linux/drivers/thermal/cpu_cooling.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/drivers/thermal/cpu_cooling.c
   4 *
   5 *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
   6 *
   7 *  Copyright (C) 2012-2018 Linaro Limited.
   8 *
   9 *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
  10 *              Viresh Kumar <viresh.kumar@linaro.org>
  11 *
  12 */
  13#include <linux/module.h>
  14#include <linux/thermal.h>
  15#include <linux/cpufreq.h>
  16#include <linux/err.h>
  17#include <linux/idr.h>
  18#include <linux/pm_opp.h>
  19#include <linux/slab.h>
  20#include <linux/cpu.h>
  21#include <linux/cpu_cooling.h>
  22
  23#include <trace/events/thermal.h>
  24
  25/*
  26 * Cooling state <-> CPUFreq frequency
  27 *
  28 * Cooling states are translated to frequencies throughout this driver and this
  29 * is the relation between them.
  30 *
  31 * Highest cooling state corresponds to lowest possible frequency.
  32 *
  33 * i.e.
  34 *      level 0 --> 1st Max Freq
  35 *      level 1 --> 2nd Max Freq
  36 *      ...
  37 */
  38
  39/**
  40 * struct freq_table - frequency table along with power entries
  41 * @frequency:  frequency in KHz
  42 * @power:      power in mW
  43 *
  44 * This structure is built when the cooling device registers and helps
  45 * in translating frequency to power and vice versa.
  46 */
  47struct freq_table {
  48        u32 frequency;
  49        u32 power;
  50};
  51
  52/**
  53 * struct time_in_idle - Idle time stats
  54 * @time: previous reading of the absolute time that this cpu was idle
  55 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
  56 */
  57struct time_in_idle {
  58        u64 time;
  59        u64 timestamp;
  60};
  61
  62/**
  63 * struct cpufreq_cooling_device - data for cooling device with cpufreq
  64 * @id: unique integer value corresponding to each cpufreq_cooling_device
  65 *      registered.
  66 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
  67 * @cpufreq_state: integer value representing the current state of cpufreq
  68 *      cooling devices.
  69 * @clipped_freq: integer value representing the absolute value of the clipped
  70 *      frequency.
  71 * @max_level: maximum cooling level. One less than total number of valid
  72 *      cpufreq frequencies.
  73 * @freq_table: Freq table in descending order of frequencies
  74 * @cdev: thermal_cooling_device pointer to keep track of the
  75 *      registered cooling device.
  76 * @policy: cpufreq policy.
  77 * @node: list_head to link all cpufreq_cooling_device together.
  78 * @idle_time: idle time stats
  79 *
  80 * This structure is required for keeping information of each registered
  81 * cpufreq_cooling_device.
  82 */
  83struct cpufreq_cooling_device {
  84        int id;
  85        u32 last_load;
  86        unsigned int cpufreq_state;
  87        unsigned int clipped_freq;
  88        unsigned int max_level;
  89        struct freq_table *freq_table;  /* In descending order */
  90        struct cpufreq_policy *policy;
  91        struct list_head node;
  92        struct time_in_idle *idle_time;
  93};
  94
  95static DEFINE_IDA(cpufreq_ida);
  96static DEFINE_MUTEX(cooling_list_lock);
  97static LIST_HEAD(cpufreq_cdev_list);
  98
  99/* Below code defines functions to be used for cpufreq as cooling device */
 100
 101/**
 102 * get_level: Find the level for a particular frequency
 103 * @cpufreq_cdev: cpufreq_cdev for which the property is required
 104 * @freq: Frequency
 105 *
 106 * Return: level corresponding to the frequency.
 107 */
 108static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
 109                               unsigned int freq)
 110{
 111        struct freq_table *freq_table = cpufreq_cdev->freq_table;
 112        unsigned long level;
 113
 114        for (level = 1; level <= cpufreq_cdev->max_level; level++)
 115                if (freq > freq_table[level].frequency)
 116                        break;
 117
 118        return level - 1;
 119}
 120
 121/**
 122 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
 123 * @nb: struct notifier_block * with callback info.
 124 * @event: value showing cpufreq event for which this function invoked.
 125 * @data: callback-specific data
 126 *
 127 * Callback to hijack the notification on cpufreq policy transition.
 128 * Every time there is a change in policy, we will intercept and
 129 * update the cpufreq policy with thermal constraints.
 130 *
 131 * Return: 0 (success)
 132 */
 133static int cpufreq_thermal_notifier(struct notifier_block *nb,
 134                                    unsigned long event, void *data)
 135{
 136        struct cpufreq_policy *policy = data;
 137        unsigned long clipped_freq;
 138        struct cpufreq_cooling_device *cpufreq_cdev;
 139
 140        if (event != CPUFREQ_ADJUST)
 141                return NOTIFY_DONE;
 142
 143        mutex_lock(&cooling_list_lock);
 144        list_for_each_entry(cpufreq_cdev, &cpufreq_cdev_list, node) {
 145                /*
 146                 * A new copy of the policy is sent to the notifier and can't
 147                 * compare that directly.
 148                 */
 149                if (policy->cpu != cpufreq_cdev->policy->cpu)
 150                        continue;
 151
 152                /*
 153                 * policy->max is the maximum allowed frequency defined by user
 154                 * and clipped_freq is the maximum that thermal constraints
 155                 * allow.
 156                 *
 157                 * If clipped_freq is lower than policy->max, then we need to
 158                 * readjust policy->max.
 159                 *
 160                 * But, if clipped_freq is greater than policy->max, we don't
 161                 * need to do anything.
 162                 */
 163                clipped_freq = cpufreq_cdev->clipped_freq;
 164
 165                if (policy->max > clipped_freq)
 166                        cpufreq_verify_within_limits(policy, 0, clipped_freq);
 167                break;
 168        }
 169        mutex_unlock(&cooling_list_lock);
 170
 171        return NOTIFY_OK;
 172}
 173
 174/**
 175 * update_freq_table() - Update the freq table with power numbers
 176 * @cpufreq_cdev:       the cpufreq cooling device in which to update the table
 177 * @capacitance: dynamic power coefficient for these cpus
 178 *
 179 * Update the freq table with power numbers.  This table will be used in
 180 * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
 181 * frequency efficiently.  Power is stored in mW, frequency in KHz.  The
 182 * resulting table is in descending order.
 183 *
 184 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
 185 * or -ENOMEM if we run out of memory.
 186 */
 187static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
 188                             u32 capacitance)
 189{
 190        struct freq_table *freq_table = cpufreq_cdev->freq_table;
 191        struct dev_pm_opp *opp;
 192        struct device *dev = NULL;
 193        int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
 194
 195        dev = get_cpu_device(cpu);
 196        if (unlikely(!dev)) {
 197                pr_warn("No cpu device for cpu %d\n", cpu);
 198                return -ENODEV;
 199        }
 200
 201        num_opps = dev_pm_opp_get_opp_count(dev);
 202        if (num_opps < 0)
 203                return num_opps;
 204
 205        /*
 206         * The cpufreq table is also built from the OPP table and so the count
 207         * should match.
 208         */
 209        if (num_opps != cpufreq_cdev->max_level + 1) {
 210                dev_warn(dev, "Number of OPPs not matching with max_levels\n");
 211                return -EINVAL;
 212        }
 213
 214        for (i = 0; i <= cpufreq_cdev->max_level; i++) {
 215                unsigned long freq = freq_table[i].frequency * 1000;
 216                u32 freq_mhz = freq_table[i].frequency / 1000;
 217                u64 power;
 218                u32 voltage_mv;
 219
 220                /*
 221                 * Find ceil frequency as 'freq' may be slightly lower than OPP
 222                 * freq due to truncation while converting to kHz.
 223                 */
 224                opp = dev_pm_opp_find_freq_ceil(dev, &freq);
 225                if (IS_ERR(opp)) {
 226                        dev_err(dev, "failed to get opp for %lu frequency\n",
 227                                freq);
 228                        return -EINVAL;
 229                }
 230
 231                voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
 232                dev_pm_opp_put(opp);
 233
 234                /*
 235                 * Do the multiplication with MHz and millivolt so as
 236                 * to not overflow.
 237                 */
 238                power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
 239                do_div(power, 1000000000);
 240
 241                /* power is stored in mW */
 242                freq_table[i].power = power;
 243        }
 244
 245        return 0;
 246}
 247
 248static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
 249                             u32 freq)
 250{
 251        int i;
 252        struct freq_table *freq_table = cpufreq_cdev->freq_table;
 253
 254        for (i = 1; i <= cpufreq_cdev->max_level; i++)
 255                if (freq > freq_table[i].frequency)
 256                        break;
 257
 258        return freq_table[i - 1].power;
 259}
 260
 261static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 262                             u32 power)
 263{
 264        int i;
 265        struct freq_table *freq_table = cpufreq_cdev->freq_table;
 266
 267        for (i = 1; i <= cpufreq_cdev->max_level; i++)
 268                if (power > freq_table[i].power)
 269                        break;
 270
 271        return freq_table[i - 1].frequency;
 272}
 273
 274/**
 275 * get_load() - get load for a cpu since last updated
 276 * @cpufreq_cdev:       &struct cpufreq_cooling_device for this cpu
 277 * @cpu:        cpu number
 278 * @cpu_idx:    index of the cpu in time_in_idle*
 279 *
 280 * Return: The average load of cpu @cpu in percentage since this
 281 * function was last called.
 282 */
 283static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 284                    int cpu_idx)
 285{
 286        u32 load;
 287        u64 now, now_idle, delta_time, delta_idle;
 288        struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
 289
 290        now_idle = get_cpu_idle_time(cpu, &now, 0);
 291        delta_idle = now_idle - idle_time->time;
 292        delta_time = now - idle_time->timestamp;
 293
 294        if (delta_time <= delta_idle)
 295                load = 0;
 296        else
 297                load = div64_u64(100 * (delta_time - delta_idle), delta_time);
 298
 299        idle_time->time = now_idle;
 300        idle_time->timestamp = now;
 301
 302        return load;
 303}
 304
 305/**
 306 * get_dynamic_power() - calculate the dynamic power
 307 * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
 308 * @freq:       current frequency
 309 *
 310 * Return: the dynamic power consumed by the cpus described by
 311 * @cpufreq_cdev.
 312 */
 313static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
 314                             unsigned long freq)
 315{
 316        u32 raw_cpu_power;
 317
 318        raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
 319        return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
 320}
 321
 322/* cpufreq cooling device callback functions are defined below */
 323
 324/**
 325 * cpufreq_get_max_state - callback function to get the max cooling state.
 326 * @cdev: thermal cooling device pointer.
 327 * @state: fill this variable with the max cooling state.
 328 *
 329 * Callback for the thermal cooling device to return the cpufreq
 330 * max cooling state.
 331 *
 332 * Return: 0 on success, an error code otherwise.
 333 */
 334static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
 335                                 unsigned long *state)
 336{
 337        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 338
 339        *state = cpufreq_cdev->max_level;
 340        return 0;
 341}
 342
 343/**
 344 * cpufreq_get_cur_state - callback function to get the current cooling state.
 345 * @cdev: thermal cooling device pointer.
 346 * @state: fill this variable with the current cooling state.
 347 *
 348 * Callback for the thermal cooling device to return the cpufreq
 349 * current cooling state.
 350 *
 351 * Return: 0 on success, an error code otherwise.
 352 */
 353static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
 354                                 unsigned long *state)
 355{
 356        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 357
 358        *state = cpufreq_cdev->cpufreq_state;
 359
 360        return 0;
 361}
 362
 363/**
 364 * cpufreq_set_cur_state - callback function to set the current cooling state.
 365 * @cdev: thermal cooling device pointer.
 366 * @state: set this variable to the current cooling state.
 367 *
 368 * Callback for the thermal cooling device to change the cpufreq
 369 * current cooling state.
 370 *
 371 * Return: 0 on success, an error code otherwise.
 372 */
 373static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
 374                                 unsigned long state)
 375{
 376        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 377        unsigned int clip_freq;
 378
 379        /* Request state should be less than max_level */
 380        if (WARN_ON(state > cpufreq_cdev->max_level))
 381                return -EINVAL;
 382
 383        /* Check if the old cooling action is same as new cooling action */
 384        if (cpufreq_cdev->cpufreq_state == state)
 385                return 0;
 386
 387        clip_freq = cpufreq_cdev->freq_table[state].frequency;
 388        cpufreq_cdev->cpufreq_state = state;
 389        cpufreq_cdev->clipped_freq = clip_freq;
 390
 391        cpufreq_update_policy(cpufreq_cdev->policy->cpu);
 392
 393        return 0;
 394}
 395
 396/**
 397 * cpufreq_get_requested_power() - get the current power
 398 * @cdev:       &thermal_cooling_device pointer
 399 * @tz:         a valid thermal zone device pointer
 400 * @power:      pointer in which to store the resulting power
 401 *
 402 * Calculate the current power consumption of the cpus in milliwatts
 403 * and store it in @power.  This function should actually calculate
 404 * the requested power, but it's hard to get the frequency that
 405 * cpufreq would have assigned if there were no thermal limits.
 406 * Instead, we calculate the current power on the assumption that the
 407 * immediate future will look like the immediate past.
 408 *
 409 * We use the current frequency and the average load since this
 410 * function was last called.  In reality, there could have been
 411 * multiple opps since this function was last called and that affects
 412 * the load calculation.  While it's not perfectly accurate, this
 413 * simplification is good enough and works.  REVISIT this, as more
 414 * complex code may be needed if experiments show that it's not
 415 * accurate enough.
 416 *
 417 * Return: 0 on success, -E* if getting the static power failed.
 418 */
 419static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
 420                                       struct thermal_zone_device *tz,
 421                                       u32 *power)
 422{
 423        unsigned long freq;
 424        int i = 0, cpu;
 425        u32 total_load = 0;
 426        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 427        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 428        u32 *load_cpu = NULL;
 429
 430        freq = cpufreq_quick_get(policy->cpu);
 431
 432        if (trace_thermal_power_cpu_get_power_enabled()) {
 433                u32 ncpus = cpumask_weight(policy->related_cpus);
 434
 435                load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
 436        }
 437
 438        for_each_cpu(cpu, policy->related_cpus) {
 439                u32 load;
 440
 441                if (cpu_online(cpu))
 442                        load = get_load(cpufreq_cdev, cpu, i);
 443                else
 444                        load = 0;
 445
 446                total_load += load;
 447                if (load_cpu)
 448                        load_cpu[i] = load;
 449
 450                i++;
 451        }
 452
 453        cpufreq_cdev->last_load = total_load;
 454
 455        *power = get_dynamic_power(cpufreq_cdev, freq);
 456
 457        if (load_cpu) {
 458                trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
 459                                                  load_cpu, i, *power);
 460
 461                kfree(load_cpu);
 462        }
 463
 464        return 0;
 465}
 466
 467/**
 468 * cpufreq_state2power() - convert a cpu cdev state to power consumed
 469 * @cdev:       &thermal_cooling_device pointer
 470 * @tz:         a valid thermal zone device pointer
 471 * @state:      cooling device state to be converted
 472 * @power:      pointer in which to store the resulting power
 473 *
 474 * Convert cooling device state @state into power consumption in
 475 * milliwatts assuming 100% load.  Store the calculated power in
 476 * @power.
 477 *
 478 * Return: 0 on success, -EINVAL if the cooling device state could not
 479 * be converted into a frequency or other -E* if there was an error
 480 * when calculating the static power.
 481 */
 482static int cpufreq_state2power(struct thermal_cooling_device *cdev,
 483                               struct thermal_zone_device *tz,
 484                               unsigned long state, u32 *power)
 485{
 486        unsigned int freq, num_cpus;
 487        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 488
 489        /* Request state should be less than max_level */
 490        if (WARN_ON(state > cpufreq_cdev->max_level))
 491                return -EINVAL;
 492
 493        num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
 494
 495        freq = cpufreq_cdev->freq_table[state].frequency;
 496        *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
 497
 498        return 0;
 499}
 500
 501/**
 502 * cpufreq_power2state() - convert power to a cooling device state
 503 * @cdev:       &thermal_cooling_device pointer
 504 * @tz:         a valid thermal zone device pointer
 505 * @power:      power in milliwatts to be converted
 506 * @state:      pointer in which to store the resulting state
 507 *
 508 * Calculate a cooling device state for the cpus described by @cdev
 509 * that would allow them to consume at most @power mW and store it in
 510 * @state.  Note that this calculation depends on external factors
 511 * such as the cpu load or the current static power.  Calling this
 512 * function with the same power as input can yield different cooling
 513 * device states depending on those external factors.
 514 *
 515 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
 516 * the calculated frequency could not be converted to a valid state.
 517 * The latter should not happen unless the frequencies available to
 518 * cpufreq have changed since the initialization of the cpu cooling
 519 * device.
 520 */
 521static int cpufreq_power2state(struct thermal_cooling_device *cdev,
 522                               struct thermal_zone_device *tz, u32 power,
 523                               unsigned long *state)
 524{
 525        unsigned int target_freq;
 526        u32 last_load, normalised_power;
 527        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 528        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 529
 530        last_load = cpufreq_cdev->last_load ?: 1;
 531        normalised_power = (power * 100) / last_load;
 532        target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
 533
 534        *state = get_level(cpufreq_cdev, target_freq);
 535        trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
 536                                      power);
 537        return 0;
 538}
 539
 540/* Bind cpufreq callbacks to thermal cooling device ops */
 541
 542static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
 543        .get_max_state = cpufreq_get_max_state,
 544        .get_cur_state = cpufreq_get_cur_state,
 545        .set_cur_state = cpufreq_set_cur_state,
 546};
 547
 548static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
 549        .get_max_state          = cpufreq_get_max_state,
 550        .get_cur_state          = cpufreq_get_cur_state,
 551        .set_cur_state          = cpufreq_set_cur_state,
 552        .get_requested_power    = cpufreq_get_requested_power,
 553        .state2power            = cpufreq_state2power,
 554        .power2state            = cpufreq_power2state,
 555};
 556
 557/* Notifier for cpufreq policy change */
 558static struct notifier_block thermal_cpufreq_notifier_block = {
 559        .notifier_call = cpufreq_thermal_notifier,
 560};
 561
 562static unsigned int find_next_max(struct cpufreq_frequency_table *table,
 563                                  unsigned int prev_max)
 564{
 565        struct cpufreq_frequency_table *pos;
 566        unsigned int max = 0;
 567
 568        cpufreq_for_each_valid_entry(pos, table) {
 569                if (pos->frequency > max && pos->frequency < prev_max)
 570                        max = pos->frequency;
 571        }
 572
 573        return max;
 574}
 575
 576/**
 577 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
 578 * @np: a valid struct device_node to the cooling device device tree node
 579 * @policy: cpufreq policy
 580 * Normally this should be same as cpufreq policy->related_cpus.
 581 * @capacitance: dynamic power coefficient for these cpus
 582 *
 583 * This interface function registers the cpufreq cooling device with the name
 584 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 585 * cooling devices. It also gives the opportunity to link the cooling device
 586 * with a device tree node, in order to bind it via the thermal DT code.
 587 *
 588 * Return: a valid struct thermal_cooling_device pointer on success,
 589 * on failure, it returns a corresponding ERR_PTR().
 590 */
 591static struct thermal_cooling_device *
 592__cpufreq_cooling_register(struct device_node *np,
 593                        struct cpufreq_policy *policy, u32 capacitance)
 594{
 595        struct thermal_cooling_device *cdev;
 596        struct cpufreq_cooling_device *cpufreq_cdev;
 597        char dev_name[THERMAL_NAME_LENGTH];
 598        unsigned int freq, i, num_cpus;
 599        int ret;
 600        struct thermal_cooling_device_ops *cooling_ops;
 601        bool first;
 602
 603        if (IS_ERR_OR_NULL(policy)) {
 604                pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
 605                return ERR_PTR(-EINVAL);
 606        }
 607
 608        i = cpufreq_table_count_valid_entries(policy);
 609        if (!i) {
 610                pr_debug("%s: CPUFreq table not found or has no valid entries\n",
 611                         __func__);
 612                return ERR_PTR(-ENODEV);
 613        }
 614
 615        cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
 616        if (!cpufreq_cdev)
 617                return ERR_PTR(-ENOMEM);
 618
 619        cpufreq_cdev->policy = policy;
 620        num_cpus = cpumask_weight(policy->related_cpus);
 621        cpufreq_cdev->idle_time = kcalloc(num_cpus,
 622                                         sizeof(*cpufreq_cdev->idle_time),
 623                                         GFP_KERNEL);
 624        if (!cpufreq_cdev->idle_time) {
 625                cdev = ERR_PTR(-ENOMEM);
 626                goto free_cdev;
 627        }
 628
 629        /* max_level is an index, not a counter */
 630        cpufreq_cdev->max_level = i - 1;
 631
 632        cpufreq_cdev->freq_table = kmalloc_array(i,
 633                                        sizeof(*cpufreq_cdev->freq_table),
 634                                        GFP_KERNEL);
 635        if (!cpufreq_cdev->freq_table) {
 636                cdev = ERR_PTR(-ENOMEM);
 637                goto free_idle_time;
 638        }
 639
 640        ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
 641        if (ret < 0) {
 642                cdev = ERR_PTR(ret);
 643                goto free_table;
 644        }
 645        cpufreq_cdev->id = ret;
 646
 647        snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
 648                 cpufreq_cdev->id);
 649
 650        /* Fill freq-table in descending order of frequencies */
 651        for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
 652                freq = find_next_max(policy->freq_table, freq);
 653                cpufreq_cdev->freq_table[i].frequency = freq;
 654
 655                /* Warn for duplicate entries */
 656                if (!freq)
 657                        pr_warn("%s: table has duplicate entries\n", __func__);
 658                else
 659                        pr_debug("%s: freq:%u KHz\n", __func__, freq);
 660        }
 661
 662        if (capacitance) {
 663                ret = update_freq_table(cpufreq_cdev, capacitance);
 664                if (ret) {
 665                        cdev = ERR_PTR(ret);
 666                        goto remove_ida;
 667                }
 668
 669                cooling_ops = &cpufreq_power_cooling_ops;
 670        } else {
 671                cooling_ops = &cpufreq_cooling_ops;
 672        }
 673
 674        cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
 675                                                  cooling_ops);
 676        if (IS_ERR(cdev))
 677                goto remove_ida;
 678
 679        cpufreq_cdev->clipped_freq = cpufreq_cdev->freq_table[0].frequency;
 680
 681        mutex_lock(&cooling_list_lock);
 682        /* Register the notifier for first cpufreq cooling device */
 683        first = list_empty(&cpufreq_cdev_list);
 684        list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
 685        mutex_unlock(&cooling_list_lock);
 686
 687        if (first)
 688                cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
 689                                          CPUFREQ_POLICY_NOTIFIER);
 690
 691        return cdev;
 692
 693remove_ida:
 694        ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 695free_table:
 696        kfree(cpufreq_cdev->freq_table);
 697free_idle_time:
 698        kfree(cpufreq_cdev->idle_time);
 699free_cdev:
 700        kfree(cpufreq_cdev);
 701        return cdev;
 702}
 703
 704/**
 705 * cpufreq_cooling_register - function to create cpufreq cooling device.
 706 * @policy: cpufreq policy
 707 *
 708 * This interface function registers the cpufreq cooling device with the name
 709 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 710 * cooling devices.
 711 *
 712 * Return: a valid struct thermal_cooling_device pointer on success,
 713 * on failure, it returns a corresponding ERR_PTR().
 714 */
 715struct thermal_cooling_device *
 716cpufreq_cooling_register(struct cpufreq_policy *policy)
 717{
 718        return __cpufreq_cooling_register(NULL, policy, 0);
 719}
 720EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
 721
 722/**
 723 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
 724 * @policy: cpufreq policy
 725 *
 726 * This interface function registers the cpufreq cooling device with the name
 727 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 728 * cooling devices. Using this API, the cpufreq cooling device will be
 729 * linked to the device tree node provided.
 730 *
 731 * Using this function, the cooling device will implement the power
 732 * extensions by using a simple cpu power model.  The cpus must have
 733 * registered their OPPs using the OPP library.
 734 *
 735 * It also takes into account, if property present in policy CPU node, the
 736 * static power consumed by the cpu.
 737 *
 738 * Return: a valid struct thermal_cooling_device pointer on success,
 739 * and NULL on failure.
 740 */
 741struct thermal_cooling_device *
 742of_cpufreq_cooling_register(struct cpufreq_policy *policy)
 743{
 744        struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
 745        struct thermal_cooling_device *cdev = NULL;
 746        u32 capacitance = 0;
 747
 748        if (!np) {
 749                pr_err("cpu_cooling: OF node not available for cpu%d\n",
 750                       policy->cpu);
 751                return NULL;
 752        }
 753
 754        if (of_find_property(np, "#cooling-cells", NULL)) {
 755                of_property_read_u32(np, "dynamic-power-coefficient",
 756                                     &capacitance);
 757
 758                cdev = __cpufreq_cooling_register(np, policy, capacitance);
 759                if (IS_ERR(cdev)) {
 760                        pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
 761                               policy->cpu, PTR_ERR(cdev));
 762                        cdev = NULL;
 763                }
 764        }
 765
 766        of_node_put(np);
 767        return cdev;
 768}
 769EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
 770
 771/**
 772 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
 773 * @cdev: thermal cooling device pointer.
 774 *
 775 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
 776 */
 777void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
 778{
 779        struct cpufreq_cooling_device *cpufreq_cdev;
 780        bool last;
 781
 782        if (!cdev)
 783                return;
 784
 785        cpufreq_cdev = cdev->devdata;
 786
 787        mutex_lock(&cooling_list_lock);
 788        list_del(&cpufreq_cdev->node);
 789        /* Unregister the notifier for the last cpufreq cooling device */
 790        last = list_empty(&cpufreq_cdev_list);
 791        mutex_unlock(&cooling_list_lock);
 792
 793        if (last)
 794                cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
 795                                            CPUFREQ_POLICY_NOTIFIER);
 796
 797        thermal_cooling_device_unregister(cdev);
 798        ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 799        kfree(cpufreq_cdev->idle_time);
 800        kfree(cpufreq_cdev->freq_table);
 801        kfree(cpufreq_cdev);
 802}
 803EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
 804