linux/drivers/video/fbdev/intelfb/intelfbhw.c
<<
>>
Prefs
   1/*
   2 * intelfb
   3 *
   4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
   5 *
   6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
   7 *                   2004 Sylvain Meyer
   8 *
   9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
  10 * the basic fbdev interfaces, is derived in part from the radeonfb and
  11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
  12 * provides the code to program the hardware.  Most of it is derived from
  13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
  14 * under a dual license (GPL and MIT/XFree86 license).
  15 *
  16 * Author: David Dawes
  17 *
  18 */
  19
  20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/errno.h>
  25#include <linux/string.h>
  26#include <linux/mm.h>
  27#include <linux/delay.h>
  28#include <linux/fb.h>
  29#include <linux/ioport.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/interrupt.h>
  35
  36#include <asm/io.h>
  37
  38#include "intelfb.h"
  39#include "intelfbhw.h"
  40
  41struct pll_min_max {
  42        int min_m, max_m, min_m1, max_m1;
  43        int min_m2, max_m2, min_n, max_n;
  44        int min_p, max_p, min_p1, max_p1;
  45        int min_vco, max_vco, p_transition_clk, ref_clk;
  46        int p_inc_lo, p_inc_hi;
  47};
  48
  49#define PLLS_I8xx 0
  50#define PLLS_I9xx 1
  51#define PLLS_MAX 2
  52
  53static struct pll_min_max plls[PLLS_MAX] = {
  54        { 108, 140, 18, 26,
  55          6, 16, 3, 16,
  56          4, 128, 0, 31,
  57          930000, 1400000, 165000, 48000,
  58          4, 2 },               /* I8xx */
  59
  60        { 75, 120, 10, 20,
  61          5, 9, 4, 7,
  62          5, 80, 1, 8,
  63          1400000, 2800000, 200000, 96000,
  64          10, 5 }               /* I9xx */
  65};
  66
  67int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  68{
  69        u32 tmp;
  70        if (!pdev || !dinfo)
  71                return 1;
  72
  73        switch (pdev->device) {
  74        case PCI_DEVICE_ID_INTEL_830M:
  75                dinfo->name = "Intel(R) 830M";
  76                dinfo->chipset = INTEL_830M;
  77                dinfo->mobile = 1;
  78                dinfo->pll_index = PLLS_I8xx;
  79                return 0;
  80        case PCI_DEVICE_ID_INTEL_845G:
  81                dinfo->name = "Intel(R) 845G";
  82                dinfo->chipset = INTEL_845G;
  83                dinfo->mobile = 0;
  84                dinfo->pll_index = PLLS_I8xx;
  85                return 0;
  86        case PCI_DEVICE_ID_INTEL_854:
  87                dinfo->mobile = 1;
  88                dinfo->name = "Intel(R) 854";
  89                dinfo->chipset = INTEL_854;
  90                return 0;
  91        case PCI_DEVICE_ID_INTEL_85XGM:
  92                tmp = 0;
  93                dinfo->mobile = 1;
  94                dinfo->pll_index = PLLS_I8xx;
  95                pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  96                switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  97                        INTEL_85X_VARIANT_MASK) {
  98                case INTEL_VAR_855GME:
  99                        dinfo->name = "Intel(R) 855GME";
 100                        dinfo->chipset = INTEL_855GME;
 101                        return 0;
 102                case INTEL_VAR_855GM:
 103                        dinfo->name = "Intel(R) 855GM";
 104                        dinfo->chipset = INTEL_855GM;
 105                        return 0;
 106                case INTEL_VAR_852GME:
 107                        dinfo->name = "Intel(R) 852GME";
 108                        dinfo->chipset = INTEL_852GME;
 109                        return 0;
 110                case INTEL_VAR_852GM:
 111                        dinfo->name = "Intel(R) 852GM";
 112                        dinfo->chipset = INTEL_852GM;
 113                        return 0;
 114                default:
 115                        dinfo->name = "Intel(R) 852GM/855GM";
 116                        dinfo->chipset = INTEL_85XGM;
 117                        return 0;
 118                }
 119                break;
 120        case PCI_DEVICE_ID_INTEL_865G:
 121                dinfo->name = "Intel(R) 865G";
 122                dinfo->chipset = INTEL_865G;
 123                dinfo->mobile = 0;
 124                dinfo->pll_index = PLLS_I8xx;
 125                return 0;
 126        case PCI_DEVICE_ID_INTEL_915G:
 127                dinfo->name = "Intel(R) 915G";
 128                dinfo->chipset = INTEL_915G;
 129                dinfo->mobile = 0;
 130                dinfo->pll_index = PLLS_I9xx;
 131                return 0;
 132        case PCI_DEVICE_ID_INTEL_915GM:
 133                dinfo->name = "Intel(R) 915GM";
 134                dinfo->chipset = INTEL_915GM;
 135                dinfo->mobile = 1;
 136                dinfo->pll_index = PLLS_I9xx;
 137                return 0;
 138        case PCI_DEVICE_ID_INTEL_945G:
 139                dinfo->name = "Intel(R) 945G";
 140                dinfo->chipset = INTEL_945G;
 141                dinfo->mobile = 0;
 142                dinfo->pll_index = PLLS_I9xx;
 143                return 0;
 144        case PCI_DEVICE_ID_INTEL_945GM:
 145                dinfo->name = "Intel(R) 945GM";
 146                dinfo->chipset = INTEL_945GM;
 147                dinfo->mobile = 1;
 148                dinfo->pll_index = PLLS_I9xx;
 149                return 0;
 150        case PCI_DEVICE_ID_INTEL_945GME:
 151                dinfo->name = "Intel(R) 945GME";
 152                dinfo->chipset = INTEL_945GME;
 153                dinfo->mobile = 1;
 154                dinfo->pll_index = PLLS_I9xx;
 155                return 0;
 156        case PCI_DEVICE_ID_INTEL_965G:
 157                dinfo->name = "Intel(R) 965G";
 158                dinfo->chipset = INTEL_965G;
 159                dinfo->mobile = 0;
 160                dinfo->pll_index = PLLS_I9xx;
 161                return 0;
 162        case PCI_DEVICE_ID_INTEL_965GM:
 163                dinfo->name = "Intel(R) 965GM";
 164                dinfo->chipset = INTEL_965GM;
 165                dinfo->mobile = 1;
 166                dinfo->pll_index = PLLS_I9xx;
 167                return 0;
 168        default:
 169                return 1;
 170        }
 171}
 172
 173int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
 174                         int *stolen_size)
 175{
 176        struct pci_dev *bridge_dev;
 177        u16 tmp;
 178        int stolen_overhead;
 179
 180        if (!pdev || !aperture_size || !stolen_size)
 181                return 1;
 182
 183        /* Find the bridge device.  It is always 0:0.0 */
 184        bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
 185                                                 PCI_DEVFN(0, 0));
 186        if (!bridge_dev) {
 187                ERR_MSG("cannot find bridge device\n");
 188                return 1;
 189        }
 190
 191        /* Get the fb aperture size and "stolen" memory amount. */
 192        tmp = 0;
 193        pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
 194        pci_dev_put(bridge_dev);
 195
 196        switch (pdev->device) {
 197        case PCI_DEVICE_ID_INTEL_915G:
 198        case PCI_DEVICE_ID_INTEL_915GM:
 199        case PCI_DEVICE_ID_INTEL_945G:
 200        case PCI_DEVICE_ID_INTEL_945GM:
 201        case PCI_DEVICE_ID_INTEL_945GME:
 202        case PCI_DEVICE_ID_INTEL_965G:
 203        case PCI_DEVICE_ID_INTEL_965GM:
 204                /* 915, 945 and 965 chipsets support a 256MB aperture.
 205                   Aperture size is determined by inspected the
 206                   base address of the aperture. */
 207                if (pci_resource_start(pdev, 2) & 0x08000000)
 208                        *aperture_size = MB(128);
 209                else
 210                        *aperture_size = MB(256);
 211                break;
 212        default:
 213                if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
 214                        *aperture_size = MB(64);
 215                else
 216                        *aperture_size = MB(128);
 217                break;
 218        }
 219
 220        /* Stolen memory size is reduced by the GTT and the popup.
 221           GTT is 1K per MB of aperture size, and popup is 4K. */
 222        stolen_overhead = (*aperture_size / MB(1)) + 4;
 223        switch(pdev->device) {
 224        case PCI_DEVICE_ID_INTEL_830M:
 225        case PCI_DEVICE_ID_INTEL_845G:
 226                switch (tmp & INTEL_830_GMCH_GMS_MASK) {
 227                case INTEL_830_GMCH_GMS_STOLEN_512:
 228                        *stolen_size = KB(512) - KB(stolen_overhead);
 229                        return 0;
 230                case INTEL_830_GMCH_GMS_STOLEN_1024:
 231                        *stolen_size = MB(1) - KB(stolen_overhead);
 232                        return 0;
 233                case INTEL_830_GMCH_GMS_STOLEN_8192:
 234                        *stolen_size = MB(8) - KB(stolen_overhead);
 235                        return 0;
 236                case INTEL_830_GMCH_GMS_LOCAL:
 237                        ERR_MSG("only local memory found\n");
 238                        return 1;
 239                case INTEL_830_GMCH_GMS_DISABLED:
 240                        ERR_MSG("video memory is disabled\n");
 241                        return 1;
 242                default:
 243                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 244                                tmp & INTEL_830_GMCH_GMS_MASK);
 245                        return 1;
 246                }
 247                break;
 248        default:
 249                switch (tmp & INTEL_855_GMCH_GMS_MASK) {
 250                case INTEL_855_GMCH_GMS_STOLEN_1M:
 251                        *stolen_size = MB(1) - KB(stolen_overhead);
 252                        return 0;
 253                case INTEL_855_GMCH_GMS_STOLEN_4M:
 254                        *stolen_size = MB(4) - KB(stolen_overhead);
 255                        return 0;
 256                case INTEL_855_GMCH_GMS_STOLEN_8M:
 257                        *stolen_size = MB(8) - KB(stolen_overhead);
 258                        return 0;
 259                case INTEL_855_GMCH_GMS_STOLEN_16M:
 260                        *stolen_size = MB(16) - KB(stolen_overhead);
 261                        return 0;
 262                case INTEL_855_GMCH_GMS_STOLEN_32M:
 263                        *stolen_size = MB(32) - KB(stolen_overhead);
 264                        return 0;
 265                case INTEL_915G_GMCH_GMS_STOLEN_48M:
 266                        *stolen_size = MB(48) - KB(stolen_overhead);
 267                        return 0;
 268                case INTEL_915G_GMCH_GMS_STOLEN_64M:
 269                        *stolen_size = MB(64) - KB(stolen_overhead);
 270                        return 0;
 271                case INTEL_855_GMCH_GMS_DISABLED:
 272                        ERR_MSG("video memory is disabled\n");
 273                        return 0;
 274                default:
 275                        ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
 276                                tmp & INTEL_855_GMCH_GMS_MASK);
 277                        return 1;
 278                }
 279        }
 280}
 281
 282int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
 283{
 284        int dvo = 0;
 285
 286        if (INREG(LVDS) & PORT_ENABLE)
 287                dvo |= LVDS_PORT;
 288        if (INREG(DVOA) & PORT_ENABLE)
 289                dvo |= DVOA_PORT;
 290        if (INREG(DVOB) & PORT_ENABLE)
 291                dvo |= DVOB_PORT;
 292        if (INREG(DVOC) & PORT_ENABLE)
 293                dvo |= DVOC_PORT;
 294
 295        return dvo;
 296}
 297
 298const char * intelfbhw_dvo_to_string(int dvo)
 299{
 300        if (dvo & DVOA_PORT)
 301                return "DVO port A";
 302        else if (dvo & DVOB_PORT)
 303                return "DVO port B";
 304        else if (dvo & DVOC_PORT)
 305                return "DVO port C";
 306        else if (dvo & LVDS_PORT)
 307                return "LVDS port";
 308        else
 309                return NULL;
 310}
 311
 312
 313int intelfbhw_validate_mode(struct intelfb_info *dinfo,
 314                            struct fb_var_screeninfo *var)
 315{
 316        int bytes_per_pixel;
 317        int tmp;
 318
 319#if VERBOSE > 0
 320        DBG_MSG("intelfbhw_validate_mode\n");
 321#endif
 322
 323        bytes_per_pixel = var->bits_per_pixel / 8;
 324        if (bytes_per_pixel == 3)
 325                bytes_per_pixel = 4;
 326
 327        /* Check if enough video memory. */
 328        tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
 329        if (tmp > dinfo->fb.size) {
 330                WRN_MSG("Not enough video ram for mode "
 331                        "(%d KByte vs %d KByte).\n",
 332                        BtoKB(tmp), BtoKB(dinfo->fb.size));
 333                return 1;
 334        }
 335
 336        /* Check if x/y limits are OK. */
 337        if (var->xres - 1 > HACTIVE_MASK) {
 338                WRN_MSG("X resolution too large (%d vs %d).\n",
 339                        var->xres, HACTIVE_MASK + 1);
 340                return 1;
 341        }
 342        if (var->yres - 1 > VACTIVE_MASK) {
 343                WRN_MSG("Y resolution too large (%d vs %d).\n",
 344                        var->yres, VACTIVE_MASK + 1);
 345                return 1;
 346        }
 347        if (var->xres < 4) {
 348                WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
 349                return 1;
 350        }
 351        if (var->yres < 4) {
 352                WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
 353                return 1;
 354        }
 355
 356        /* Check for doublescan modes. */
 357        if (var->vmode & FB_VMODE_DOUBLE) {
 358                WRN_MSG("Mode is double-scan.\n");
 359                return 1;
 360        }
 361
 362        if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
 363                WRN_MSG("Odd number of lines in interlaced mode\n");
 364                return 1;
 365        }
 366
 367        /* Check if clock is OK. */
 368        tmp = 1000000000 / var->pixclock;
 369        if (tmp < MIN_CLOCK) {
 370                WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
 371                        (tmp + 500) / 1000, MIN_CLOCK / 1000);
 372                return 1;
 373        }
 374        if (tmp > MAX_CLOCK) {
 375                WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
 376                        (tmp + 500) / 1000, MAX_CLOCK / 1000);
 377                return 1;
 378        }
 379
 380        return 0;
 381}
 382
 383int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 384{
 385        struct intelfb_info *dinfo = GET_DINFO(info);
 386        u32 offset, xoffset, yoffset;
 387
 388#if VERBOSE > 0
 389        DBG_MSG("intelfbhw_pan_display\n");
 390#endif
 391
 392        xoffset = ROUND_DOWN_TO(var->xoffset, 8);
 393        yoffset = var->yoffset;
 394
 395        if ((xoffset + info->var.xres > info->var.xres_virtual) ||
 396            (yoffset + info->var.yres > info->var.yres_virtual))
 397                return -EINVAL;
 398
 399        offset = (yoffset * dinfo->pitch) +
 400                 (xoffset * info->var.bits_per_pixel) / 8;
 401
 402        offset += dinfo->fb.offset << 12;
 403
 404        dinfo->vsync.pan_offset = offset;
 405        if ((var->activate & FB_ACTIVATE_VBL) &&
 406            !intelfbhw_enable_irq(dinfo))
 407                dinfo->vsync.pan_display = 1;
 408        else {
 409                dinfo->vsync.pan_display = 0;
 410                OUTREG(DSPABASE, offset);
 411        }
 412
 413        return 0;
 414}
 415
 416/* Blank the screen. */
 417void intelfbhw_do_blank(int blank, struct fb_info *info)
 418{
 419        struct intelfb_info *dinfo = GET_DINFO(info);
 420        u32 tmp;
 421
 422#if VERBOSE > 0
 423        DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
 424#endif
 425
 426        /* Turn plane A on or off */
 427        tmp = INREG(DSPACNTR);
 428        if (blank)
 429                tmp &= ~DISPPLANE_PLANE_ENABLE;
 430        else
 431                tmp |= DISPPLANE_PLANE_ENABLE;
 432        OUTREG(DSPACNTR, tmp);
 433        /* Flush */
 434        tmp = INREG(DSPABASE);
 435        OUTREG(DSPABASE, tmp);
 436
 437        /* Turn off/on the HW cursor */
 438#if VERBOSE > 0
 439        DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
 440#endif
 441        if (dinfo->cursor_on) {
 442                if (blank)
 443                        intelfbhw_cursor_hide(dinfo);
 444                else
 445                        intelfbhw_cursor_show(dinfo);
 446                dinfo->cursor_on = 1;
 447        }
 448        dinfo->cursor_blanked = blank;
 449
 450        /* Set DPMS level */
 451        tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
 452        switch (blank) {
 453        case FB_BLANK_UNBLANK:
 454        case FB_BLANK_NORMAL:
 455                tmp |= ADPA_DPMS_D0;
 456                break;
 457        case FB_BLANK_VSYNC_SUSPEND:
 458                tmp |= ADPA_DPMS_D1;
 459                break;
 460        case FB_BLANK_HSYNC_SUSPEND:
 461                tmp |= ADPA_DPMS_D2;
 462                break;
 463        case FB_BLANK_POWERDOWN:
 464                tmp |= ADPA_DPMS_D3;
 465                break;
 466        }
 467        OUTREG(ADPA, tmp);
 468
 469        return;
 470}
 471
 472
 473/* Check which pipe is connected to an active display plane. */
 474int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
 475{
 476        int pipe = -1;
 477
 478        /* keep old default behaviour - prefer PIPE_A */
 479        if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
 480                pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
 481                pipe &= PIPE_MASK;
 482                if (unlikely(pipe == PIPE_A))
 483                        return PIPE_A;
 484        }
 485        if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
 486                pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
 487                pipe &= PIPE_MASK;
 488                if (likely(pipe == PIPE_A))
 489                        return PIPE_A;
 490        }
 491        /* Impossible that no pipe is selected - return PIPE_A */
 492        WARN_ON(pipe == -1);
 493        if (unlikely(pipe == -1))
 494                pipe = PIPE_A;
 495
 496        return pipe;
 497}
 498
 499void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
 500                         unsigned red, unsigned green, unsigned blue,
 501                         unsigned transp)
 502{
 503        u32 palette_reg = (dinfo->pipe == PIPE_A) ?
 504                          PALETTE_A : PALETTE_B;
 505
 506#if VERBOSE > 0
 507        DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
 508                regno, red, green, blue);
 509#endif
 510
 511        OUTREG(palette_reg + (regno << 2),
 512               (red << PALETTE_8_RED_SHIFT) |
 513               (green << PALETTE_8_GREEN_SHIFT) |
 514               (blue << PALETTE_8_BLUE_SHIFT));
 515}
 516
 517
 518int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
 519                            struct intelfb_hwstate *hw, int flag)
 520{
 521        int i;
 522
 523#if VERBOSE > 0
 524        DBG_MSG("intelfbhw_read_hw_state\n");
 525#endif
 526
 527        if (!hw || !dinfo)
 528                return -1;
 529
 530        /* Read in as much of the HW state as possible. */
 531        hw->vga0_divisor = INREG(VGA0_DIVISOR);
 532        hw->vga1_divisor = INREG(VGA1_DIVISOR);
 533        hw->vga_pd = INREG(VGAPD);
 534        hw->dpll_a = INREG(DPLL_A);
 535        hw->dpll_b = INREG(DPLL_B);
 536        hw->fpa0 = INREG(FPA0);
 537        hw->fpa1 = INREG(FPA1);
 538        hw->fpb0 = INREG(FPB0);
 539        hw->fpb1 = INREG(FPB1);
 540
 541        if (flag == 1)
 542                return flag;
 543
 544#if 0
 545        /* This seems to be a problem with the 852GM/855GM */
 546        for (i = 0; i < PALETTE_8_ENTRIES; i++) {
 547                hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
 548                hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
 549        }
 550#endif
 551
 552        if (flag == 2)
 553                return flag;
 554
 555        hw->htotal_a = INREG(HTOTAL_A);
 556        hw->hblank_a = INREG(HBLANK_A);
 557        hw->hsync_a = INREG(HSYNC_A);
 558        hw->vtotal_a = INREG(VTOTAL_A);
 559        hw->vblank_a = INREG(VBLANK_A);
 560        hw->vsync_a = INREG(VSYNC_A);
 561        hw->src_size_a = INREG(SRC_SIZE_A);
 562        hw->bclrpat_a = INREG(BCLRPAT_A);
 563        hw->htotal_b = INREG(HTOTAL_B);
 564        hw->hblank_b = INREG(HBLANK_B);
 565        hw->hsync_b = INREG(HSYNC_B);
 566        hw->vtotal_b = INREG(VTOTAL_B);
 567        hw->vblank_b = INREG(VBLANK_B);
 568        hw->vsync_b = INREG(VSYNC_B);
 569        hw->src_size_b = INREG(SRC_SIZE_B);
 570        hw->bclrpat_b = INREG(BCLRPAT_B);
 571
 572        if (flag == 3)
 573                return flag;
 574
 575        hw->adpa = INREG(ADPA);
 576        hw->dvoa = INREG(DVOA);
 577        hw->dvob = INREG(DVOB);
 578        hw->dvoc = INREG(DVOC);
 579        hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
 580        hw->dvob_srcdim = INREG(DVOB_SRCDIM);
 581        hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
 582        hw->lvds = INREG(LVDS);
 583
 584        if (flag == 4)
 585                return flag;
 586
 587        hw->pipe_a_conf = INREG(PIPEACONF);
 588        hw->pipe_b_conf = INREG(PIPEBCONF);
 589        hw->disp_arb = INREG(DISPARB);
 590
 591        if (flag == 5)
 592                return flag;
 593
 594        hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
 595        hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
 596        hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
 597        hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
 598
 599        if (flag == 6)
 600                return flag;
 601
 602        for (i = 0; i < 4; i++) {
 603                hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
 604                hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
 605        }
 606
 607        if (flag == 7)
 608                return flag;
 609
 610        hw->cursor_size = INREG(CURSOR_SIZE);
 611
 612        if (flag == 8)
 613                return flag;
 614
 615        hw->disp_a_ctrl = INREG(DSPACNTR);
 616        hw->disp_b_ctrl = INREG(DSPBCNTR);
 617        hw->disp_a_base = INREG(DSPABASE);
 618        hw->disp_b_base = INREG(DSPBBASE);
 619        hw->disp_a_stride = INREG(DSPASTRIDE);
 620        hw->disp_b_stride = INREG(DSPBSTRIDE);
 621
 622        if (flag == 9)
 623                return flag;
 624
 625        hw->vgacntrl = INREG(VGACNTRL);
 626
 627        if (flag == 10)
 628                return flag;
 629
 630        hw->add_id = INREG(ADD_ID);
 631
 632        if (flag == 11)
 633                return flag;
 634
 635        for (i = 0; i < 7; i++) {
 636                hw->swf0x[i] = INREG(SWF00 + (i << 2));
 637                hw->swf1x[i] = INREG(SWF10 + (i << 2));
 638                if (i < 3)
 639                        hw->swf3x[i] = INREG(SWF30 + (i << 2));
 640        }
 641
 642        for (i = 0; i < 8; i++)
 643                hw->fence[i] = INREG(FENCE + (i << 2));
 644
 645        hw->instpm = INREG(INSTPM);
 646        hw->mem_mode = INREG(MEM_MODE);
 647        hw->fw_blc_0 = INREG(FW_BLC_0);
 648        hw->fw_blc_1 = INREG(FW_BLC_1);
 649
 650        hw->hwstam = INREG16(HWSTAM);
 651        hw->ier = INREG16(IER);
 652        hw->iir = INREG16(IIR);
 653        hw->imr = INREG16(IMR);
 654
 655        return 0;
 656}
 657
 658
 659static int calc_vclock3(int index, int m, int n, int p)
 660{
 661        if (p == 0 || n == 0)
 662                return 0;
 663        return plls[index].ref_clk * m / n / p;
 664}
 665
 666static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
 667                       int lvds)
 668{
 669        struct pll_min_max *pll = &plls[index];
 670        u32 m, vco, p;
 671
 672        m = (5 * (m1 + 2)) + (m2 + 2);
 673        n += 2;
 674        vco = pll->ref_clk * m / n;
 675
 676        if (index == PLLS_I8xx)
 677                p = ((p1 + 2) * (1 << (p2 + 1)));
 678        else
 679                p = ((p1) * (p2 ? 5 : 10));
 680        return vco / p;
 681}
 682
 683#if REGDUMP
 684static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
 685                               int *o_p1, int *o_p2)
 686{
 687        int p1, p2;
 688
 689        if (IS_I9XX(dinfo)) {
 690                if (dpll & DPLL_P1_FORCE_DIV2)
 691                        p1 = 1;
 692                else
 693                        p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
 694
 695                p1 = ffs(p1);
 696
 697                p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
 698        } else {
 699                if (dpll & DPLL_P1_FORCE_DIV2)
 700                        p1 = 0;
 701                else
 702                        p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
 703                p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
 704        }
 705
 706        *o_p1 = p1;
 707        *o_p2 = p2;
 708}
 709#endif
 710
 711
 712void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
 713                              struct intelfb_hwstate *hw)
 714{
 715#if REGDUMP
 716        int i, m1, m2, n, p1, p2;
 717        int index = dinfo->pll_index;
 718        DBG_MSG("intelfbhw_print_hw_state\n");
 719
 720        if (!hw)
 721                return;
 722        /* Read in as much of the HW state as possible. */
 723        printk("hw state dump start\n");
 724        printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
 725        printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
 726        printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
 727        n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 728        m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 729        m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 730
 731        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 732
 733        printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 734               m1, m2, n, p1, p2);
 735        printk("        VGA0: clock is %d\n",
 736               calc_vclock(index, m1, m2, n, p1, p2, 0));
 737
 738        n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 739        m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 740        m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 741
 742        intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
 743        printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 744               m1, m2, n, p1, p2);
 745        printk("        VGA1: clock is %d\n",
 746               calc_vclock(index, m1, m2, n, p1, p2, 0));
 747
 748        printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
 749        printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
 750        printk("        FPA0:                   0x%08x\n", hw->fpa0);
 751        printk("        FPA1:                   0x%08x\n", hw->fpa1);
 752        printk("        FPB0:                   0x%08x\n", hw->fpb0);
 753        printk("        FPB1:                   0x%08x\n", hw->fpb1);
 754
 755        n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 756        m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 757        m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 758
 759        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 760
 761        printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 762               m1, m2, n, p1, p2);
 763        printk("        PLLA0: clock is %d\n",
 764               calc_vclock(index, m1, m2, n, p1, p2, 0));
 765
 766        n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 767        m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 768        m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
 769
 770        intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
 771
 772        printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
 773               m1, m2, n, p1, p2);
 774        printk("        PLLA1: clock is %d\n",
 775               calc_vclock(index, m1, m2, n, p1, p2, 0));
 776
 777#if 0
 778        printk("        PALETTE_A:\n");
 779        for (i = 0; i < PALETTE_8_ENTRIES)
 780                printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
 781        printk("        PALETTE_B:\n");
 782        for (i = 0; i < PALETTE_8_ENTRIES)
 783                printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
 784#endif
 785
 786        printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
 787        printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
 788        printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
 789        printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
 790        printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
 791        printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
 792        printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
 793        printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
 794        printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
 795        printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
 796        printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
 797        printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
 798        printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
 799        printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
 800        printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
 801        printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
 802
 803        printk("        ADPA:                   0x%08x\n", hw->adpa);
 804        printk("        DVOA:                   0x%08x\n", hw->dvoa);
 805        printk("        DVOB:                   0x%08x\n", hw->dvob);
 806        printk("        DVOC:                   0x%08x\n", hw->dvoc);
 807        printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
 808        printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
 809        printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
 810        printk("        LVDS:                   0x%08x\n", hw->lvds);
 811
 812        printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
 813        printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
 814        printk("        DISPARB:                0x%08x\n", hw->disp_arb);
 815
 816        printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
 817        printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
 818        printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
 819        printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
 820
 821        printk("        CURSOR_A_PALETTE:       ");
 822        for (i = 0; i < 4; i++) {
 823                printk("0x%08x", hw->cursor_a_palette[i]);
 824                if (i < 3)
 825                        printk(", ");
 826        }
 827        printk("\n");
 828        printk("        CURSOR_B_PALETTE:       ");
 829        for (i = 0; i < 4; i++) {
 830                printk("0x%08x", hw->cursor_b_palette[i]);
 831                if (i < 3)
 832                        printk(", ");
 833        }
 834        printk("\n");
 835
 836        printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
 837
 838        printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
 839        printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
 840        printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
 841        printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
 842        printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
 843        printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
 844
 845        printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
 846        printk("        ADD_ID:                 0x%08x\n", hw->add_id);
 847
 848        for (i = 0; i < 7; i++) {
 849                printk("        SWF0%d                  0x%08x\n", i,
 850                        hw->swf0x[i]);
 851        }
 852        for (i = 0; i < 7; i++) {
 853                printk("        SWF1%d                  0x%08x\n", i,
 854                        hw->swf1x[i]);
 855        }
 856        for (i = 0; i < 3; i++) {
 857                printk("        SWF3%d                  0x%08x\n", i,
 858                       hw->swf3x[i]);
 859        }
 860        for (i = 0; i < 8; i++)
 861                printk("        FENCE%d                 0x%08x\n", i,
 862                       hw->fence[i]);
 863
 864        printk("        INSTPM                  0x%08x\n", hw->instpm);
 865        printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
 866        printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
 867        printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
 868
 869        printk("        HWSTAM                  0x%04x\n", hw->hwstam);
 870        printk("        IER                     0x%04x\n", hw->ier);
 871        printk("        IIR                     0x%04x\n", hw->iir);
 872        printk("        IMR                     0x%04x\n", hw->imr);
 873        printk("hw state dump end\n");
 874#endif
 875}
 876
 877
 878
 879/* Split the M parameter into M1 and M2. */
 880static int splitm(int index, unsigned int m, unsigned int *retm1,
 881                  unsigned int *retm2)
 882{
 883        int m1, m2;
 884        int testm;
 885        struct pll_min_max *pll = &plls[index];
 886
 887        /* no point optimising too much - brute force m */
 888        for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
 889                for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
 890                        testm = (5 * (m1 + 2)) + (m2 + 2);
 891                        if (testm == m) {
 892                                *retm1 = (unsigned int)m1;
 893                                *retm2 = (unsigned int)m2;
 894                                return 0;
 895                        }
 896                }
 897        }
 898        return 1;
 899}
 900
 901/* Split the P parameter into P1 and P2. */
 902static int splitp(int index, unsigned int p, unsigned int *retp1,
 903                  unsigned int *retp2)
 904{
 905        int p1, p2;
 906        struct pll_min_max *pll = &plls[index];
 907
 908        if (index == PLLS_I9xx) {
 909                p2 = (p % 10) ? 1 : 0;
 910
 911                p1 = p / (p2 ? 5 : 10);
 912
 913                *retp1 = (unsigned int)p1;
 914                *retp2 = (unsigned int)p2;
 915                return 0;
 916        }
 917
 918        if (p % 4 == 0)
 919                p2 = 1;
 920        else
 921                p2 = 0;
 922        p1 = (p / (1 << (p2 + 1))) - 2;
 923        if (p % 4 == 0 && p1 < pll->min_p1) {
 924                p2 = 0;
 925                p1 = (p / (1 << (p2 + 1))) - 2;
 926        }
 927        if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
 928            (p1 + 2) * (1 << (p2 + 1)) != p) {
 929                return 1;
 930        } else {
 931                *retp1 = (unsigned int)p1;
 932                *retp2 = (unsigned int)p2;
 933                return 0;
 934        }
 935}
 936
 937static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
 938                           u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
 939{
 940        u32 m1, m2, n, p1, p2, n1, testm;
 941        u32 f_vco, p, p_best = 0, m, f_out = 0;
 942        u32 err_best = 10000000;
 943        u32 n_best = 0, m_best = 0, f_err;
 944        u32 p_min, p_max, p_inc, div_max;
 945        struct pll_min_max *pll = &plls[index];
 946
 947        DBG_MSG("Clock is %d\n", clock);
 948
 949        div_max = pll->max_vco / clock;
 950
 951        p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
 952        p_min = p_inc;
 953        p_max = ROUND_DOWN_TO(div_max, p_inc);
 954        if (p_min < pll->min_p)
 955                p_min = pll->min_p;
 956        if (p_max > pll->max_p)
 957                p_max = pll->max_p;
 958
 959        DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
 960
 961        p = p_min;
 962        do {
 963                if (splitp(index, p, &p1, &p2)) {
 964                        WRN_MSG("cannot split p = %d\n", p);
 965                        p += p_inc;
 966                        continue;
 967                }
 968                n = pll->min_n;
 969                f_vco = clock * p;
 970
 971                do {
 972                        m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
 973                        if (m < pll->min_m)
 974                                m = pll->min_m + 1;
 975                        if (m > pll->max_m)
 976                                m = pll->max_m - 1;
 977                        for (testm = m - 1; testm <= m; testm++) {
 978                                f_out = calc_vclock3(index, testm, n, p);
 979                                if (splitm(index, testm, &m1, &m2)) {
 980                                        WRN_MSG("cannot split m = %d\n",
 981                                                testm);
 982                                        continue;
 983                                }
 984                                if (clock > f_out)
 985                                        f_err = clock - f_out;
 986                                else/* slightly bias the error for bigger clocks */
 987                                        f_err = f_out - clock + 1;
 988
 989                                if (f_err < err_best) {
 990                                        m_best = testm;
 991                                        n_best = n;
 992                                        p_best = p;
 993                                        err_best = f_err;
 994                                }
 995                        }
 996                        n++;
 997                } while ((n <= pll->max_n) && (f_out >= clock));
 998                p += p_inc;
 999        } while ((p <= p_max));
1000
1001        if (!m_best) {
1002                WRN_MSG("cannot find parameters for clock %d\n", clock);
1003                return 1;
1004        }
1005        m = m_best;
1006        n = n_best;
1007        p = p_best;
1008        splitm(index, m, &m1, &m2);
1009        splitp(index, p, &p1, &p2);
1010        n1 = n - 2;
1011
1012        DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1013                "f: %d (%d), VCO: %d\n",
1014                m, m1, m2, n, n1, p, p1, p2,
1015                calc_vclock3(index, m, n, p),
1016                calc_vclock(index, m1, m2, n1, p1, p2, 0),
1017                calc_vclock3(index, m, n, p) * p);
1018        *retm1 = m1;
1019        *retm2 = m2;
1020        *retn = n1;
1021        *retp1 = p1;
1022        *retp2 = p2;
1023        *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1024
1025        return 0;
1026}
1027
1028static __inline__ int check_overflow(u32 value, u32 limit,
1029                                     const char *description)
1030{
1031        if (value > limit) {
1032                WRN_MSG("%s value %d exceeds limit %d\n",
1033                        description, value, limit);
1034                return 1;
1035        }
1036        return 0;
1037}
1038
1039/* It is assumed that hw is filled in with the initial state information. */
1040int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1041                         struct intelfb_hwstate *hw,
1042                         struct fb_var_screeninfo *var)
1043{
1044        int pipe = intelfbhw_active_pipe(hw);
1045        u32 *dpll, *fp0, *fp1;
1046        u32 m1, m2, n, p1, p2, clock_target, clock;
1047        u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1048        u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1049        u32 vsync_pol, hsync_pol;
1050        u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1051        u32 stride_alignment;
1052
1053        DBG_MSG("intelfbhw_mode_to_hw\n");
1054
1055        /* Disable VGA */
1056        hw->vgacntrl |= VGA_DISABLE;
1057
1058        /* Set which pipe's registers will be set. */
1059        if (pipe == PIPE_B) {
1060                dpll = &hw->dpll_b;
1061                fp0 = &hw->fpb0;
1062                fp1 = &hw->fpb1;
1063                hs = &hw->hsync_b;
1064                hb = &hw->hblank_b;
1065                ht = &hw->htotal_b;
1066                vs = &hw->vsync_b;
1067                vb = &hw->vblank_b;
1068                vt = &hw->vtotal_b;
1069                ss = &hw->src_size_b;
1070                pipe_conf = &hw->pipe_b_conf;
1071        } else {
1072                dpll = &hw->dpll_a;
1073                fp0 = &hw->fpa0;
1074                fp1 = &hw->fpa1;
1075                hs = &hw->hsync_a;
1076                hb = &hw->hblank_a;
1077                ht = &hw->htotal_a;
1078                vs = &hw->vsync_a;
1079                vb = &hw->vblank_a;
1080                vt = &hw->vtotal_a;
1081                ss = &hw->src_size_a;
1082                pipe_conf = &hw->pipe_a_conf;
1083        }
1084
1085        /* Use ADPA register for sync control. */
1086        hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1087
1088        /* sync polarity */
1089        hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1090                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091        vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1092                        ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1093        hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1094                      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1095        hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1096                    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1097
1098        /* Connect correct pipe to the analog port DAC */
1099        hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1100        hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1101
1102        /* Set DPMS state to D0 (on) */
1103        hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1104        hw->adpa |= ADPA_DPMS_D0;
1105
1106        hw->adpa |= ADPA_DAC_ENABLE;
1107
1108        *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1109        *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1110        *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1111
1112        /* Desired clock in kHz */
1113        clock_target = 1000000000 / var->pixclock;
1114
1115        if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1116                            &n, &p1, &p2, &clock)) {
1117                WRN_MSG("calc_pll_params failed\n");
1118                return 1;
1119        }
1120
1121        /* Check for overflow. */
1122        if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1123                return 1;
1124        if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1125                return 1;
1126        if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1127                return 1;
1128        if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1129                return 1;
1130        if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1131                return 1;
1132
1133        *dpll &= ~DPLL_P1_FORCE_DIV2;
1134        *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1135                   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1136
1137        if (IS_I9XX(dinfo)) {
1138                *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1139                *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1140        } else
1141                *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1142
1143        *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1144               (m1 << FP_M1_DIVISOR_SHIFT) |
1145               (m2 << FP_M2_DIVISOR_SHIFT);
1146        *fp1 = *fp0;
1147
1148        hw->dvob &= ~PORT_ENABLE;
1149        hw->dvoc &= ~PORT_ENABLE;
1150
1151        /* Use display plane A. */
1152        hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1153        hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1154        hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1155        switch (intelfb_var_to_depth(var)) {
1156        case 8:
1157                hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1158                break;
1159        case 15:
1160                hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1161                break;
1162        case 16:
1163                hw->disp_a_ctrl |= DISPPLANE_16BPP;
1164                break;
1165        case 24:
1166                hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1167                break;
1168        }
1169        hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1170        hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1171
1172        /* Set CRTC registers. */
1173        hactive = var->xres;
1174        hsync_start = hactive + var->right_margin;
1175        hsync_end = hsync_start + var->hsync_len;
1176        htotal = hsync_end + var->left_margin;
1177        hblank_start = hactive;
1178        hblank_end = htotal;
1179
1180        DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1181                hactive, hsync_start, hsync_end, htotal, hblank_start,
1182                hblank_end);
1183
1184        vactive = var->yres;
1185        if (var->vmode & FB_VMODE_INTERLACED)
1186                vactive--; /* the chip adds 2 halflines automatically */
1187        vsync_start = vactive + var->lower_margin;
1188        vsync_end = vsync_start + var->vsync_len;
1189        vtotal = vsync_end + var->upper_margin;
1190        vblank_start = vactive;
1191        vblank_end = vsync_end + 1;
1192
1193        DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1194                vactive, vsync_start, vsync_end, vtotal, vblank_start,
1195                vblank_end);
1196
1197        /* Adjust for register values, and check for overflow. */
1198        hactive--;
1199        if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1200                return 1;
1201        hsync_start--;
1202        if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1203                return 1;
1204        hsync_end--;
1205        if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1206                return 1;
1207        htotal--;
1208        if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1209                return 1;
1210        hblank_start--;
1211        if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1212                return 1;
1213        hblank_end--;
1214        if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1215                return 1;
1216
1217        vactive--;
1218        if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1219                return 1;
1220        vsync_start--;
1221        if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1222                return 1;
1223        vsync_end--;
1224        if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1225                return 1;
1226        vtotal--;
1227        if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1228                return 1;
1229        vblank_start--;
1230        if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1231                return 1;
1232        vblank_end--;
1233        if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1234                return 1;
1235
1236        *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1237        *hb = (hblank_start << HBLANKSTART_SHIFT) |
1238              (hblank_end << HSYNCEND_SHIFT);
1239        *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1240
1241        *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1242        *vb = (vblank_start << VBLANKSTART_SHIFT) |
1243              (vblank_end << VSYNCEND_SHIFT);
1244        *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1245        *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1246              (vactive << SRC_SIZE_VERT_SHIFT);
1247
1248        hw->disp_a_stride = dinfo->pitch;
1249        DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1250
1251        hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1252                          var->xoffset * var->bits_per_pixel / 8;
1253
1254        hw->disp_a_base += dinfo->fb.offset << 12;
1255
1256        /* Check stride alignment. */
1257        stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1258                                            STRIDE_ALIGNMENT;
1259        if (hw->disp_a_stride % stride_alignment != 0) {
1260                WRN_MSG("display stride %d has bad alignment %d\n",
1261                        hw->disp_a_stride, stride_alignment);
1262                return 1;
1263        }
1264
1265        /* Set the palette to 8-bit mode. */
1266        *pipe_conf &= ~PIPECONF_GAMMA;
1267
1268        if (var->vmode & FB_VMODE_INTERLACED)
1269                *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1270        else
1271                *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1272
1273        return 0;
1274}
1275
1276/* Program a (non-VGA) video mode. */
1277int intelfbhw_program_mode(struct intelfb_info *dinfo,
1278                           const struct intelfb_hwstate *hw, int blank)
1279{
1280        u32 tmp;
1281        const u32 *dpll, *fp0, *fp1, *pipe_conf;
1282        const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1283        u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1284        u32 hsync_reg, htotal_reg, hblank_reg;
1285        u32 vsync_reg, vtotal_reg, vblank_reg;
1286        u32 src_size_reg;
1287        u32 count, tmp_val[3];
1288
1289        /* Assume single pipe */
1290
1291#if VERBOSE > 0
1292        DBG_MSG("intelfbhw_program_mode\n");
1293#endif
1294
1295        /* Disable VGA */
1296        tmp = INREG(VGACNTRL);
1297        tmp |= VGA_DISABLE;
1298        OUTREG(VGACNTRL, tmp);
1299
1300        dinfo->pipe = intelfbhw_active_pipe(hw);
1301
1302        if (dinfo->pipe == PIPE_B) {
1303                dpll = &hw->dpll_b;
1304                fp0 = &hw->fpb0;
1305                fp1 = &hw->fpb1;
1306                pipe_conf = &hw->pipe_b_conf;
1307                hs = &hw->hsync_b;
1308                hb = &hw->hblank_b;
1309                ht = &hw->htotal_b;
1310                vs = &hw->vsync_b;
1311                vb = &hw->vblank_b;
1312                vt = &hw->vtotal_b;
1313                ss = &hw->src_size_b;
1314                dpll_reg = DPLL_B;
1315                fp0_reg = FPB0;
1316                fp1_reg = FPB1;
1317                pipe_conf_reg = PIPEBCONF;
1318                pipe_stat_reg = PIPEBSTAT;
1319                hsync_reg = HSYNC_B;
1320                htotal_reg = HTOTAL_B;
1321                hblank_reg = HBLANK_B;
1322                vsync_reg = VSYNC_B;
1323                vtotal_reg = VTOTAL_B;
1324                vblank_reg = VBLANK_B;
1325                src_size_reg = SRC_SIZE_B;
1326        } else {
1327                dpll = &hw->dpll_a;
1328                fp0 = &hw->fpa0;
1329                fp1 = &hw->fpa1;
1330                pipe_conf = &hw->pipe_a_conf;
1331                hs = &hw->hsync_a;
1332                hb = &hw->hblank_a;
1333                ht = &hw->htotal_a;
1334                vs = &hw->vsync_a;
1335                vb = &hw->vblank_a;
1336                vt = &hw->vtotal_a;
1337                ss = &hw->src_size_a;
1338                dpll_reg = DPLL_A;
1339                fp0_reg = FPA0;
1340                fp1_reg = FPA1;
1341                pipe_conf_reg = PIPEACONF;
1342                pipe_stat_reg = PIPEASTAT;
1343                hsync_reg = HSYNC_A;
1344                htotal_reg = HTOTAL_A;
1345                hblank_reg = HBLANK_A;
1346                vsync_reg = VSYNC_A;
1347                vtotal_reg = VTOTAL_A;
1348                vblank_reg = VBLANK_A;
1349                src_size_reg = SRC_SIZE_A;
1350        }
1351
1352        /* turn off pipe */
1353        tmp = INREG(pipe_conf_reg);
1354        tmp &= ~PIPECONF_ENABLE;
1355        OUTREG(pipe_conf_reg, tmp);
1356
1357        count = 0;
1358        do {
1359                tmp_val[count % 3] = INREG(PIPEA_DSL);
1360                if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1361                        break;
1362                count++;
1363                udelay(1);
1364                if (count % 200 == 0) {
1365                        tmp = INREG(pipe_conf_reg);
1366                        tmp &= ~PIPECONF_ENABLE;
1367                        OUTREG(pipe_conf_reg, tmp);
1368                }
1369        } while (count < 2000);
1370
1371        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1372
1373        /* Disable planes A and B. */
1374        tmp = INREG(DSPACNTR);
1375        tmp &= ~DISPPLANE_PLANE_ENABLE;
1376        OUTREG(DSPACNTR, tmp);
1377        tmp = INREG(DSPBCNTR);
1378        tmp &= ~DISPPLANE_PLANE_ENABLE;
1379        OUTREG(DSPBCNTR, tmp);
1380
1381        /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1382        mdelay(20);
1383
1384        OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1385        OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1386        OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1387
1388        /* Disable Sync */
1389        tmp = INREG(ADPA);
1390        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1391        tmp |= ADPA_DPMS_D3;
1392        OUTREG(ADPA, tmp);
1393
1394        /* do some funky magic - xyzzy */
1395        OUTREG(0x61204, 0xabcd0000);
1396
1397        /* turn off PLL */
1398        tmp = INREG(dpll_reg);
1399        tmp &= ~DPLL_VCO_ENABLE;
1400        OUTREG(dpll_reg, tmp);
1401
1402        /* Set PLL parameters */
1403        OUTREG(fp0_reg, *fp0);
1404        OUTREG(fp1_reg, *fp1);
1405
1406        /* Enable PLL */
1407        OUTREG(dpll_reg, *dpll);
1408
1409        /* Set DVOs B/C */
1410        OUTREG(DVOB, hw->dvob);
1411        OUTREG(DVOC, hw->dvoc);
1412
1413        /* undo funky magic */
1414        OUTREG(0x61204, 0x00000000);
1415
1416        /* Set ADPA */
1417        OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1418        OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1419
1420        /* Set pipe parameters */
1421        OUTREG(hsync_reg, *hs);
1422        OUTREG(hblank_reg, *hb);
1423        OUTREG(htotal_reg, *ht);
1424        OUTREG(vsync_reg, *vs);
1425        OUTREG(vblank_reg, *vb);
1426        OUTREG(vtotal_reg, *vt);
1427        OUTREG(src_size_reg, *ss);
1428
1429        switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1430                                          FB_VMODE_ODD_FLD_FIRST)) {
1431        case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1432                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1433                break;
1434        case FB_VMODE_INTERLACED: /* even lines first */
1435                OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1436                break;
1437        default:                /* non-interlaced */
1438                OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1439        }
1440        /* Enable pipe */
1441        OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1442
1443        /* Enable sync */
1444        tmp = INREG(ADPA);
1445        tmp &= ~ADPA_DPMS_CONTROL_MASK;
1446        tmp |= ADPA_DPMS_D0;
1447        OUTREG(ADPA, tmp);
1448
1449        /* setup display plane */
1450        if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1451                /*
1452                 *      i830M errata: the display plane must be enabled
1453                 *      to allow writes to the other bits in the plane
1454                 *      control register.
1455                 */
1456                tmp = INREG(DSPACNTR);
1457                if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1458                        tmp |= DISPPLANE_PLANE_ENABLE;
1459                        OUTREG(DSPACNTR, tmp);
1460                        OUTREG(DSPACNTR,
1461                               hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1462                        mdelay(1);
1463                }
1464        }
1465
1466        OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1467        OUTREG(DSPASTRIDE, hw->disp_a_stride);
1468        OUTREG(DSPABASE, hw->disp_a_base);
1469
1470        /* Enable plane */
1471        if (!blank) {
1472                tmp = INREG(DSPACNTR);
1473                tmp |= DISPPLANE_PLANE_ENABLE;
1474                OUTREG(DSPACNTR, tmp);
1475                OUTREG(DSPABASE, hw->disp_a_base);
1476        }
1477
1478        return 0;
1479}
1480
1481/* forward declarations */
1482static void refresh_ring(struct intelfb_info *dinfo);
1483static void reset_state(struct intelfb_info *dinfo);
1484static void do_flush(struct intelfb_info *dinfo);
1485
1486static  u32 get_ring_space(struct intelfb_info *dinfo)
1487{
1488        u32 ring_space;
1489
1490        if (dinfo->ring_tail >= dinfo->ring_head)
1491                ring_space = dinfo->ring.size -
1492                        (dinfo->ring_tail - dinfo->ring_head);
1493        else
1494                ring_space = dinfo->ring_head - dinfo->ring_tail;
1495
1496        if (ring_space > RING_MIN_FREE)
1497                ring_space -= RING_MIN_FREE;
1498        else
1499                ring_space = 0;
1500
1501        return ring_space;
1502}
1503
1504static int wait_ring(struct intelfb_info *dinfo, int n)
1505{
1506        int i = 0;
1507        unsigned long end;
1508        u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509
1510#if VERBOSE > 0
1511        DBG_MSG("wait_ring: %d\n", n);
1512#endif
1513
1514        end = jiffies + (HZ * 3);
1515        while (dinfo->ring_space < n) {
1516                dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1517                dinfo->ring_space = get_ring_space(dinfo);
1518
1519                if (dinfo->ring_head != last_head) {
1520                        end = jiffies + (HZ * 3);
1521                        last_head = dinfo->ring_head;
1522                }
1523                i++;
1524                if (time_before(end, jiffies)) {
1525                        if (!i) {
1526                                /* Try again */
1527                                reset_state(dinfo);
1528                                refresh_ring(dinfo);
1529                                do_flush(dinfo);
1530                                end = jiffies + (HZ * 3);
1531                                i = 1;
1532                        } else {
1533                                WRN_MSG("ring buffer : space: %d wanted %d\n",
1534                                        dinfo->ring_space, n);
1535                                WRN_MSG("lockup - turning off hardware "
1536                                        "acceleration\n");
1537                                dinfo->ring_lockup = 1;
1538                                break;
1539                        }
1540                }
1541                udelay(1);
1542        }
1543        return i;
1544}
1545
1546static void do_flush(struct intelfb_info *dinfo)
1547{
1548        START_RING(2);
1549        OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1550        OUT_RING(MI_NOOP);
1551        ADVANCE_RING();
1552}
1553
1554void intelfbhw_do_sync(struct intelfb_info *dinfo)
1555{
1556#if VERBOSE > 0
1557        DBG_MSG("intelfbhw_do_sync\n");
1558#endif
1559
1560        if (!dinfo->accel)
1561                return;
1562
1563        /*
1564         * Send a flush, then wait until the ring is empty.  This is what
1565         * the XFree86 driver does, and actually it doesn't seem a lot worse
1566         * than the recommended method (both have problems).
1567         */
1568        do_flush(dinfo);
1569        wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1570        dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1571}
1572
1573static void refresh_ring(struct intelfb_info *dinfo)
1574{
1575#if VERBOSE > 0
1576        DBG_MSG("refresh_ring\n");
1577#endif
1578
1579        dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1580        dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1581        dinfo->ring_space = get_ring_space(dinfo);
1582}
1583
1584static void reset_state(struct intelfb_info *dinfo)
1585{
1586        int i;
1587        u32 tmp;
1588
1589#if VERBOSE > 0
1590        DBG_MSG("reset_state\n");
1591#endif
1592
1593        for (i = 0; i < FENCE_NUM; i++)
1594                OUTREG(FENCE + (i << 2), 0);
1595
1596        /* Flush the ring buffer if it's enabled. */
1597        tmp = INREG(PRI_RING_LENGTH);
1598        if (tmp & RING_ENABLE) {
1599#if VERBOSE > 0
1600                DBG_MSG("reset_state: ring was enabled\n");
1601#endif
1602                refresh_ring(dinfo);
1603                intelfbhw_do_sync(dinfo);
1604                DO_RING_IDLE();
1605        }
1606
1607        OUTREG(PRI_RING_LENGTH, 0);
1608        OUTREG(PRI_RING_HEAD, 0);
1609        OUTREG(PRI_RING_TAIL, 0);
1610        OUTREG(PRI_RING_START, 0);
1611}
1612
1613/* Stop the 2D engine, and turn off the ring buffer. */
1614void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1615{
1616#if VERBOSE > 0
1617        DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1618                dinfo->accel, dinfo->ring_active);
1619#endif
1620
1621        if (!dinfo->accel)
1622                return;
1623
1624        dinfo->ring_active = 0;
1625        reset_state(dinfo);
1626}
1627
1628/*
1629 * Enable the ring buffer, and initialise the 2D engine.
1630 * It is assumed that the graphics engine has been stopped by previously
1631 * calling intelfb_2d_stop().
1632 */
1633void intelfbhw_2d_start(struct intelfb_info *dinfo)
1634{
1635#if VERBOSE > 0
1636        DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1637                dinfo->accel, dinfo->ring_active);
1638#endif
1639
1640        if (!dinfo->accel)
1641                return;
1642
1643        /* Initialise the primary ring buffer. */
1644        OUTREG(PRI_RING_LENGTH, 0);
1645        OUTREG(PRI_RING_TAIL, 0);
1646        OUTREG(PRI_RING_HEAD, 0);
1647
1648        OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1649        OUTREG(PRI_RING_LENGTH,
1650                ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1651                RING_NO_REPORT | RING_ENABLE);
1652        refresh_ring(dinfo);
1653        dinfo->ring_active = 1;
1654}
1655
1656/* 2D fillrect (solid fill or invert) */
1657void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1658                           u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1659{
1660        u32 br00, br09, br13, br14, br16;
1661
1662#if VERBOSE > 0
1663        DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1664                "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1665#endif
1666
1667        br00 = COLOR_BLT_CMD;
1668        br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1669        br13 = (rop << ROP_SHIFT) | pitch;
1670        br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1671        br16 = color;
1672
1673        switch (bpp) {
1674        case 8:
1675                br13 |= COLOR_DEPTH_8;
1676                break;
1677        case 16:
1678                br13 |= COLOR_DEPTH_16;
1679                break;
1680        case 32:
1681                br13 |= COLOR_DEPTH_32;
1682                br00 |= WRITE_ALPHA | WRITE_RGB;
1683                break;
1684        }
1685
1686        START_RING(6);
1687        OUT_RING(br00);
1688        OUT_RING(br13);
1689        OUT_RING(br14);
1690        OUT_RING(br09);
1691        OUT_RING(br16);
1692        OUT_RING(MI_NOOP);
1693        ADVANCE_RING();
1694
1695#if VERBOSE > 0
1696        DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1697                dinfo->ring_tail, dinfo->ring_space);
1698#endif
1699}
1700
1701void
1702intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1703                    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1704{
1705        u32 br00, br09, br11, br12, br13, br22, br23, br26;
1706
1707#if VERBOSE > 0
1708        DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1709                curx, cury, dstx, dsty, w, h, pitch, bpp);
1710#endif
1711
1712        br00 = XY_SRC_COPY_BLT_CMD;
1713        br09 = dinfo->fb_start;
1714        br11 = (pitch << PITCH_SHIFT);
1715        br12 = dinfo->fb_start;
1716        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1717        br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1718        br23 = ((dstx + w) << WIDTH_SHIFT) |
1719               ((dsty + h) << HEIGHT_SHIFT);
1720        br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1721
1722        switch (bpp) {
1723        case 8:
1724                br13 |= COLOR_DEPTH_8;
1725                break;
1726        case 16:
1727                br13 |= COLOR_DEPTH_16;
1728                break;
1729        case 32:
1730                br13 |= COLOR_DEPTH_32;
1731                br00 |= WRITE_ALPHA | WRITE_RGB;
1732                break;
1733        }
1734
1735        START_RING(8);
1736        OUT_RING(br00);
1737        OUT_RING(br13);
1738        OUT_RING(br22);
1739        OUT_RING(br23);
1740        OUT_RING(br09);
1741        OUT_RING(br26);
1742        OUT_RING(br11);
1743        OUT_RING(br12);
1744        ADVANCE_RING();
1745}
1746
1747int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1748                           u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1749                           u32 bpp)
1750{
1751        int nbytes, ndwords, pad, tmp;
1752        u32 br00, br09, br13, br18, br19, br22, br23;
1753        int dat, ix, iy, iw;
1754        int i, j;
1755
1756#if VERBOSE > 0
1757        DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1758#endif
1759
1760        /* size in bytes of a padded scanline */
1761        nbytes = ROUND_UP_TO(w, 16) / 8;
1762
1763        /* Total bytes of padded scanline data to write out. */
1764        nbytes = nbytes * h;
1765
1766        /*
1767         * Check if the glyph data exceeds the immediate mode limit.
1768         * It would take a large font (1K pixels) to hit this limit.
1769         */
1770        if (nbytes > MAX_MONO_IMM_SIZE)
1771                return 0;
1772
1773        /* Src data is packaged a dword (32-bit) at a time. */
1774        ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1775
1776        /*
1777         * Ring has to be padded to a quad word. But because the command starts
1778           with 7 bytes, pad only if there is an even number of ndwords
1779         */
1780        pad = !(ndwords % 2);
1781
1782        tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1783        br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1784        br09 = dinfo->fb_start;
1785        br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1786        br18 = bg;
1787        br19 = fg;
1788        br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1789        br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1790
1791        switch (bpp) {
1792        case 8:
1793                br13 |= COLOR_DEPTH_8;
1794                break;
1795        case 16:
1796                br13 |= COLOR_DEPTH_16;
1797                break;
1798        case 32:
1799                br13 |= COLOR_DEPTH_32;
1800                br00 |= WRITE_ALPHA | WRITE_RGB;
1801                break;
1802        }
1803
1804        START_RING(8 + ndwords);
1805        OUT_RING(br00);
1806        OUT_RING(br13);
1807        OUT_RING(br22);
1808        OUT_RING(br23);
1809        OUT_RING(br09);
1810        OUT_RING(br18);
1811        OUT_RING(br19);
1812        ix = iy = 0;
1813        iw = ROUND_UP_TO(w, 8) / 8;
1814        while (ndwords--) {
1815                dat = 0;
1816                for (j = 0; j < 2; ++j) {
1817                        for (i = 0; i < 2; ++i) {
1818                                if (ix != iw || i == 0)
1819                                        dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1820                        }
1821                        if (ix == iw && iy != (h-1)) {
1822                                ix = 0;
1823                                ++iy;
1824                        }
1825                }
1826                OUT_RING(dat);
1827        }
1828        if (pad)
1829                OUT_RING(MI_NOOP);
1830        ADVANCE_RING();
1831
1832        return 1;
1833}
1834
1835/* HW cursor functions. */
1836void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1837{
1838        u32 tmp;
1839
1840#if VERBOSE > 0
1841        DBG_MSG("intelfbhw_cursor_init\n");
1842#endif
1843
1844        if (dinfo->mobile || IS_I9XX(dinfo)) {
1845                if (!dinfo->cursor.physical)
1846                        return;
1847                tmp = INREG(CURSOR_A_CONTROL);
1848                tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1849                         CURSOR_MEM_TYPE_LOCAL |
1850                         (1 << CURSOR_PIPE_SELECT_SHIFT));
1851                tmp |= CURSOR_MODE_DISABLE;
1852                OUTREG(CURSOR_A_CONTROL, tmp);
1853                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1854        } else {
1855                tmp = INREG(CURSOR_CONTROL);
1856                tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1857                         CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1858                tmp |= CURSOR_FORMAT_3C;
1859                OUTREG(CURSOR_CONTROL, tmp);
1860                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1861                tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1862                      (64 << CURSOR_SIZE_V_SHIFT);
1863                OUTREG(CURSOR_SIZE, tmp);
1864        }
1865}
1866
1867void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1868{
1869        u32 tmp;
1870
1871#if VERBOSE > 0
1872        DBG_MSG("intelfbhw_cursor_hide\n");
1873#endif
1874
1875        dinfo->cursor_on = 0;
1876        if (dinfo->mobile || IS_I9XX(dinfo)) {
1877                if (!dinfo->cursor.physical)
1878                        return;
1879                tmp = INREG(CURSOR_A_CONTROL);
1880                tmp &= ~CURSOR_MODE_MASK;
1881                tmp |= CURSOR_MODE_DISABLE;
1882                OUTREG(CURSOR_A_CONTROL, tmp);
1883                /* Flush changes */
1884                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1885        } else {
1886                tmp = INREG(CURSOR_CONTROL);
1887                tmp &= ~CURSOR_ENABLE;
1888                OUTREG(CURSOR_CONTROL, tmp);
1889        }
1890}
1891
1892void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1893{
1894        u32 tmp;
1895
1896#if VERBOSE > 0
1897        DBG_MSG("intelfbhw_cursor_show\n");
1898#endif
1899
1900        dinfo->cursor_on = 1;
1901
1902        if (dinfo->cursor_blanked)
1903                return;
1904
1905        if (dinfo->mobile || IS_I9XX(dinfo)) {
1906                if (!dinfo->cursor.physical)
1907                        return;
1908                tmp = INREG(CURSOR_A_CONTROL);
1909                tmp &= ~CURSOR_MODE_MASK;
1910                tmp |= CURSOR_MODE_64_4C_AX;
1911                OUTREG(CURSOR_A_CONTROL, tmp);
1912                /* Flush changes */
1913                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1914        } else {
1915                tmp = INREG(CURSOR_CONTROL);
1916                tmp |= CURSOR_ENABLE;
1917                OUTREG(CURSOR_CONTROL, tmp);
1918        }
1919}
1920
1921void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1922{
1923        u32 tmp;
1924
1925#if VERBOSE > 0
1926        DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1927#endif
1928
1929        /*
1930         * Sets the position. The coordinates are assumed to already
1931         * have any offset adjusted. Assume that the cursor is never
1932         * completely off-screen, and that x, y are always >= 0.
1933         */
1934
1935        tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1936              ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1937        OUTREG(CURSOR_A_POSITION, tmp);
1938
1939        if (IS_I9XX(dinfo))
1940                OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1941}
1942
1943void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1944{
1945#if VERBOSE > 0
1946        DBG_MSG("intelfbhw_cursor_setcolor\n");
1947#endif
1948
1949        OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1950        OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1951        OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1952        OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1953}
1954
1955void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1956                           u8 *data)
1957{
1958        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1959        int i, j, w = width / 8;
1960        int mod = width % 8, t_mask, d_mask;
1961
1962#if VERBOSE > 0
1963        DBG_MSG("intelfbhw_cursor_load\n");
1964#endif
1965
1966        if (!dinfo->cursor.virtual)
1967                return;
1968
1969        t_mask = 0xff >> mod;
1970        d_mask = ~(0xff >> mod);
1971        for (i = height; i--; ) {
1972                for (j = 0; j < w; j++) {
1973                        writeb(0x00, addr + j);
1974                        writeb(*(data++), addr + j+8);
1975                }
1976                if (mod) {
1977                        writeb(t_mask, addr + j);
1978                        writeb(*(data++) & d_mask, addr + j+8);
1979                }
1980                addr += 16;
1981        }
1982}
1983
1984void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1985{
1986        u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1987        int i, j;
1988
1989#if VERBOSE > 0
1990        DBG_MSG("intelfbhw_cursor_reset\n");
1991#endif
1992
1993        if (!dinfo->cursor.virtual)
1994                return;
1995
1996        for (i = 64; i--; ) {
1997                for (j = 0; j < 8; j++) {
1998                        writeb(0xff, addr + j+0);
1999                        writeb(0x00, addr + j+8);
2000                }
2001                addr += 16;
2002        }
2003}
2004
2005static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2006{
2007        u16 tmp;
2008        struct intelfb_info *dinfo = dev_id;
2009
2010        spin_lock(&dinfo->int_lock);
2011
2012        tmp = INREG16(IIR);
2013        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2014                tmp &= PIPE_A_EVENT_INTERRUPT;
2015        else
2016                tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2017
2018        if (tmp == 0) {
2019                spin_unlock(&dinfo->int_lock);
2020                return IRQ_RETVAL(0); /* not us */
2021        }
2022
2023        /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2024        OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2025
2026        OUTREG16(IIR, tmp);
2027        if (dinfo->vsync.pan_display) {
2028                dinfo->vsync.pan_display = 0;
2029                OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2030        }
2031
2032        dinfo->vsync.count++;
2033        wake_up_interruptible(&dinfo->vsync.wait);
2034
2035        spin_unlock(&dinfo->int_lock);
2036
2037        return IRQ_RETVAL(1);
2038}
2039
2040int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2041{
2042        u16 tmp;
2043        if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2044                if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2045                                "intelfb", dinfo)) {
2046                        clear_bit(0, &dinfo->irq_flags);
2047                        return -EINVAL;
2048                }
2049
2050                spin_lock_irq(&dinfo->int_lock);
2051                OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2052                OUTREG16(IMR, 0);
2053        } else
2054                spin_lock_irq(&dinfo->int_lock);
2055
2056        if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2057                tmp = PIPE_A_EVENT_INTERRUPT;
2058        else
2059                tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2060        if (tmp != INREG16(IER)) {
2061                DBG_MSG("changing IER to 0x%X\n", tmp);
2062                OUTREG16(IER, tmp);
2063        }
2064
2065        spin_unlock_irq(&dinfo->int_lock);
2066        return 0;
2067}
2068
2069void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2070{
2071        if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2072                if (dinfo->vsync.pan_display) {
2073                        dinfo->vsync.pan_display = 0;
2074                        OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2075                }
2076                spin_lock_irq(&dinfo->int_lock);
2077                OUTREG16(HWSTAM, 0xffff);
2078                OUTREG16(IMR, 0xffff);
2079                OUTREG16(IER, 0x0);
2080
2081                OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2082                spin_unlock_irq(&dinfo->int_lock);
2083
2084                free_irq(dinfo->pdev->irq, dinfo);
2085        }
2086}
2087
2088int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2089{
2090        struct intelfb_vsync *vsync;
2091        unsigned int count;
2092        int ret;
2093
2094        switch (pipe) {
2095                case 0:
2096                        vsync = &dinfo->vsync;
2097                        break;
2098                default:
2099                        return -ENODEV;
2100        }
2101
2102        ret = intelfbhw_enable_irq(dinfo);
2103        if (ret)
2104                return ret;
2105
2106        count = vsync->count;
2107        ret = wait_event_interruptible_timeout(vsync->wait,
2108                                               count != vsync->count, HZ / 10);
2109        if (ret < 0)
2110                return ret;
2111        if (ret == 0) {
2112                DBG_MSG("wait_for_vsync timed out!\n");
2113                return -ETIMEDOUT;
2114        }
2115
2116        return 0;
2117}
2118