linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *      Copyright 2018 Christoph Hellwig.
   9 *
  10 *      See ../COPYING for licensing terms.
  11 */
  12#define pr_fmt(fmt) "%s: " fmt, __func__
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/errno.h>
  17#include <linux/time.h>
  18#include <linux/aio_abi.h>
  19#include <linux/export.h>
  20#include <linux/syscalls.h>
  21#include <linux/backing-dev.h>
  22#include <linux/refcount.h>
  23#include <linux/uio.h>
  24
  25#include <linux/sched/signal.h>
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/mm.h>
  29#include <linux/mman.h>
  30#include <linux/mmu_context.h>
  31#include <linux/percpu.h>
  32#include <linux/slab.h>
  33#include <linux/timer.h>
  34#include <linux/aio.h>
  35#include <linux/highmem.h>
  36#include <linux/workqueue.h>
  37#include <linux/security.h>
  38#include <linux/eventfd.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/migrate.h>
  42#include <linux/ramfs.h>
  43#include <linux/percpu-refcount.h>
  44#include <linux/mount.h>
  45#include <linux/pseudo_fs.h>
  46
  47#include <asm/kmap_types.h>
  48#include <linux/uaccess.h>
  49#include <linux/nospec.h>
  50
  51#include "internal.h"
  52
  53#define KIOCB_KEY               0
  54
  55#define AIO_RING_MAGIC                  0xa10a10a1
  56#define AIO_RING_COMPAT_FEATURES        1
  57#define AIO_RING_INCOMPAT_FEATURES      0
  58struct aio_ring {
  59        unsigned        id;     /* kernel internal index number */
  60        unsigned        nr;     /* number of io_events */
  61        unsigned        head;   /* Written to by userland or under ring_lock
  62                                 * mutex by aio_read_events_ring(). */
  63        unsigned        tail;
  64
  65        unsigned        magic;
  66        unsigned        compat_features;
  67        unsigned        incompat_features;
  68        unsigned        header_length;  /* size of aio_ring */
  69
  70
  71        struct io_event         io_events[0];
  72}; /* 128 bytes + ring size */
  73
  74/*
  75 * Plugging is meant to work with larger batches of IOs. If we don't
  76 * have more than the below, then don't bother setting up a plug.
  77 */
  78#define AIO_PLUG_THRESHOLD      2
  79
  80#define AIO_RING_PAGES  8
  81
  82struct kioctx_table {
  83        struct rcu_head         rcu;
  84        unsigned                nr;
  85        struct kioctx __rcu     *table[];
  86};
  87
  88struct kioctx_cpu {
  89        unsigned                reqs_available;
  90};
  91
  92struct ctx_rq_wait {
  93        struct completion comp;
  94        atomic_t count;
  95};
  96
  97struct kioctx {
  98        struct percpu_ref       users;
  99        atomic_t                dead;
 100
 101        struct percpu_ref       reqs;
 102
 103        unsigned long           user_id;
 104
 105        struct __percpu kioctx_cpu *cpu;
 106
 107        /*
 108         * For percpu reqs_available, number of slots we move to/from global
 109         * counter at a time:
 110         */
 111        unsigned                req_batch;
 112        /*
 113         * This is what userspace passed to io_setup(), it's not used for
 114         * anything but counting against the global max_reqs quota.
 115         *
 116         * The real limit is nr_events - 1, which will be larger (see
 117         * aio_setup_ring())
 118         */
 119        unsigned                max_reqs;
 120
 121        /* Size of ringbuffer, in units of struct io_event */
 122        unsigned                nr_events;
 123
 124        unsigned long           mmap_base;
 125        unsigned long           mmap_size;
 126
 127        struct page             **ring_pages;
 128        long                    nr_pages;
 129
 130        struct rcu_work         free_rwork;     /* see free_ioctx() */
 131
 132        /*
 133         * signals when all in-flight requests are done
 134         */
 135        struct ctx_rq_wait      *rq_wait;
 136
 137        struct {
 138                /*
 139                 * This counts the number of available slots in the ringbuffer,
 140                 * so we avoid overflowing it: it's decremented (if positive)
 141                 * when allocating a kiocb and incremented when the resulting
 142                 * io_event is pulled off the ringbuffer.
 143                 *
 144                 * We batch accesses to it with a percpu version.
 145                 */
 146                atomic_t        reqs_available;
 147        } ____cacheline_aligned_in_smp;
 148
 149        struct {
 150                spinlock_t      ctx_lock;
 151                struct list_head active_reqs;   /* used for cancellation */
 152        } ____cacheline_aligned_in_smp;
 153
 154        struct {
 155                struct mutex    ring_lock;
 156                wait_queue_head_t wait;
 157        } ____cacheline_aligned_in_smp;
 158
 159        struct {
 160                unsigned        tail;
 161                unsigned        completed_events;
 162                spinlock_t      completion_lock;
 163        } ____cacheline_aligned_in_smp;
 164
 165        struct page             *internal_pages[AIO_RING_PAGES];
 166        struct file             *aio_ring_file;
 167
 168        unsigned                id;
 169};
 170
 171/*
 172 * First field must be the file pointer in all the
 173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 174 */
 175struct fsync_iocb {
 176        struct file             *file;
 177        struct work_struct      work;
 178        bool                    datasync;
 179};
 180
 181struct poll_iocb {
 182        struct file             *file;
 183        struct wait_queue_head  *head;
 184        __poll_t                events;
 185        bool                    done;
 186        bool                    cancelled;
 187        struct wait_queue_entry wait;
 188        struct work_struct      work;
 189};
 190
 191/*
 192 * NOTE! Each of the iocb union members has the file pointer
 193 * as the first entry in their struct definition. So you can
 194 * access the file pointer through any of the sub-structs,
 195 * or directly as just 'ki_filp' in this struct.
 196 */
 197struct aio_kiocb {
 198        union {
 199                struct file             *ki_filp;
 200                struct kiocb            rw;
 201                struct fsync_iocb       fsync;
 202                struct poll_iocb        poll;
 203        };
 204
 205        struct kioctx           *ki_ctx;
 206        kiocb_cancel_fn         *ki_cancel;
 207
 208        struct io_event         ki_res;
 209
 210        struct list_head        ki_list;        /* the aio core uses this
 211                                                 * for cancellation */
 212        refcount_t              ki_refcnt;
 213
 214        /*
 215         * If the aio_resfd field of the userspace iocb is not zero,
 216         * this is the underlying eventfd context to deliver events to.
 217         */
 218        struct eventfd_ctx      *ki_eventfd;
 219};
 220
 221/*------ sysctl variables----*/
 222static DEFINE_SPINLOCK(aio_nr_lock);
 223unsigned long aio_nr;           /* current system wide number of aio requests */
 224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 225/*----end sysctl variables---*/
 226
 227static struct kmem_cache        *kiocb_cachep;
 228static struct kmem_cache        *kioctx_cachep;
 229
 230static struct vfsmount *aio_mnt;
 231
 232static const struct file_operations aio_ring_fops;
 233static const struct address_space_operations aio_ctx_aops;
 234
 235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 236{
 237        struct file *file;
 238        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 239        if (IS_ERR(inode))
 240                return ERR_CAST(inode);
 241
 242        inode->i_mapping->a_ops = &aio_ctx_aops;
 243        inode->i_mapping->private_data = ctx;
 244        inode->i_size = PAGE_SIZE * nr_pages;
 245
 246        file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 247                                O_RDWR, &aio_ring_fops);
 248        if (IS_ERR(file))
 249                iput(inode);
 250        return file;
 251}
 252
 253static int aio_init_fs_context(struct fs_context *fc)
 254{
 255        if (!init_pseudo(fc, AIO_RING_MAGIC))
 256                return -ENOMEM;
 257        fc->s_iflags |= SB_I_NOEXEC;
 258        return 0;
 259}
 260
 261/* aio_setup
 262 *      Creates the slab caches used by the aio routines, panic on
 263 *      failure as this is done early during the boot sequence.
 264 */
 265static int __init aio_setup(void)
 266{
 267        static struct file_system_type aio_fs = {
 268                .name           = "aio",
 269                .init_fs_context = aio_init_fs_context,
 270                .kill_sb        = kill_anon_super,
 271        };
 272        aio_mnt = kern_mount(&aio_fs);
 273        if (IS_ERR(aio_mnt))
 274                panic("Failed to create aio fs mount.");
 275
 276        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 277        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 278        return 0;
 279}
 280__initcall(aio_setup);
 281
 282static void put_aio_ring_file(struct kioctx *ctx)
 283{
 284        struct file *aio_ring_file = ctx->aio_ring_file;
 285        struct address_space *i_mapping;
 286
 287        if (aio_ring_file) {
 288                truncate_setsize(file_inode(aio_ring_file), 0);
 289
 290                /* Prevent further access to the kioctx from migratepages */
 291                i_mapping = aio_ring_file->f_mapping;
 292                spin_lock(&i_mapping->private_lock);
 293                i_mapping->private_data = NULL;
 294                ctx->aio_ring_file = NULL;
 295                spin_unlock(&i_mapping->private_lock);
 296
 297                fput(aio_ring_file);
 298        }
 299}
 300
 301static void aio_free_ring(struct kioctx *ctx)
 302{
 303        int i;
 304
 305        /* Disconnect the kiotx from the ring file.  This prevents future
 306         * accesses to the kioctx from page migration.
 307         */
 308        put_aio_ring_file(ctx);
 309
 310        for (i = 0; i < ctx->nr_pages; i++) {
 311                struct page *page;
 312                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 313                                page_count(ctx->ring_pages[i]));
 314                page = ctx->ring_pages[i];
 315                if (!page)
 316                        continue;
 317                ctx->ring_pages[i] = NULL;
 318                put_page(page);
 319        }
 320
 321        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 322                kfree(ctx->ring_pages);
 323                ctx->ring_pages = NULL;
 324        }
 325}
 326
 327static int aio_ring_mremap(struct vm_area_struct *vma)
 328{
 329        struct file *file = vma->vm_file;
 330        struct mm_struct *mm = vma->vm_mm;
 331        struct kioctx_table *table;
 332        int i, res = -EINVAL;
 333
 334        spin_lock(&mm->ioctx_lock);
 335        rcu_read_lock();
 336        table = rcu_dereference(mm->ioctx_table);
 337        for (i = 0; i < table->nr; i++) {
 338                struct kioctx *ctx;
 339
 340                ctx = rcu_dereference(table->table[i]);
 341                if (ctx && ctx->aio_ring_file == file) {
 342                        if (!atomic_read(&ctx->dead)) {
 343                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 344                                res = 0;
 345                        }
 346                        break;
 347                }
 348        }
 349
 350        rcu_read_unlock();
 351        spin_unlock(&mm->ioctx_lock);
 352        return res;
 353}
 354
 355static const struct vm_operations_struct aio_ring_vm_ops = {
 356        .mremap         = aio_ring_mremap,
 357#if IS_ENABLED(CONFIG_MMU)
 358        .fault          = filemap_fault,
 359        .map_pages      = filemap_map_pages,
 360        .page_mkwrite   = filemap_page_mkwrite,
 361#endif
 362};
 363
 364static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 365{
 366        vma->vm_flags |= VM_DONTEXPAND;
 367        vma->vm_ops = &aio_ring_vm_ops;
 368        return 0;
 369}
 370
 371static const struct file_operations aio_ring_fops = {
 372        .mmap = aio_ring_mmap,
 373};
 374
 375#if IS_ENABLED(CONFIG_MIGRATION)
 376static int aio_migratepage(struct address_space *mapping, struct page *new,
 377                        struct page *old, enum migrate_mode mode)
 378{
 379        struct kioctx *ctx;
 380        unsigned long flags;
 381        pgoff_t idx;
 382        int rc;
 383
 384        /*
 385         * We cannot support the _NO_COPY case here, because copy needs to
 386         * happen under the ctx->completion_lock. That does not work with the
 387         * migration workflow of MIGRATE_SYNC_NO_COPY.
 388         */
 389        if (mode == MIGRATE_SYNC_NO_COPY)
 390                return -EINVAL;
 391
 392        rc = 0;
 393
 394        /* mapping->private_lock here protects against the kioctx teardown.  */
 395        spin_lock(&mapping->private_lock);
 396        ctx = mapping->private_data;
 397        if (!ctx) {
 398                rc = -EINVAL;
 399                goto out;
 400        }
 401
 402        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 403         * to the ring's head, and prevents page migration from mucking in
 404         * a partially initialized kiotx.
 405         */
 406        if (!mutex_trylock(&ctx->ring_lock)) {
 407                rc = -EAGAIN;
 408                goto out;
 409        }
 410
 411        idx = old->index;
 412        if (idx < (pgoff_t)ctx->nr_pages) {
 413                /* Make sure the old page hasn't already been changed */
 414                if (ctx->ring_pages[idx] != old)
 415                        rc = -EAGAIN;
 416        } else
 417                rc = -EINVAL;
 418
 419        if (rc != 0)
 420                goto out_unlock;
 421
 422        /* Writeback must be complete */
 423        BUG_ON(PageWriteback(old));
 424        get_page(new);
 425
 426        rc = migrate_page_move_mapping(mapping, new, old, 1);
 427        if (rc != MIGRATEPAGE_SUCCESS) {
 428                put_page(new);
 429                goto out_unlock;
 430        }
 431
 432        /* Take completion_lock to prevent other writes to the ring buffer
 433         * while the old page is copied to the new.  This prevents new
 434         * events from being lost.
 435         */
 436        spin_lock_irqsave(&ctx->completion_lock, flags);
 437        migrate_page_copy(new, old);
 438        BUG_ON(ctx->ring_pages[idx] != old);
 439        ctx->ring_pages[idx] = new;
 440        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 441
 442        /* The old page is no longer accessible. */
 443        put_page(old);
 444
 445out_unlock:
 446        mutex_unlock(&ctx->ring_lock);
 447out:
 448        spin_unlock(&mapping->private_lock);
 449        return rc;
 450}
 451#endif
 452
 453static const struct address_space_operations aio_ctx_aops = {
 454        .set_page_dirty = __set_page_dirty_no_writeback,
 455#if IS_ENABLED(CONFIG_MIGRATION)
 456        .migratepage    = aio_migratepage,
 457#endif
 458};
 459
 460static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 461{
 462        struct aio_ring *ring;
 463        struct mm_struct *mm = current->mm;
 464        unsigned long size, unused;
 465        int nr_pages;
 466        int i;
 467        struct file *file;
 468
 469        /* Compensate for the ring buffer's head/tail overlap entry */
 470        nr_events += 2; /* 1 is required, 2 for good luck */
 471
 472        size = sizeof(struct aio_ring);
 473        size += sizeof(struct io_event) * nr_events;
 474
 475        nr_pages = PFN_UP(size);
 476        if (nr_pages < 0)
 477                return -EINVAL;
 478
 479        file = aio_private_file(ctx, nr_pages);
 480        if (IS_ERR(file)) {
 481                ctx->aio_ring_file = NULL;
 482                return -ENOMEM;
 483        }
 484
 485        ctx->aio_ring_file = file;
 486        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 487                        / sizeof(struct io_event);
 488
 489        ctx->ring_pages = ctx->internal_pages;
 490        if (nr_pages > AIO_RING_PAGES) {
 491                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 492                                          GFP_KERNEL);
 493                if (!ctx->ring_pages) {
 494                        put_aio_ring_file(ctx);
 495                        return -ENOMEM;
 496                }
 497        }
 498
 499        for (i = 0; i < nr_pages; i++) {
 500                struct page *page;
 501                page = find_or_create_page(file->f_mapping,
 502                                           i, GFP_HIGHUSER | __GFP_ZERO);
 503                if (!page)
 504                        break;
 505                pr_debug("pid(%d) page[%d]->count=%d\n",
 506                         current->pid, i, page_count(page));
 507                SetPageUptodate(page);
 508                unlock_page(page);
 509
 510                ctx->ring_pages[i] = page;
 511        }
 512        ctx->nr_pages = i;
 513
 514        if (unlikely(i != nr_pages)) {
 515                aio_free_ring(ctx);
 516                return -ENOMEM;
 517        }
 518
 519        ctx->mmap_size = nr_pages * PAGE_SIZE;
 520        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 521
 522        if (down_write_killable(&mm->mmap_sem)) {
 523                ctx->mmap_size = 0;
 524                aio_free_ring(ctx);
 525                return -EINTR;
 526        }
 527
 528        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 529                                       PROT_READ | PROT_WRITE,
 530                                       MAP_SHARED, 0, &unused, NULL);
 531        up_write(&mm->mmap_sem);
 532        if (IS_ERR((void *)ctx->mmap_base)) {
 533                ctx->mmap_size = 0;
 534                aio_free_ring(ctx);
 535                return -ENOMEM;
 536        }
 537
 538        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 539
 540        ctx->user_id = ctx->mmap_base;
 541        ctx->nr_events = nr_events; /* trusted copy */
 542
 543        ring = kmap_atomic(ctx->ring_pages[0]);
 544        ring->nr = nr_events;   /* user copy */
 545        ring->id = ~0U;
 546        ring->head = ring->tail = 0;
 547        ring->magic = AIO_RING_MAGIC;
 548        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 549        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 550        ring->header_length = sizeof(struct aio_ring);
 551        kunmap_atomic(ring);
 552        flush_dcache_page(ctx->ring_pages[0]);
 553
 554        return 0;
 555}
 556
 557#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 558#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 559#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 560
 561void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 562{
 563        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 564        struct kioctx *ctx = req->ki_ctx;
 565        unsigned long flags;
 566
 567        if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 568                return;
 569
 570        spin_lock_irqsave(&ctx->ctx_lock, flags);
 571        list_add_tail(&req->ki_list, &ctx->active_reqs);
 572        req->ki_cancel = cancel;
 573        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 574}
 575EXPORT_SYMBOL(kiocb_set_cancel_fn);
 576
 577/*
 578 * free_ioctx() should be RCU delayed to synchronize against the RCU
 579 * protected lookup_ioctx() and also needs process context to call
 580 * aio_free_ring().  Use rcu_work.
 581 */
 582static void free_ioctx(struct work_struct *work)
 583{
 584        struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 585                                          free_rwork);
 586        pr_debug("freeing %p\n", ctx);
 587
 588        aio_free_ring(ctx);
 589        free_percpu(ctx->cpu);
 590        percpu_ref_exit(&ctx->reqs);
 591        percpu_ref_exit(&ctx->users);
 592        kmem_cache_free(kioctx_cachep, ctx);
 593}
 594
 595static void free_ioctx_reqs(struct percpu_ref *ref)
 596{
 597        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 598
 599        /* At this point we know that there are no any in-flight requests */
 600        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 601                complete(&ctx->rq_wait->comp);
 602
 603        /* Synchronize against RCU protected table->table[] dereferences */
 604        INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 605        queue_rcu_work(system_wq, &ctx->free_rwork);
 606}
 607
 608/*
 609 * When this function runs, the kioctx has been removed from the "hash table"
 610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 611 * now it's safe to cancel any that need to be.
 612 */
 613static void free_ioctx_users(struct percpu_ref *ref)
 614{
 615        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 616        struct aio_kiocb *req;
 617
 618        spin_lock_irq(&ctx->ctx_lock);
 619
 620        while (!list_empty(&ctx->active_reqs)) {
 621                req = list_first_entry(&ctx->active_reqs,
 622                                       struct aio_kiocb, ki_list);
 623                req->ki_cancel(&req->rw);
 624                list_del_init(&req->ki_list);
 625        }
 626
 627        spin_unlock_irq(&ctx->ctx_lock);
 628
 629        percpu_ref_kill(&ctx->reqs);
 630        percpu_ref_put(&ctx->reqs);
 631}
 632
 633static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 634{
 635        unsigned i, new_nr;
 636        struct kioctx_table *table, *old;
 637        struct aio_ring *ring;
 638
 639        spin_lock(&mm->ioctx_lock);
 640        table = rcu_dereference_raw(mm->ioctx_table);
 641
 642        while (1) {
 643                if (table)
 644                        for (i = 0; i < table->nr; i++)
 645                                if (!rcu_access_pointer(table->table[i])) {
 646                                        ctx->id = i;
 647                                        rcu_assign_pointer(table->table[i], ctx);
 648                                        spin_unlock(&mm->ioctx_lock);
 649
 650                                        /* While kioctx setup is in progress,
 651                                         * we are protected from page migration
 652                                         * changes ring_pages by ->ring_lock.
 653                                         */
 654                                        ring = kmap_atomic(ctx->ring_pages[0]);
 655                                        ring->id = ctx->id;
 656                                        kunmap_atomic(ring);
 657                                        return 0;
 658                                }
 659
 660                new_nr = (table ? table->nr : 1) * 4;
 661                spin_unlock(&mm->ioctx_lock);
 662
 663                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 664                                new_nr, GFP_KERNEL);
 665                if (!table)
 666                        return -ENOMEM;
 667
 668                table->nr = new_nr;
 669
 670                spin_lock(&mm->ioctx_lock);
 671                old = rcu_dereference_raw(mm->ioctx_table);
 672
 673                if (!old) {
 674                        rcu_assign_pointer(mm->ioctx_table, table);
 675                } else if (table->nr > old->nr) {
 676                        memcpy(table->table, old->table,
 677                               old->nr * sizeof(struct kioctx *));
 678
 679                        rcu_assign_pointer(mm->ioctx_table, table);
 680                        kfree_rcu(old, rcu);
 681                } else {
 682                        kfree(table);
 683                        table = old;
 684                }
 685        }
 686}
 687
 688static void aio_nr_sub(unsigned nr)
 689{
 690        spin_lock(&aio_nr_lock);
 691        if (WARN_ON(aio_nr - nr > aio_nr))
 692                aio_nr = 0;
 693        else
 694                aio_nr -= nr;
 695        spin_unlock(&aio_nr_lock);
 696}
 697
 698/* ioctx_alloc
 699 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 700 */
 701static struct kioctx *ioctx_alloc(unsigned nr_events)
 702{
 703        struct mm_struct *mm = current->mm;
 704        struct kioctx *ctx;
 705        int err = -ENOMEM;
 706
 707        /*
 708         * Store the original nr_events -- what userspace passed to io_setup(),
 709         * for counting against the global limit -- before it changes.
 710         */
 711        unsigned int max_reqs = nr_events;
 712
 713        /*
 714         * We keep track of the number of available ringbuffer slots, to prevent
 715         * overflow (reqs_available), and we also use percpu counters for this.
 716         *
 717         * So since up to half the slots might be on other cpu's percpu counters
 718         * and unavailable, double nr_events so userspace sees what they
 719         * expected: additionally, we move req_batch slots to/from percpu
 720         * counters at a time, so make sure that isn't 0:
 721         */
 722        nr_events = max(nr_events, num_possible_cpus() * 4);
 723        nr_events *= 2;
 724
 725        /* Prevent overflows */
 726        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 727                pr_debug("ENOMEM: nr_events too high\n");
 728                return ERR_PTR(-EINVAL);
 729        }
 730
 731        if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 732                return ERR_PTR(-EAGAIN);
 733
 734        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 735        if (!ctx)
 736                return ERR_PTR(-ENOMEM);
 737
 738        ctx->max_reqs = max_reqs;
 739
 740        spin_lock_init(&ctx->ctx_lock);
 741        spin_lock_init(&ctx->completion_lock);
 742        mutex_init(&ctx->ring_lock);
 743        /* Protect against page migration throughout kiotx setup by keeping
 744         * the ring_lock mutex held until setup is complete. */
 745        mutex_lock(&ctx->ring_lock);
 746        init_waitqueue_head(&ctx->wait);
 747
 748        INIT_LIST_HEAD(&ctx->active_reqs);
 749
 750        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 751                goto err;
 752
 753        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 754                goto err;
 755
 756        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 757        if (!ctx->cpu)
 758                goto err;
 759
 760        err = aio_setup_ring(ctx, nr_events);
 761        if (err < 0)
 762                goto err;
 763
 764        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 765        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 766        if (ctx->req_batch < 1)
 767                ctx->req_batch = 1;
 768
 769        /* limit the number of system wide aios */
 770        spin_lock(&aio_nr_lock);
 771        if (aio_nr + ctx->max_reqs > aio_max_nr ||
 772            aio_nr + ctx->max_reqs < aio_nr) {
 773                spin_unlock(&aio_nr_lock);
 774                err = -EAGAIN;
 775                goto err_ctx;
 776        }
 777        aio_nr += ctx->max_reqs;
 778        spin_unlock(&aio_nr_lock);
 779
 780        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 781        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 782
 783        err = ioctx_add_table(ctx, mm);
 784        if (err)
 785                goto err_cleanup;
 786
 787        /* Release the ring_lock mutex now that all setup is complete. */
 788        mutex_unlock(&ctx->ring_lock);
 789
 790        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 791                 ctx, ctx->user_id, mm, ctx->nr_events);
 792        return ctx;
 793
 794err_cleanup:
 795        aio_nr_sub(ctx->max_reqs);
 796err_ctx:
 797        atomic_set(&ctx->dead, 1);
 798        if (ctx->mmap_size)
 799                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 800        aio_free_ring(ctx);
 801err:
 802        mutex_unlock(&ctx->ring_lock);
 803        free_percpu(ctx->cpu);
 804        percpu_ref_exit(&ctx->reqs);
 805        percpu_ref_exit(&ctx->users);
 806        kmem_cache_free(kioctx_cachep, ctx);
 807        pr_debug("error allocating ioctx %d\n", err);
 808        return ERR_PTR(err);
 809}
 810
 811/* kill_ioctx
 812 *      Cancels all outstanding aio requests on an aio context.  Used
 813 *      when the processes owning a context have all exited to encourage
 814 *      the rapid destruction of the kioctx.
 815 */
 816static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 817                      struct ctx_rq_wait *wait)
 818{
 819        struct kioctx_table *table;
 820
 821        spin_lock(&mm->ioctx_lock);
 822        if (atomic_xchg(&ctx->dead, 1)) {
 823                spin_unlock(&mm->ioctx_lock);
 824                return -EINVAL;
 825        }
 826
 827        table = rcu_dereference_raw(mm->ioctx_table);
 828        WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 829        RCU_INIT_POINTER(table->table[ctx->id], NULL);
 830        spin_unlock(&mm->ioctx_lock);
 831
 832        /* free_ioctx_reqs() will do the necessary RCU synchronization */
 833        wake_up_all(&ctx->wait);
 834
 835        /*
 836         * It'd be more correct to do this in free_ioctx(), after all
 837         * the outstanding kiocbs have finished - but by then io_destroy
 838         * has already returned, so io_setup() could potentially return
 839         * -EAGAIN with no ioctxs actually in use (as far as userspace
 840         *  could tell).
 841         */
 842        aio_nr_sub(ctx->max_reqs);
 843
 844        if (ctx->mmap_size)
 845                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 846
 847        ctx->rq_wait = wait;
 848        percpu_ref_kill(&ctx->users);
 849        return 0;
 850}
 851
 852/*
 853 * exit_aio: called when the last user of mm goes away.  At this point, there is
 854 * no way for any new requests to be submited or any of the io_* syscalls to be
 855 * called on the context.
 856 *
 857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 858 * them.
 859 */
 860void exit_aio(struct mm_struct *mm)
 861{
 862        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 863        struct ctx_rq_wait wait;
 864        int i, skipped;
 865
 866        if (!table)
 867                return;
 868
 869        atomic_set(&wait.count, table->nr);
 870        init_completion(&wait.comp);
 871
 872        skipped = 0;
 873        for (i = 0; i < table->nr; ++i) {
 874                struct kioctx *ctx =
 875                        rcu_dereference_protected(table->table[i], true);
 876
 877                if (!ctx) {
 878                        skipped++;
 879                        continue;
 880                }
 881
 882                /*
 883                 * We don't need to bother with munmap() here - exit_mmap(mm)
 884                 * is coming and it'll unmap everything. And we simply can't,
 885                 * this is not necessarily our ->mm.
 886                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 887                 * that it needs to unmap the area, just set it to 0.
 888                 */
 889                ctx->mmap_size = 0;
 890                kill_ioctx(mm, ctx, &wait);
 891        }
 892
 893        if (!atomic_sub_and_test(skipped, &wait.count)) {
 894                /* Wait until all IO for the context are done. */
 895                wait_for_completion(&wait.comp);
 896        }
 897
 898        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 899        kfree(table);
 900}
 901
 902static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 903{
 904        struct kioctx_cpu *kcpu;
 905        unsigned long flags;
 906
 907        local_irq_save(flags);
 908        kcpu = this_cpu_ptr(ctx->cpu);
 909        kcpu->reqs_available += nr;
 910
 911        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 912                kcpu->reqs_available -= ctx->req_batch;
 913                atomic_add(ctx->req_batch, &ctx->reqs_available);
 914        }
 915
 916        local_irq_restore(flags);
 917}
 918
 919static bool __get_reqs_available(struct kioctx *ctx)
 920{
 921        struct kioctx_cpu *kcpu;
 922        bool ret = false;
 923        unsigned long flags;
 924
 925        local_irq_save(flags);
 926        kcpu = this_cpu_ptr(ctx->cpu);
 927        if (!kcpu->reqs_available) {
 928                int old, avail = atomic_read(&ctx->reqs_available);
 929
 930                do {
 931                        if (avail < ctx->req_batch)
 932                                goto out;
 933
 934                        old = avail;
 935                        avail = atomic_cmpxchg(&ctx->reqs_available,
 936                                               avail, avail - ctx->req_batch);
 937                } while (avail != old);
 938
 939                kcpu->reqs_available += ctx->req_batch;
 940        }
 941
 942        ret = true;
 943        kcpu->reqs_available--;
 944out:
 945        local_irq_restore(flags);
 946        return ret;
 947}
 948
 949/* refill_reqs_available
 950 *      Updates the reqs_available reference counts used for tracking the
 951 *      number of free slots in the completion ring.  This can be called
 952 *      from aio_complete() (to optimistically update reqs_available) or
 953 *      from aio_get_req() (the we're out of events case).  It must be
 954 *      called holding ctx->completion_lock.
 955 */
 956static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 957                                  unsigned tail)
 958{
 959        unsigned events_in_ring, completed;
 960
 961        /* Clamp head since userland can write to it. */
 962        head %= ctx->nr_events;
 963        if (head <= tail)
 964                events_in_ring = tail - head;
 965        else
 966                events_in_ring = ctx->nr_events - (head - tail);
 967
 968        completed = ctx->completed_events;
 969        if (events_in_ring < completed)
 970                completed -= events_in_ring;
 971        else
 972                completed = 0;
 973
 974        if (!completed)
 975                return;
 976
 977        ctx->completed_events -= completed;
 978        put_reqs_available(ctx, completed);
 979}
 980
 981/* user_refill_reqs_available
 982 *      Called to refill reqs_available when aio_get_req() encounters an
 983 *      out of space in the completion ring.
 984 */
 985static void user_refill_reqs_available(struct kioctx *ctx)
 986{
 987        spin_lock_irq(&ctx->completion_lock);
 988        if (ctx->completed_events) {
 989                struct aio_ring *ring;
 990                unsigned head;
 991
 992                /* Access of ring->head may race with aio_read_events_ring()
 993                 * here, but that's okay since whether we read the old version
 994                 * or the new version, and either will be valid.  The important
 995                 * part is that head cannot pass tail since we prevent
 996                 * aio_complete() from updating tail by holding
 997                 * ctx->completion_lock.  Even if head is invalid, the check
 998                 * against ctx->completed_events below will make sure we do the
 999                 * safe/right thing.
1000                 */
1001                ring = kmap_atomic(ctx->ring_pages[0]);
1002                head = ring->head;
1003                kunmap_atomic(ring);
1004
1005                refill_reqs_available(ctx, head, ctx->tail);
1006        }
1007
1008        spin_unlock_irq(&ctx->completion_lock);
1009}
1010
1011static bool get_reqs_available(struct kioctx *ctx)
1012{
1013        if (__get_reqs_available(ctx))
1014                return true;
1015        user_refill_reqs_available(ctx);
1016        return __get_reqs_available(ctx);
1017}
1018
1019/* aio_get_req
1020 *      Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1022 *
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1025 */
1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027{
1028        struct aio_kiocb *req;
1029
1030        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031        if (unlikely(!req))
1032                return NULL;
1033
1034        if (unlikely(!get_reqs_available(ctx))) {
1035                kmem_cache_free(kiocb_cachep, req);
1036                return NULL;
1037        }
1038
1039        percpu_ref_get(&ctx->reqs);
1040        req->ki_ctx = ctx;
1041        INIT_LIST_HEAD(&req->ki_list);
1042        refcount_set(&req->ki_refcnt, 2);
1043        req->ki_eventfd = NULL;
1044        return req;
1045}
1046
1047static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048{
1049        struct aio_ring __user *ring  = (void __user *)ctx_id;
1050        struct mm_struct *mm = current->mm;
1051        struct kioctx *ctx, *ret = NULL;
1052        struct kioctx_table *table;
1053        unsigned id;
1054
1055        if (get_user(id, &ring->id))
1056                return NULL;
1057
1058        rcu_read_lock();
1059        table = rcu_dereference(mm->ioctx_table);
1060
1061        if (!table || id >= table->nr)
1062                goto out;
1063
1064        id = array_index_nospec(id, table->nr);
1065        ctx = rcu_dereference(table->table[id]);
1066        if (ctx && ctx->user_id == ctx_id) {
1067                if (percpu_ref_tryget_live(&ctx->users))
1068                        ret = ctx;
1069        }
1070out:
1071        rcu_read_unlock();
1072        return ret;
1073}
1074
1075static inline void iocb_destroy(struct aio_kiocb *iocb)
1076{
1077        if (iocb->ki_eventfd)
1078                eventfd_ctx_put(iocb->ki_eventfd);
1079        if (iocb->ki_filp)
1080                fput(iocb->ki_filp);
1081        percpu_ref_put(&iocb->ki_ctx->reqs);
1082        kmem_cache_free(kiocb_cachep, iocb);
1083}
1084
1085/* aio_complete
1086 *      Called when the io request on the given iocb is complete.
1087 */
1088static void aio_complete(struct aio_kiocb *iocb)
1089{
1090        struct kioctx   *ctx = iocb->ki_ctx;
1091        struct aio_ring *ring;
1092        struct io_event *ev_page, *event;
1093        unsigned tail, pos, head;
1094        unsigned long   flags;
1095
1096        /*
1097         * Add a completion event to the ring buffer. Must be done holding
1098         * ctx->completion_lock to prevent other code from messing with the tail
1099         * pointer since we might be called from irq context.
1100         */
1101        spin_lock_irqsave(&ctx->completion_lock, flags);
1102
1103        tail = ctx->tail;
1104        pos = tail + AIO_EVENTS_OFFSET;
1105
1106        if (++tail >= ctx->nr_events)
1107                tail = 0;
1108
1109        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111
1112        *event = iocb->ki_res;
1113
1114        kunmap_atomic(ev_page);
1115        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1116
1117        pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118                 (void __user *)(unsigned long)iocb->ki_res.obj,
1119                 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1120
1121        /* after flagging the request as done, we
1122         * must never even look at it again
1123         */
1124        smp_wmb();      /* make event visible before updating tail */
1125
1126        ctx->tail = tail;
1127
1128        ring = kmap_atomic(ctx->ring_pages[0]);
1129        head = ring->head;
1130        ring->tail = tail;
1131        kunmap_atomic(ring);
1132        flush_dcache_page(ctx->ring_pages[0]);
1133
1134        ctx->completed_events++;
1135        if (ctx->completed_events > 1)
1136                refill_reqs_available(ctx, head, tail);
1137        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138
1139        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1140
1141        /*
1142         * Check if the user asked us to deliver the result through an
1143         * eventfd. The eventfd_signal() function is safe to be called
1144         * from IRQ context.
1145         */
1146        if (iocb->ki_eventfd)
1147                eventfd_signal(iocb->ki_eventfd, 1);
1148
1149        /*
1150         * We have to order our ring_info tail store above and test
1151         * of the wait list below outside the wait lock.  This is
1152         * like in wake_up_bit() where clearing a bit has to be
1153         * ordered with the unlocked test.
1154         */
1155        smp_mb();
1156
1157        if (waitqueue_active(&ctx->wait))
1158                wake_up(&ctx->wait);
1159}
1160
1161static inline void iocb_put(struct aio_kiocb *iocb)
1162{
1163        if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164                aio_complete(iocb);
1165                iocb_destroy(iocb);
1166        }
1167}
1168
1169/* aio_read_events_ring
1170 *      Pull an event off of the ioctx's event ring.  Returns the number of
1171 *      events fetched
1172 */
1173static long aio_read_events_ring(struct kioctx *ctx,
1174                                 struct io_event __user *event, long nr)
1175{
1176        struct aio_ring *ring;
1177        unsigned head, tail, pos;
1178        long ret = 0;
1179        int copy_ret;
1180
1181        /*
1182         * The mutex can block and wake us up and that will cause
1183         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184         * and repeat. This should be rare enough that it doesn't cause
1185         * peformance issues. See the comment in read_events() for more detail.
1186         */
1187        sched_annotate_sleep();
1188        mutex_lock(&ctx->ring_lock);
1189
1190        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191        ring = kmap_atomic(ctx->ring_pages[0]);
1192        head = ring->head;
1193        tail = ring->tail;
1194        kunmap_atomic(ring);
1195
1196        /*
1197         * Ensure that once we've read the current tail pointer, that
1198         * we also see the events that were stored up to the tail.
1199         */
1200        smp_rmb();
1201
1202        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203
1204        if (head == tail)
1205                goto out;
1206
1207        head %= ctx->nr_events;
1208        tail %= ctx->nr_events;
1209
1210        while (ret < nr) {
1211                long avail;
1212                struct io_event *ev;
1213                struct page *page;
1214
1215                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1216                if (head == tail)
1217                        break;
1218
1219                pos = head + AIO_EVENTS_OFFSET;
1220                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221                pos %= AIO_EVENTS_PER_PAGE;
1222
1223                avail = min(avail, nr - ret);
1224                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
1226                ev = kmap(page);
1227                copy_ret = copy_to_user(event + ret, ev + pos,
1228                                        sizeof(*ev) * avail);
1229                kunmap(page);
1230
1231                if (unlikely(copy_ret)) {
1232                        ret = -EFAULT;
1233                        goto out;
1234                }
1235
1236                ret += avail;
1237                head += avail;
1238                head %= ctx->nr_events;
1239        }
1240
1241        ring = kmap_atomic(ctx->ring_pages[0]);
1242        ring->head = head;
1243        kunmap_atomic(ring);
1244        flush_dcache_page(ctx->ring_pages[0]);
1245
1246        pr_debug("%li  h%u t%u\n", ret, head, tail);
1247out:
1248        mutex_unlock(&ctx->ring_lock);
1249
1250        return ret;
1251}
1252
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254                            struct io_event __user *event, long *i)
1255{
1256        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257
1258        if (ret > 0)
1259                *i += ret;
1260
1261        if (unlikely(atomic_read(&ctx->dead)))
1262                ret = -EINVAL;
1263
1264        if (!*i)
1265                *i = ret;
1266
1267        return ret < 0 || *i >= min_nr;
1268}
1269
1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271                        struct io_event __user *event,
1272                        ktime_t until)
1273{
1274        long ret = 0;
1275
1276        /*
1277         * Note that aio_read_events() is being called as the conditional - i.e.
1278         * we're calling it after prepare_to_wait() has set task state to
1279         * TASK_INTERRUPTIBLE.
1280         *
1281         * But aio_read_events() can block, and if it blocks it's going to flip
1282         * the task state back to TASK_RUNNING.
1283         *
1284         * This should be ok, provided it doesn't flip the state back to
1285         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286         * will only happen if the mutex_lock() call blocks, and we then find
1287         * the ringbuffer empty. So in practice we should be ok, but it's
1288         * something to be aware of when touching this code.
1289         */
1290        if (until == 0)
1291                aio_read_events(ctx, min_nr, nr, event, &ret);
1292        else
1293                wait_event_interruptible_hrtimeout(ctx->wait,
1294                                aio_read_events(ctx, min_nr, nr, event, &ret),
1295                                until);
1296        return ret;
1297}
1298
1299/* sys_io_setup:
1300 *      Create an aio_context capable of receiving at least nr_events.
1301 *      ctxp must not point to an aio_context that already exists, and
1302 *      must be initialized to 0 prior to the call.  On successful
1303 *      creation of the aio_context, *ctxp is filled in with the resulting 
1304 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1305 *      if the specified nr_events exceeds internal limits.  May fail 
1306 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1307 *      of available events.  May fail with -ENOMEM if insufficient kernel
1308 *      resources are available.  May fail with -EFAULT if an invalid
1309 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1310 *      implemented.
1311 */
1312SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313{
1314        struct kioctx *ioctx = NULL;
1315        unsigned long ctx;
1316        long ret;
1317
1318        ret = get_user(ctx, ctxp);
1319        if (unlikely(ret))
1320                goto out;
1321
1322        ret = -EINVAL;
1323        if (unlikely(ctx || nr_events == 0)) {
1324                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325                         ctx, nr_events);
1326                goto out;
1327        }
1328
1329        ioctx = ioctx_alloc(nr_events);
1330        ret = PTR_ERR(ioctx);
1331        if (!IS_ERR(ioctx)) {
1332                ret = put_user(ioctx->user_id, ctxp);
1333                if (ret)
1334                        kill_ioctx(current->mm, ioctx, NULL);
1335                percpu_ref_put(&ioctx->users);
1336        }
1337
1338out:
1339        return ret;
1340}
1341
1342#ifdef CONFIG_COMPAT
1343COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344{
1345        struct kioctx *ioctx = NULL;
1346        unsigned long ctx;
1347        long ret;
1348
1349        ret = get_user(ctx, ctx32p);
1350        if (unlikely(ret))
1351                goto out;
1352
1353        ret = -EINVAL;
1354        if (unlikely(ctx || nr_events == 0)) {
1355                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356                         ctx, nr_events);
1357                goto out;
1358        }
1359
1360        ioctx = ioctx_alloc(nr_events);
1361        ret = PTR_ERR(ioctx);
1362        if (!IS_ERR(ioctx)) {
1363                /* truncating is ok because it's a user address */
1364                ret = put_user((u32)ioctx->user_id, ctx32p);
1365                if (ret)
1366                        kill_ioctx(current->mm, ioctx, NULL);
1367                percpu_ref_put(&ioctx->users);
1368        }
1369
1370out:
1371        return ret;
1372}
1373#endif
1374
1375/* sys_io_destroy:
1376 *      Destroy the aio_context specified.  May cancel any outstanding 
1377 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1378 *      implemented.  May fail with -EINVAL if the context pointed to
1379 *      is invalid.
1380 */
1381SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382{
1383        struct kioctx *ioctx = lookup_ioctx(ctx);
1384        if (likely(NULL != ioctx)) {
1385                struct ctx_rq_wait wait;
1386                int ret;
1387
1388                init_completion(&wait.comp);
1389                atomic_set(&wait.count, 1);
1390
1391                /* Pass requests_done to kill_ioctx() where it can be set
1392                 * in a thread-safe way. If we try to set it here then we have
1393                 * a race condition if two io_destroy() called simultaneously.
1394                 */
1395                ret = kill_ioctx(current->mm, ioctx, &wait);
1396                percpu_ref_put(&ioctx->users);
1397
1398                /* Wait until all IO for the context are done. Otherwise kernel
1399                 * keep using user-space buffers even if user thinks the context
1400                 * is destroyed.
1401                 */
1402                if (!ret)
1403                        wait_for_completion(&wait.comp);
1404
1405                return ret;
1406        }
1407        pr_debug("EINVAL: invalid context id\n");
1408        return -EINVAL;
1409}
1410
1411static void aio_remove_iocb(struct aio_kiocb *iocb)
1412{
1413        struct kioctx *ctx = iocb->ki_ctx;
1414        unsigned long flags;
1415
1416        spin_lock_irqsave(&ctx->ctx_lock, flags);
1417        list_del(&iocb->ki_list);
1418        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419}
1420
1421static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422{
1423        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
1425        if (!list_empty_careful(&iocb->ki_list))
1426                aio_remove_iocb(iocb);
1427
1428        if (kiocb->ki_flags & IOCB_WRITE) {
1429                struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431                /*
1432                 * Tell lockdep we inherited freeze protection from submission
1433                 * thread.
1434                 */
1435                if (S_ISREG(inode->i_mode))
1436                        __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437                file_end_write(kiocb->ki_filp);
1438        }
1439
1440        iocb->ki_res.res = res;
1441        iocb->ki_res.res2 = res2;
1442        iocb_put(iocb);
1443}
1444
1445static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1446{
1447        int ret;
1448
1449        req->ki_complete = aio_complete_rw;
1450        req->private = NULL;
1451        req->ki_pos = iocb->aio_offset;
1452        req->ki_flags = iocb_flags(req->ki_filp);
1453        if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454                req->ki_flags |= IOCB_EVENTFD;
1455        req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456        if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457                /*
1458                 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459                 * aio_reqprio is interpreted as an I/O scheduling
1460                 * class and priority.
1461                 */
1462                ret = ioprio_check_cap(iocb->aio_reqprio);
1463                if (ret) {
1464                        pr_debug("aio ioprio check cap error: %d\n", ret);
1465                        return ret;
1466                }
1467
1468                req->ki_ioprio = iocb->aio_reqprio;
1469        } else
1470                req->ki_ioprio = get_current_ioprio();
1471
1472        ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473        if (unlikely(ret))
1474                return ret;
1475
1476        req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477        return 0;
1478}
1479
1480static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481                struct iovec **iovec, bool vectored, bool compat,
1482                struct iov_iter *iter)
1483{
1484        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485        size_t len = iocb->aio_nbytes;
1486
1487        if (!vectored) {
1488                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489                *iovec = NULL;
1490                return ret;
1491        }
1492#ifdef CONFIG_COMPAT
1493        if (compat)
1494                return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495                                iter);
1496#endif
1497        return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1498}
1499
1500static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1501{
1502        switch (ret) {
1503        case -EIOCBQUEUED:
1504                break;
1505        case -ERESTARTSYS:
1506        case -ERESTARTNOINTR:
1507        case -ERESTARTNOHAND:
1508        case -ERESTART_RESTARTBLOCK:
1509                /*
1510                 * There's no easy way to restart the syscall since other AIO's
1511                 * may be already running. Just fail this IO with EINTR.
1512                 */
1513                ret = -EINTR;
1514                /*FALLTHRU*/
1515        default:
1516                req->ki_complete(req, ret, 0);
1517        }
1518}
1519
1520static int aio_read(struct kiocb *req, const struct iocb *iocb,
1521                        bool vectored, bool compat)
1522{
1523        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1524        struct iov_iter iter;
1525        struct file *file;
1526        int ret;
1527
1528        ret = aio_prep_rw(req, iocb);
1529        if (ret)
1530                return ret;
1531        file = req->ki_filp;
1532        if (unlikely(!(file->f_mode & FMODE_READ)))
1533                return -EBADF;
1534        ret = -EINVAL;
1535        if (unlikely(!file->f_op->read_iter))
1536                return -EINVAL;
1537
1538        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1539        if (ret < 0)
1540                return ret;
1541        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542        if (!ret)
1543                aio_rw_done(req, call_read_iter(file, req, &iter));
1544        kfree(iovec);
1545        return ret;
1546}
1547
1548static int aio_write(struct kiocb *req, const struct iocb *iocb,
1549                         bool vectored, bool compat)
1550{
1551        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552        struct iov_iter iter;
1553        struct file *file;
1554        int ret;
1555
1556        ret = aio_prep_rw(req, iocb);
1557        if (ret)
1558                return ret;
1559        file = req->ki_filp;
1560
1561        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1562                return -EBADF;
1563        if (unlikely(!file->f_op->write_iter))
1564                return -EINVAL;
1565
1566        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1567        if (ret < 0)
1568                return ret;
1569        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570        if (!ret) {
1571                /*
1572                 * Open-code file_start_write here to grab freeze protection,
1573                 * which will be released by another thread in
1574                 * aio_complete_rw().  Fool lockdep by telling it the lock got
1575                 * released so that it doesn't complain about the held lock when
1576                 * we return to userspace.
1577                 */
1578                if (S_ISREG(file_inode(file)->i_mode)) {
1579                        __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1580                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1581                }
1582                req->ki_flags |= IOCB_WRITE;
1583                aio_rw_done(req, call_write_iter(file, req, &iter));
1584        }
1585        kfree(iovec);
1586        return ret;
1587}
1588
1589static void aio_fsync_work(struct work_struct *work)
1590{
1591        struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1592
1593        iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594        iocb_put(iocb);
1595}
1596
1597static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598                     bool datasync)
1599{
1600        if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601                        iocb->aio_rw_flags))
1602                return -EINVAL;
1603
1604        if (unlikely(!req->file->f_op->fsync))
1605                return -EINVAL;
1606
1607        req->datasync = datasync;
1608        INIT_WORK(&req->work, aio_fsync_work);
1609        schedule_work(&req->work);
1610        return 0;
1611}
1612
1613static void aio_poll_complete_work(struct work_struct *work)
1614{
1615        struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1616        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1617        struct poll_table_struct pt = { ._key = req->events };
1618        struct kioctx *ctx = iocb->ki_ctx;
1619        __poll_t mask = 0;
1620
1621        if (!READ_ONCE(req->cancelled))
1622                mask = vfs_poll(req->file, &pt) & req->events;
1623
1624        /*
1625         * Note that ->ki_cancel callers also delete iocb from active_reqs after
1626         * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1627         * synchronize with them.  In the cancellation case the list_del_init
1628         * itself is not actually needed, but harmless so we keep it in to
1629         * avoid further branches in the fast path.
1630         */
1631        spin_lock_irq(&ctx->ctx_lock);
1632        if (!mask && !READ_ONCE(req->cancelled)) {
1633                add_wait_queue(req->head, &req->wait);
1634                spin_unlock_irq(&ctx->ctx_lock);
1635                return;
1636        }
1637        list_del_init(&iocb->ki_list);
1638        iocb->ki_res.res = mangle_poll(mask);
1639        req->done = true;
1640        spin_unlock_irq(&ctx->ctx_lock);
1641
1642        iocb_put(iocb);
1643}
1644
1645/* assumes we are called with irqs disabled */
1646static int aio_poll_cancel(struct kiocb *iocb)
1647{
1648        struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1649        struct poll_iocb *req = &aiocb->poll;
1650
1651        spin_lock(&req->head->lock);
1652        WRITE_ONCE(req->cancelled, true);
1653        if (!list_empty(&req->wait.entry)) {
1654                list_del_init(&req->wait.entry);
1655                schedule_work(&aiocb->poll.work);
1656        }
1657        spin_unlock(&req->head->lock);
1658
1659        return 0;
1660}
1661
1662static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1663                void *key)
1664{
1665        struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1666        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1667        __poll_t mask = key_to_poll(key);
1668        unsigned long flags;
1669
1670        /* for instances that support it check for an event match first: */
1671        if (mask && !(mask & req->events))
1672                return 0;
1673
1674        list_del_init(&req->wait.entry);
1675
1676        if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1677                /*
1678                 * Try to complete the iocb inline if we can. Use
1679                 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680                 * call this function with IRQs disabled and because IRQs
1681                 * have to be disabled before ctx_lock is obtained.
1682                 */
1683                list_del(&iocb->ki_list);
1684                iocb->ki_res.res = mangle_poll(mask);
1685                req->done = true;
1686                spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1687                iocb_put(iocb);
1688        } else {
1689                schedule_work(&req->work);
1690        }
1691        return 1;
1692}
1693
1694struct aio_poll_table {
1695        struct poll_table_struct        pt;
1696        struct aio_kiocb                *iocb;
1697        int                             error;
1698};
1699
1700static void
1701aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1702                struct poll_table_struct *p)
1703{
1704        struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1705
1706        /* multiple wait queues per file are not supported */
1707        if (unlikely(pt->iocb->poll.head)) {
1708                pt->error = -EINVAL;
1709                return;
1710        }
1711
1712        pt->error = 0;
1713        pt->iocb->poll.head = head;
1714        add_wait_queue(head, &pt->iocb->poll.wait);
1715}
1716
1717static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1718{
1719        struct kioctx *ctx = aiocb->ki_ctx;
1720        struct poll_iocb *req = &aiocb->poll;
1721        struct aio_poll_table apt;
1722        bool cancel = false;
1723        __poll_t mask;
1724
1725        /* reject any unknown events outside the normal event mask. */
1726        if ((u16)iocb->aio_buf != iocb->aio_buf)
1727                return -EINVAL;
1728        /* reject fields that are not defined for poll */
1729        if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1730                return -EINVAL;
1731
1732        INIT_WORK(&req->work, aio_poll_complete_work);
1733        req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1734
1735        req->head = NULL;
1736        req->done = false;
1737        req->cancelled = false;
1738
1739        apt.pt._qproc = aio_poll_queue_proc;
1740        apt.pt._key = req->events;
1741        apt.iocb = aiocb;
1742        apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1743
1744        /* initialized the list so that we can do list_empty checks */
1745        INIT_LIST_HEAD(&req->wait.entry);
1746        init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1747
1748        mask = vfs_poll(req->file, &apt.pt) & req->events;
1749        spin_lock_irq(&ctx->ctx_lock);
1750        if (likely(req->head)) {
1751                spin_lock(&req->head->lock);
1752                if (unlikely(list_empty(&req->wait.entry))) {
1753                        if (apt.error)
1754                                cancel = true;
1755                        apt.error = 0;
1756                        mask = 0;
1757                }
1758                if (mask || apt.error) {
1759                        list_del_init(&req->wait.entry);
1760                } else if (cancel) {
1761                        WRITE_ONCE(req->cancelled, true);
1762                } else if (!req->done) { /* actually waiting for an event */
1763                        list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1764                        aiocb->ki_cancel = aio_poll_cancel;
1765                }
1766                spin_unlock(&req->head->lock);
1767        }
1768        if (mask) { /* no async, we'd stolen it */
1769                aiocb->ki_res.res = mangle_poll(mask);
1770                apt.error = 0;
1771        }
1772        spin_unlock_irq(&ctx->ctx_lock);
1773        if (mask)
1774                iocb_put(aiocb);
1775        return apt.error;
1776}
1777
1778static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1779                           struct iocb __user *user_iocb, struct aio_kiocb *req,
1780                           bool compat)
1781{
1782        req->ki_filp = fget(iocb->aio_fildes);
1783        if (unlikely(!req->ki_filp))
1784                return -EBADF;
1785
1786        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1787                struct eventfd_ctx *eventfd;
1788                /*
1789                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1790                 * instance of the file* now. The file descriptor must be
1791                 * an eventfd() fd, and will be signaled for each completed
1792                 * event using the eventfd_signal() function.
1793                 */
1794                eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1795                if (IS_ERR(eventfd))
1796                        return PTR_ERR(eventfd);
1797
1798                req->ki_eventfd = eventfd;
1799        }
1800
1801        if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1802                pr_debug("EFAULT: aio_key\n");
1803                return -EFAULT;
1804        }
1805
1806        req->ki_res.obj = (u64)(unsigned long)user_iocb;
1807        req->ki_res.data = iocb->aio_data;
1808        req->ki_res.res = 0;
1809        req->ki_res.res2 = 0;
1810
1811        switch (iocb->aio_lio_opcode) {
1812        case IOCB_CMD_PREAD:
1813                return aio_read(&req->rw, iocb, false, compat);
1814        case IOCB_CMD_PWRITE:
1815                return aio_write(&req->rw, iocb, false, compat);
1816        case IOCB_CMD_PREADV:
1817                return aio_read(&req->rw, iocb, true, compat);
1818        case IOCB_CMD_PWRITEV:
1819                return aio_write(&req->rw, iocb, true, compat);
1820        case IOCB_CMD_FSYNC:
1821                return aio_fsync(&req->fsync, iocb, false);
1822        case IOCB_CMD_FDSYNC:
1823                return aio_fsync(&req->fsync, iocb, true);
1824        case IOCB_CMD_POLL:
1825                return aio_poll(req, iocb);
1826        default:
1827                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1828                return -EINVAL;
1829        }
1830}
1831
1832static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1833                         bool compat)
1834{
1835        struct aio_kiocb *req;
1836        struct iocb iocb;
1837        int err;
1838
1839        if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1840                return -EFAULT;
1841
1842        /* enforce forwards compatibility on users */
1843        if (unlikely(iocb.aio_reserved2)) {
1844                pr_debug("EINVAL: reserve field set\n");
1845                return -EINVAL;
1846        }
1847
1848        /* prevent overflows */
1849        if (unlikely(
1850            (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1851            (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1852            ((ssize_t)iocb.aio_nbytes < 0)
1853           )) {
1854                pr_debug("EINVAL: overflow check\n");
1855                return -EINVAL;
1856        }
1857
1858        req = aio_get_req(ctx);
1859        if (unlikely(!req))
1860                return -EAGAIN;
1861
1862        err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1863
1864        /* Done with the synchronous reference */
1865        iocb_put(req);
1866
1867        /*
1868         * If err is 0, we'd either done aio_complete() ourselves or have
1869         * arranged for that to be done asynchronously.  Anything non-zero
1870         * means that we need to destroy req ourselves.
1871         */
1872        if (unlikely(err)) {
1873                iocb_destroy(req);
1874                put_reqs_available(ctx, 1);
1875        }
1876        return err;
1877}
1878
1879/* sys_io_submit:
1880 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1881 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1882 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1883 *      *iocbpp[0] is not properly initialized, if the operation specified
1884 *      is invalid for the file descriptor in the iocb.  May fail with
1885 *      -EFAULT if any of the data structures point to invalid data.  May
1886 *      fail with -EBADF if the file descriptor specified in the first
1887 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1888 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1889 *      fail with -ENOSYS if not implemented.
1890 */
1891SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1892                struct iocb __user * __user *, iocbpp)
1893{
1894        struct kioctx *ctx;
1895        long ret = 0;
1896        int i = 0;
1897        struct blk_plug plug;
1898
1899        if (unlikely(nr < 0))
1900                return -EINVAL;
1901
1902        ctx = lookup_ioctx(ctx_id);
1903        if (unlikely(!ctx)) {
1904                pr_debug("EINVAL: invalid context id\n");
1905                return -EINVAL;
1906        }
1907
1908        if (nr > ctx->nr_events)
1909                nr = ctx->nr_events;
1910
1911        if (nr > AIO_PLUG_THRESHOLD)
1912                blk_start_plug(&plug);
1913        for (i = 0; i < nr; i++) {
1914                struct iocb __user *user_iocb;
1915
1916                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1917                        ret = -EFAULT;
1918                        break;
1919                }
1920
1921                ret = io_submit_one(ctx, user_iocb, false);
1922                if (ret)
1923                        break;
1924        }
1925        if (nr > AIO_PLUG_THRESHOLD)
1926                blk_finish_plug(&plug);
1927
1928        percpu_ref_put(&ctx->users);
1929        return i ? i : ret;
1930}
1931
1932#ifdef CONFIG_COMPAT
1933COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1934                       int, nr, compat_uptr_t __user *, iocbpp)
1935{
1936        struct kioctx *ctx;
1937        long ret = 0;
1938        int i = 0;
1939        struct blk_plug plug;
1940
1941        if (unlikely(nr < 0))
1942                return -EINVAL;
1943
1944        ctx = lookup_ioctx(ctx_id);
1945        if (unlikely(!ctx)) {
1946                pr_debug("EINVAL: invalid context id\n");
1947                return -EINVAL;
1948        }
1949
1950        if (nr > ctx->nr_events)
1951                nr = ctx->nr_events;
1952
1953        if (nr > AIO_PLUG_THRESHOLD)
1954                blk_start_plug(&plug);
1955        for (i = 0; i < nr; i++) {
1956                compat_uptr_t user_iocb;
1957
1958                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1959                        ret = -EFAULT;
1960                        break;
1961                }
1962
1963                ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1964                if (ret)
1965                        break;
1966        }
1967        if (nr > AIO_PLUG_THRESHOLD)
1968                blk_finish_plug(&plug);
1969
1970        percpu_ref_put(&ctx->users);
1971        return i ? i : ret;
1972}
1973#endif
1974
1975/* sys_io_cancel:
1976 *      Attempts to cancel an iocb previously passed to io_submit.  If
1977 *      the operation is successfully cancelled, the resulting event is
1978 *      copied into the memory pointed to by result without being placed
1979 *      into the completion queue and 0 is returned.  May fail with
1980 *      -EFAULT if any of the data structures pointed to are invalid.
1981 *      May fail with -EINVAL if aio_context specified by ctx_id is
1982 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1983 *      cancelled.  Will fail with -ENOSYS if not implemented.
1984 */
1985SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1986                struct io_event __user *, result)
1987{
1988        struct kioctx *ctx;
1989        struct aio_kiocb *kiocb;
1990        int ret = -EINVAL;
1991        u32 key;
1992        u64 obj = (u64)(unsigned long)iocb;
1993
1994        if (unlikely(get_user(key, &iocb->aio_key)))
1995                return -EFAULT;
1996        if (unlikely(key != KIOCB_KEY))
1997                return -EINVAL;
1998
1999        ctx = lookup_ioctx(ctx_id);
2000        if (unlikely(!ctx))
2001                return -EINVAL;
2002
2003        spin_lock_irq(&ctx->ctx_lock);
2004        /* TODO: use a hash or array, this sucks. */
2005        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2006                if (kiocb->ki_res.obj == obj) {
2007                        ret = kiocb->ki_cancel(&kiocb->rw);
2008                        list_del_init(&kiocb->ki_list);
2009                        break;
2010                }
2011        }
2012        spin_unlock_irq(&ctx->ctx_lock);
2013
2014        if (!ret) {
2015                /*
2016                 * The result argument is no longer used - the io_event is
2017                 * always delivered via the ring buffer. -EINPROGRESS indicates
2018                 * cancellation is progress:
2019                 */
2020                ret = -EINPROGRESS;
2021        }
2022
2023        percpu_ref_put(&ctx->users);
2024
2025        return ret;
2026}
2027
2028static long do_io_getevents(aio_context_t ctx_id,
2029                long min_nr,
2030                long nr,
2031                struct io_event __user *events,
2032                struct timespec64 *ts)
2033{
2034        ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2035        struct kioctx *ioctx = lookup_ioctx(ctx_id);
2036        long ret = -EINVAL;
2037
2038        if (likely(ioctx)) {
2039                if (likely(min_nr <= nr && min_nr >= 0))
2040                        ret = read_events(ioctx, min_nr, nr, events, until);
2041                percpu_ref_put(&ioctx->users);
2042        }
2043
2044        return ret;
2045}
2046
2047/* io_getevents:
2048 *      Attempts to read at least min_nr events and up to nr events from
2049 *      the completion queue for the aio_context specified by ctx_id. If
2050 *      it succeeds, the number of read events is returned. May fail with
2051 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2052 *      out of range, if timeout is out of range.  May fail with -EFAULT
2053 *      if any of the memory specified is invalid.  May return 0 or
2054 *      < min_nr if the timeout specified by timeout has elapsed
2055 *      before sufficient events are available, where timeout == NULL
2056 *      specifies an infinite timeout. Note that the timeout pointed to by
2057 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
2058 */
2059#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2060
2061SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2062                long, min_nr,
2063                long, nr,
2064                struct io_event __user *, events,
2065                struct __kernel_timespec __user *, timeout)
2066{
2067        struct timespec64       ts;
2068        int                     ret;
2069
2070        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2071                return -EFAULT;
2072
2073        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074        if (!ret && signal_pending(current))
2075                ret = -EINTR;
2076        return ret;
2077}
2078
2079#endif
2080
2081struct __aio_sigset {
2082        const sigset_t __user   *sigmask;
2083        size_t          sigsetsize;
2084};
2085
2086SYSCALL_DEFINE6(io_pgetevents,
2087                aio_context_t, ctx_id,
2088                long, min_nr,
2089                long, nr,
2090                struct io_event __user *, events,
2091                struct __kernel_timespec __user *, timeout,
2092                const struct __aio_sigset __user *, usig)
2093{
2094        struct __aio_sigset     ksig = { NULL, };
2095        struct timespec64       ts;
2096        bool interrupted;
2097        int ret;
2098
2099        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2100                return -EFAULT;
2101
2102        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2103                return -EFAULT;
2104
2105        ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2106        if (ret)
2107                return ret;
2108
2109        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2110
2111        interrupted = signal_pending(current);
2112        restore_saved_sigmask_unless(interrupted);
2113        if (interrupted && !ret)
2114                ret = -ERESTARTNOHAND;
2115
2116        return ret;
2117}
2118
2119#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2120
2121SYSCALL_DEFINE6(io_pgetevents_time32,
2122                aio_context_t, ctx_id,
2123                long, min_nr,
2124                long, nr,
2125                struct io_event __user *, events,
2126                struct old_timespec32 __user *, timeout,
2127                const struct __aio_sigset __user *, usig)
2128{
2129        struct __aio_sigset     ksig = { NULL, };
2130        struct timespec64       ts;
2131        bool interrupted;
2132        int ret;
2133
2134        if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2135                return -EFAULT;
2136
2137        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2138                return -EFAULT;
2139
2140
2141        ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2142        if (ret)
2143                return ret;
2144
2145        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2146
2147        interrupted = signal_pending(current);
2148        restore_saved_sigmask_unless(interrupted);
2149        if (interrupted && !ret)
2150                ret = -ERESTARTNOHAND;
2151
2152        return ret;
2153}
2154
2155#endif
2156
2157#if defined(CONFIG_COMPAT_32BIT_TIME)
2158
2159SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2160                __s32, min_nr,
2161                __s32, nr,
2162                struct io_event __user *, events,
2163                struct old_timespec32 __user *, timeout)
2164{
2165        struct timespec64 t;
2166        int ret;
2167
2168        if (timeout && get_old_timespec32(&t, timeout))
2169                return -EFAULT;
2170
2171        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2172        if (!ret && signal_pending(current))
2173                ret = -EINTR;
2174        return ret;
2175}
2176
2177#endif
2178
2179#ifdef CONFIG_COMPAT
2180
2181struct __compat_aio_sigset {
2182        compat_sigset_t __user  *sigmask;
2183        compat_size_t           sigsetsize;
2184};
2185
2186#if defined(CONFIG_COMPAT_32BIT_TIME)
2187
2188COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2189                compat_aio_context_t, ctx_id,
2190                compat_long_t, min_nr,
2191                compat_long_t, nr,
2192                struct io_event __user *, events,
2193                struct old_timespec32 __user *, timeout,
2194                const struct __compat_aio_sigset __user *, usig)
2195{
2196        struct __compat_aio_sigset ksig = { NULL, };
2197        struct timespec64 t;
2198        bool interrupted;
2199        int ret;
2200
2201        if (timeout && get_old_timespec32(&t, timeout))
2202                return -EFAULT;
2203
2204        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2205                return -EFAULT;
2206
2207        ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2208        if (ret)
2209                return ret;
2210
2211        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2212
2213        interrupted = signal_pending(current);
2214        restore_saved_sigmask_unless(interrupted);
2215        if (interrupted && !ret)
2216                ret = -ERESTARTNOHAND;
2217
2218        return ret;
2219}
2220
2221#endif
2222
2223COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2224                compat_aio_context_t, ctx_id,
2225                compat_long_t, min_nr,
2226                compat_long_t, nr,
2227                struct io_event __user *, events,
2228                struct __kernel_timespec __user *, timeout,
2229                const struct __compat_aio_sigset __user *, usig)
2230{
2231        struct __compat_aio_sigset ksig = { NULL, };
2232        struct timespec64 t;
2233        bool interrupted;
2234        int ret;
2235
2236        if (timeout && get_timespec64(&t, timeout))
2237                return -EFAULT;
2238
2239        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240                return -EFAULT;
2241
2242        ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2243        if (ret)
2244                return ret;
2245
2246        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2247
2248        interrupted = signal_pending(current);
2249        restore_saved_sigmask_unless(interrupted);
2250        if (interrupted && !ret)
2251                ret = -ERESTARTNOHAND;
2252
2253        return ret;
2254}
2255#endif
2256