS_MODE_ACTIVE) {
4051                                ODM_RF_Saving(&pHalData->odmpriv, true);
4052                        }
4053
4054                        /* if (psmode != PS_MODE_ACTIVE)        { */
4055                        /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4056                        /*  else { */
4057                        /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4058                        /*  */
4059                        rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4060                }
4061                break;
4062        case HW_VAR_H2C_PS_TUNE_PARAM:
4063                rtl8723b_set_FwPsTuneParam_cmd(padapter);
4064                break;
4065
4066        case HW_VAR_H2C_FW_JOINBSSRPT:
4067                rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4068                break;
4069
4070        case HW_VAR_INITIAL_GAIN:
4071                {
4072                        DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4073                        u32 rx_gain = *(u32 *)val;
4074
4075                        if (rx_gain == 0xff) {/* restore rx gain */
4076                                ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4077                        } else {
4078                                pDigTable->BackupIGValue = pDigTable->CurIGValue;
4079                                ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4080                        }
4081                }
4082                break;
4083
4084        case HW_VAR_EFUSE_USAGE:
4085                pHalData->EfuseUsedPercentage = *val;
4086                break;
4087
4088        case HW_VAR_EFUSE_BYTES:
4089                pHalData->EfuseUsedBytes = *((u16 *)val);
4090                break;
4091
4092        case HW_VAR_EFUSE_BT_USAGE:
4093#ifdef HAL_EFUSE_MEMORY
4094                pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4095#endif
4096                break;
4097
4098        case HW_VAR_EFUSE_BT_BYTES:
4099#ifdef HAL_EFUSE_MEMORY
4100                pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4101#else
4102                BTEfuseUsedBytes = *((u16 *)val);
4103#endif
4104                break;
4105
4106        case HW_VAR_FIFO_CLEARN_UP:
4107                {
4108                        #define RW_RELEASE_EN           BIT(18)
4109                        #define RXDMA_IDLE                      BIT(17)
4110
4111                        struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4112                        u8 trycnt = 100;
4113
4114                        /*  pause tx */
4115                        rtw_write8(padapter, REG_TXPAUSE, 0xff);
4116
4117                        /*  keep sn */
4118                        padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4119
4120                        if (!pwrpriv->bkeepfwalive) {
4121                                /* RX DMA stop */
4122                                val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4123                                val32 |= RW_RELEASE_EN;
4124                                rtw_write32(padapter, REG_RXPKT_NUM, val32);
4125                                do {
4126                                        val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4127                                        val32 &= RXDMA_IDLE;
4128                                        if (val32)
4129                                                break;
4130
4131                                        DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4132                                } while (--trycnt);
4133
4134                                if (trycnt == 0) {
4135                                        DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4136                                }
4137
4138                                /*  RQPN Load 0 */
4139                                rtw_write16(padapter, REG_RQPN_NPQ, 0);
4140                                rtw_write32(padapter, REG_RQPN, 0x80000000);
4141                                mdelay(2);
4142                        }
4143                }
4144                break;
4145
4146        case HW_VAR_APFM_ON_MAC:
4147                pHalData->bMacPwrCtrlOn = *val;
4148                DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4149                break;
4150
4151        case HW_VAR_NAV_UPPER:
4152                {
4153                        u32 usNavUpper = *((u32 *)val);
4154
4155                        if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4156                                RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4157                                break;
4158                        }
4159
4160                        /*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4161                        /*  is getting the upper integer. */
4162                        usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4163                        rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4164                }
4165                break;
4166
4167        case HW_VAR_H2C_MEDIA_STATUS_RPT:
4168                {
4169                        u16 mstatus_rpt = (*(u16 *)val);
4170                        u8 mstatus, macId;
4171
4172                        mstatus = (u8) (mstatus_rpt & 0xFF);
4173                        macId = (u8)(mstatus_rpt >> 8);
4174                        rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4175                }
4176                break;
4177        case HW_VAR_BCN_VALID:
4178                {
4179                        /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4180                        val8 = rtw_read8(padapter, REG_TDECTRL+2);
4181                        val8 |= BIT(0);
4182                        rtw_write8(padapter, REG_TDECTRL+2, val8);
4183                }
4184                break;
4185
4186        case HW_VAR_DL_BCN_SEL:
4187                {
4188                        /*  SW_BCN_SEL - Port0 */
4189                        val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4190                        val8 &= ~BIT(4);
4191                        rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4192                }
4193                break;
4194
4195        case HW_VAR_DO_IQK:
4196                pHalData->bNeedIQK = true;
4197                break;
4198
4199        case HW_VAR_DL_RSVD_PAGE:
4200                if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4201                        rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4202                else
4203                        rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4204                break;
4205
4206        case HW_VAR_MACID_SLEEP:
4207                /*  Input is MACID */
4208                val32 = *(u32 *)val;
4209                if (val32 > 31) {
4210                        DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4211                                FUNC_ADPT_ARG(padapter), val32);
4212                        break;
4213                }
4214                val8 = (u8)val32; /*  macid is between 0~31 */
4215
4216                val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4217                DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4218                        FUNC_ADPT_ARG(padapter), val8, val32);
4219                if (val32 & BIT(val8))
4220                        break;
4221                val32 |= BIT(val8);
4222                rtw_write32(padapter, REG_MACID_SLEEP, val32);
4223                break;
4224
4225        case HW_VAR_MACID_WAKEUP:
4226                /*  Input is MACID */
4227                val32 = *(u32 *)val;
4228                if (val32 > 31) {
4229                        DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4230                                FUNC_ADPT_ARG(padapter), val32);
4231                        break;
4232                }
4233                val8 = (u8)val32; /*  macid is between 0~31 */
4234
4235                val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4236                DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4237                        FUNC_ADPT_ARG(padapter), val8, val32);
4238                if (!(val32 & BIT(val8)))
4239                        break;
4240                val32 &= ~BIT(val8);
4241                rtw_write32(padapter, REG_MACID_SLEEP, val32);
4242                break;
4243
4244        default:
4245                SetHwReg(padapter, variable, val);
4246                break;
4247        }
4248}
4249
4250void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4251{
4252        struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4253        u8 val8;
4254        u16 val16;
4255
4256        switch (variable) {
4257        case HW_VAR_TXPAUSE:
4258                *val = rtw_read8(padapter, REG_TXPAUSE);
4259                break;
4260
4261        case HW_VAR_BCN_VALID:
4262                {
4263                        /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4264                        val8 = rtw_read8(padapter, REG_TDECTRL+2);
4265                        *val = (BIT(0) & val8) ? true : false;
4266                }
4267                break;
4268
4269        case HW_VAR_FWLPS_RF_ON:
4270                {
4271                        /*  When we halt NIC, we should check if FW LPS is leave. */
4272                        u32 valRCR;
4273
4274                        if (
4275                                padapter->bSurpriseRemoved  ||
4276                                (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4277                        ) {
4278                                /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4279                                /*  because Fw is unload. */
4280                                *val = true;
4281                        } else {
4282                                valRCR = rtw_read32(padapter, REG_RCR);
4283                                valRCR &= 0x00070000;
4284                                if (valRCR)
4285                                        *val = false;
4286                                else
4287                                        *val = true;
4288                        }
4289                }
4290                break;
4291
4292        case HW_VAR_EFUSE_USAGE:
4293                *val = pHalData->EfuseUsedPercentage;
4294                break;
4295
4296        case HW_VAR_EFUSE_BYTES:
4297                *((u16 *)val) = pHalData->EfuseUsedBytes;
4298                break;
4299
4300        case HW_VAR_EFUSE_BT_USAGE:
4301#ifdef HAL_EFUSE_MEMORY
4302                *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4303#endif
4304                break;
4305
4306        case HW_VAR_EFUSE_BT_BYTES:
4307#ifdef HAL_EFUSE_MEMORY
4308                *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4309#else
4310                *((u16 *)val) = BTEfuseUsedBytes;
4311#endif
4312                break;
4313
4314        case HW_VAR_APFM_ON_MAC:
4315                *val = pHalData->bMacPwrCtrlOn;
4316                break;
4317        case HW_VAR_CHK_HI_QUEUE_EMPTY:
4318                val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4319                *val = (val16 & BIT(10)) ? true:false;
4320                break;
4321#ifdef CONFIG_WOWLAN
4322        case HW_VAR_RPWM_TOG:
4323                *val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4324                break;
4325        case HW_VAR_WAKEUP_REASON:
4326                *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4327                if (*val == 0xEA)
4328                        *val = 0;
4329                break;
4330        case HW_VAR_SYS_CLKR:
4331                *val = rtw_read8(padapter, REG_SYS_CLKR);
4332                break;
4333#endif
4334        default:
4335                GetHwReg(padapter, variable, val);
4336                break;
4337        }
4338}
4339
4340/*
4341 *Description:
4342 *      Change default setting of specified variable.
4343 */
4344u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4345{
4346        u8 bResult;
4347
4348        bResult = _SUCCESS;
4349
4350        switch (variable) {
4351        default:
4352                bResult = SetHalDefVar(padapter, variable, pval);
4353                break;
4354        }
4355
4356        return bResult;
4357}
4358
4359/*
4360 *Description:
4361 *      Query setting of specified variable.
4362 */
4363u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4364{
4365        u8 bResult;
4366
4367        bResult = _SUCCESS;
4368
4369        switch (variable) {
4370        case HAL_DEF_MAX_RECVBUF_SZ:
4371                *((u32 *)pval) = MAX_RECVBUF_SZ;
4372                break;
4373
4374        case HAL_DEF_RX_PACKET_OFFSET:
4375                *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4376                break;
4377
4378        case HW_VAR_MAX_RX_AMPDU_FACTOR:
4379                /*  Stanley@BB.SD3 suggests 16K can get stable performance */
4380                /*  The experiment was done on SDIO interface */
4381                /*  coding by Lucas@20130730 */
4382                *(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4383                break;
4384        case HAL_DEF_TX_LDPC:
4385        case HAL_DEF_RX_LDPC:
4386                *((u8 *)pval) = false;
4387                break;
4388        case HAL_DEF_TX_STBC:
4389                *((u8 *)pval) = 0;
4390                break;
4391        case HAL_DEF_RX_STBC:
4392                *((u8 *)pval) = 1;
4393                break;
4394        case HAL_DEF_EXPLICIT_BEAMFORMER:
4395        case HAL_DEF_EXPLICIT_BEAMFORMEE:
4396                *((u8 *)pval) = false;
4397                break;
4398
4399        case HW_DEF_RA_INFO_DUMP:
4400                {
4401                        u8 mac_id = *(u8 *)pval;
4402                        u32 cmd;
4403                        u32 ra_info1, ra_info2;
4404                        u32 rate_mask1, rate_mask2;
4405                        u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4406
4407                        DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4408
4409                        cmd = 0x40000100 | mac_id;
4410                        rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4411                        msleep(10);
4412                        ra_info1 = rtw_read32(padapter, 0x2F0);
4413                        curr_tx_rate = ra_info1&0x7F;
4414                        curr_tx_sgi = (ra_info1>>7)&0x01;
4415                        DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4416                                ra_info1,
4417                                HDATA_RATE(curr_tx_rate),
4418                                curr_tx_sgi,
4419                                (ra_info1>>8)  & 0x07);
4420
4421                        cmd = 0x40000400 | mac_id;
4422                        rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4423                        msleep(10);
4424                        ra_info1 = rtw_read32(padapter, 0x2F0);
4425                        ra_info2 = rtw_read32(padapter, 0x2F4);
4426                        rate_mask1 = rtw_read32(padapter, 0x2F8);
4427                        rate_mask2 = rtw_read32(padapter, 0x2FC);
4428                        hight_rate = ra_info2&0xFF;
4429                        lowest_rate = (ra_info2>>8)  & 0xFF;
4430
4431                        DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4432                                ra_info1,
4433                                ra_info1&0xFF,
4434                                (ra_info1>>8)  & 0xFF,
4435                                (ra_info1>>16) & 0xFF,
4436                                (ra_info1>>24) & 0xFF);
4437
4438                        DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4439                                ra_info2,
4440                                HDATA_RATE(hight_rate),
4441                                HDATA_RATE(lowest_rate),
4442                                (ra_info2>>16) & 0xFF,
4443                                (ra_info2>>24) & 0xFF);
4444
4445                        DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4446
4447                }
4448                break;
4449
4450        case HAL_DEF_TX_PAGE_BOUNDARY:
4451                if (!padapter->registrypriv.wifi_spec) {
4452                        *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4453                } else {
4454                        *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4455                }
4456                break;
4457
4458        case HAL_DEF_MACID_SLEEP:
4459                *(u8 *)pval = true; /*  support macid sleep */
4460                break;
4461
4462        default:
4463                bResult = GetHalDefVar(padapter, variable, pval);
4464                break;
4465        }
4466
4467        return bResult;
4468}
4469
4470#ifdef CONFIG_WOWLAN
4471void Hal_DetectWoWMode(struct adapter *padapter)
4472{
4473        adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4474        DBG_871X("%s\n", __func__);
4475}
4476#endif /* CONFIG_WOWLAN */
4477
4478void rtl8723b_start_thread(struct adapter *padapter)
4479{
4480#ifndef CONFIG_SDIO_TX_TASKLET
4481        struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4482
4483        xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4484        if (IS_ERR(xmitpriv->SdioXmitThread)) {
4485                RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4486        }
4487#endif
4488}
4489
4490void rtl8723b_stop_thread(struct adapter *padapter)
4491{
4492#ifndef CONFIG_SDIO_TX_TASKLET
4493        struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4494
4495        /*  stop xmit_buf_thread */
4496        if (xmitpriv->SdioXmitThread) {
4497                complete(&xmitpriv->SdioXmitStart);
4498                wait_for_completion(&xmitpriv->SdioXmitTerminate);
4499                xmitpriv->SdioXmitThread = NULL;
4500        }
4501#endif
4502}
4503
4504#if defined(CONFIG_CHECK_BT_HANG)
4505extern void check_bt_status_work(void *data);
4506void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4507{
4508        adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4509        INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4510}
4511
4512void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4513{
4514        if (adapter->priv_checkbt_wq) {
4515                cancel_delayed_work_sync(&adapter->checkbt_work);
4516                flush_workqueue(adapter->priv_checkbt_wq);
4517                destroy_workqueue(adapter->priv_checkbt_wq);
4518                adapter->priv_checkbt_wq = NULL;
4519        }
4520}
4521
4522void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4523{
4524        if (adapter->priv_checkbt_wq)
4525                cancel_delayed_work_sync(&adapter->checkbt_work);
4526}
4527
4528void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4529{
4530        if (adapter->priv_checkbt_wq)
4531                queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4532}
4533#endif
4534