linux/drivers/tee/optee/call.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015, Linaro Limited
   4 */
   5#include <linux/arm-smccc.h>
   6#include <linux/device.h>
   7#include <linux/err.h>
   8#include <linux/errno.h>
   9#include <linux/mm.h>
  10#include <linux/slab.h>
  11#include <linux/tee_drv.h>
  12#include <linux/types.h>
  13#include <linux/uaccess.h>
  14#include "optee_private.h"
  15#include "optee_smc.h"
  16
  17struct optee_call_waiter {
  18        struct list_head list_node;
  19        struct completion c;
  20};
  21
  22static void optee_cq_wait_init(struct optee_call_queue *cq,
  23                               struct optee_call_waiter *w)
  24{
  25        /*
  26         * We're preparing to make a call to secure world. In case we can't
  27         * allocate a thread in secure world we'll end up waiting in
  28         * optee_cq_wait_for_completion().
  29         *
  30         * Normally if there's no contention in secure world the call will
  31         * complete and we can cleanup directly with optee_cq_wait_final().
  32         */
  33        mutex_lock(&cq->mutex);
  34
  35        /*
  36         * We add ourselves to the queue, but we don't wait. This
  37         * guarantees that we don't lose a completion if secure world
  38         * returns busy and another thread just exited and try to complete
  39         * someone.
  40         */
  41        init_completion(&w->c);
  42        list_add_tail(&w->list_node, &cq->waiters);
  43
  44        mutex_unlock(&cq->mutex);
  45}
  46
  47static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
  48                                         struct optee_call_waiter *w)
  49{
  50        wait_for_completion(&w->c);
  51
  52        mutex_lock(&cq->mutex);
  53
  54        /* Move to end of list to get out of the way for other waiters */
  55        list_del(&w->list_node);
  56        reinit_completion(&w->c);
  57        list_add_tail(&w->list_node, &cq->waiters);
  58
  59        mutex_unlock(&cq->mutex);
  60}
  61
  62static void optee_cq_complete_one(struct optee_call_queue *cq)
  63{
  64        struct optee_call_waiter *w;
  65
  66        list_for_each_entry(w, &cq->waiters, list_node) {
  67                if (!completion_done(&w->c)) {
  68                        complete(&w->c);
  69                        break;
  70                }
  71        }
  72}
  73
  74static void optee_cq_wait_final(struct optee_call_queue *cq,
  75                                struct optee_call_waiter *w)
  76{
  77        /*
  78         * We're done with the call to secure world. The thread in secure
  79         * world that was used for this call is now available for some
  80         * other task to use.
  81         */
  82        mutex_lock(&cq->mutex);
  83
  84        /* Get out of the list */
  85        list_del(&w->list_node);
  86
  87        /* Wake up one eventual waiting task */
  88        optee_cq_complete_one(cq);
  89
  90        /*
  91         * If we're completed we've got a completion from another task that
  92         * was just done with its call to secure world. Since yet another
  93         * thread now is available in secure world wake up another eventual
  94         * waiting task.
  95         */
  96        if (completion_done(&w->c))
  97                optee_cq_complete_one(cq);
  98
  99        mutex_unlock(&cq->mutex);
 100}
 101
 102/* Requires the filpstate mutex to be held */
 103static struct optee_session *find_session(struct optee_context_data *ctxdata,
 104                                          u32 session_id)
 105{
 106        struct optee_session *sess;
 107
 108        list_for_each_entry(sess, &ctxdata->sess_list, list_node)
 109                if (sess->session_id == session_id)
 110                        return sess;
 111
 112        return NULL;
 113}
 114
 115/**
 116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
 117 * @ctx:        calling context
 118 * @parg:       physical address of message to pass to secure world
 119 *
 120 * Does and SMC to OP-TEE in secure world and handles eventual resulting
 121 * Remote Procedure Calls (RPC) from OP-TEE.
 122 *
 123 * Returns return code from secure world, 0 is OK
 124 */
 125u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
 126{
 127        struct optee *optee = tee_get_drvdata(ctx->teedev);
 128        struct optee_call_waiter w;
 129        struct optee_rpc_param param = { };
 130        struct optee_call_ctx call_ctx = { };
 131        u32 ret;
 132
 133        param.a0 = OPTEE_SMC_CALL_WITH_ARG;
 134        reg_pair_from_64(&param.a1, &param.a2, parg);
 135        /* Initialize waiter */
 136        optee_cq_wait_init(&optee->call_queue, &w);
 137        while (true) {
 138                struct arm_smccc_res res;
 139
 140                optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
 141                                 param.a4, param.a5, param.a6, param.a7,
 142                                 &res);
 143
 144                if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
 145                        /*
 146                         * Out of threads in secure world, wait for a thread
 147                         * become available.
 148                         */
 149                        optee_cq_wait_for_completion(&optee->call_queue, &w);
 150                } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
 151                        param.a0 = res.a0;
 152                        param.a1 = res.a1;
 153                        param.a2 = res.a2;
 154                        param.a3 = res.a3;
 155                        optee_handle_rpc(ctx, &param, &call_ctx);
 156                } else {
 157                        ret = res.a0;
 158                        break;
 159                }
 160        }
 161
 162        optee_rpc_finalize_call(&call_ctx);
 163        /*
 164         * We're done with our thread in secure world, if there's any
 165         * thread waiters wake up one.
 166         */
 167        optee_cq_wait_final(&optee->call_queue, &w);
 168
 169        return ret;
 170}
 171
 172static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
 173                                   struct optee_msg_arg **msg_arg,
 174                                   phys_addr_t *msg_parg)
 175{
 176        int rc;
 177        struct tee_shm *shm;
 178        struct optee_msg_arg *ma;
 179
 180        shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
 181                            TEE_SHM_MAPPED);
 182        if (IS_ERR(shm))
 183                return shm;
 184
 185        ma = tee_shm_get_va(shm, 0);
 186        if (IS_ERR(ma)) {
 187                rc = PTR_ERR(ma);
 188                goto out;
 189        }
 190
 191        rc = tee_shm_get_pa(shm, 0, msg_parg);
 192        if (rc)
 193                goto out;
 194
 195        memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
 196        ma->num_params = num_params;
 197        *msg_arg = ma;
 198out:
 199        if (rc) {
 200                tee_shm_free(shm);
 201                return ERR_PTR(rc);
 202        }
 203
 204        return shm;
 205}
 206
 207int optee_open_session(struct tee_context *ctx,
 208                       struct tee_ioctl_open_session_arg *arg,
 209                       struct tee_param *param)
 210{
 211        struct optee_context_data *ctxdata = ctx->data;
 212        int rc;
 213        struct tee_shm *shm;
 214        struct optee_msg_arg *msg_arg;
 215        phys_addr_t msg_parg;
 216        struct optee_session *sess = NULL;
 217
 218        /* +2 for the meta parameters added below */
 219        shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
 220        if (IS_ERR(shm))
 221                return PTR_ERR(shm);
 222
 223        msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
 224        msg_arg->cancel_id = arg->cancel_id;
 225
 226        /*
 227         * Initialize and add the meta parameters needed when opening a
 228         * session.
 229         */
 230        msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
 231                                  OPTEE_MSG_ATTR_META;
 232        msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
 233                                  OPTEE_MSG_ATTR_META;
 234        memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
 235        memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
 236        msg_arg->params[1].u.value.c = arg->clnt_login;
 237
 238        rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
 239        if (rc)
 240                goto out;
 241
 242        sess = kzalloc(sizeof(*sess), GFP_KERNEL);
 243        if (!sess) {
 244                rc = -ENOMEM;
 245                goto out;
 246        }
 247
 248        if (optee_do_call_with_arg(ctx, msg_parg)) {
 249                msg_arg->ret = TEEC_ERROR_COMMUNICATION;
 250                msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
 251        }
 252
 253        if (msg_arg->ret == TEEC_SUCCESS) {
 254                /* A new session has been created, add it to the list. */
 255                sess->session_id = msg_arg->session;
 256                mutex_lock(&ctxdata->mutex);
 257                list_add(&sess->list_node, &ctxdata->sess_list);
 258                mutex_unlock(&ctxdata->mutex);
 259        } else {
 260                kfree(sess);
 261        }
 262
 263        if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
 264                arg->ret = TEEC_ERROR_COMMUNICATION;
 265                arg->ret_origin = TEEC_ORIGIN_COMMS;
 266                /* Close session again to avoid leakage */
 267                optee_close_session(ctx, msg_arg->session);
 268        } else {
 269                arg->session = msg_arg->session;
 270                arg->ret = msg_arg->ret;
 271                arg->ret_origin = msg_arg->ret_origin;
 272        }
 273out:
 274        tee_shm_free(shm);
 275
 276        return rc;
 277}
 278
 279int optee_close_session(struct tee_context *ctx, u32 session)
 280{
 281        struct optee_context_data *ctxdata = ctx->data;
 282        struct tee_shm *shm;
 283        struct optee_msg_arg *msg_arg;
 284        phys_addr_t msg_parg;
 285        struct optee_session *sess;
 286
 287        /* Check that the session is valid and remove it from the list */
 288        mutex_lock(&ctxdata->mutex);
 289        sess = find_session(ctxdata, session);
 290        if (sess)
 291                list_del(&sess->list_node);
 292        mutex_unlock(&ctxdata->mutex);
 293        if (!sess)
 294                return -EINVAL;
 295        kfree(sess);
 296
 297        shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
 298        if (IS_ERR(shm))
 299                return PTR_ERR(shm);
 300
 301        msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
 302        msg_arg->session = session;
 303        optee_do_call_with_arg(ctx, msg_parg);
 304
 305        tee_shm_free(shm);
 306        return 0;
 307}
 308
 309int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
 310                      struct tee_param *param)
 311{
 312        struct optee_context_data *ctxdata = ctx->data;
 313        struct tee_shm *shm;
 314        struct optee_msg_arg *msg_arg;
 315        phys_addr_t msg_parg;
 316        struct optee_session *sess;
 317        int rc;
 318
 319        /* Check that the session is valid */
 320        mutex_lock(&ctxdata->mutex);
 321        sess = find_session(ctxdata, arg->session);
 322        mutex_unlock(&ctxdata->mutex);
 323        if (!sess)
 324                return -EINVAL;
 325
 326        shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
 327        if (IS_ERR(shm))
 328                return PTR_ERR(shm);
 329        msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
 330        msg_arg->func = arg->func;
 331        msg_arg->session = arg->session;
 332        msg_arg->cancel_id = arg->cancel_id;
 333
 334        rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
 335        if (rc)
 336                goto out;
 337
 338        if (optee_do_call_with_arg(ctx, msg_parg)) {
 339                msg_arg->ret = TEEC_ERROR_COMMUNICATION;
 340                msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
 341        }
 342
 343        if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
 344                msg_arg->ret = TEEC_ERROR_COMMUNICATION;
 345                msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
 346        }
 347
 348        arg->ret = msg_arg->ret;
 349        arg->ret_origin = msg_arg->ret_origin;
 350out:
 351        tee_shm_free(shm);
 352        return rc;
 353}
 354
 355int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
 356{
 357        struct optee_context_data *ctxdata = ctx->data;
 358        struct tee_shm *shm;
 359        struct optee_msg_arg *msg_arg;
 360        phys_addr_t msg_parg;
 361        struct optee_session *sess;
 362
 363        /* Check that the session is valid */
 364        mutex_lock(&ctxdata->mutex);
 365        sess = find_session(ctxdata, session);
 366        mutex_unlock(&ctxdata->mutex);
 367        if (!sess)
 368                return -EINVAL;
 369
 370        shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
 371        if (IS_ERR(shm))
 372                return PTR_ERR(shm);
 373
 374        msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
 375        msg_arg->session = session;
 376        msg_arg->cancel_id = cancel_id;
 377        optee_do_call_with_arg(ctx, msg_parg);
 378
 379        tee_shm_free(shm);
 380        return 0;
 381}
 382
 383/**
 384 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
 385 *                            in OP-TEE
 386 * @optee:      main service struct
 387 */
 388void optee_enable_shm_cache(struct optee *optee)
 389{
 390        struct optee_call_waiter w;
 391
 392        /* We need to retry until secure world isn't busy. */
 393        optee_cq_wait_init(&optee->call_queue, &w);
 394        while (true) {
 395                struct arm_smccc_res res;
 396
 397                optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
 398                                 0, &res);
 399                if (res.a0 == OPTEE_SMC_RETURN_OK)
 400                        break;
 401                optee_cq_wait_for_completion(&optee->call_queue, &w);
 402        }
 403        optee_cq_wait_final(&optee->call_queue, &w);
 404}
 405
 406/**
 407 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
 408 *                            in OP-TEE
 409 * @optee:      main service struct
 410 */
 411void optee_disable_shm_cache(struct optee *optee)
 412{
 413        struct optee_call_waiter w;
 414
 415        /* We need to retry until secure world isn't busy. */
 416        optee_cq_wait_init(&optee->call_queue, &w);
 417        while (true) {
 418                union {
 419                        struct arm_smccc_res smccc;
 420                        struct optee_smc_disable_shm_cache_result result;
 421                } res;
 422
 423                optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
 424                                 0, &res.smccc);
 425                if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
 426                        break; /* All shm's freed */
 427                if (res.result.status == OPTEE_SMC_RETURN_OK) {
 428                        struct tee_shm *shm;
 429
 430                        shm = reg_pair_to_ptr(res.result.shm_upper32,
 431                                              res.result.shm_lower32);
 432                        tee_shm_free(shm);
 433                } else {
 434                        optee_cq_wait_for_completion(&optee->call_queue, &w);
 435                }
 436        }
 437        optee_cq_wait_final(&optee->call_queue, &w);
 438}
 439
 440#define PAGELIST_ENTRIES_PER_PAGE                               \
 441        ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
 442
 443/**
 444 * optee_fill_pages_list() - write list of user pages to given shared
 445 * buffer.
 446 *
 447 * @dst: page-aligned buffer where list of pages will be stored
 448 * @pages: array of pages that represents shared buffer
 449 * @num_pages: number of entries in @pages
 450 * @page_offset: offset of user buffer from page start
 451 *
 452 * @dst should be big enough to hold list of user page addresses and
 453 *      links to the next pages of buffer
 454 */
 455void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
 456                           size_t page_offset)
 457{
 458        int n = 0;
 459        phys_addr_t optee_page;
 460        /*
 461         * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
 462         * for details.
 463         */
 464        struct {
 465                u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
 466                u64 next_page_data;
 467        } *pages_data;
 468
 469        /*
 470         * Currently OP-TEE uses 4k page size and it does not looks
 471         * like this will change in the future.  On other hand, there are
 472         * no know ARM architectures with page size < 4k.
 473         * Thus the next built assert looks redundant. But the following
 474         * code heavily relies on this assumption, so it is better be
 475         * safe than sorry.
 476         */
 477        BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
 478
 479        pages_data = (void *)dst;
 480        /*
 481         * If linux page is bigger than 4k, and user buffer offset is
 482         * larger than 4k/8k/12k/etc this will skip first 4k pages,
 483         * because they bear no value data for OP-TEE.
 484         */
 485        optee_page = page_to_phys(*pages) +
 486                round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
 487
 488        while (true) {
 489                pages_data->pages_list[n++] = optee_page;
 490
 491                if (n == PAGELIST_ENTRIES_PER_PAGE) {
 492                        pages_data->next_page_data =
 493                                virt_to_phys(pages_data + 1);
 494                        pages_data++;
 495                        n = 0;
 496                }
 497
 498                optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
 499                if (!(optee_page & ~PAGE_MASK)) {
 500                        if (!--num_pages)
 501                                break;
 502                        pages++;
 503                        optee_page = page_to_phys(*pages);
 504                }
 505        }
 506}
 507
 508/*
 509 * The final entry in each pagelist page is a pointer to the next
 510 * pagelist page.
 511 */
 512static size_t get_pages_list_size(size_t num_entries)
 513{
 514        int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
 515
 516        return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
 517}
 518
 519u64 *optee_allocate_pages_list(size_t num_entries)
 520{
 521        return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
 522}
 523
 524void optee_free_pages_list(void *list, size_t num_entries)
 525{
 526        free_pages_exact(list, get_pages_list_size(num_entries));
 527}
 528
 529static bool is_normal_memory(pgprot_t p)
 530{
 531#if defined(CONFIG_ARM)
 532        return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
 533#elif defined(CONFIG_ARM64)
 534        return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
 535#else
 536#error "Unuspported architecture"
 537#endif
 538}
 539
 540static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
 541{
 542        while (vma && is_normal_memory(vma->vm_page_prot)) {
 543                if (vma->vm_end >= end)
 544                        return 0;
 545                vma = vma->vm_next;
 546        }
 547
 548        return -EINVAL;
 549}
 550
 551static int check_mem_type(unsigned long start, size_t num_pages)
 552{
 553        struct mm_struct *mm = current->mm;
 554        int rc;
 555
 556        down_read(&mm->mmap_sem);
 557        rc = __check_mem_type(find_vma(mm, start),
 558                              start + num_pages * PAGE_SIZE);
 559        up_read(&mm->mmap_sem);
 560
 561        return rc;
 562}
 563
 564int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
 565                       struct page **pages, size_t num_pages,
 566                       unsigned long start)
 567{
 568        struct tee_shm *shm_arg = NULL;
 569        struct optee_msg_arg *msg_arg;
 570        u64 *pages_list;
 571        phys_addr_t msg_parg;
 572        int rc;
 573
 574        if (!num_pages)
 575                return -EINVAL;
 576
 577        rc = check_mem_type(start, num_pages);
 578        if (rc)
 579                return rc;
 580
 581        pages_list = optee_allocate_pages_list(num_pages);
 582        if (!pages_list)
 583                return -ENOMEM;
 584
 585        shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
 586        if (IS_ERR(shm_arg)) {
 587                rc = PTR_ERR(shm_arg);
 588                goto out;
 589        }
 590
 591        optee_fill_pages_list(pages_list, pages, num_pages,
 592                              tee_shm_get_page_offset(shm));
 593
 594        msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
 595        msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
 596                                OPTEE_MSG_ATTR_NONCONTIG;
 597        msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
 598        msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
 599        /*
 600         * In the least bits of msg_arg->params->u.tmem.buf_ptr we
 601         * store buffer offset from 4k page, as described in OP-TEE ABI.
 602         */
 603        msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
 604          (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
 605
 606        if (optee_do_call_with_arg(ctx, msg_parg) ||
 607            msg_arg->ret != TEEC_SUCCESS)
 608                rc = -EINVAL;
 609
 610        tee_shm_free(shm_arg);
 611out:
 612        optee_free_pages_list(pages_list, num_pages);
 613        return rc;
 614}
 615
 616int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
 617{
 618        struct tee_shm *shm_arg;
 619        struct optee_msg_arg *msg_arg;
 620        phys_addr_t msg_parg;
 621        int rc = 0;
 622
 623        shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
 624        if (IS_ERR(shm_arg))
 625                return PTR_ERR(shm_arg);
 626
 627        msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
 628
 629        msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
 630        msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
 631
 632        if (optee_do_call_with_arg(ctx, msg_parg) ||
 633            msg_arg->ret != TEEC_SUCCESS)
 634                rc = -EINVAL;
 635        tee_shm_free(shm_arg);
 636        return rc;
 637}
 638
 639int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
 640                            struct page **pages, size_t num_pages,
 641                            unsigned long start)
 642{
 643        /*
 644         * We don't want to register supplicant memory in OP-TEE.
 645         * Instead information about it will be passed in RPC code.
 646         */
 647        return check_mem_type(start, num_pages);
 648}
 649
 650int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
 651{
 652        return 0;
 653}
 654