linux/fs/btrfs/backref.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16
  17/* Just an arbitrary number so we can be sure this happened */
  18#define BACKREF_FOUND_SHARED 6
  19
  20struct extent_inode_elem {
  21        u64 inum;
  22        u64 offset;
  23        struct extent_inode_elem *next;
  24};
  25
  26static int check_extent_in_eb(const struct btrfs_key *key,
  27                              const struct extent_buffer *eb,
  28                              const struct btrfs_file_extent_item *fi,
  29                              u64 extent_item_pos,
  30                              struct extent_inode_elem **eie,
  31                              bool ignore_offset)
  32{
  33        u64 offset = 0;
  34        struct extent_inode_elem *e;
  35
  36        if (!ignore_offset &&
  37            !btrfs_file_extent_compression(eb, fi) &&
  38            !btrfs_file_extent_encryption(eb, fi) &&
  39            !btrfs_file_extent_other_encoding(eb, fi)) {
  40                u64 data_offset;
  41                u64 data_len;
  42
  43                data_offset = btrfs_file_extent_offset(eb, fi);
  44                data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46                if (extent_item_pos < data_offset ||
  47                    extent_item_pos >= data_offset + data_len)
  48                        return 1;
  49                offset = extent_item_pos - data_offset;
  50        }
  51
  52        e = kmalloc(sizeof(*e), GFP_NOFS);
  53        if (!e)
  54                return -ENOMEM;
  55
  56        e->next = *eie;
  57        e->inum = key->objectid;
  58        e->offset = key->offset + offset;
  59        *eie = e;
  60
  61        return 0;
  62}
  63
  64static void free_inode_elem_list(struct extent_inode_elem *eie)
  65{
  66        struct extent_inode_elem *eie_next;
  67
  68        for (; eie; eie = eie_next) {
  69                eie_next = eie->next;
  70                kfree(eie);
  71        }
  72}
  73
  74static int find_extent_in_eb(const struct extent_buffer *eb,
  75                             u64 wanted_disk_byte, u64 extent_item_pos,
  76                             struct extent_inode_elem **eie,
  77                             bool ignore_offset)
  78{
  79        u64 disk_byte;
  80        struct btrfs_key key;
  81        struct btrfs_file_extent_item *fi;
  82        int slot;
  83        int nritems;
  84        int extent_type;
  85        int ret;
  86
  87        /*
  88         * from the shared data ref, we only have the leaf but we need
  89         * the key. thus, we must look into all items and see that we
  90         * find one (some) with a reference to our extent item.
  91         */
  92        nritems = btrfs_header_nritems(eb);
  93        for (slot = 0; slot < nritems; ++slot) {
  94                btrfs_item_key_to_cpu(eb, &key, slot);
  95                if (key.type != BTRFS_EXTENT_DATA_KEY)
  96                        continue;
  97                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  98                extent_type = btrfs_file_extent_type(eb, fi);
  99                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 100                        continue;
 101                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 102                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 103                if (disk_byte != wanted_disk_byte)
 104                        continue;
 105
 106                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 107                if (ret < 0)
 108                        return ret;
 109        }
 110
 111        return 0;
 112}
 113
 114struct preftree {
 115        struct rb_root_cached root;
 116        unsigned int count;
 117};
 118
 119#define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
 120
 121struct preftrees {
 122        struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 123        struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 124        struct preftree indirect_missing_keys;
 125};
 126
 127/*
 128 * Checks for a shared extent during backref search.
 129 *
 130 * The share_count tracks prelim_refs (direct and indirect) having a
 131 * ref->count >0:
 132 *  - incremented when a ref->count transitions to >0
 133 *  - decremented when a ref->count transitions to <1
 134 */
 135struct share_check {
 136        u64 root_objectid;
 137        u64 inum;
 138        int share_count;
 139};
 140
 141static inline int extent_is_shared(struct share_check *sc)
 142{
 143        return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 144}
 145
 146static struct kmem_cache *btrfs_prelim_ref_cache;
 147
 148int __init btrfs_prelim_ref_init(void)
 149{
 150        btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 151                                        sizeof(struct prelim_ref),
 152                                        0,
 153                                        SLAB_MEM_SPREAD,
 154                                        NULL);
 155        if (!btrfs_prelim_ref_cache)
 156                return -ENOMEM;
 157        return 0;
 158}
 159
 160void __cold btrfs_prelim_ref_exit(void)
 161{
 162        kmem_cache_destroy(btrfs_prelim_ref_cache);
 163}
 164
 165static void free_pref(struct prelim_ref *ref)
 166{
 167        kmem_cache_free(btrfs_prelim_ref_cache, ref);
 168}
 169
 170/*
 171 * Return 0 when both refs are for the same block (and can be merged).
 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 173 * indicates a 'higher' block.
 174 */
 175static int prelim_ref_compare(struct prelim_ref *ref1,
 176                              struct prelim_ref *ref2)
 177{
 178        if (ref1->level < ref2->level)
 179                return -1;
 180        if (ref1->level > ref2->level)
 181                return 1;
 182        if (ref1->root_id < ref2->root_id)
 183                return -1;
 184        if (ref1->root_id > ref2->root_id)
 185                return 1;
 186        if (ref1->key_for_search.type < ref2->key_for_search.type)
 187                return -1;
 188        if (ref1->key_for_search.type > ref2->key_for_search.type)
 189                return 1;
 190        if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 191                return -1;
 192        if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 193                return 1;
 194        if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 195                return -1;
 196        if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 197                return 1;
 198        if (ref1->parent < ref2->parent)
 199                return -1;
 200        if (ref1->parent > ref2->parent)
 201                return 1;
 202
 203        return 0;
 204}
 205
 206static void update_share_count(struct share_check *sc, int oldcount,
 207                               int newcount)
 208{
 209        if ((!sc) || (oldcount == 0 && newcount < 1))
 210                return;
 211
 212        if (oldcount > 0 && newcount < 1)
 213                sc->share_count--;
 214        else if (oldcount < 1 && newcount > 0)
 215                sc->share_count++;
 216}
 217
 218/*
 219 * Add @newref to the @root rbtree, merging identical refs.
 220 *
 221 * Callers should assume that newref has been freed after calling.
 222 */
 223static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 224                              struct preftree *preftree,
 225                              struct prelim_ref *newref,
 226                              struct share_check *sc)
 227{
 228        struct rb_root_cached *root;
 229        struct rb_node **p;
 230        struct rb_node *parent = NULL;
 231        struct prelim_ref *ref;
 232        int result;
 233        bool leftmost = true;
 234
 235        root = &preftree->root;
 236        p = &root->rb_root.rb_node;
 237
 238        while (*p) {
 239                parent = *p;
 240                ref = rb_entry(parent, struct prelim_ref, rbnode);
 241                result = prelim_ref_compare(ref, newref);
 242                if (result < 0) {
 243                        p = &(*p)->rb_left;
 244                } else if (result > 0) {
 245                        p = &(*p)->rb_right;
 246                        leftmost = false;
 247                } else {
 248                        /* Identical refs, merge them and free @newref */
 249                        struct extent_inode_elem *eie = ref->inode_list;
 250
 251                        while (eie && eie->next)
 252                                eie = eie->next;
 253
 254                        if (!eie)
 255                                ref->inode_list = newref->inode_list;
 256                        else
 257                                eie->next = newref->inode_list;
 258                        trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 259                                                     preftree->count);
 260                        /*
 261                         * A delayed ref can have newref->count < 0.
 262                         * The ref->count is updated to follow any
 263                         * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 264                         */
 265                        update_share_count(sc, ref->count,
 266                                           ref->count + newref->count);
 267                        ref->count += newref->count;
 268                        free_pref(newref);
 269                        return;
 270                }
 271        }
 272
 273        update_share_count(sc, 0, newref->count);
 274        preftree->count++;
 275        trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 276        rb_link_node(&newref->rbnode, parent, p);
 277        rb_insert_color_cached(&newref->rbnode, root, leftmost);
 278}
 279
 280/*
 281 * Release the entire tree.  We don't care about internal consistency so
 282 * just free everything and then reset the tree root.
 283 */
 284static void prelim_release(struct preftree *preftree)
 285{
 286        struct prelim_ref *ref, *next_ref;
 287
 288        rbtree_postorder_for_each_entry_safe(ref, next_ref,
 289                                             &preftree->root.rb_root, rbnode)
 290                free_pref(ref);
 291
 292        preftree->root = RB_ROOT_CACHED;
 293        preftree->count = 0;
 294}
 295
 296/*
 297 * the rules for all callers of this function are:
 298 * - obtaining the parent is the goal
 299 * - if you add a key, you must know that it is a correct key
 300 * - if you cannot add the parent or a correct key, then we will look into the
 301 *   block later to set a correct key
 302 *
 303 * delayed refs
 304 * ============
 305 *        backref type | shared | indirect | shared | indirect
 306 * information         |   tree |     tree |   data |     data
 307 * --------------------+--------+----------+--------+----------
 308 *      parent logical |    y   |     -    |    -   |     -
 309 *      key to resolve |    -   |     y    |    y   |     y
 310 *  tree block logical |    -   |     -    |    -   |     -
 311 *  root for resolving |    y   |     y    |    y   |     y
 312 *
 313 * - column 1:       we've the parent -> done
 314 * - column 2, 3, 4: we use the key to find the parent
 315 *
 316 * on disk refs (inline or keyed)
 317 * ==============================
 318 *        backref type | shared | indirect | shared | indirect
 319 * information         |   tree |     tree |   data |     data
 320 * --------------------+--------+----------+--------+----------
 321 *      parent logical |    y   |     -    |    y   |     -
 322 *      key to resolve |    -   |     -    |    -   |     y
 323 *  tree block logical |    y   |     y    |    y   |     y
 324 *  root for resolving |    -   |     y    |    y   |     y
 325 *
 326 * - column 1, 3: we've the parent -> done
 327 * - column 2:    we take the first key from the block to find the parent
 328 *                (see add_missing_keys)
 329 * - column 4:    we use the key to find the parent
 330 *
 331 * additional information that's available but not required to find the parent
 332 * block might help in merging entries to gain some speed.
 333 */
 334static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 335                          struct preftree *preftree, u64 root_id,
 336                          const struct btrfs_key *key, int level, u64 parent,
 337                          u64 wanted_disk_byte, int count,
 338                          struct share_check *sc, gfp_t gfp_mask)
 339{
 340        struct prelim_ref *ref;
 341
 342        if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 343                return 0;
 344
 345        ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 346        if (!ref)
 347                return -ENOMEM;
 348
 349        ref->root_id = root_id;
 350        if (key) {
 351                ref->key_for_search = *key;
 352                /*
 353                 * We can often find data backrefs with an offset that is too
 354                 * large (>= LLONG_MAX, maximum allowed file offset) due to
 355                 * underflows when subtracting a file's offset with the data
 356                 * offset of its corresponding extent data item. This can
 357                 * happen for example in the clone ioctl.
 358                 * So if we detect such case we set the search key's offset to
 359                 * zero to make sure we will find the matching file extent item
 360                 * at add_all_parents(), otherwise we will miss it because the
 361                 * offset taken form the backref is much larger then the offset
 362                 * of the file extent item. This can make us scan a very large
 363                 * number of file extent items, but at least it will not make
 364                 * us miss any.
 365                 * This is an ugly workaround for a behaviour that should have
 366                 * never existed, but it does and a fix for the clone ioctl
 367                 * would touch a lot of places, cause backwards incompatibility
 368                 * and would not fix the problem for extents cloned with older
 369                 * kernels.
 370                 */
 371                if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 372                    ref->key_for_search.offset >= LLONG_MAX)
 373                        ref->key_for_search.offset = 0;
 374        } else {
 375                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 376        }
 377
 378        ref->inode_list = NULL;
 379        ref->level = level;
 380        ref->count = count;
 381        ref->parent = parent;
 382        ref->wanted_disk_byte = wanted_disk_byte;
 383        prelim_ref_insert(fs_info, preftree, ref, sc);
 384        return extent_is_shared(sc);
 385}
 386
 387/* direct refs use root == 0, key == NULL */
 388static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 389                          struct preftrees *preftrees, int level, u64 parent,
 390                          u64 wanted_disk_byte, int count,
 391                          struct share_check *sc, gfp_t gfp_mask)
 392{
 393        return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 394                              parent, wanted_disk_byte, count, sc, gfp_mask);
 395}
 396
 397/* indirect refs use parent == 0 */
 398static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 399                            struct preftrees *preftrees, u64 root_id,
 400                            const struct btrfs_key *key, int level,
 401                            u64 wanted_disk_byte, int count,
 402                            struct share_check *sc, gfp_t gfp_mask)
 403{
 404        struct preftree *tree = &preftrees->indirect;
 405
 406        if (!key)
 407                tree = &preftrees->indirect_missing_keys;
 408        return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 409                              wanted_disk_byte, count, sc, gfp_mask);
 410}
 411
 412static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 413                           struct ulist *parents, struct prelim_ref *ref,
 414                           int level, u64 time_seq, const u64 *extent_item_pos,
 415                           u64 total_refs, bool ignore_offset)
 416{
 417        int ret = 0;
 418        int slot;
 419        struct extent_buffer *eb;
 420        struct btrfs_key key;
 421        struct btrfs_key *key_for_search = &ref->key_for_search;
 422        struct btrfs_file_extent_item *fi;
 423        struct extent_inode_elem *eie = NULL, *old = NULL;
 424        u64 disk_byte;
 425        u64 wanted_disk_byte = ref->wanted_disk_byte;
 426        u64 count = 0;
 427
 428        if (level != 0) {
 429                eb = path->nodes[level];
 430                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 431                if (ret < 0)
 432                        return ret;
 433                return 0;
 434        }
 435
 436        /*
 437         * We normally enter this function with the path already pointing to
 438         * the first item to check. But sometimes, we may enter it with
 439         * slot==nritems. In that case, go to the next leaf before we continue.
 440         */
 441        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 442                if (time_seq == SEQ_LAST)
 443                        ret = btrfs_next_leaf(root, path);
 444                else
 445                        ret = btrfs_next_old_leaf(root, path, time_seq);
 446        }
 447
 448        while (!ret && count < total_refs) {
 449                eb = path->nodes[0];
 450                slot = path->slots[0];
 451
 452                btrfs_item_key_to_cpu(eb, &key, slot);
 453
 454                if (key.objectid != key_for_search->objectid ||
 455                    key.type != BTRFS_EXTENT_DATA_KEY)
 456                        break;
 457
 458                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 459                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 460
 461                if (disk_byte == wanted_disk_byte) {
 462                        eie = NULL;
 463                        old = NULL;
 464                        count++;
 465                        if (extent_item_pos) {
 466                                ret = check_extent_in_eb(&key, eb, fi,
 467                                                *extent_item_pos,
 468                                                &eie, ignore_offset);
 469                                if (ret < 0)
 470                                        break;
 471                        }
 472                        if (ret > 0)
 473                                goto next;
 474                        ret = ulist_add_merge_ptr(parents, eb->start,
 475                                                  eie, (void **)&old, GFP_NOFS);
 476                        if (ret < 0)
 477                                break;
 478                        if (!ret && extent_item_pos) {
 479                                while (old->next)
 480                                        old = old->next;
 481                                old->next = eie;
 482                        }
 483                        eie = NULL;
 484                }
 485next:
 486                if (time_seq == SEQ_LAST)
 487                        ret = btrfs_next_item(root, path);
 488                else
 489                        ret = btrfs_next_old_item(root, path, time_seq);
 490        }
 491
 492        if (ret > 0)
 493                ret = 0;
 494        else if (ret < 0)
 495                free_inode_elem_list(eie);
 496        return ret;
 497}
 498
 499/*
 500 * resolve an indirect backref in the form (root_id, key, level)
 501 * to a logical address
 502 */
 503static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 504                                struct btrfs_path *path, u64 time_seq,
 505                                struct prelim_ref *ref, struct ulist *parents,
 506                                const u64 *extent_item_pos, u64 total_refs,
 507                                bool ignore_offset)
 508{
 509        struct btrfs_root *root;
 510        struct btrfs_key root_key;
 511        struct extent_buffer *eb;
 512        int ret = 0;
 513        int root_level;
 514        int level = ref->level;
 515        int index;
 516
 517        root_key.objectid = ref->root_id;
 518        root_key.type = BTRFS_ROOT_ITEM_KEY;
 519        root_key.offset = (u64)-1;
 520
 521        index = srcu_read_lock(&fs_info->subvol_srcu);
 522
 523        root = btrfs_get_fs_root(fs_info, &root_key, false);
 524        if (IS_ERR(root)) {
 525                srcu_read_unlock(&fs_info->subvol_srcu, index);
 526                ret = PTR_ERR(root);
 527                goto out;
 528        }
 529
 530        if (btrfs_is_testing(fs_info)) {
 531                srcu_read_unlock(&fs_info->subvol_srcu, index);
 532                ret = -ENOENT;
 533                goto out;
 534        }
 535
 536        if (path->search_commit_root)
 537                root_level = btrfs_header_level(root->commit_root);
 538        else if (time_seq == SEQ_LAST)
 539                root_level = btrfs_header_level(root->node);
 540        else
 541                root_level = btrfs_old_root_level(root, time_seq);
 542
 543        if (root_level + 1 == level) {
 544                srcu_read_unlock(&fs_info->subvol_srcu, index);
 545                goto out;
 546        }
 547
 548        path->lowest_level = level;
 549        if (time_seq == SEQ_LAST)
 550                ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 551                                        0, 0);
 552        else
 553                ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 554                                            time_seq);
 555
 556        /* root node has been locked, we can release @subvol_srcu safely here */
 557        srcu_read_unlock(&fs_info->subvol_srcu, index);
 558
 559        btrfs_debug(fs_info,
 560                "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 561                 ref->root_id, level, ref->count, ret,
 562                 ref->key_for_search.objectid, ref->key_for_search.type,
 563                 ref->key_for_search.offset);
 564        if (ret < 0)
 565                goto out;
 566
 567        eb = path->nodes[level];
 568        while (!eb) {
 569                if (WARN_ON(!level)) {
 570                        ret = 1;
 571                        goto out;
 572                }
 573                level--;
 574                eb = path->nodes[level];
 575        }
 576
 577        ret = add_all_parents(root, path, parents, ref, level, time_seq,
 578                              extent_item_pos, total_refs, ignore_offset);
 579out:
 580        path->lowest_level = 0;
 581        btrfs_release_path(path);
 582        return ret;
 583}
 584
 585static struct extent_inode_elem *
 586unode_aux_to_inode_list(struct ulist_node *node)
 587{
 588        if (!node)
 589                return NULL;
 590        return (struct extent_inode_elem *)(uintptr_t)node->aux;
 591}
 592
 593/*
 594 * We maintain three separate rbtrees: one for direct refs, one for
 595 * indirect refs which have a key, and one for indirect refs which do not
 596 * have a key. Each tree does merge on insertion.
 597 *
 598 * Once all of the references are located, we iterate over the tree of
 599 * indirect refs with missing keys. An appropriate key is located and
 600 * the ref is moved onto the tree for indirect refs. After all missing
 601 * keys are thus located, we iterate over the indirect ref tree, resolve
 602 * each reference, and then insert the resolved reference onto the
 603 * direct tree (merging there too).
 604 *
 605 * New backrefs (i.e., for parent nodes) are added to the appropriate
 606 * rbtree as they are encountered. The new backrefs are subsequently
 607 * resolved as above.
 608 */
 609static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 610                                 struct btrfs_path *path, u64 time_seq,
 611                                 struct preftrees *preftrees,
 612                                 const u64 *extent_item_pos, u64 total_refs,
 613                                 struct share_check *sc, bool ignore_offset)
 614{
 615        int err;
 616        int ret = 0;
 617        struct ulist *parents;
 618        struct ulist_node *node;
 619        struct ulist_iterator uiter;
 620        struct rb_node *rnode;
 621
 622        parents = ulist_alloc(GFP_NOFS);
 623        if (!parents)
 624                return -ENOMEM;
 625
 626        /*
 627         * We could trade memory usage for performance here by iterating
 628         * the tree, allocating new refs for each insertion, and then
 629         * freeing the entire indirect tree when we're done.  In some test
 630         * cases, the tree can grow quite large (~200k objects).
 631         */
 632        while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 633                struct prelim_ref *ref;
 634
 635                ref = rb_entry(rnode, struct prelim_ref, rbnode);
 636                if (WARN(ref->parent,
 637                         "BUG: direct ref found in indirect tree")) {
 638                        ret = -EINVAL;
 639                        goto out;
 640                }
 641
 642                rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 643                preftrees->indirect.count--;
 644
 645                if (ref->count == 0) {
 646                        free_pref(ref);
 647                        continue;
 648                }
 649
 650                if (sc && sc->root_objectid &&
 651                    ref->root_id != sc->root_objectid) {
 652                        free_pref(ref);
 653                        ret = BACKREF_FOUND_SHARED;
 654                        goto out;
 655                }
 656                err = resolve_indirect_ref(fs_info, path, time_seq, ref,
 657                                           parents, extent_item_pos,
 658                                           total_refs, ignore_offset);
 659                /*
 660                 * we can only tolerate ENOENT,otherwise,we should catch error
 661                 * and return directly.
 662                 */
 663                if (err == -ENOENT) {
 664                        prelim_ref_insert(fs_info, &preftrees->direct, ref,
 665                                          NULL);
 666                        continue;
 667                } else if (err) {
 668                        free_pref(ref);
 669                        ret = err;
 670                        goto out;
 671                }
 672
 673                /* we put the first parent into the ref at hand */
 674                ULIST_ITER_INIT(&uiter);
 675                node = ulist_next(parents, &uiter);
 676                ref->parent = node ? node->val : 0;
 677                ref->inode_list = unode_aux_to_inode_list(node);
 678
 679                /* Add a prelim_ref(s) for any other parent(s). */
 680                while ((node = ulist_next(parents, &uiter))) {
 681                        struct prelim_ref *new_ref;
 682
 683                        new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 684                                                   GFP_NOFS);
 685                        if (!new_ref) {
 686                                free_pref(ref);
 687                                ret = -ENOMEM;
 688                                goto out;
 689                        }
 690                        memcpy(new_ref, ref, sizeof(*ref));
 691                        new_ref->parent = node->val;
 692                        new_ref->inode_list = unode_aux_to_inode_list(node);
 693                        prelim_ref_insert(fs_info, &preftrees->direct,
 694                                          new_ref, NULL);
 695                }
 696
 697                /*
 698                 * Now it's a direct ref, put it in the direct tree. We must
 699                 * do this last because the ref could be merged/freed here.
 700                 */
 701                prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 702
 703                ulist_reinit(parents);
 704                cond_resched();
 705        }
 706out:
 707        ulist_free(parents);
 708        return ret;
 709}
 710
 711/*
 712 * read tree blocks and add keys where required.
 713 */
 714static int add_missing_keys(struct btrfs_fs_info *fs_info,
 715                            struct preftrees *preftrees, bool lock)
 716{
 717        struct prelim_ref *ref;
 718        struct extent_buffer *eb;
 719        struct preftree *tree = &preftrees->indirect_missing_keys;
 720        struct rb_node *node;
 721
 722        while ((node = rb_first_cached(&tree->root))) {
 723                ref = rb_entry(node, struct prelim_ref, rbnode);
 724                rb_erase_cached(node, &tree->root);
 725
 726                BUG_ON(ref->parent);    /* should not be a direct ref */
 727                BUG_ON(ref->key_for_search.type);
 728                BUG_ON(!ref->wanted_disk_byte);
 729
 730                eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
 731                                     ref->level - 1, NULL);
 732                if (IS_ERR(eb)) {
 733                        free_pref(ref);
 734                        return PTR_ERR(eb);
 735                } else if (!extent_buffer_uptodate(eb)) {
 736                        free_pref(ref);
 737                        free_extent_buffer(eb);
 738                        return -EIO;
 739                }
 740                if (lock)
 741                        btrfs_tree_read_lock(eb);
 742                if (btrfs_header_level(eb) == 0)
 743                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 744                else
 745                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 746                if (lock)
 747                        btrfs_tree_read_unlock(eb);
 748                free_extent_buffer(eb);
 749                prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 750                cond_resched();
 751        }
 752        return 0;
 753}
 754
 755/*
 756 * add all currently queued delayed refs from this head whose seq nr is
 757 * smaller or equal that seq to the list
 758 */
 759static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 760                            struct btrfs_delayed_ref_head *head, u64 seq,
 761                            struct preftrees *preftrees, u64 *total_refs,
 762                            struct share_check *sc)
 763{
 764        struct btrfs_delayed_ref_node *node;
 765        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 766        struct btrfs_key key;
 767        struct btrfs_key tmp_op_key;
 768        struct rb_node *n;
 769        int count;
 770        int ret = 0;
 771
 772        if (extent_op && extent_op->update_key)
 773                btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 774
 775        spin_lock(&head->lock);
 776        for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 777                node = rb_entry(n, struct btrfs_delayed_ref_node,
 778                                ref_node);
 779                if (node->seq > seq)
 780                        continue;
 781
 782                switch (node->action) {
 783                case BTRFS_ADD_DELAYED_EXTENT:
 784                case BTRFS_UPDATE_DELAYED_HEAD:
 785                        WARN_ON(1);
 786                        continue;
 787                case BTRFS_ADD_DELAYED_REF:
 788                        count = node->ref_mod;
 789                        break;
 790                case BTRFS_DROP_DELAYED_REF:
 791                        count = node->ref_mod * -1;
 792                        break;
 793                default:
 794                        BUG();
 795                }
 796                *total_refs += count;
 797                switch (node->type) {
 798                case BTRFS_TREE_BLOCK_REF_KEY: {
 799                        /* NORMAL INDIRECT METADATA backref */
 800                        struct btrfs_delayed_tree_ref *ref;
 801
 802                        ref = btrfs_delayed_node_to_tree_ref(node);
 803                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 804                                               &tmp_op_key, ref->level + 1,
 805                                               node->bytenr, count, sc,
 806                                               GFP_ATOMIC);
 807                        break;
 808                }
 809                case BTRFS_SHARED_BLOCK_REF_KEY: {
 810                        /* SHARED DIRECT METADATA backref */
 811                        struct btrfs_delayed_tree_ref *ref;
 812
 813                        ref = btrfs_delayed_node_to_tree_ref(node);
 814
 815                        ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 816                                             ref->parent, node->bytenr, count,
 817                                             sc, GFP_ATOMIC);
 818                        break;
 819                }
 820                case BTRFS_EXTENT_DATA_REF_KEY: {
 821                        /* NORMAL INDIRECT DATA backref */
 822                        struct btrfs_delayed_data_ref *ref;
 823                        ref = btrfs_delayed_node_to_data_ref(node);
 824
 825                        key.objectid = ref->objectid;
 826                        key.type = BTRFS_EXTENT_DATA_KEY;
 827                        key.offset = ref->offset;
 828
 829                        /*
 830                         * Found a inum that doesn't match our known inum, we
 831                         * know it's shared.
 832                         */
 833                        if (sc && sc->inum && ref->objectid != sc->inum) {
 834                                ret = BACKREF_FOUND_SHARED;
 835                                goto out;
 836                        }
 837
 838                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 839                                               &key, 0, node->bytenr, count, sc,
 840                                               GFP_ATOMIC);
 841                        break;
 842                }
 843                case BTRFS_SHARED_DATA_REF_KEY: {
 844                        /* SHARED DIRECT FULL backref */
 845                        struct btrfs_delayed_data_ref *ref;
 846
 847                        ref = btrfs_delayed_node_to_data_ref(node);
 848
 849                        ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 850                                             node->bytenr, count, sc,
 851                                             GFP_ATOMIC);
 852                        break;
 853                }
 854                default:
 855                        WARN_ON(1);
 856                }
 857                /*
 858                 * We must ignore BACKREF_FOUND_SHARED until all delayed
 859                 * refs have been checked.
 860                 */
 861                if (ret && (ret != BACKREF_FOUND_SHARED))
 862                        break;
 863        }
 864        if (!ret)
 865                ret = extent_is_shared(sc);
 866out:
 867        spin_unlock(&head->lock);
 868        return ret;
 869}
 870
 871/*
 872 * add all inline backrefs for bytenr to the list
 873 *
 874 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 875 */
 876static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 877                           struct btrfs_path *path, u64 bytenr,
 878                           int *info_level, struct preftrees *preftrees,
 879                           u64 *total_refs, struct share_check *sc)
 880{
 881        int ret = 0;
 882        int slot;
 883        struct extent_buffer *leaf;
 884        struct btrfs_key key;
 885        struct btrfs_key found_key;
 886        unsigned long ptr;
 887        unsigned long end;
 888        struct btrfs_extent_item *ei;
 889        u64 flags;
 890        u64 item_size;
 891
 892        /*
 893         * enumerate all inline refs
 894         */
 895        leaf = path->nodes[0];
 896        slot = path->slots[0];
 897
 898        item_size = btrfs_item_size_nr(leaf, slot);
 899        BUG_ON(item_size < sizeof(*ei));
 900
 901        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 902        flags = btrfs_extent_flags(leaf, ei);
 903        *total_refs += btrfs_extent_refs(leaf, ei);
 904        btrfs_item_key_to_cpu(leaf, &found_key, slot);
 905
 906        ptr = (unsigned long)(ei + 1);
 907        end = (unsigned long)ei + item_size;
 908
 909        if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 910            flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 911                struct btrfs_tree_block_info *info;
 912
 913                info = (struct btrfs_tree_block_info *)ptr;
 914                *info_level = btrfs_tree_block_level(leaf, info);
 915                ptr += sizeof(struct btrfs_tree_block_info);
 916                BUG_ON(ptr > end);
 917        } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 918                *info_level = found_key.offset;
 919        } else {
 920                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 921        }
 922
 923        while (ptr < end) {
 924                struct btrfs_extent_inline_ref *iref;
 925                u64 offset;
 926                int type;
 927
 928                iref = (struct btrfs_extent_inline_ref *)ptr;
 929                type = btrfs_get_extent_inline_ref_type(leaf, iref,
 930                                                        BTRFS_REF_TYPE_ANY);
 931                if (type == BTRFS_REF_TYPE_INVALID)
 932                        return -EUCLEAN;
 933
 934                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 935
 936                switch (type) {
 937                case BTRFS_SHARED_BLOCK_REF_KEY:
 938                        ret = add_direct_ref(fs_info, preftrees,
 939                                             *info_level + 1, offset,
 940                                             bytenr, 1, NULL, GFP_NOFS);
 941                        break;
 942                case BTRFS_SHARED_DATA_REF_KEY: {
 943                        struct btrfs_shared_data_ref *sdref;
 944                        int count;
 945
 946                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 947                        count = btrfs_shared_data_ref_count(leaf, sdref);
 948
 949                        ret = add_direct_ref(fs_info, preftrees, 0, offset,
 950                                             bytenr, count, sc, GFP_NOFS);
 951                        break;
 952                }
 953                case BTRFS_TREE_BLOCK_REF_KEY:
 954                        ret = add_indirect_ref(fs_info, preftrees, offset,
 955                                               NULL, *info_level + 1,
 956                                               bytenr, 1, NULL, GFP_NOFS);
 957                        break;
 958                case BTRFS_EXTENT_DATA_REF_KEY: {
 959                        struct btrfs_extent_data_ref *dref;
 960                        int count;
 961                        u64 root;
 962
 963                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 964                        count = btrfs_extent_data_ref_count(leaf, dref);
 965                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 966                                                                      dref);
 967                        key.type = BTRFS_EXTENT_DATA_KEY;
 968                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 969
 970                        if (sc && sc->inum && key.objectid != sc->inum) {
 971                                ret = BACKREF_FOUND_SHARED;
 972                                break;
 973                        }
 974
 975                        root = btrfs_extent_data_ref_root(leaf, dref);
 976
 977                        ret = add_indirect_ref(fs_info, preftrees, root,
 978                                               &key, 0, bytenr, count,
 979                                               sc, GFP_NOFS);
 980                        break;
 981                }
 982                default:
 983                        WARN_ON(1);
 984                }
 985                if (ret)
 986                        return ret;
 987                ptr += btrfs_extent_inline_ref_size(type);
 988        }
 989
 990        return 0;
 991}
 992
 993/*
 994 * add all non-inline backrefs for bytenr to the list
 995 *
 996 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 997 */
 998static int add_keyed_refs(struct btrfs_fs_info *fs_info,
 999                          struct btrfs_path *path, u64 bytenr,
1000                          int info_level, struct preftrees *preftrees,
1001                          struct share_check *sc)
1002{
1003        struct btrfs_root *extent_root = fs_info->extent_root;
1004        int ret;
1005        int slot;
1006        struct extent_buffer *leaf;
1007        struct btrfs_key key;
1008
1009        while (1) {
1010                ret = btrfs_next_item(extent_root, path);
1011                if (ret < 0)
1012                        break;
1013                if (ret) {
1014                        ret = 0;
1015                        break;
1016                }
1017
1018                slot = path->slots[0];
1019                leaf = path->nodes[0];
1020                btrfs_item_key_to_cpu(leaf, &key, slot);
1021
1022                if (key.objectid != bytenr)
1023                        break;
1024                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1025                        continue;
1026                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1027                        break;
1028
1029                switch (key.type) {
1030                case BTRFS_SHARED_BLOCK_REF_KEY:
1031                        /* SHARED DIRECT METADATA backref */
1032                        ret = add_direct_ref(fs_info, preftrees,
1033                                             info_level + 1, key.offset,
1034                                             bytenr, 1, NULL, GFP_NOFS);
1035                        break;
1036                case BTRFS_SHARED_DATA_REF_KEY: {
1037                        /* SHARED DIRECT FULL backref */
1038                        struct btrfs_shared_data_ref *sdref;
1039                        int count;
1040
1041                        sdref = btrfs_item_ptr(leaf, slot,
1042                                              struct btrfs_shared_data_ref);
1043                        count = btrfs_shared_data_ref_count(leaf, sdref);
1044                        ret = add_direct_ref(fs_info, preftrees, 0,
1045                                             key.offset, bytenr, count,
1046                                             sc, GFP_NOFS);
1047                        break;
1048                }
1049                case BTRFS_TREE_BLOCK_REF_KEY:
1050                        /* NORMAL INDIRECT METADATA backref */
1051                        ret = add_indirect_ref(fs_info, preftrees, key.offset,
1052                                               NULL, info_level + 1, bytenr,
1053                                               1, NULL, GFP_NOFS);
1054                        break;
1055                case BTRFS_EXTENT_DATA_REF_KEY: {
1056                        /* NORMAL INDIRECT DATA backref */
1057                        struct btrfs_extent_data_ref *dref;
1058                        int count;
1059                        u64 root;
1060
1061                        dref = btrfs_item_ptr(leaf, slot,
1062                                              struct btrfs_extent_data_ref);
1063                        count = btrfs_extent_data_ref_count(leaf, dref);
1064                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
1065                                                                      dref);
1066                        key.type = BTRFS_EXTENT_DATA_KEY;
1067                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1068
1069                        if (sc && sc->inum && key.objectid != sc->inum) {
1070                                ret = BACKREF_FOUND_SHARED;
1071                                break;
1072                        }
1073
1074                        root = btrfs_extent_data_ref_root(leaf, dref);
1075                        ret = add_indirect_ref(fs_info, preftrees, root,
1076                                               &key, 0, bytenr, count,
1077                                               sc, GFP_NOFS);
1078                        break;
1079                }
1080                default:
1081                        WARN_ON(1);
1082                }
1083                if (ret)
1084                        return ret;
1085
1086        }
1087
1088        return ret;
1089}
1090
1091/*
1092 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1093 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1094 * indirect refs to their parent bytenr.
1095 * When roots are found, they're added to the roots list
1096 *
1097 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1098 * much like trans == NULL case, the difference only lies in it will not
1099 * commit root.
1100 * The special case is for qgroup to search roots in commit_transaction().
1101 *
1102 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1103 * shared extent is detected.
1104 *
1105 * Otherwise this returns 0 for success and <0 for an error.
1106 *
1107 * If ignore_offset is set to false, only extent refs whose offsets match
1108 * extent_item_pos are returned.  If true, every extent ref is returned
1109 * and extent_item_pos is ignored.
1110 *
1111 * FIXME some caching might speed things up
1112 */
1113static int find_parent_nodes(struct btrfs_trans_handle *trans,
1114                             struct btrfs_fs_info *fs_info, u64 bytenr,
1115                             u64 time_seq, struct ulist *refs,
1116                             struct ulist *roots, const u64 *extent_item_pos,
1117                             struct share_check *sc, bool ignore_offset)
1118{
1119        struct btrfs_key key;
1120        struct btrfs_path *path;
1121        struct btrfs_delayed_ref_root *delayed_refs = NULL;
1122        struct btrfs_delayed_ref_head *head;
1123        int info_level = 0;
1124        int ret;
1125        struct prelim_ref *ref;
1126        struct rb_node *node;
1127        struct extent_inode_elem *eie = NULL;
1128        /* total of both direct AND indirect refs! */
1129        u64 total_refs = 0;
1130        struct preftrees preftrees = {
1131                .direct = PREFTREE_INIT,
1132                .indirect = PREFTREE_INIT,
1133                .indirect_missing_keys = PREFTREE_INIT
1134        };
1135
1136        key.objectid = bytenr;
1137        key.offset = (u64)-1;
1138        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1139                key.type = BTRFS_METADATA_ITEM_KEY;
1140        else
1141                key.type = BTRFS_EXTENT_ITEM_KEY;
1142
1143        path = btrfs_alloc_path();
1144        if (!path)
1145                return -ENOMEM;
1146        if (!trans) {
1147                path->search_commit_root = 1;
1148                path->skip_locking = 1;
1149        }
1150
1151        if (time_seq == SEQ_LAST)
1152                path->skip_locking = 1;
1153
1154        /*
1155         * grab both a lock on the path and a lock on the delayed ref head.
1156         * We need both to get a consistent picture of how the refs look
1157         * at a specified point in time
1158         */
1159again:
1160        head = NULL;
1161
1162        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1163        if (ret < 0)
1164                goto out;
1165        BUG_ON(ret == 0);
1166
1167#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168        if (trans && likely(trans->type != __TRANS_DUMMY) &&
1169            time_seq != SEQ_LAST) {
1170#else
1171        if (trans && time_seq != SEQ_LAST) {
1172#endif
1173                /*
1174                 * look if there are updates for this ref queued and lock the
1175                 * head
1176                 */
1177                delayed_refs = &trans->transaction->delayed_refs;
1178                spin_lock(&delayed_refs->lock);
1179                head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1180                if (head) {
1181                        if (!mutex_trylock(&head->mutex)) {
1182                                refcount_inc(&head->refs);
1183                                spin_unlock(&delayed_refs->lock);
1184
1185                                btrfs_release_path(path);
1186
1187                                /*
1188                                 * Mutex was contended, block until it's
1189                                 * released and try again
1190                                 */
1191                                mutex_lock(&head->mutex);
1192                                mutex_unlock(&head->mutex);
1193                                btrfs_put_delayed_ref_head(head);
1194                                goto again;
1195                        }
1196                        spin_unlock(&delayed_refs->lock);
1197                        ret = add_delayed_refs(fs_info, head, time_seq,
1198                                               &preftrees, &total_refs, sc);
1199                        mutex_unlock(&head->mutex);
1200                        if (ret)
1201                                goto out;
1202                } else {
1203                        spin_unlock(&delayed_refs->lock);
1204                }
1205        }
1206
1207        if (path->slots[0]) {
1208                struct extent_buffer *leaf;
1209                int slot;
1210
1211                path->slots[0]--;
1212                leaf = path->nodes[0];
1213                slot = path->slots[0];
1214                btrfs_item_key_to_cpu(leaf, &key, slot);
1215                if (key.objectid == bytenr &&
1216                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1217                     key.type == BTRFS_METADATA_ITEM_KEY)) {
1218                        ret = add_inline_refs(fs_info, path, bytenr,
1219                                              &info_level, &preftrees,
1220                                              &total_refs, sc);
1221                        if (ret)
1222                                goto out;
1223                        ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1224                                             &preftrees, sc);
1225                        if (ret)
1226                                goto out;
1227                }
1228        }
1229
1230        btrfs_release_path(path);
1231
1232        ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1233        if (ret)
1234                goto out;
1235
1236        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1237
1238        ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1239                                    extent_item_pos, total_refs, sc, ignore_offset);
1240        if (ret)
1241                goto out;
1242
1243        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1244
1245        /*
1246         * This walks the tree of merged and resolved refs. Tree blocks are
1247         * read in as needed. Unique entries are added to the ulist, and
1248         * the list of found roots is updated.
1249         *
1250         * We release the entire tree in one go before returning.
1251         */
1252        node = rb_first_cached(&preftrees.direct.root);
1253        while (node) {
1254                ref = rb_entry(node, struct prelim_ref, rbnode);
1255                node = rb_next(&ref->rbnode);
1256                /*
1257                 * ref->count < 0 can happen here if there are delayed
1258                 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1259                 * prelim_ref_insert() relies on this when merging
1260                 * identical refs to keep the overall count correct.
1261                 * prelim_ref_insert() will merge only those refs
1262                 * which compare identically.  Any refs having
1263                 * e.g. different offsets would not be merged,
1264                 * and would retain their original ref->count < 0.
1265                 */
1266                if (roots && ref->count && ref->root_id && ref->parent == 0) {
1267                        if (sc && sc->root_objectid &&
1268                            ref->root_id != sc->root_objectid) {
1269                                ret = BACKREF_FOUND_SHARED;
1270                                goto out;
1271                        }
1272
1273                        /* no parent == root of tree */
1274                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1275                        if (ret < 0)
1276                                goto out;
1277                }
1278                if (ref->count && ref->parent) {
1279                        if (extent_item_pos && !ref->inode_list &&
1280                            ref->level == 0) {
1281                                struct extent_buffer *eb;
1282
1283                                eb = read_tree_block(fs_info, ref->parent, 0,
1284                                                     ref->level, NULL);
1285                                if (IS_ERR(eb)) {
1286                                        ret = PTR_ERR(eb);
1287                                        goto out;
1288                                } else if (!extent_buffer_uptodate(eb)) {
1289                                        free_extent_buffer(eb);
1290                                        ret = -EIO;
1291                                        goto out;
1292                                }
1293
1294                                if (!path->skip_locking) {
1295                                        btrfs_tree_read_lock(eb);
1296                                        btrfs_set_lock_blocking_read(eb);
1297                                }
1298                                ret = find_extent_in_eb(eb, bytenr,
1299                                                        *extent_item_pos, &eie, ignore_offset);
1300                                if (!path->skip_locking)
1301                                        btrfs_tree_read_unlock_blocking(eb);
1302                                free_extent_buffer(eb);
1303                                if (ret < 0)
1304                                        goto out;
1305                                ref->inode_list = eie;
1306                        }
1307                        ret = ulist_add_merge_ptr(refs, ref->parent,
1308                                                  ref->inode_list,
1309                                                  (void **)&eie, GFP_NOFS);
1310                        if (ret < 0)
1311                                goto out;
1312                        if (!ret && extent_item_pos) {
1313                                /*
1314                                 * we've recorded that parent, so we must extend
1315                                 * its inode list here
1316                                 */
1317                                BUG_ON(!eie);
1318                                while (eie->next)
1319                                        eie = eie->next;
1320                                eie->next = ref->inode_list;
1321                        }
1322                        eie = NULL;
1323                }
1324                cond_resched();
1325        }
1326
1327out:
1328        btrfs_free_path(path);
1329
1330        prelim_release(&preftrees.direct);
1331        prelim_release(&preftrees.indirect);
1332        prelim_release(&preftrees.indirect_missing_keys);
1333
1334        if (ret < 0)
1335                free_inode_elem_list(eie);
1336        return ret;
1337}
1338
1339static void free_leaf_list(struct ulist *blocks)
1340{
1341        struct ulist_node *node = NULL;
1342        struct extent_inode_elem *eie;
1343        struct ulist_iterator uiter;
1344
1345        ULIST_ITER_INIT(&uiter);
1346        while ((node = ulist_next(blocks, &uiter))) {
1347                if (!node->aux)
1348                        continue;
1349                eie = unode_aux_to_inode_list(node);
1350                free_inode_elem_list(eie);
1351                node->aux = 0;
1352        }
1353
1354        ulist_free(blocks);
1355}
1356
1357/*
1358 * Finds all leafs with a reference to the specified combination of bytenr and
1359 * offset. key_list_head will point to a list of corresponding keys (caller must
1360 * free each list element). The leafs will be stored in the leafs ulist, which
1361 * must be freed with ulist_free.
1362 *
1363 * returns 0 on success, <0 on error
1364 */
1365static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1366                                struct btrfs_fs_info *fs_info, u64 bytenr,
1367                                u64 time_seq, struct ulist **leafs,
1368                                const u64 *extent_item_pos, bool ignore_offset)
1369{
1370        int ret;
1371
1372        *leafs = ulist_alloc(GFP_NOFS);
1373        if (!*leafs)
1374                return -ENOMEM;
1375
1376        ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1377                                *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1378        if (ret < 0 && ret != -ENOENT) {
1379                free_leaf_list(*leafs);
1380                return ret;
1381        }
1382
1383        return 0;
1384}
1385
1386/*
1387 * walk all backrefs for a given extent to find all roots that reference this
1388 * extent. Walking a backref means finding all extents that reference this
1389 * extent and in turn walk the backrefs of those, too. Naturally this is a
1390 * recursive process, but here it is implemented in an iterative fashion: We
1391 * find all referencing extents for the extent in question and put them on a
1392 * list. In turn, we find all referencing extents for those, further appending
1393 * to the list. The way we iterate the list allows adding more elements after
1394 * the current while iterating. The process stops when we reach the end of the
1395 * list. Found roots are added to the roots list.
1396 *
1397 * returns 0 on success, < 0 on error.
1398 */
1399static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1400                                     struct btrfs_fs_info *fs_info, u64 bytenr,
1401                                     u64 time_seq, struct ulist **roots,
1402                                     bool ignore_offset)
1403{
1404        struct ulist *tmp;
1405        struct ulist_node *node = NULL;
1406        struct ulist_iterator uiter;
1407        int ret;
1408
1409        tmp = ulist_alloc(GFP_NOFS);
1410        if (!tmp)
1411                return -ENOMEM;
1412        *roots = ulist_alloc(GFP_NOFS);
1413        if (!*roots) {
1414                ulist_free(tmp);
1415                return -ENOMEM;
1416        }
1417
1418        ULIST_ITER_INIT(&uiter);
1419        while (1) {
1420                ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1421                                        tmp, *roots, NULL, NULL, ignore_offset);
1422                if (ret < 0 && ret != -ENOENT) {
1423                        ulist_free(tmp);
1424                        ulist_free(*roots);
1425                        return ret;
1426                }
1427                node = ulist_next(tmp, &uiter);
1428                if (!node)
1429                        break;
1430                bytenr = node->val;
1431                cond_resched();
1432        }
1433
1434        ulist_free(tmp);
1435        return 0;
1436}
1437
1438int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1439                         struct btrfs_fs_info *fs_info, u64 bytenr,
1440                         u64 time_seq, struct ulist **roots,
1441                         bool ignore_offset)
1442{
1443        int ret;
1444
1445        if (!trans)
1446                down_read(&fs_info->commit_root_sem);
1447        ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1448                                        time_seq, roots, ignore_offset);
1449        if (!trans)
1450                up_read(&fs_info->commit_root_sem);
1451        return ret;
1452}
1453
1454/**
1455 * btrfs_check_shared - tell us whether an extent is shared
1456 *
1457 * btrfs_check_shared uses the backref walking code but will short
1458 * circuit as soon as it finds a root or inode that doesn't match the
1459 * one passed in. This provides a significant performance benefit for
1460 * callers (such as fiemap) which want to know whether the extent is
1461 * shared but do not need a ref count.
1462 *
1463 * This attempts to attach to the running transaction in order to account for
1464 * delayed refs, but continues on even when no running transaction exists.
1465 *
1466 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1467 */
1468int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1469                struct ulist *roots, struct ulist *tmp)
1470{
1471        struct btrfs_fs_info *fs_info = root->fs_info;
1472        struct btrfs_trans_handle *trans;
1473        struct ulist_iterator uiter;
1474        struct ulist_node *node;
1475        struct seq_list elem = SEQ_LIST_INIT(elem);
1476        int ret = 0;
1477        struct share_check shared = {
1478                .root_objectid = root->root_key.objectid,
1479                .inum = inum,
1480                .share_count = 0,
1481        };
1482
1483        ulist_init(roots);
1484        ulist_init(tmp);
1485
1486        trans = btrfs_join_transaction_nostart(root);
1487        if (IS_ERR(trans)) {
1488                if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1489                        ret = PTR_ERR(trans);
1490                        goto out;
1491                }
1492                trans = NULL;
1493                down_read(&fs_info->commit_root_sem);
1494        } else {
1495                btrfs_get_tree_mod_seq(fs_info, &elem);
1496        }
1497
1498        ULIST_ITER_INIT(&uiter);
1499        while (1) {
1500                ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1501                                        roots, NULL, &shared, false);
1502                if (ret == BACKREF_FOUND_SHARED) {
1503                        /* this is the only condition under which we return 1 */
1504                        ret = 1;
1505                        break;
1506                }
1507                if (ret < 0 && ret != -ENOENT)
1508                        break;
1509                ret = 0;
1510                node = ulist_next(tmp, &uiter);
1511                if (!node)
1512                        break;
1513                bytenr = node->val;
1514                shared.share_count = 0;
1515                cond_resched();
1516        }
1517
1518        if (trans) {
1519                btrfs_put_tree_mod_seq(fs_info, &elem);
1520                btrfs_end_transaction(trans);
1521        } else {
1522                up_read(&fs_info->commit_root_sem);
1523        }
1524out:
1525        ulist_release(roots);
1526        ulist_release(tmp);
1527        return ret;
1528}
1529
1530int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1531                          u64 start_off, struct btrfs_path *path,
1532                          struct btrfs_inode_extref **ret_extref,
1533                          u64 *found_off)
1534{
1535        int ret, slot;
1536        struct btrfs_key key;
1537        struct btrfs_key found_key;
1538        struct btrfs_inode_extref *extref;
1539        const struct extent_buffer *leaf;
1540        unsigned long ptr;
1541
1542        key.objectid = inode_objectid;
1543        key.type = BTRFS_INODE_EXTREF_KEY;
1544        key.offset = start_off;
1545
1546        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547        if (ret < 0)
1548                return ret;
1549
1550        while (1) {
1551                leaf = path->nodes[0];
1552                slot = path->slots[0];
1553                if (slot >= btrfs_header_nritems(leaf)) {
1554                        /*
1555                         * If the item at offset is not found,
1556                         * btrfs_search_slot will point us to the slot
1557                         * where it should be inserted. In our case
1558                         * that will be the slot directly before the
1559                         * next INODE_REF_KEY_V2 item. In the case
1560                         * that we're pointing to the last slot in a
1561                         * leaf, we must move one leaf over.
1562                         */
1563                        ret = btrfs_next_leaf(root, path);
1564                        if (ret) {
1565                                if (ret >= 1)
1566                                        ret = -ENOENT;
1567                                break;
1568                        }
1569                        continue;
1570                }
1571
1572                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1573
1574                /*
1575                 * Check that we're still looking at an extended ref key for
1576                 * this particular objectid. If we have different
1577                 * objectid or type then there are no more to be found
1578                 * in the tree and we can exit.
1579                 */
1580                ret = -ENOENT;
1581                if (found_key.objectid != inode_objectid)
1582                        break;
1583                if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1584                        break;
1585
1586                ret = 0;
1587                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1588                extref = (struct btrfs_inode_extref *)ptr;
1589                *ret_extref = extref;
1590                if (found_off)
1591                        *found_off = found_key.offset;
1592                break;
1593        }
1594
1595        return ret;
1596}
1597
1598/*
1599 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1600 * Elements of the path are separated by '/' and the path is guaranteed to be
1601 * 0-terminated. the path is only given within the current file system.
1602 * Therefore, it never starts with a '/'. the caller is responsible to provide
1603 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1604 * the start point of the resulting string is returned. this pointer is within
1605 * dest, normally.
1606 * in case the path buffer would overflow, the pointer is decremented further
1607 * as if output was written to the buffer, though no more output is actually
1608 * generated. that way, the caller can determine how much space would be
1609 * required for the path to fit into the buffer. in that case, the returned
1610 * value will be smaller than dest. callers must check this!
1611 */
1612char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1613                        u32 name_len, unsigned long name_off,
1614                        struct extent_buffer *eb_in, u64 parent,
1615                        char *dest, u32 size)
1616{
1617        int slot;
1618        u64 next_inum;
1619        int ret;
1620        s64 bytes_left = ((s64)size) - 1;
1621        struct extent_buffer *eb = eb_in;
1622        struct btrfs_key found_key;
1623        int leave_spinning = path->leave_spinning;
1624        struct btrfs_inode_ref *iref;
1625
1626        if (bytes_left >= 0)
1627                dest[bytes_left] = '\0';
1628
1629        path->leave_spinning = 1;
1630        while (1) {
1631                bytes_left -= name_len;
1632                if (bytes_left >= 0)
1633                        read_extent_buffer(eb, dest + bytes_left,
1634                                           name_off, name_len);
1635                if (eb != eb_in) {
1636                        if (!path->skip_locking)
1637                                btrfs_tree_read_unlock_blocking(eb);
1638                        free_extent_buffer(eb);
1639                }
1640                ret = btrfs_find_item(fs_root, path, parent, 0,
1641                                BTRFS_INODE_REF_KEY, &found_key);
1642                if (ret > 0)
1643                        ret = -ENOENT;
1644                if (ret)
1645                        break;
1646
1647                next_inum = found_key.offset;
1648
1649                /* regular exit ahead */
1650                if (parent == next_inum)
1651                        break;
1652
1653                slot = path->slots[0];
1654                eb = path->nodes[0];
1655                /* make sure we can use eb after releasing the path */
1656                if (eb != eb_in) {
1657                        if (!path->skip_locking)
1658                                btrfs_set_lock_blocking_read(eb);
1659                        path->nodes[0] = NULL;
1660                        path->locks[0] = 0;
1661                }
1662                btrfs_release_path(path);
1663                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1664
1665                name_len = btrfs_inode_ref_name_len(eb, iref);
1666                name_off = (unsigned long)(iref + 1);
1667
1668                parent = next_inum;
1669                --bytes_left;
1670                if (bytes_left >= 0)
1671                        dest[bytes_left] = '/';
1672        }
1673
1674        btrfs_release_path(path);
1675        path->leave_spinning = leave_spinning;
1676
1677        if (ret)
1678                return ERR_PTR(ret);
1679
1680        return dest + bytes_left;
1681}
1682
1683/*
1684 * this makes the path point to (logical EXTENT_ITEM *)
1685 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1686 * tree blocks and <0 on error.
1687 */
1688int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1689                        struct btrfs_path *path, struct btrfs_key *found_key,
1690                        u64 *flags_ret)
1691{
1692        int ret;
1693        u64 flags;
1694        u64 size = 0;
1695        u32 item_size;
1696        const struct extent_buffer *eb;
1697        struct btrfs_extent_item *ei;
1698        struct btrfs_key key;
1699
1700        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1701                key.type = BTRFS_METADATA_ITEM_KEY;
1702        else
1703                key.type = BTRFS_EXTENT_ITEM_KEY;
1704        key.objectid = logical;
1705        key.offset = (u64)-1;
1706
1707        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1708        if (ret < 0)
1709                return ret;
1710
1711        ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1712        if (ret) {
1713                if (ret > 0)
1714                        ret = -ENOENT;
1715                return ret;
1716        }
1717        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1718        if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1719                size = fs_info->nodesize;
1720        else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1721                size = found_key->offset;
1722
1723        if (found_key->objectid > logical ||
1724            found_key->objectid + size <= logical) {
1725                btrfs_debug(fs_info,
1726                        "logical %llu is not within any extent", logical);
1727                return -ENOENT;
1728        }
1729
1730        eb = path->nodes[0];
1731        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1732        BUG_ON(item_size < sizeof(*ei));
1733
1734        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1735        flags = btrfs_extent_flags(eb, ei);
1736
1737        btrfs_debug(fs_info,
1738                "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1739                 logical, logical - found_key->objectid, found_key->objectid,
1740                 found_key->offset, flags, item_size);
1741
1742        WARN_ON(!flags_ret);
1743        if (flags_ret) {
1744                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1745                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1746                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1747                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1748                else
1749                        BUG();
1750                return 0;
1751        }
1752
1753        return -EIO;
1754}
1755
1756/*
1757 * helper function to iterate extent inline refs. ptr must point to a 0 value
1758 * for the first call and may be modified. it is used to track state.
1759 * if more refs exist, 0 is returned and the next call to
1760 * get_extent_inline_ref must pass the modified ptr parameter to get the
1761 * next ref. after the last ref was processed, 1 is returned.
1762 * returns <0 on error
1763 */
1764static int get_extent_inline_ref(unsigned long *ptr,
1765                                 const struct extent_buffer *eb,
1766                                 const struct btrfs_key *key,
1767                                 const struct btrfs_extent_item *ei,
1768                                 u32 item_size,
1769                                 struct btrfs_extent_inline_ref **out_eiref,
1770                                 int *out_type)
1771{
1772        unsigned long end;
1773        u64 flags;
1774        struct btrfs_tree_block_info *info;
1775
1776        if (!*ptr) {
1777                /* first call */
1778                flags = btrfs_extent_flags(eb, ei);
1779                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1780                        if (key->type == BTRFS_METADATA_ITEM_KEY) {
1781                                /* a skinny metadata extent */
1782                                *out_eiref =
1783                                     (struct btrfs_extent_inline_ref *)(ei + 1);
1784                        } else {
1785                                WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1786                                info = (struct btrfs_tree_block_info *)(ei + 1);
1787                                *out_eiref =
1788                                   (struct btrfs_extent_inline_ref *)(info + 1);
1789                        }
1790                } else {
1791                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1792                }
1793                *ptr = (unsigned long)*out_eiref;
1794                if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1795                        return -ENOENT;
1796        }
1797
1798        end = (unsigned long)ei + item_size;
1799        *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1800        *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1801                                                     BTRFS_REF_TYPE_ANY);
1802        if (*out_type == BTRFS_REF_TYPE_INVALID)
1803                return -EUCLEAN;
1804
1805        *ptr += btrfs_extent_inline_ref_size(*out_type);
1806        WARN_ON(*ptr > end);
1807        if (*ptr == end)
1808                return 1; /* last */
1809
1810        return 0;
1811}
1812
1813/*
1814 * reads the tree block backref for an extent. tree level and root are returned
1815 * through out_level and out_root. ptr must point to a 0 value for the first
1816 * call and may be modified (see get_extent_inline_ref comment).
1817 * returns 0 if data was provided, 1 if there was no more data to provide or
1818 * <0 on error.
1819 */
1820int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1821                            struct btrfs_key *key, struct btrfs_extent_item *ei,
1822                            u32 item_size, u64 *out_root, u8 *out_level)
1823{
1824        int ret;
1825        int type;
1826        struct btrfs_extent_inline_ref *eiref;
1827
1828        if (*ptr == (unsigned long)-1)
1829                return 1;
1830
1831        while (1) {
1832                ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1833                                              &eiref, &type);
1834                if (ret < 0)
1835                        return ret;
1836
1837                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1838                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1839                        break;
1840
1841                if (ret == 1)
1842                        return 1;
1843        }
1844
1845        /* we can treat both ref types equally here */
1846        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1847
1848        if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1849                struct btrfs_tree_block_info *info;
1850
1851                info = (struct btrfs_tree_block_info *)(ei + 1);
1852                *out_level = btrfs_tree_block_level(eb, info);
1853        } else {
1854                ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1855                *out_level = (u8)key->offset;
1856        }
1857
1858        if (ret == 1)
1859                *ptr = (unsigned long)-1;
1860
1861        return 0;
1862}
1863
1864static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1865                             struct extent_inode_elem *inode_list,
1866                             u64 root, u64 extent_item_objectid,
1867                             iterate_extent_inodes_t *iterate, void *ctx)
1868{
1869        struct extent_inode_elem *eie;
1870        int ret = 0;
1871
1872        for (eie = inode_list; eie; eie = eie->next) {
1873                btrfs_debug(fs_info,
1874                            "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1875                            extent_item_objectid, eie->inum,
1876                            eie->offset, root);
1877                ret = iterate(eie->inum, eie->offset, root, ctx);
1878                if (ret) {
1879                        btrfs_debug(fs_info,
1880                                    "stopping iteration for %llu due to ret=%d",
1881                                    extent_item_objectid, ret);
1882                        break;
1883                }
1884        }
1885
1886        return ret;
1887}
1888
1889/*
1890 * calls iterate() for every inode that references the extent identified by
1891 * the given parameters.
1892 * when the iterator function returns a non-zero value, iteration stops.
1893 */
1894int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1895                                u64 extent_item_objectid, u64 extent_item_pos,
1896                                int search_commit_root,
1897                                iterate_extent_inodes_t *iterate, void *ctx,
1898                                bool ignore_offset)
1899{
1900        int ret;
1901        struct btrfs_trans_handle *trans = NULL;
1902        struct ulist *refs = NULL;
1903        struct ulist *roots = NULL;
1904        struct ulist_node *ref_node = NULL;
1905        struct ulist_node *root_node = NULL;
1906        struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1907        struct ulist_iterator ref_uiter;
1908        struct ulist_iterator root_uiter;
1909
1910        btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1911                        extent_item_objectid);
1912
1913        if (!search_commit_root) {
1914                trans = btrfs_attach_transaction(fs_info->extent_root);
1915                if (IS_ERR(trans)) {
1916                        if (PTR_ERR(trans) != -ENOENT &&
1917                            PTR_ERR(trans) != -EROFS)
1918                                return PTR_ERR(trans);
1919                        trans = NULL;
1920                }
1921        }
1922
1923        if (trans)
1924                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1925        else
1926                down_read(&fs_info->commit_root_sem);
1927
1928        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1929                                   tree_mod_seq_elem.seq, &refs,
1930                                   &extent_item_pos, ignore_offset);
1931        if (ret)
1932                goto out;
1933
1934        ULIST_ITER_INIT(&ref_uiter);
1935        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1936                ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1937                                                tree_mod_seq_elem.seq, &roots,
1938                                                ignore_offset);
1939                if (ret)
1940                        break;
1941                ULIST_ITER_INIT(&root_uiter);
1942                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1943                        btrfs_debug(fs_info,
1944                                    "root %llu references leaf %llu, data list %#llx",
1945                                    root_node->val, ref_node->val,
1946                                    ref_node->aux);
1947                        ret = iterate_leaf_refs(fs_info,
1948                                                (struct extent_inode_elem *)
1949                                                (uintptr_t)ref_node->aux,
1950                                                root_node->val,
1951                                                extent_item_objectid,
1952                                                iterate, ctx);
1953                }
1954                ulist_free(roots);
1955        }
1956
1957        free_leaf_list(refs);
1958out:
1959        if (trans) {
1960                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1961                btrfs_end_transaction(trans);
1962        } else {
1963                up_read(&fs_info->commit_root_sem);
1964        }
1965
1966        return ret;
1967}
1968
1969int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1970                                struct btrfs_path *path,
1971                                iterate_extent_inodes_t *iterate, void *ctx,
1972                                bool ignore_offset)
1973{
1974        int ret;
1975        u64 extent_item_pos;
1976        u64 flags = 0;
1977        struct btrfs_key found_key;
1978        int search_commit_root = path->search_commit_root;
1979
1980        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1981        btrfs_release_path(path);
1982        if (ret < 0)
1983                return ret;
1984        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985                return -EINVAL;
1986
1987        extent_item_pos = logical - found_key.objectid;
1988        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1989                                        extent_item_pos, search_commit_root,
1990                                        iterate, ctx, ignore_offset);
1991
1992        return ret;
1993}
1994
1995typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1996                              struct extent_buffer *eb, void *ctx);
1997
1998static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1999                              struct btrfs_path *path,
2000                              iterate_irefs_t *iterate, void *ctx)
2001{
2002        int ret = 0;
2003        int slot;
2004        u32 cur;
2005        u32 len;
2006        u32 name_len;
2007        u64 parent = 0;
2008        int found = 0;
2009        struct extent_buffer *eb;
2010        struct btrfs_item *item;
2011        struct btrfs_inode_ref *iref;
2012        struct btrfs_key found_key;
2013
2014        while (!ret) {
2015                ret = btrfs_find_item(fs_root, path, inum,
2016                                parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2017                                &found_key);
2018
2019                if (ret < 0)
2020                        break;
2021                if (ret) {
2022                        ret = found ? 0 : -ENOENT;
2023                        break;
2024                }
2025                ++found;
2026
2027                parent = found_key.offset;
2028                slot = path->slots[0];
2029                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2030                if (!eb) {
2031                        ret = -ENOMEM;
2032                        break;
2033                }
2034                btrfs_release_path(path);
2035
2036                item = btrfs_item_nr(slot);
2037                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2038
2039                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2040                        name_len = btrfs_inode_ref_name_len(eb, iref);
2041                        /* path must be released before calling iterate()! */
2042                        btrfs_debug(fs_root->fs_info,
2043                                "following ref at offset %u for inode %llu in tree %llu",
2044                                cur, found_key.objectid,
2045                                fs_root->root_key.objectid);
2046                        ret = iterate(parent, name_len,
2047                                      (unsigned long)(iref + 1), eb, ctx);
2048                        if (ret)
2049                                break;
2050                        len = sizeof(*iref) + name_len;
2051                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
2052                }
2053                free_extent_buffer(eb);
2054        }
2055
2056        btrfs_release_path(path);
2057
2058        return ret;
2059}
2060
2061static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2062                                 struct btrfs_path *path,
2063                                 iterate_irefs_t *iterate, void *ctx)
2064{
2065        int ret;
2066        int slot;
2067        u64 offset = 0;
2068        u64 parent;
2069        int found = 0;
2070        struct extent_buffer *eb;
2071        struct btrfs_inode_extref *extref;
2072        u32 item_size;
2073        u32 cur_offset;
2074        unsigned long ptr;
2075
2076        while (1) {
2077                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2078                                            &offset);
2079                if (ret < 0)
2080                        break;
2081                if (ret) {
2082                        ret = found ? 0 : -ENOENT;
2083                        break;
2084                }
2085                ++found;
2086
2087                slot = path->slots[0];
2088                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2089                if (!eb) {
2090                        ret = -ENOMEM;
2091                        break;
2092                }
2093                btrfs_release_path(path);
2094
2095                item_size = btrfs_item_size_nr(eb, slot);
2096                ptr = btrfs_item_ptr_offset(eb, slot);
2097                cur_offset = 0;
2098
2099                while (cur_offset < item_size) {
2100                        u32 name_len;
2101
2102                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2103                        parent = btrfs_inode_extref_parent(eb, extref);
2104                        name_len = btrfs_inode_extref_name_len(eb, extref);
2105                        ret = iterate(parent, name_len,
2106                                      (unsigned long)&extref->name, eb, ctx);
2107                        if (ret)
2108                                break;
2109
2110                        cur_offset += btrfs_inode_extref_name_len(eb, extref);
2111                        cur_offset += sizeof(*extref);
2112                }
2113                free_extent_buffer(eb);
2114
2115                offset++;
2116        }
2117
2118        btrfs_release_path(path);
2119
2120        return ret;
2121}
2122
2123static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2124                         struct btrfs_path *path, iterate_irefs_t *iterate,
2125                         void *ctx)
2126{
2127        int ret;
2128        int found_refs = 0;
2129
2130        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2131        if (!ret)
2132                ++found_refs;
2133        else if (ret != -ENOENT)
2134                return ret;
2135
2136        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2137        if (ret == -ENOENT && found_refs)
2138                return 0;
2139
2140        return ret;
2141}
2142
2143/*
2144 * returns 0 if the path could be dumped (probably truncated)
2145 * returns <0 in case of an error
2146 */
2147static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2148                         struct extent_buffer *eb, void *ctx)
2149{
2150        struct inode_fs_paths *ipath = ctx;
2151        char *fspath;
2152        char *fspath_min;
2153        int i = ipath->fspath->elem_cnt;
2154        const int s_ptr = sizeof(char *);
2155        u32 bytes_left;
2156
2157        bytes_left = ipath->fspath->bytes_left > s_ptr ?
2158                                        ipath->fspath->bytes_left - s_ptr : 0;
2159
2160        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2161        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2162                                   name_off, eb, inum, fspath_min, bytes_left);
2163        if (IS_ERR(fspath))
2164                return PTR_ERR(fspath);
2165
2166        if (fspath > fspath_min) {
2167                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2168                ++ipath->fspath->elem_cnt;
2169                ipath->fspath->bytes_left = fspath - fspath_min;
2170        } else {
2171                ++ipath->fspath->elem_missed;
2172                ipath->fspath->bytes_missing += fspath_min - fspath;
2173                ipath->fspath->bytes_left = 0;
2174        }
2175
2176        return 0;
2177}
2178
2179/*
2180 * this dumps all file system paths to the inode into the ipath struct, provided
2181 * is has been created large enough. each path is zero-terminated and accessed
2182 * from ipath->fspath->val[i].
2183 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2184 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2185 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2186 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2187 * have been needed to return all paths.
2188 */
2189int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2190{
2191        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2192                             inode_to_path, ipath);
2193}
2194
2195struct btrfs_data_container *init_data_container(u32 total_bytes)
2196{
2197        struct btrfs_data_container *data;
2198        size_t alloc_bytes;
2199
2200        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2201        data = kvmalloc(alloc_bytes, GFP_KERNEL);
2202        if (!data)
2203                return ERR_PTR(-ENOMEM);
2204
2205        if (total_bytes >= sizeof(*data)) {
2206                data->bytes_left = total_bytes - sizeof(*data);
2207                data->bytes_missing = 0;
2208        } else {
2209                data->bytes_missing = sizeof(*data) - total_bytes;
2210                data->bytes_left = 0;
2211        }
2212
2213        data->elem_cnt = 0;
2214        data->elem_missed = 0;
2215
2216        return data;
2217}
2218
2219/*
2220 * allocates space to return multiple file system paths for an inode.
2221 * total_bytes to allocate are passed, note that space usable for actual path
2222 * information will be total_bytes - sizeof(struct inode_fs_paths).
2223 * the returned pointer must be freed with free_ipath() in the end.
2224 */
2225struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2226                                        struct btrfs_path *path)
2227{
2228        struct inode_fs_paths *ifp;
2229        struct btrfs_data_container *fspath;
2230
2231        fspath = init_data_container(total_bytes);
2232        if (IS_ERR(fspath))
2233                return ERR_CAST(fspath);
2234
2235        ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2236        if (!ifp) {
2237                kvfree(fspath);
2238                return ERR_PTR(-ENOMEM);
2239        }
2240
2241        ifp->btrfs_path = path;
2242        ifp->fspath = fspath;
2243        ifp->fs_root = fs_root;
2244
2245        return ifp;
2246}
2247
2248void free_ipath(struct inode_fs_paths *ipath)
2249{
2250        if (!ipath)
2251                return;
2252        kvfree(ipath->fspath);
2253        kfree(ipath);
2254}
2255