linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19                      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22                      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24                          struct extent_buffer *dst,
  25                          struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27                              struct extent_buffer *dst_buf,
  28                              struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30                    int level, int slot);
  31
  32struct btrfs_path *btrfs_alloc_path(void)
  33{
  34        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  35}
  36
  37/*
  38 * set all locked nodes in the path to blocking locks.  This should
  39 * be done before scheduling
  40 */
  41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  42{
  43        int i;
  44        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  45                if (!p->nodes[i] || !p->locks[i])
  46                        continue;
  47                /*
  48                 * If we currently have a spinning reader or writer lock this
  49                 * will bump the count of blocking holders and drop the
  50                 * spinlock.
  51                 */
  52                if (p->locks[i] == BTRFS_READ_LOCK) {
  53                        btrfs_set_lock_blocking_read(p->nodes[i]);
  54                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  55                } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
  56                        btrfs_set_lock_blocking_write(p->nodes[i]);
  57                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  58                }
  59        }
  60}
  61
  62/* this also releases the path */
  63void btrfs_free_path(struct btrfs_path *p)
  64{
  65        if (!p)
  66                return;
  67        btrfs_release_path(p);
  68        kmem_cache_free(btrfs_path_cachep, p);
  69}
  70
  71/*
  72 * path release drops references on the extent buffers in the path
  73 * and it drops any locks held by this path
  74 *
  75 * It is safe to call this on paths that no locks or extent buffers held.
  76 */
  77noinline void btrfs_release_path(struct btrfs_path *p)
  78{
  79        int i;
  80
  81        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  82                p->slots[i] = 0;
  83                if (!p->nodes[i])
  84                        continue;
  85                if (p->locks[i]) {
  86                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  87                        p->locks[i] = 0;
  88                }
  89                free_extent_buffer(p->nodes[i]);
  90                p->nodes[i] = NULL;
  91        }
  92}
  93
  94/*
  95 * safely gets a reference on the root node of a tree.  A lock
  96 * is not taken, so a concurrent writer may put a different node
  97 * at the root of the tree.  See btrfs_lock_root_node for the
  98 * looping required.
  99 *
 100 * The extent buffer returned by this has a reference taken, so
 101 * it won't disappear.  It may stop being the root of the tree
 102 * at any time because there are no locks held.
 103 */
 104struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 105{
 106        struct extent_buffer *eb;
 107
 108        while (1) {
 109                rcu_read_lock();
 110                eb = rcu_dereference(root->node);
 111
 112                /*
 113                 * RCU really hurts here, we could free up the root node because
 114                 * it was COWed but we may not get the new root node yet so do
 115                 * the inc_not_zero dance and if it doesn't work then
 116                 * synchronize_rcu and try again.
 117                 */
 118                if (atomic_inc_not_zero(&eb->refs)) {
 119                        rcu_read_unlock();
 120                        break;
 121                }
 122                rcu_read_unlock();
 123                synchronize_rcu();
 124        }
 125        return eb;
 126}
 127
 128/* loop around taking references on and locking the root node of the
 129 * tree until you end up with a lock on the root.  A locked buffer
 130 * is returned, with a reference held.
 131 */
 132struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 133{
 134        struct extent_buffer *eb;
 135
 136        while (1) {
 137                eb = btrfs_root_node(root);
 138                btrfs_tree_lock(eb);
 139                if (eb == root->node)
 140                        break;
 141                btrfs_tree_unlock(eb);
 142                free_extent_buffer(eb);
 143        }
 144        return eb;
 145}
 146
 147/* loop around taking references on and locking the root node of the
 148 * tree until you end up with a lock on the root.  A locked buffer
 149 * is returned, with a reference held.
 150 */
 151struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 152{
 153        struct extent_buffer *eb;
 154
 155        while (1) {
 156                eb = btrfs_root_node(root);
 157                btrfs_tree_read_lock(eb);
 158                if (eb == root->node)
 159                        break;
 160                btrfs_tree_read_unlock(eb);
 161                free_extent_buffer(eb);
 162        }
 163        return eb;
 164}
 165
 166/* cowonly root (everything not a reference counted cow subvolume), just get
 167 * put onto a simple dirty list.  transaction.c walks this to make sure they
 168 * get properly updated on disk.
 169 */
 170static void add_root_to_dirty_list(struct btrfs_root *root)
 171{
 172        struct btrfs_fs_info *fs_info = root->fs_info;
 173
 174        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 175            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 176                return;
 177
 178        spin_lock(&fs_info->trans_lock);
 179        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 180                /* Want the extent tree to be the last on the list */
 181                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 182                        list_move_tail(&root->dirty_list,
 183                                       &fs_info->dirty_cowonly_roots);
 184                else
 185                        list_move(&root->dirty_list,
 186                                  &fs_info->dirty_cowonly_roots);
 187        }
 188        spin_unlock(&fs_info->trans_lock);
 189}
 190
 191/*
 192 * used by snapshot creation to make a copy of a root for a tree with
 193 * a given objectid.  The buffer with the new root node is returned in
 194 * cow_ret, and this func returns zero on success or a negative error code.
 195 */
 196int btrfs_copy_root(struct btrfs_trans_handle *trans,
 197                      struct btrfs_root *root,
 198                      struct extent_buffer *buf,
 199                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 200{
 201        struct btrfs_fs_info *fs_info = root->fs_info;
 202        struct extent_buffer *cow;
 203        int ret = 0;
 204        int level;
 205        struct btrfs_disk_key disk_key;
 206
 207        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 208                trans->transid != fs_info->running_transaction->transid);
 209        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 210                trans->transid != root->last_trans);
 211
 212        level = btrfs_header_level(buf);
 213        if (level == 0)
 214                btrfs_item_key(buf, &disk_key, 0);
 215        else
 216                btrfs_node_key(buf, &disk_key, 0);
 217
 218        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 219                        &disk_key, level, buf->start, 0);
 220        if (IS_ERR(cow))
 221                return PTR_ERR(cow);
 222
 223        copy_extent_buffer_full(cow, buf);
 224        btrfs_set_header_bytenr(cow, cow->start);
 225        btrfs_set_header_generation(cow, trans->transid);
 226        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 227        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 228                                     BTRFS_HEADER_FLAG_RELOC);
 229        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 230                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 231        else
 232                btrfs_set_header_owner(cow, new_root_objectid);
 233
 234        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 235
 236        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 237        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 238                ret = btrfs_inc_ref(trans, root, cow, 1);
 239        else
 240                ret = btrfs_inc_ref(trans, root, cow, 0);
 241
 242        if (ret)
 243                return ret;
 244
 245        btrfs_mark_buffer_dirty(cow);
 246        *cow_ret = cow;
 247        return 0;
 248}
 249
 250enum mod_log_op {
 251        MOD_LOG_KEY_REPLACE,
 252        MOD_LOG_KEY_ADD,
 253        MOD_LOG_KEY_REMOVE,
 254        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 255        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 256        MOD_LOG_MOVE_KEYS,
 257        MOD_LOG_ROOT_REPLACE,
 258};
 259
 260struct tree_mod_root {
 261        u64 logical;
 262        u8 level;
 263};
 264
 265struct tree_mod_elem {
 266        struct rb_node node;
 267        u64 logical;
 268        u64 seq;
 269        enum mod_log_op op;
 270
 271        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 272        int slot;
 273
 274        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 275        u64 generation;
 276
 277        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 278        struct btrfs_disk_key key;
 279        u64 blockptr;
 280
 281        /* this is used for op == MOD_LOG_MOVE_KEYS */
 282        struct {
 283                int dst_slot;
 284                int nr_items;
 285        } move;
 286
 287        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 288        struct tree_mod_root old_root;
 289};
 290
 291/*
 292 * Pull a new tree mod seq number for our operation.
 293 */
 294static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 295{
 296        return atomic64_inc_return(&fs_info->tree_mod_seq);
 297}
 298
 299/*
 300 * This adds a new blocker to the tree mod log's blocker list if the @elem
 301 * passed does not already have a sequence number set. So when a caller expects
 302 * to record tree modifications, it should ensure to set elem->seq to zero
 303 * before calling btrfs_get_tree_mod_seq.
 304 * Returns a fresh, unused tree log modification sequence number, even if no new
 305 * blocker was added.
 306 */
 307u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 308                           struct seq_list *elem)
 309{
 310        write_lock(&fs_info->tree_mod_log_lock);
 311        spin_lock(&fs_info->tree_mod_seq_lock);
 312        if (!elem->seq) {
 313                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 314                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 315        }
 316        spin_unlock(&fs_info->tree_mod_seq_lock);
 317        write_unlock(&fs_info->tree_mod_log_lock);
 318
 319        return elem->seq;
 320}
 321
 322void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 323                            struct seq_list *elem)
 324{
 325        struct rb_root *tm_root;
 326        struct rb_node *node;
 327        struct rb_node *next;
 328        struct seq_list *cur_elem;
 329        struct tree_mod_elem *tm;
 330        u64 min_seq = (u64)-1;
 331        u64 seq_putting = elem->seq;
 332
 333        if (!seq_putting)
 334                return;
 335
 336        spin_lock(&fs_info->tree_mod_seq_lock);
 337        list_del(&elem->list);
 338        elem->seq = 0;
 339
 340        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 341                if (cur_elem->seq < min_seq) {
 342                        if (seq_putting > cur_elem->seq) {
 343                                /*
 344                                 * blocker with lower sequence number exists, we
 345                                 * cannot remove anything from the log
 346                                 */
 347                                spin_unlock(&fs_info->tree_mod_seq_lock);
 348                                return;
 349                        }
 350                        min_seq = cur_elem->seq;
 351                }
 352        }
 353        spin_unlock(&fs_info->tree_mod_seq_lock);
 354
 355        /*
 356         * anything that's lower than the lowest existing (read: blocked)
 357         * sequence number can be removed from the tree.
 358         */
 359        write_lock(&fs_info->tree_mod_log_lock);
 360        tm_root = &fs_info->tree_mod_log;
 361        for (node = rb_first(tm_root); node; node = next) {
 362                next = rb_next(node);
 363                tm = rb_entry(node, struct tree_mod_elem, node);
 364                if (tm->seq > min_seq)
 365                        continue;
 366                rb_erase(node, tm_root);
 367                kfree(tm);
 368        }
 369        write_unlock(&fs_info->tree_mod_log_lock);
 370}
 371
 372/*
 373 * key order of the log:
 374 *       node/leaf start address -> sequence
 375 *
 376 * The 'start address' is the logical address of the *new* root node
 377 * for root replace operations, or the logical address of the affected
 378 * block for all other operations.
 379 *
 380 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
 381 */
 382static noinline int
 383__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 384{
 385        struct rb_root *tm_root;
 386        struct rb_node **new;
 387        struct rb_node *parent = NULL;
 388        struct tree_mod_elem *cur;
 389
 390        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 391
 392        tm_root = &fs_info->tree_mod_log;
 393        new = &tm_root->rb_node;
 394        while (*new) {
 395                cur = rb_entry(*new, struct tree_mod_elem, node);
 396                parent = *new;
 397                if (cur->logical < tm->logical)
 398                        new = &((*new)->rb_left);
 399                else if (cur->logical > tm->logical)
 400                        new = &((*new)->rb_right);
 401                else if (cur->seq < tm->seq)
 402                        new = &((*new)->rb_left);
 403                else if (cur->seq > tm->seq)
 404                        new = &((*new)->rb_right);
 405                else
 406                        return -EEXIST;
 407        }
 408
 409        rb_link_node(&tm->node, parent, new);
 410        rb_insert_color(&tm->node, tm_root);
 411        return 0;
 412}
 413
 414/*
 415 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 416 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 417 * this until all tree mod log insertions are recorded in the rb tree and then
 418 * write unlock fs_info::tree_mod_log_lock.
 419 */
 420static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 421                                    struct extent_buffer *eb) {
 422        smp_mb();
 423        if (list_empty(&(fs_info)->tree_mod_seq_list))
 424                return 1;
 425        if (eb && btrfs_header_level(eb) == 0)
 426                return 1;
 427
 428        write_lock(&fs_info->tree_mod_log_lock);
 429        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 430                write_unlock(&fs_info->tree_mod_log_lock);
 431                return 1;
 432        }
 433
 434        return 0;
 435}
 436
 437/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 438static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 439                                    struct extent_buffer *eb)
 440{
 441        smp_mb();
 442        if (list_empty(&(fs_info)->tree_mod_seq_list))
 443                return 0;
 444        if (eb && btrfs_header_level(eb) == 0)
 445                return 0;
 446
 447        return 1;
 448}
 449
 450static struct tree_mod_elem *
 451alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 452                    enum mod_log_op op, gfp_t flags)
 453{
 454        struct tree_mod_elem *tm;
 455
 456        tm = kzalloc(sizeof(*tm), flags);
 457        if (!tm)
 458                return NULL;
 459
 460        tm->logical = eb->start;
 461        if (op != MOD_LOG_KEY_ADD) {
 462                btrfs_node_key(eb, &tm->key, slot);
 463                tm->blockptr = btrfs_node_blockptr(eb, slot);
 464        }
 465        tm->op = op;
 466        tm->slot = slot;
 467        tm->generation = btrfs_node_ptr_generation(eb, slot);
 468        RB_CLEAR_NODE(&tm->node);
 469
 470        return tm;
 471}
 472
 473static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 474                enum mod_log_op op, gfp_t flags)
 475{
 476        struct tree_mod_elem *tm;
 477        int ret;
 478
 479        if (!tree_mod_need_log(eb->fs_info, eb))
 480                return 0;
 481
 482        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 483        if (!tm)
 484                return -ENOMEM;
 485
 486        if (tree_mod_dont_log(eb->fs_info, eb)) {
 487                kfree(tm);
 488                return 0;
 489        }
 490
 491        ret = __tree_mod_log_insert(eb->fs_info, tm);
 492        write_unlock(&eb->fs_info->tree_mod_log_lock);
 493        if (ret)
 494                kfree(tm);
 495
 496        return ret;
 497}
 498
 499static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 500                int dst_slot, int src_slot, int nr_items)
 501{
 502        struct tree_mod_elem *tm = NULL;
 503        struct tree_mod_elem **tm_list = NULL;
 504        int ret = 0;
 505        int i;
 506        int locked = 0;
 507
 508        if (!tree_mod_need_log(eb->fs_info, eb))
 509                return 0;
 510
 511        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 512        if (!tm_list)
 513                return -ENOMEM;
 514
 515        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 516        if (!tm) {
 517                ret = -ENOMEM;
 518                goto free_tms;
 519        }
 520
 521        tm->logical = eb->start;
 522        tm->slot = src_slot;
 523        tm->move.dst_slot = dst_slot;
 524        tm->move.nr_items = nr_items;
 525        tm->op = MOD_LOG_MOVE_KEYS;
 526
 527        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 528                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 529                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 530                if (!tm_list[i]) {
 531                        ret = -ENOMEM;
 532                        goto free_tms;
 533                }
 534        }
 535
 536        if (tree_mod_dont_log(eb->fs_info, eb))
 537                goto free_tms;
 538        locked = 1;
 539
 540        /*
 541         * When we override something during the move, we log these removals.
 542         * This can only happen when we move towards the beginning of the
 543         * buffer, i.e. dst_slot < src_slot.
 544         */
 545        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 546                ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 547                if (ret)
 548                        goto free_tms;
 549        }
 550
 551        ret = __tree_mod_log_insert(eb->fs_info, tm);
 552        if (ret)
 553                goto free_tms;
 554        write_unlock(&eb->fs_info->tree_mod_log_lock);
 555        kfree(tm_list);
 556
 557        return 0;
 558free_tms:
 559        for (i = 0; i < nr_items; i++) {
 560                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 561                        rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 562                kfree(tm_list[i]);
 563        }
 564        if (locked)
 565                write_unlock(&eb->fs_info->tree_mod_log_lock);
 566        kfree(tm_list);
 567        kfree(tm);
 568
 569        return ret;
 570}
 571
 572static inline int
 573__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 574                       struct tree_mod_elem **tm_list,
 575                       int nritems)
 576{
 577        int i, j;
 578        int ret;
 579
 580        for (i = nritems - 1; i >= 0; i--) {
 581                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 582                if (ret) {
 583                        for (j = nritems - 1; j > i; j--)
 584                                rb_erase(&tm_list[j]->node,
 585                                         &fs_info->tree_mod_log);
 586                        return ret;
 587                }
 588        }
 589
 590        return 0;
 591}
 592
 593static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 594                         struct extent_buffer *new_root, int log_removal)
 595{
 596        struct btrfs_fs_info *fs_info = old_root->fs_info;
 597        struct tree_mod_elem *tm = NULL;
 598        struct tree_mod_elem **tm_list = NULL;
 599        int nritems = 0;
 600        int ret = 0;
 601        int i;
 602
 603        if (!tree_mod_need_log(fs_info, NULL))
 604                return 0;
 605
 606        if (log_removal && btrfs_header_level(old_root) > 0) {
 607                nritems = btrfs_header_nritems(old_root);
 608                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 609                                  GFP_NOFS);
 610                if (!tm_list) {
 611                        ret = -ENOMEM;
 612                        goto free_tms;
 613                }
 614                for (i = 0; i < nritems; i++) {
 615                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 616                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 617                        if (!tm_list[i]) {
 618                                ret = -ENOMEM;
 619                                goto free_tms;
 620                        }
 621                }
 622        }
 623
 624        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 625        if (!tm) {
 626                ret = -ENOMEM;
 627                goto free_tms;
 628        }
 629
 630        tm->logical = new_root->start;
 631        tm->old_root.logical = old_root->start;
 632        tm->old_root.level = btrfs_header_level(old_root);
 633        tm->generation = btrfs_header_generation(old_root);
 634        tm->op = MOD_LOG_ROOT_REPLACE;
 635
 636        if (tree_mod_dont_log(fs_info, NULL))
 637                goto free_tms;
 638
 639        if (tm_list)
 640                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 641        if (!ret)
 642                ret = __tree_mod_log_insert(fs_info, tm);
 643
 644        write_unlock(&fs_info->tree_mod_log_lock);
 645        if (ret)
 646                goto free_tms;
 647        kfree(tm_list);
 648
 649        return ret;
 650
 651free_tms:
 652        if (tm_list) {
 653                for (i = 0; i < nritems; i++)
 654                        kfree(tm_list[i]);
 655                kfree(tm_list);
 656        }
 657        kfree(tm);
 658
 659        return ret;
 660}
 661
 662static struct tree_mod_elem *
 663__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 664                      int smallest)
 665{
 666        struct rb_root *tm_root;
 667        struct rb_node *node;
 668        struct tree_mod_elem *cur = NULL;
 669        struct tree_mod_elem *found = NULL;
 670
 671        read_lock(&fs_info->tree_mod_log_lock);
 672        tm_root = &fs_info->tree_mod_log;
 673        node = tm_root->rb_node;
 674        while (node) {
 675                cur = rb_entry(node, struct tree_mod_elem, node);
 676                if (cur->logical < start) {
 677                        node = node->rb_left;
 678                } else if (cur->logical > start) {
 679                        node = node->rb_right;
 680                } else if (cur->seq < min_seq) {
 681                        node = node->rb_left;
 682                } else if (!smallest) {
 683                        /* we want the node with the highest seq */
 684                        if (found)
 685                                BUG_ON(found->seq > cur->seq);
 686                        found = cur;
 687                        node = node->rb_left;
 688                } else if (cur->seq > min_seq) {
 689                        /* we want the node with the smallest seq */
 690                        if (found)
 691                                BUG_ON(found->seq < cur->seq);
 692                        found = cur;
 693                        node = node->rb_right;
 694                } else {
 695                        found = cur;
 696                        break;
 697                }
 698        }
 699        read_unlock(&fs_info->tree_mod_log_lock);
 700
 701        return found;
 702}
 703
 704/*
 705 * this returns the element from the log with the smallest time sequence
 706 * value that's in the log (the oldest log item). any element with a time
 707 * sequence lower than min_seq will be ignored.
 708 */
 709static struct tree_mod_elem *
 710tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 711                           u64 min_seq)
 712{
 713        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 714}
 715
 716/*
 717 * this returns the element from the log with the largest time sequence
 718 * value that's in the log (the most recent log item). any element with
 719 * a time sequence lower than min_seq will be ignored.
 720 */
 721static struct tree_mod_elem *
 722tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 723{
 724        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 725}
 726
 727static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 728                     struct extent_buffer *src, unsigned long dst_offset,
 729                     unsigned long src_offset, int nr_items)
 730{
 731        struct btrfs_fs_info *fs_info = dst->fs_info;
 732        int ret = 0;
 733        struct tree_mod_elem **tm_list = NULL;
 734        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 735        int i;
 736        int locked = 0;
 737
 738        if (!tree_mod_need_log(fs_info, NULL))
 739                return 0;
 740
 741        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 742                return 0;
 743
 744        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 745                          GFP_NOFS);
 746        if (!tm_list)
 747                return -ENOMEM;
 748
 749        tm_list_add = tm_list;
 750        tm_list_rem = tm_list + nr_items;
 751        for (i = 0; i < nr_items; i++) {
 752                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 753                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 754                if (!tm_list_rem[i]) {
 755                        ret = -ENOMEM;
 756                        goto free_tms;
 757                }
 758
 759                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 760                    MOD_LOG_KEY_ADD, GFP_NOFS);
 761                if (!tm_list_add[i]) {
 762                        ret = -ENOMEM;
 763                        goto free_tms;
 764                }
 765        }
 766
 767        if (tree_mod_dont_log(fs_info, NULL))
 768                goto free_tms;
 769        locked = 1;
 770
 771        for (i = 0; i < nr_items; i++) {
 772                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 773                if (ret)
 774                        goto free_tms;
 775                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 776                if (ret)
 777                        goto free_tms;
 778        }
 779
 780        write_unlock(&fs_info->tree_mod_log_lock);
 781        kfree(tm_list);
 782
 783        return 0;
 784
 785free_tms:
 786        for (i = 0; i < nr_items * 2; i++) {
 787                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 788                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 789                kfree(tm_list[i]);
 790        }
 791        if (locked)
 792                write_unlock(&fs_info->tree_mod_log_lock);
 793        kfree(tm_list);
 794
 795        return ret;
 796}
 797
 798static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 799{
 800        struct tree_mod_elem **tm_list = NULL;
 801        int nritems = 0;
 802        int i;
 803        int ret = 0;
 804
 805        if (btrfs_header_level(eb) == 0)
 806                return 0;
 807
 808        if (!tree_mod_need_log(eb->fs_info, NULL))
 809                return 0;
 810
 811        nritems = btrfs_header_nritems(eb);
 812        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 813        if (!tm_list)
 814                return -ENOMEM;
 815
 816        for (i = 0; i < nritems; i++) {
 817                tm_list[i] = alloc_tree_mod_elem(eb, i,
 818                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 819                if (!tm_list[i]) {
 820                        ret = -ENOMEM;
 821                        goto free_tms;
 822                }
 823        }
 824
 825        if (tree_mod_dont_log(eb->fs_info, eb))
 826                goto free_tms;
 827
 828        ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 829        write_unlock(&eb->fs_info->tree_mod_log_lock);
 830        if (ret)
 831                goto free_tms;
 832        kfree(tm_list);
 833
 834        return 0;
 835
 836free_tms:
 837        for (i = 0; i < nritems; i++)
 838                kfree(tm_list[i]);
 839        kfree(tm_list);
 840
 841        return ret;
 842}
 843
 844/*
 845 * check if the tree block can be shared by multiple trees
 846 */
 847int btrfs_block_can_be_shared(struct btrfs_root *root,
 848                              struct extent_buffer *buf)
 849{
 850        /*
 851         * Tree blocks not in reference counted trees and tree roots
 852         * are never shared. If a block was allocated after the last
 853         * snapshot and the block was not allocated by tree relocation,
 854         * we know the block is not shared.
 855         */
 856        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 857            buf != root->node && buf != root->commit_root &&
 858            (btrfs_header_generation(buf) <=
 859             btrfs_root_last_snapshot(&root->root_item) ||
 860             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 861                return 1;
 862
 863        return 0;
 864}
 865
 866static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 867                                       struct btrfs_root *root,
 868                                       struct extent_buffer *buf,
 869                                       struct extent_buffer *cow,
 870                                       int *last_ref)
 871{
 872        struct btrfs_fs_info *fs_info = root->fs_info;
 873        u64 refs;
 874        u64 owner;
 875        u64 flags;
 876        u64 new_flags = 0;
 877        int ret;
 878
 879        /*
 880         * Backrefs update rules:
 881         *
 882         * Always use full backrefs for extent pointers in tree block
 883         * allocated by tree relocation.
 884         *
 885         * If a shared tree block is no longer referenced by its owner
 886         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 887         * use full backrefs for extent pointers in tree block.
 888         *
 889         * If a tree block is been relocating
 890         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 891         * use full backrefs for extent pointers in tree block.
 892         * The reason for this is some operations (such as drop tree)
 893         * are only allowed for blocks use full backrefs.
 894         */
 895
 896        if (btrfs_block_can_be_shared(root, buf)) {
 897                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 898                                               btrfs_header_level(buf), 1,
 899                                               &refs, &flags);
 900                if (ret)
 901                        return ret;
 902                if (refs == 0) {
 903                        ret = -EROFS;
 904                        btrfs_handle_fs_error(fs_info, ret, NULL);
 905                        return ret;
 906                }
 907        } else {
 908                refs = 1;
 909                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 910                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 911                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 912                else
 913                        flags = 0;
 914        }
 915
 916        owner = btrfs_header_owner(buf);
 917        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 918               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 919
 920        if (refs > 1) {
 921                if ((owner == root->root_key.objectid ||
 922                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 923                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 924                        ret = btrfs_inc_ref(trans, root, buf, 1);
 925                        if (ret)
 926                                return ret;
 927
 928                        if (root->root_key.objectid ==
 929                            BTRFS_TREE_RELOC_OBJECTID) {
 930                                ret = btrfs_dec_ref(trans, root, buf, 0);
 931                                if (ret)
 932                                        return ret;
 933                                ret = btrfs_inc_ref(trans, root, cow, 1);
 934                                if (ret)
 935                                        return ret;
 936                        }
 937                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 938                } else {
 939
 940                        if (root->root_key.objectid ==
 941                            BTRFS_TREE_RELOC_OBJECTID)
 942                                ret = btrfs_inc_ref(trans, root, cow, 1);
 943                        else
 944                                ret = btrfs_inc_ref(trans, root, cow, 0);
 945                        if (ret)
 946                                return ret;
 947                }
 948                if (new_flags != 0) {
 949                        int level = btrfs_header_level(buf);
 950
 951                        ret = btrfs_set_disk_extent_flags(trans,
 952                                                          buf->start,
 953                                                          buf->len,
 954                                                          new_flags, level, 0);
 955                        if (ret)
 956                                return ret;
 957                }
 958        } else {
 959                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 960                        if (root->root_key.objectid ==
 961                            BTRFS_TREE_RELOC_OBJECTID)
 962                                ret = btrfs_inc_ref(trans, root, cow, 1);
 963                        else
 964                                ret = btrfs_inc_ref(trans, root, cow, 0);
 965                        if (ret)
 966                                return ret;
 967                        ret = btrfs_dec_ref(trans, root, buf, 1);
 968                        if (ret)
 969                                return ret;
 970                }
 971                btrfs_clean_tree_block(buf);
 972                *last_ref = 1;
 973        }
 974        return 0;
 975}
 976
 977static struct extent_buffer *alloc_tree_block_no_bg_flush(
 978                                          struct btrfs_trans_handle *trans,
 979                                          struct btrfs_root *root,
 980                                          u64 parent_start,
 981                                          const struct btrfs_disk_key *disk_key,
 982                                          int level,
 983                                          u64 hint,
 984                                          u64 empty_size)
 985{
 986        struct btrfs_fs_info *fs_info = root->fs_info;
 987        struct extent_buffer *ret;
 988
 989        /*
 990         * If we are COWing a node/leaf from the extent, chunk, device or free
 991         * space trees, make sure that we do not finish block group creation of
 992         * pending block groups. We do this to avoid a deadlock.
 993         * COWing can result in allocation of a new chunk, and flushing pending
 994         * block groups (btrfs_create_pending_block_groups()) can be triggered
 995         * when finishing allocation of a new chunk. Creation of a pending block
 996         * group modifies the extent, chunk, device and free space trees,
 997         * therefore we could deadlock with ourselves since we are holding a
 998         * lock on an extent buffer that btrfs_create_pending_block_groups() may
 999         * try to COW later.
1000         * For similar reasons, we also need to delay flushing pending block
1001         * groups when splitting a leaf or node, from one of those trees, since
1002         * we are holding a write lock on it and its parent or when inserting a
1003         * new root node for one of those trees.
1004         */
1005        if (root == fs_info->extent_root ||
1006            root == fs_info->chunk_root ||
1007            root == fs_info->dev_root ||
1008            root == fs_info->free_space_root)
1009                trans->can_flush_pending_bgs = false;
1010
1011        ret = btrfs_alloc_tree_block(trans, root, parent_start,
1012                                     root->root_key.objectid, disk_key, level,
1013                                     hint, empty_size);
1014        trans->can_flush_pending_bgs = true;
1015
1016        return ret;
1017}
1018
1019/*
1020 * does the dirty work in cow of a single block.  The parent block (if
1021 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1022 * dirty and returned locked.  If you modify the block it needs to be marked
1023 * dirty again.
1024 *
1025 * search_start -- an allocation hint for the new block
1026 *
1027 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1028 * bytes the allocator should try to find free next to the block it returns.
1029 * This is just a hint and may be ignored by the allocator.
1030 */
1031static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1032                             struct btrfs_root *root,
1033                             struct extent_buffer *buf,
1034                             struct extent_buffer *parent, int parent_slot,
1035                             struct extent_buffer **cow_ret,
1036                             u64 search_start, u64 empty_size)
1037{
1038        struct btrfs_fs_info *fs_info = root->fs_info;
1039        struct btrfs_disk_key disk_key;
1040        struct extent_buffer *cow;
1041        int level, ret;
1042        int last_ref = 0;
1043        int unlock_orig = 0;
1044        u64 parent_start = 0;
1045
1046        if (*cow_ret == buf)
1047                unlock_orig = 1;
1048
1049        btrfs_assert_tree_locked(buf);
1050
1051        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1052                trans->transid != fs_info->running_transaction->transid);
1053        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054                trans->transid != root->last_trans);
1055
1056        level = btrfs_header_level(buf);
1057
1058        if (level == 0)
1059                btrfs_item_key(buf, &disk_key, 0);
1060        else
1061                btrfs_node_key(buf, &disk_key, 0);
1062
1063        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1064                parent_start = parent->start;
1065
1066        cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1067                                           level, search_start, empty_size);
1068        if (IS_ERR(cow))
1069                return PTR_ERR(cow);
1070
1071        /* cow is set to blocking by btrfs_init_new_buffer */
1072
1073        copy_extent_buffer_full(cow, buf);
1074        btrfs_set_header_bytenr(cow, cow->start);
1075        btrfs_set_header_generation(cow, trans->transid);
1076        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1077        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1078                                     BTRFS_HEADER_FLAG_RELOC);
1079        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1081        else
1082                btrfs_set_header_owner(cow, root->root_key.objectid);
1083
1084        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1085
1086        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1087        if (ret) {
1088                btrfs_abort_transaction(trans, ret);
1089                return ret;
1090        }
1091
1092        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1093                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1094                if (ret) {
1095                        btrfs_abort_transaction(trans, ret);
1096                        return ret;
1097                }
1098        }
1099
1100        if (buf == root->node) {
1101                WARN_ON(parent && parent != buf);
1102                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1103                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1104                        parent_start = buf->start;
1105
1106                extent_buffer_get(cow);
1107                ret = tree_mod_log_insert_root(root->node, cow, 1);
1108                BUG_ON(ret < 0);
1109                rcu_assign_pointer(root->node, cow);
1110
1111                btrfs_free_tree_block(trans, root, buf, parent_start,
1112                                      last_ref);
1113                free_extent_buffer(buf);
1114                add_root_to_dirty_list(root);
1115        } else {
1116                WARN_ON(trans->transid != btrfs_header_generation(parent));
1117                tree_mod_log_insert_key(parent, parent_slot,
1118                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1119                btrfs_set_node_blockptr(parent, parent_slot,
1120                                        cow->start);
1121                btrfs_set_node_ptr_generation(parent, parent_slot,
1122                                              trans->transid);
1123                btrfs_mark_buffer_dirty(parent);
1124                if (last_ref) {
1125                        ret = tree_mod_log_free_eb(buf);
1126                        if (ret) {
1127                                btrfs_abort_transaction(trans, ret);
1128                                return ret;
1129                        }
1130                }
1131                btrfs_free_tree_block(trans, root, buf, parent_start,
1132                                      last_ref);
1133        }
1134        if (unlock_orig)
1135                btrfs_tree_unlock(buf);
1136        free_extent_buffer_stale(buf);
1137        btrfs_mark_buffer_dirty(cow);
1138        *cow_ret = cow;
1139        return 0;
1140}
1141
1142/*
1143 * returns the logical address of the oldest predecessor of the given root.
1144 * entries older than time_seq are ignored.
1145 */
1146static struct tree_mod_elem *__tree_mod_log_oldest_root(
1147                struct extent_buffer *eb_root, u64 time_seq)
1148{
1149        struct tree_mod_elem *tm;
1150        struct tree_mod_elem *found = NULL;
1151        u64 root_logical = eb_root->start;
1152        int looped = 0;
1153
1154        if (!time_seq)
1155                return NULL;
1156
1157        /*
1158         * the very last operation that's logged for a root is the
1159         * replacement operation (if it is replaced at all). this has
1160         * the logical address of the *new* root, making it the very
1161         * first operation that's logged for this root.
1162         */
1163        while (1) {
1164                tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1165                                                time_seq);
1166                if (!looped && !tm)
1167                        return NULL;
1168                /*
1169                 * if there are no tree operation for the oldest root, we simply
1170                 * return it. this should only happen if that (old) root is at
1171                 * level 0.
1172                 */
1173                if (!tm)
1174                        break;
1175
1176                /*
1177                 * if there's an operation that's not a root replacement, we
1178                 * found the oldest version of our root. normally, we'll find a
1179                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1180                 */
1181                if (tm->op != MOD_LOG_ROOT_REPLACE)
1182                        break;
1183
1184                found = tm;
1185                root_logical = tm->old_root.logical;
1186                looped = 1;
1187        }
1188
1189        /* if there's no old root to return, return what we found instead */
1190        if (!found)
1191                found = tm;
1192
1193        return found;
1194}
1195
1196/*
1197 * tm is a pointer to the first operation to rewind within eb. then, all
1198 * previous operations will be rewound (until we reach something older than
1199 * time_seq).
1200 */
1201static void
1202__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203                      u64 time_seq, struct tree_mod_elem *first_tm)
1204{
1205        u32 n;
1206        struct rb_node *next;
1207        struct tree_mod_elem *tm = first_tm;
1208        unsigned long o_dst;
1209        unsigned long o_src;
1210        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1211
1212        n = btrfs_header_nritems(eb);
1213        read_lock(&fs_info->tree_mod_log_lock);
1214        while (tm && tm->seq >= time_seq) {
1215                /*
1216                 * all the operations are recorded with the operator used for
1217                 * the modification. as we're going backwards, we do the
1218                 * opposite of each operation here.
1219                 */
1220                switch (tm->op) {
1221                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1222                        BUG_ON(tm->slot < n);
1223                        /* Fallthrough */
1224                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1225                case MOD_LOG_KEY_REMOVE:
1226                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1227                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228                        btrfs_set_node_ptr_generation(eb, tm->slot,
1229                                                      tm->generation);
1230                        n++;
1231                        break;
1232                case MOD_LOG_KEY_REPLACE:
1233                        BUG_ON(tm->slot >= n);
1234                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1235                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1236                        btrfs_set_node_ptr_generation(eb, tm->slot,
1237                                                      tm->generation);
1238                        break;
1239                case MOD_LOG_KEY_ADD:
1240                        /* if a move operation is needed it's in the log */
1241                        n--;
1242                        break;
1243                case MOD_LOG_MOVE_KEYS:
1244                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1245                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1246                        memmove_extent_buffer(eb, o_dst, o_src,
1247                                              tm->move.nr_items * p_size);
1248                        break;
1249                case MOD_LOG_ROOT_REPLACE:
1250                        /*
1251                         * this operation is special. for roots, this must be
1252                         * handled explicitly before rewinding.
1253                         * for non-roots, this operation may exist if the node
1254                         * was a root: root A -> child B; then A gets empty and
1255                         * B is promoted to the new root. in the mod log, we'll
1256                         * have a root-replace operation for B, a tree block
1257                         * that is no root. we simply ignore that operation.
1258                         */
1259                        break;
1260                }
1261                next = rb_next(&tm->node);
1262                if (!next)
1263                        break;
1264                tm = rb_entry(next, struct tree_mod_elem, node);
1265                if (tm->logical != first_tm->logical)
1266                        break;
1267        }
1268        read_unlock(&fs_info->tree_mod_log_lock);
1269        btrfs_set_header_nritems(eb, n);
1270}
1271
1272/*
1273 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274 * is returned. If rewind operations happen, a fresh buffer is returned. The
1275 * returned buffer is always read-locked. If the returned buffer is not the
1276 * input buffer, the lock on the input buffer is released and the input buffer
1277 * is freed (its refcount is decremented).
1278 */
1279static struct extent_buffer *
1280tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1281                    struct extent_buffer *eb, u64 time_seq)
1282{
1283        struct extent_buffer *eb_rewin;
1284        struct tree_mod_elem *tm;
1285
1286        if (!time_seq)
1287                return eb;
1288
1289        if (btrfs_header_level(eb) == 0)
1290                return eb;
1291
1292        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1293        if (!tm)
1294                return eb;
1295
1296        btrfs_set_path_blocking(path);
1297        btrfs_set_lock_blocking_read(eb);
1298
1299        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1300                BUG_ON(tm->slot != 0);
1301                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1302                if (!eb_rewin) {
1303                        btrfs_tree_read_unlock_blocking(eb);
1304                        free_extent_buffer(eb);
1305                        return NULL;
1306                }
1307                btrfs_set_header_bytenr(eb_rewin, eb->start);
1308                btrfs_set_header_backref_rev(eb_rewin,
1309                                             btrfs_header_backref_rev(eb));
1310                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1311                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1312        } else {
1313                eb_rewin = btrfs_clone_extent_buffer(eb);
1314                if (!eb_rewin) {
1315                        btrfs_tree_read_unlock_blocking(eb);
1316                        free_extent_buffer(eb);
1317                        return NULL;
1318                }
1319        }
1320
1321        btrfs_tree_read_unlock_blocking(eb);
1322        free_extent_buffer(eb);
1323
1324        btrfs_tree_read_lock(eb_rewin);
1325        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1326        WARN_ON(btrfs_header_nritems(eb_rewin) >
1327                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1328
1329        return eb_rewin;
1330}
1331
1332/*
1333 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334 * value. If there are no changes, the current root->root_node is returned. If
1335 * anything changed in between, there's a fresh buffer allocated on which the
1336 * rewind operations are done. In any case, the returned buffer is read locked.
1337 * Returns NULL on error (with no locks held).
1338 */
1339static inline struct extent_buffer *
1340get_old_root(struct btrfs_root *root, u64 time_seq)
1341{
1342        struct btrfs_fs_info *fs_info = root->fs_info;
1343        struct tree_mod_elem *tm;
1344        struct extent_buffer *eb = NULL;
1345        struct extent_buffer *eb_root;
1346        struct extent_buffer *old;
1347        struct tree_mod_root *old_root = NULL;
1348        u64 old_generation = 0;
1349        u64 logical;
1350        int level;
1351
1352        eb_root = btrfs_read_lock_root_node(root);
1353        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1354        if (!tm)
1355                return eb_root;
1356
1357        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1358                old_root = &tm->old_root;
1359                old_generation = tm->generation;
1360                logical = old_root->logical;
1361                level = old_root->level;
1362        } else {
1363                logical = eb_root->start;
1364                level = btrfs_header_level(eb_root);
1365        }
1366
1367        tm = tree_mod_log_search(fs_info, logical, time_seq);
1368        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369                btrfs_tree_read_unlock(eb_root);
1370                free_extent_buffer(eb_root);
1371                old = read_tree_block(fs_info, logical, 0, level, NULL);
1372                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1373                        if (!IS_ERR(old))
1374                                free_extent_buffer(old);
1375                        btrfs_warn(fs_info,
1376                                   "failed to read tree block %llu from get_old_root",
1377                                   logical);
1378                } else {
1379                        eb = btrfs_clone_extent_buffer(old);
1380                        free_extent_buffer(old);
1381                }
1382        } else if (old_root) {
1383                btrfs_tree_read_unlock(eb_root);
1384                free_extent_buffer(eb_root);
1385                eb = alloc_dummy_extent_buffer(fs_info, logical);
1386        } else {
1387                btrfs_set_lock_blocking_read(eb_root);
1388                eb = btrfs_clone_extent_buffer(eb_root);
1389                btrfs_tree_read_unlock_blocking(eb_root);
1390                free_extent_buffer(eb_root);
1391        }
1392
1393        if (!eb)
1394                return NULL;
1395        btrfs_tree_read_lock(eb);
1396        if (old_root) {
1397                btrfs_set_header_bytenr(eb, eb->start);
1398                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1399                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1400                btrfs_set_header_level(eb, old_root->level);
1401                btrfs_set_header_generation(eb, old_generation);
1402        }
1403        if (tm)
1404                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1405        else
1406                WARN_ON(btrfs_header_level(eb) != 0);
1407        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1408
1409        return eb;
1410}
1411
1412int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1413{
1414        struct tree_mod_elem *tm;
1415        int level;
1416        struct extent_buffer *eb_root = btrfs_root_node(root);
1417
1418        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1419        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1420                level = tm->old_root.level;
1421        } else {
1422                level = btrfs_header_level(eb_root);
1423        }
1424        free_extent_buffer(eb_root);
1425
1426        return level;
1427}
1428
1429static inline int should_cow_block(struct btrfs_trans_handle *trans,
1430                                   struct btrfs_root *root,
1431                                   struct extent_buffer *buf)
1432{
1433        if (btrfs_is_testing(root->fs_info))
1434                return 0;
1435
1436        /* Ensure we can see the FORCE_COW bit */
1437        smp_mb__before_atomic();
1438
1439        /*
1440         * We do not need to cow a block if
1441         * 1) this block is not created or changed in this transaction;
1442         * 2) this block does not belong to TREE_RELOC tree;
1443         * 3) the root is not forced COW.
1444         *
1445         * What is forced COW:
1446         *    when we create snapshot during committing the transaction,
1447         *    after we've finished copying src root, we must COW the shared
1448         *    block to ensure the metadata consistency.
1449         */
1450        if (btrfs_header_generation(buf) == trans->transid &&
1451            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1452            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1453              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1454            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455                return 0;
1456        return 1;
1457}
1458
1459/*
1460 * cows a single block, see __btrfs_cow_block for the real work.
1461 * This version of it has extra checks so that a block isn't COWed more than
1462 * once per transaction, as long as it hasn't been written yet
1463 */
1464noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1465                    struct btrfs_root *root, struct extent_buffer *buf,
1466                    struct extent_buffer *parent, int parent_slot,
1467                    struct extent_buffer **cow_ret)
1468{
1469        struct btrfs_fs_info *fs_info = root->fs_info;
1470        u64 search_start;
1471        int ret;
1472
1473        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1474                btrfs_err(fs_info,
1475                        "COW'ing blocks on a fs root that's being dropped");
1476
1477        if (trans->transaction != fs_info->running_transaction)
1478                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1479                       trans->transid,
1480                       fs_info->running_transaction->transid);
1481
1482        if (trans->transid != fs_info->generation)
1483                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1484                       trans->transid, fs_info->generation);
1485
1486        if (!should_cow_block(trans, root, buf)) {
1487                trans->dirty = true;
1488                *cow_ret = buf;
1489                return 0;
1490        }
1491
1492        search_start = buf->start & ~((u64)SZ_1G - 1);
1493
1494        if (parent)
1495                btrfs_set_lock_blocking_write(parent);
1496        btrfs_set_lock_blocking_write(buf);
1497
1498        /*
1499         * Before CoWing this block for later modification, check if it's
1500         * the subtree root and do the delayed subtree trace if needed.
1501         *
1502         * Also We don't care about the error, as it's handled internally.
1503         */
1504        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1505        ret = __btrfs_cow_block(trans, root, buf, parent,
1506                                 parent_slot, cow_ret, search_start, 0);
1507
1508        trace_btrfs_cow_block(root, buf, *cow_ret);
1509
1510        return ret;
1511}
1512
1513/*
1514 * helper function for defrag to decide if two blocks pointed to by a
1515 * node are actually close by
1516 */
1517static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1518{
1519        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1520                return 1;
1521        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1522                return 1;
1523        return 0;
1524}
1525
1526/*
1527 * compare two keys in a memcmp fashion
1528 */
1529static int comp_keys(const struct btrfs_disk_key *disk,
1530                     const struct btrfs_key *k2)
1531{
1532        struct btrfs_key k1;
1533
1534        btrfs_disk_key_to_cpu(&k1, disk);
1535
1536        return btrfs_comp_cpu_keys(&k1, k2);
1537}
1538
1539/*
1540 * same as comp_keys only with two btrfs_key's
1541 */
1542int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1543{
1544        if (k1->objectid > k2->objectid)
1545                return 1;
1546        if (k1->objectid < k2->objectid)
1547                return -1;
1548        if (k1->type > k2->type)
1549                return 1;
1550        if (k1->type < k2->type)
1551                return -1;
1552        if (k1->offset > k2->offset)
1553                return 1;
1554        if (k1->offset < k2->offset)
1555                return -1;
1556        return 0;
1557}
1558
1559/*
1560 * this is used by the defrag code to go through all the
1561 * leaves pointed to by a node and reallocate them so that
1562 * disk order is close to key order
1563 */
1564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1565                       struct btrfs_root *root, struct extent_buffer *parent,
1566                       int start_slot, u64 *last_ret,
1567                       struct btrfs_key *progress)
1568{
1569        struct btrfs_fs_info *fs_info = root->fs_info;
1570        struct extent_buffer *cur;
1571        u64 blocknr;
1572        u64 gen;
1573        u64 search_start = *last_ret;
1574        u64 last_block = 0;
1575        u64 other;
1576        u32 parent_nritems;
1577        int end_slot;
1578        int i;
1579        int err = 0;
1580        int parent_level;
1581        int uptodate;
1582        u32 blocksize;
1583        int progress_passed = 0;
1584        struct btrfs_disk_key disk_key;
1585
1586        parent_level = btrfs_header_level(parent);
1587
1588        WARN_ON(trans->transaction != fs_info->running_transaction);
1589        WARN_ON(trans->transid != fs_info->generation);
1590
1591        parent_nritems = btrfs_header_nritems(parent);
1592        blocksize = fs_info->nodesize;
1593        end_slot = parent_nritems - 1;
1594
1595        if (parent_nritems <= 1)
1596                return 0;
1597
1598        btrfs_set_lock_blocking_write(parent);
1599
1600        for (i = start_slot; i <= end_slot; i++) {
1601                struct btrfs_key first_key;
1602                int close = 1;
1603
1604                btrfs_node_key(parent, &disk_key, i);
1605                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1606                        continue;
1607
1608                progress_passed = 1;
1609                blocknr = btrfs_node_blockptr(parent, i);
1610                gen = btrfs_node_ptr_generation(parent, i);
1611                btrfs_node_key_to_cpu(parent, &first_key, i);
1612                if (last_block == 0)
1613                        last_block = blocknr;
1614
1615                if (i > 0) {
1616                        other = btrfs_node_blockptr(parent, i - 1);
1617                        close = close_blocks(blocknr, other, blocksize);
1618                }
1619                if (!close && i < end_slot) {
1620                        other = btrfs_node_blockptr(parent, i + 1);
1621                        close = close_blocks(blocknr, other, blocksize);
1622                }
1623                if (close) {
1624                        last_block = blocknr;
1625                        continue;
1626                }
1627
1628                cur = find_extent_buffer(fs_info, blocknr);
1629                if (cur)
1630                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1631                else
1632                        uptodate = 0;
1633                if (!cur || !uptodate) {
1634                        if (!cur) {
1635                                cur = read_tree_block(fs_info, blocknr, gen,
1636                                                      parent_level - 1,
1637                                                      &first_key);
1638                                if (IS_ERR(cur)) {
1639                                        return PTR_ERR(cur);
1640                                } else if (!extent_buffer_uptodate(cur)) {
1641                                        free_extent_buffer(cur);
1642                                        return -EIO;
1643                                }
1644                        } else if (!uptodate) {
1645                                err = btrfs_read_buffer(cur, gen,
1646                                                parent_level - 1,&first_key);
1647                                if (err) {
1648                                        free_extent_buffer(cur);
1649                                        return err;
1650                                }
1651                        }
1652                }
1653                if (search_start == 0)
1654                        search_start = last_block;
1655
1656                btrfs_tree_lock(cur);
1657                btrfs_set_lock_blocking_write(cur);
1658                err = __btrfs_cow_block(trans, root, cur, parent, i,
1659                                        &cur, search_start,
1660                                        min(16 * blocksize,
1661                                            (end_slot - i) * blocksize));
1662                if (err) {
1663                        btrfs_tree_unlock(cur);
1664                        free_extent_buffer(cur);
1665                        break;
1666                }
1667                search_start = cur->start;
1668                last_block = cur->start;
1669                *last_ret = search_start;
1670                btrfs_tree_unlock(cur);
1671                free_extent_buffer(cur);
1672        }
1673        return err;
1674}
1675
1676/*
1677 * search for key in the extent_buffer.  The items start at offset p,
1678 * and they are item_size apart.  There are 'max' items in p.
1679 *
1680 * the slot in the array is returned via slot, and it points to
1681 * the place where you would insert key if it is not found in
1682 * the array.
1683 *
1684 * slot may point to max if the key is bigger than all of the keys
1685 */
1686static noinline int generic_bin_search(struct extent_buffer *eb,
1687                                       unsigned long p, int item_size,
1688                                       const struct btrfs_key *key,
1689                                       int max, int *slot)
1690{
1691        int low = 0;
1692        int high = max;
1693        int mid;
1694        int ret;
1695        struct btrfs_disk_key *tmp = NULL;
1696        struct btrfs_disk_key unaligned;
1697        unsigned long offset;
1698        char *kaddr = NULL;
1699        unsigned long map_start = 0;
1700        unsigned long map_len = 0;
1701        int err;
1702
1703        if (low > high) {
1704                btrfs_err(eb->fs_info,
1705                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1706                          __func__, low, high, eb->start,
1707                          btrfs_header_owner(eb), btrfs_header_level(eb));
1708                return -EINVAL;
1709        }
1710
1711        while (low < high) {
1712                mid = (low + high) / 2;
1713                offset = p + mid * item_size;
1714
1715                if (!kaddr || offset < map_start ||
1716                    (offset + sizeof(struct btrfs_disk_key)) >
1717                    map_start + map_len) {
1718
1719                        err = map_private_extent_buffer(eb, offset,
1720                                                sizeof(struct btrfs_disk_key),
1721                                                &kaddr, &map_start, &map_len);
1722
1723                        if (!err) {
1724                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1725                                                        map_start);
1726                        } else if (err == 1) {
1727                                read_extent_buffer(eb, &unaligned,
1728                                                   offset, sizeof(unaligned));
1729                                tmp = &unaligned;
1730                        } else {
1731                                return err;
1732                        }
1733
1734                } else {
1735                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1736                                                        map_start);
1737                }
1738                ret = comp_keys(tmp, key);
1739
1740                if (ret < 0)
1741                        low = mid + 1;
1742                else if (ret > 0)
1743                        high = mid;
1744                else {
1745                        *slot = mid;
1746                        return 0;
1747                }
1748        }
1749        *slot = low;
1750        return 1;
1751}
1752
1753/*
1754 * simple bin_search frontend that does the right thing for
1755 * leaves vs nodes
1756 */
1757int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1758                     int level, int *slot)
1759{
1760        if (level == 0)
1761                return generic_bin_search(eb,
1762                                          offsetof(struct btrfs_leaf, items),
1763                                          sizeof(struct btrfs_item),
1764                                          key, btrfs_header_nritems(eb),
1765                                          slot);
1766        else
1767                return generic_bin_search(eb,
1768                                          offsetof(struct btrfs_node, ptrs),
1769                                          sizeof(struct btrfs_key_ptr),
1770                                          key, btrfs_header_nritems(eb),
1771                                          slot);
1772}
1773
1774static void root_add_used(struct btrfs_root *root, u32 size)
1775{
1776        spin_lock(&root->accounting_lock);
1777        btrfs_set_root_used(&root->root_item,
1778                            btrfs_root_used(&root->root_item) + size);
1779        spin_unlock(&root->accounting_lock);
1780}
1781
1782static void root_sub_used(struct btrfs_root *root, u32 size)
1783{
1784        spin_lock(&root->accounting_lock);
1785        btrfs_set_root_used(&root->root_item,
1786                            btrfs_root_used(&root->root_item) - size);
1787        spin_unlock(&root->accounting_lock);
1788}
1789
1790/* given a node and slot number, this reads the blocks it points to.  The
1791 * extent buffer is returned with a reference taken (but unlocked).
1792 */
1793static noinline struct extent_buffer *read_node_slot(
1794                                struct extent_buffer *parent, int slot)
1795{
1796        int level = btrfs_header_level(parent);
1797        struct extent_buffer *eb;
1798        struct btrfs_key first_key;
1799
1800        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1801                return ERR_PTR(-ENOENT);
1802
1803        BUG_ON(level == 0);
1804
1805        btrfs_node_key_to_cpu(parent, &first_key, slot);
1806        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1807                             btrfs_node_ptr_generation(parent, slot),
1808                             level - 1, &first_key);
1809        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1810                free_extent_buffer(eb);
1811                eb = ERR_PTR(-EIO);
1812        }
1813
1814        return eb;
1815}
1816
1817/*
1818 * node level balancing, used to make sure nodes are in proper order for
1819 * item deletion.  We balance from the top down, so we have to make sure
1820 * that a deletion won't leave an node completely empty later on.
1821 */
1822static noinline int balance_level(struct btrfs_trans_handle *trans,
1823                         struct btrfs_root *root,
1824                         struct btrfs_path *path, int level)
1825{
1826        struct btrfs_fs_info *fs_info = root->fs_info;
1827        struct extent_buffer *right = NULL;
1828        struct extent_buffer *mid;
1829        struct extent_buffer *left = NULL;
1830        struct extent_buffer *parent = NULL;
1831        int ret = 0;
1832        int wret;
1833        int pslot;
1834        int orig_slot = path->slots[level];
1835        u64 orig_ptr;
1836
1837        ASSERT(level > 0);
1838
1839        mid = path->nodes[level];
1840
1841        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1842                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1843        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1844
1845        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1846
1847        if (level < BTRFS_MAX_LEVEL - 1) {
1848                parent = path->nodes[level + 1];
1849                pslot = path->slots[level + 1];
1850        }
1851
1852        /*
1853         * deal with the case where there is only one pointer in the root
1854         * by promoting the node below to a root
1855         */
1856        if (!parent) {
1857                struct extent_buffer *child;
1858
1859                if (btrfs_header_nritems(mid) != 1)
1860                        return 0;
1861
1862                /* promote the child to a root */
1863                child = read_node_slot(mid, 0);
1864                if (IS_ERR(child)) {
1865                        ret = PTR_ERR(child);
1866                        btrfs_handle_fs_error(fs_info, ret, NULL);
1867                        goto enospc;
1868                }
1869
1870                btrfs_tree_lock(child);
1871                btrfs_set_lock_blocking_write(child);
1872                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1873                if (ret) {
1874                        btrfs_tree_unlock(child);
1875                        free_extent_buffer(child);
1876                        goto enospc;
1877                }
1878
1879                ret = tree_mod_log_insert_root(root->node, child, 1);
1880                BUG_ON(ret < 0);
1881                rcu_assign_pointer(root->node, child);
1882
1883                add_root_to_dirty_list(root);
1884                btrfs_tree_unlock(child);
1885
1886                path->locks[level] = 0;
1887                path->nodes[level] = NULL;
1888                btrfs_clean_tree_block(mid);
1889                btrfs_tree_unlock(mid);
1890                /* once for the path */
1891                free_extent_buffer(mid);
1892
1893                root_sub_used(root, mid->len);
1894                btrfs_free_tree_block(trans, root, mid, 0, 1);
1895                /* once for the root ptr */
1896                free_extent_buffer_stale(mid);
1897                return 0;
1898        }
1899        if (btrfs_header_nritems(mid) >
1900            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1901                return 0;
1902
1903        left = read_node_slot(parent, pslot - 1);
1904        if (IS_ERR(left))
1905                left = NULL;
1906
1907        if (left) {
1908                btrfs_tree_lock(left);
1909                btrfs_set_lock_blocking_write(left);
1910                wret = btrfs_cow_block(trans, root, left,
1911                                       parent, pslot - 1, &left);
1912                if (wret) {
1913                        ret = wret;
1914                        goto enospc;
1915                }
1916        }
1917
1918        right = read_node_slot(parent, pslot + 1);
1919        if (IS_ERR(right))
1920                right = NULL;
1921
1922        if (right) {
1923                btrfs_tree_lock(right);
1924                btrfs_set_lock_blocking_write(right);
1925                wret = btrfs_cow_block(trans, root, right,
1926                                       parent, pslot + 1, &right);
1927                if (wret) {
1928                        ret = wret;
1929                        goto enospc;
1930                }
1931        }
1932
1933        /* first, try to make some room in the middle buffer */
1934        if (left) {
1935                orig_slot += btrfs_header_nritems(left);
1936                wret = push_node_left(trans, left, mid, 1);
1937                if (wret < 0)
1938                        ret = wret;
1939        }
1940
1941        /*
1942         * then try to empty the right most buffer into the middle
1943         */
1944        if (right) {
1945                wret = push_node_left(trans, mid, right, 1);
1946                if (wret < 0 && wret != -ENOSPC)
1947                        ret = wret;
1948                if (btrfs_header_nritems(right) == 0) {
1949                        btrfs_clean_tree_block(right);
1950                        btrfs_tree_unlock(right);
1951                        del_ptr(root, path, level + 1, pslot + 1);
1952                        root_sub_used(root, right->len);
1953                        btrfs_free_tree_block(trans, root, right, 0, 1);
1954                        free_extent_buffer_stale(right);
1955                        right = NULL;
1956                } else {
1957                        struct btrfs_disk_key right_key;
1958                        btrfs_node_key(right, &right_key, 0);
1959                        ret = tree_mod_log_insert_key(parent, pslot + 1,
1960                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1961                        BUG_ON(ret < 0);
1962                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1963                        btrfs_mark_buffer_dirty(parent);
1964                }
1965        }
1966        if (btrfs_header_nritems(mid) == 1) {
1967                /*
1968                 * we're not allowed to leave a node with one item in the
1969                 * tree during a delete.  A deletion from lower in the tree
1970                 * could try to delete the only pointer in this node.
1971                 * So, pull some keys from the left.
1972                 * There has to be a left pointer at this point because
1973                 * otherwise we would have pulled some pointers from the
1974                 * right
1975                 */
1976                if (!left) {
1977                        ret = -EROFS;
1978                        btrfs_handle_fs_error(fs_info, ret, NULL);
1979                        goto enospc;
1980                }
1981                wret = balance_node_right(trans, mid, left);
1982                if (wret < 0) {
1983                        ret = wret;
1984                        goto enospc;
1985                }
1986                if (wret == 1) {
1987                        wret = push_node_left(trans, left, mid, 1);
1988                        if (wret < 0)
1989                                ret = wret;
1990                }
1991                BUG_ON(wret == 1);
1992        }
1993        if (btrfs_header_nritems(mid) == 0) {
1994                btrfs_clean_tree_block(mid);
1995                btrfs_tree_unlock(mid);
1996                del_ptr(root, path, level + 1, pslot);
1997                root_sub_used(root, mid->len);
1998                btrfs_free_tree_block(trans, root, mid, 0, 1);
1999                free_extent_buffer_stale(mid);
2000                mid = NULL;
2001        } else {
2002                /* update the parent key to reflect our changes */
2003                struct btrfs_disk_key mid_key;
2004                btrfs_node_key(mid, &mid_key, 0);
2005                ret = tree_mod_log_insert_key(parent, pslot,
2006                                MOD_LOG_KEY_REPLACE, GFP_NOFS);
2007                BUG_ON(ret < 0);
2008                btrfs_set_node_key(parent, &mid_key, pslot);
2009                btrfs_mark_buffer_dirty(parent);
2010        }
2011
2012        /* update the path */
2013        if (left) {
2014                if (btrfs_header_nritems(left) > orig_slot) {
2015                        extent_buffer_get(left);
2016                        /* left was locked after cow */
2017                        path->nodes[level] = left;
2018                        path->slots[level + 1] -= 1;
2019                        path->slots[level] = orig_slot;
2020                        if (mid) {
2021                                btrfs_tree_unlock(mid);
2022                                free_extent_buffer(mid);
2023                        }
2024                } else {
2025                        orig_slot -= btrfs_header_nritems(left);
2026                        path->slots[level] = orig_slot;
2027                }
2028        }
2029        /* double check we haven't messed things up */
2030        if (orig_ptr !=
2031            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032                BUG();
2033enospc:
2034        if (right) {
2035                btrfs_tree_unlock(right);
2036                free_extent_buffer(right);
2037        }
2038        if (left) {
2039                if (path->nodes[level] != left)
2040                        btrfs_tree_unlock(left);
2041                free_extent_buffer(left);
2042        }
2043        return ret;
2044}
2045
2046/* Node balancing for insertion.  Here we only split or push nodes around
2047 * when they are completely full.  This is also done top down, so we
2048 * have to be pessimistic.
2049 */
2050static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051                                          struct btrfs_root *root,
2052                                          struct btrfs_path *path, int level)
2053{
2054        struct btrfs_fs_info *fs_info = root->fs_info;
2055        struct extent_buffer *right = NULL;
2056        struct extent_buffer *mid;
2057        struct extent_buffer *left = NULL;
2058        struct extent_buffer *parent = NULL;
2059        int ret = 0;
2060        int wret;
2061        int pslot;
2062        int orig_slot = path->slots[level];
2063
2064        if (level == 0)
2065                return 1;
2066
2067        mid = path->nodes[level];
2068        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2069
2070        if (level < BTRFS_MAX_LEVEL - 1) {
2071                parent = path->nodes[level + 1];
2072                pslot = path->slots[level + 1];
2073        }
2074
2075        if (!parent)
2076                return 1;
2077
2078        left = read_node_slot(parent, pslot - 1);
2079        if (IS_ERR(left))
2080                left = NULL;
2081
2082        /* first, try to make some room in the middle buffer */
2083        if (left) {
2084                u32 left_nr;
2085
2086                btrfs_tree_lock(left);
2087                btrfs_set_lock_blocking_write(left);
2088
2089                left_nr = btrfs_header_nritems(left);
2090                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2091                        wret = 1;
2092                } else {
2093                        ret = btrfs_cow_block(trans, root, left, parent,
2094                                              pslot - 1, &left);
2095                        if (ret)
2096                                wret = 1;
2097                        else {
2098                                wret = push_node_left(trans, left, mid, 0);
2099                        }
2100                }
2101                if (wret < 0)
2102                        ret = wret;
2103                if (wret == 0) {
2104                        struct btrfs_disk_key disk_key;
2105                        orig_slot += left_nr;
2106                        btrfs_node_key(mid, &disk_key, 0);
2107                        ret = tree_mod_log_insert_key(parent, pslot,
2108                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2109                        BUG_ON(ret < 0);
2110                        btrfs_set_node_key(parent, &disk_key, pslot);
2111                        btrfs_mark_buffer_dirty(parent);
2112                        if (btrfs_header_nritems(left) > orig_slot) {
2113                                path->nodes[level] = left;
2114                                path->slots[level + 1] -= 1;
2115                                path->slots[level] = orig_slot;
2116                                btrfs_tree_unlock(mid);
2117                                free_extent_buffer(mid);
2118                        } else {
2119                                orig_slot -=
2120                                        btrfs_header_nritems(left);
2121                                path->slots[level] = orig_slot;
2122                                btrfs_tree_unlock(left);
2123                                free_extent_buffer(left);
2124                        }
2125                        return 0;
2126                }
2127                btrfs_tree_unlock(left);
2128                free_extent_buffer(left);
2129        }
2130        right = read_node_slot(parent, pslot + 1);
2131        if (IS_ERR(right))
2132                right = NULL;
2133
2134        /*
2135         * then try to empty the right most buffer into the middle
2136         */
2137        if (right) {
2138                u32 right_nr;
2139
2140                btrfs_tree_lock(right);
2141                btrfs_set_lock_blocking_write(right);
2142
2143                right_nr = btrfs_header_nritems(right);
2144                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2145                        wret = 1;
2146                } else {
2147                        ret = btrfs_cow_block(trans, root, right,
2148                                              parent, pslot + 1,
2149                                              &right);
2150                        if (ret)
2151                                wret = 1;
2152                        else {
2153                                wret = balance_node_right(trans, right, mid);
2154                        }
2155                }
2156                if (wret < 0)
2157                        ret = wret;
2158                if (wret == 0) {
2159                        struct btrfs_disk_key disk_key;
2160
2161                        btrfs_node_key(right, &disk_key, 0);
2162                        ret = tree_mod_log_insert_key(parent, pslot + 1,
2163                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2164                        BUG_ON(ret < 0);
2165                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2166                        btrfs_mark_buffer_dirty(parent);
2167
2168                        if (btrfs_header_nritems(mid) <= orig_slot) {
2169                                path->nodes[level] = right;
2170                                path->slots[level + 1] += 1;
2171                                path->slots[level] = orig_slot -
2172                                        btrfs_header_nritems(mid);
2173                                btrfs_tree_unlock(mid);
2174                                free_extent_buffer(mid);
2175                        } else {
2176                                btrfs_tree_unlock(right);
2177                                free_extent_buffer(right);
2178                        }
2179                        return 0;
2180                }
2181                btrfs_tree_unlock(right);
2182                free_extent_buffer(right);
2183        }
2184        return 1;
2185}
2186
2187/*
2188 * readahead one full node of leaves, finding things that are close
2189 * to the block in 'slot', and triggering ra on them.
2190 */
2191static void reada_for_search(struct btrfs_fs_info *fs_info,
2192                             struct btrfs_path *path,
2193                             int level, int slot, u64 objectid)
2194{
2195        struct extent_buffer *node;
2196        struct btrfs_disk_key disk_key;
2197        u32 nritems;
2198        u64 search;
2199        u64 target;
2200        u64 nread = 0;
2201        struct extent_buffer *eb;
2202        u32 nr;
2203        u32 blocksize;
2204        u32 nscan = 0;
2205
2206        if (level != 1)
2207                return;
2208
2209        if (!path->nodes[level])
2210                return;
2211
2212        node = path->nodes[level];
2213
2214        search = btrfs_node_blockptr(node, slot);
2215        blocksize = fs_info->nodesize;
2216        eb = find_extent_buffer(fs_info, search);
2217        if (eb) {
2218                free_extent_buffer(eb);
2219                return;
2220        }
2221
2222        target = search;
2223
2224        nritems = btrfs_header_nritems(node);
2225        nr = slot;
2226
2227        while (1) {
2228                if (path->reada == READA_BACK) {
2229                        if (nr == 0)
2230                                break;
2231                        nr--;
2232                } else if (path->reada == READA_FORWARD) {
2233                        nr++;
2234                        if (nr >= nritems)
2235                                break;
2236                }
2237                if (path->reada == READA_BACK && objectid) {
2238                        btrfs_node_key(node, &disk_key, nr);
2239                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2240                                break;
2241                }
2242                search = btrfs_node_blockptr(node, nr);
2243                if ((search <= target && target - search <= 65536) ||
2244                    (search > target && search - target <= 65536)) {
2245                        readahead_tree_block(fs_info, search);
2246                        nread += blocksize;
2247                }
2248                nscan++;
2249                if ((nread > 65536 || nscan > 32))
2250                        break;
2251        }
2252}
2253
2254static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2255                                       struct btrfs_path *path, int level)
2256{
2257        int slot;
2258        int nritems;
2259        struct extent_buffer *parent;
2260        struct extent_buffer *eb;
2261        u64 gen;
2262        u64 block1 = 0;
2263        u64 block2 = 0;
2264
2265        parent = path->nodes[level + 1];
2266        if (!parent)
2267                return;
2268
2269        nritems = btrfs_header_nritems(parent);
2270        slot = path->slots[level + 1];
2271
2272        if (slot > 0) {
2273                block1 = btrfs_node_blockptr(parent, slot - 1);
2274                gen = btrfs_node_ptr_generation(parent, slot - 1);
2275                eb = find_extent_buffer(fs_info, block1);
2276                /*
2277                 * if we get -eagain from btrfs_buffer_uptodate, we
2278                 * don't want to return eagain here.  That will loop
2279                 * forever
2280                 */
2281                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2282                        block1 = 0;
2283                free_extent_buffer(eb);
2284        }
2285        if (slot + 1 < nritems) {
2286                block2 = btrfs_node_blockptr(parent, slot + 1);
2287                gen = btrfs_node_ptr_generation(parent, slot + 1);
2288                eb = find_extent_buffer(fs_info, block2);
2289                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2290                        block2 = 0;
2291                free_extent_buffer(eb);
2292        }
2293
2294        if (block1)
2295                readahead_tree_block(fs_info, block1);
2296        if (block2)
2297                readahead_tree_block(fs_info, block2);
2298}
2299
2300
2301/*
2302 * when we walk down the tree, it is usually safe to unlock the higher layers
2303 * in the tree.  The exceptions are when our path goes through slot 0, because
2304 * operations on the tree might require changing key pointers higher up in the
2305 * tree.
2306 *
2307 * callers might also have set path->keep_locks, which tells this code to keep
2308 * the lock if the path points to the last slot in the block.  This is part of
2309 * walking through the tree, and selecting the next slot in the higher block.
2310 *
2311 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2312 * if lowest_unlock is 1, level 0 won't be unlocked
2313 */
2314static noinline void unlock_up(struct btrfs_path *path, int level,
2315                               int lowest_unlock, int min_write_lock_level,
2316                               int *write_lock_level)
2317{
2318        int i;
2319        int skip_level = level;
2320        int no_skips = 0;
2321        struct extent_buffer *t;
2322
2323        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2324                if (!path->nodes[i])
2325                        break;
2326                if (!path->locks[i])
2327                        break;
2328                if (!no_skips && path->slots[i] == 0) {
2329                        skip_level = i + 1;
2330                        continue;
2331                }
2332                if (!no_skips && path->keep_locks) {
2333                        u32 nritems;
2334                        t = path->nodes[i];
2335                        nritems = btrfs_header_nritems(t);
2336                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2337                                skip_level = i + 1;
2338                                continue;
2339                        }
2340                }
2341                if (skip_level < i && i >= lowest_unlock)
2342                        no_skips = 1;
2343
2344                t = path->nodes[i];
2345                if (i >= lowest_unlock && i > skip_level) {
2346                        btrfs_tree_unlock_rw(t, path->locks[i]);
2347                        path->locks[i] = 0;
2348                        if (write_lock_level &&
2349                            i > min_write_lock_level &&
2350                            i <= *write_lock_level) {
2351                                *write_lock_level = i - 1;
2352                        }
2353                }
2354        }
2355}
2356
2357/*
2358 * This releases any locks held in the path starting at level and
2359 * going all the way up to the root.
2360 *
2361 * btrfs_search_slot will keep the lock held on higher nodes in a few
2362 * corner cases, such as COW of the block at slot zero in the node.  This
2363 * ignores those rules, and it should only be called when there are no
2364 * more updates to be done higher up in the tree.
2365 */
2366noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2367{
2368        int i;
2369
2370        if (path->keep_locks)
2371                return;
2372
2373        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374                if (!path->nodes[i])
2375                        continue;
2376                if (!path->locks[i])
2377                        continue;
2378                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2379                path->locks[i] = 0;
2380        }
2381}
2382
2383/*
2384 * helper function for btrfs_search_slot.  The goal is to find a block
2385 * in cache without setting the path to blocking.  If we find the block
2386 * we return zero and the path is unchanged.
2387 *
2388 * If we can't find the block, we set the path blocking and do some
2389 * reada.  -EAGAIN is returned and the search must be repeated.
2390 */
2391static int
2392read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2393                      struct extent_buffer **eb_ret, int level, int slot,
2394                      const struct btrfs_key *key)
2395{
2396        struct btrfs_fs_info *fs_info = root->fs_info;
2397        u64 blocknr;
2398        u64 gen;
2399        struct extent_buffer *b = *eb_ret;
2400        struct extent_buffer *tmp;
2401        struct btrfs_key first_key;
2402        int ret;
2403        int parent_level;
2404
2405        blocknr = btrfs_node_blockptr(b, slot);
2406        gen = btrfs_node_ptr_generation(b, slot);
2407        parent_level = btrfs_header_level(b);
2408        btrfs_node_key_to_cpu(b, &first_key, slot);
2409
2410        tmp = find_extent_buffer(fs_info, blocknr);
2411        if (tmp) {
2412                /* first we do an atomic uptodate check */
2413                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2414                        /*
2415                         * Do extra check for first_key, eb can be stale due to
2416                         * being cached, read from scrub, or have multiple
2417                         * parents (shared tree blocks).
2418                         */
2419                        if (btrfs_verify_level_key(tmp,
2420                                        parent_level - 1, &first_key, gen)) {
2421                                free_extent_buffer(tmp);
2422                                return -EUCLEAN;
2423                        }
2424                        *eb_ret = tmp;
2425                        return 0;
2426                }
2427
2428                /* the pages were up to date, but we failed
2429                 * the generation number check.  Do a full
2430                 * read for the generation number that is correct.
2431                 * We must do this without dropping locks so
2432                 * we can trust our generation number
2433                 */
2434                btrfs_set_path_blocking(p);
2435
2436                /* now we're allowed to do a blocking uptodate check */
2437                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2438                if (!ret) {
2439                        *eb_ret = tmp;
2440                        return 0;
2441                }
2442                free_extent_buffer(tmp);
2443                btrfs_release_path(p);
2444                return -EIO;
2445        }
2446
2447        /*
2448         * reduce lock contention at high levels
2449         * of the btree by dropping locks before
2450         * we read.  Don't release the lock on the current
2451         * level because we need to walk this node to figure
2452         * out which blocks to read.
2453         */
2454        btrfs_unlock_up_safe(p, level + 1);
2455        btrfs_set_path_blocking(p);
2456
2457        if (p->reada != READA_NONE)
2458                reada_for_search(fs_info, p, level, slot, key->objectid);
2459
2460        ret = -EAGAIN;
2461        tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2462                              &first_key);
2463        if (!IS_ERR(tmp)) {
2464                /*
2465                 * If the read above didn't mark this buffer up to date,
2466                 * it will never end up being up to date.  Set ret to EIO now
2467                 * and give up so that our caller doesn't loop forever
2468                 * on our EAGAINs.
2469                 */
2470                if (!extent_buffer_uptodate(tmp))
2471                        ret = -EIO;
2472                free_extent_buffer(tmp);
2473        } else {
2474                ret = PTR_ERR(tmp);
2475        }
2476
2477        btrfs_release_path(p);
2478        return ret;
2479}
2480
2481/*
2482 * helper function for btrfs_search_slot.  This does all of the checks
2483 * for node-level blocks and does any balancing required based on
2484 * the ins_len.
2485 *
2486 * If no extra work was required, zero is returned.  If we had to
2487 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2488 * start over
2489 */
2490static int
2491setup_nodes_for_search(struct btrfs_trans_handle *trans,
2492                       struct btrfs_root *root, struct btrfs_path *p,
2493                       struct extent_buffer *b, int level, int ins_len,
2494                       int *write_lock_level)
2495{
2496        struct btrfs_fs_info *fs_info = root->fs_info;
2497        int ret;
2498
2499        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2500            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2501                int sret;
2502
2503                if (*write_lock_level < level + 1) {
2504                        *write_lock_level = level + 1;
2505                        btrfs_release_path(p);
2506                        goto again;
2507                }
2508
2509                btrfs_set_path_blocking(p);
2510                reada_for_balance(fs_info, p, level);
2511                sret = split_node(trans, root, p, level);
2512
2513                BUG_ON(sret > 0);
2514                if (sret) {
2515                        ret = sret;
2516                        goto done;
2517                }
2518                b = p->nodes[level];
2519        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2520                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2521                int sret;
2522
2523                if (*write_lock_level < level + 1) {
2524                        *write_lock_level = level + 1;
2525                        btrfs_release_path(p);
2526                        goto again;
2527                }
2528
2529                btrfs_set_path_blocking(p);
2530                reada_for_balance(fs_info, p, level);
2531                sret = balance_level(trans, root, p, level);
2532
2533                if (sret) {
2534                        ret = sret;
2535                        goto done;
2536                }
2537                b = p->nodes[level];
2538                if (!b) {
2539                        btrfs_release_path(p);
2540                        goto again;
2541                }
2542                BUG_ON(btrfs_header_nritems(b) == 1);
2543        }
2544        return 0;
2545
2546again:
2547        ret = -EAGAIN;
2548done:
2549        return ret;
2550}
2551
2552static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553                      int level, int *prev_cmp, int *slot)
2554{
2555        if (*prev_cmp != 0) {
2556                *prev_cmp = btrfs_bin_search(b, key, level, slot);
2557                return *prev_cmp;
2558        }
2559
2560        *slot = 0;
2561
2562        return 0;
2563}
2564
2565int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2566                u64 iobjectid, u64 ioff, u8 key_type,
2567                struct btrfs_key *found_key)
2568{
2569        int ret;
2570        struct btrfs_key key;
2571        struct extent_buffer *eb;
2572
2573        ASSERT(path);
2574        ASSERT(found_key);
2575
2576        key.type = key_type;
2577        key.objectid = iobjectid;
2578        key.offset = ioff;
2579
2580        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2581        if (ret < 0)
2582                return ret;
2583
2584        eb = path->nodes[0];
2585        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2586                ret = btrfs_next_leaf(fs_root, path);
2587                if (ret)
2588                        return ret;
2589                eb = path->nodes[0];
2590        }
2591
2592        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2593        if (found_key->type != key.type ||
2594                        found_key->objectid != key.objectid)
2595                return 1;
2596
2597        return 0;
2598}
2599
2600static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2601                                                        struct btrfs_path *p,
2602                                                        int write_lock_level)
2603{
2604        struct btrfs_fs_info *fs_info = root->fs_info;
2605        struct extent_buffer *b;
2606        int root_lock;
2607        int level = 0;
2608
2609        /* We try very hard to do read locks on the root */
2610        root_lock = BTRFS_READ_LOCK;
2611
2612        if (p->search_commit_root) {
2613                /*
2614                 * The commit roots are read only so we always do read locks,
2615                 * and we always must hold the commit_root_sem when doing
2616                 * searches on them, the only exception is send where we don't
2617                 * want to block transaction commits for a long time, so
2618                 * we need to clone the commit root in order to avoid races
2619                 * with transaction commits that create a snapshot of one of
2620                 * the roots used by a send operation.
2621                 */
2622                if (p->need_commit_sem) {
2623                        down_read(&fs_info->commit_root_sem);
2624                        b = btrfs_clone_extent_buffer(root->commit_root);
2625                        up_read(&fs_info->commit_root_sem);
2626                        if (!b)
2627                                return ERR_PTR(-ENOMEM);
2628
2629                } else {
2630                        b = root->commit_root;
2631                        extent_buffer_get(b);
2632                }
2633                level = btrfs_header_level(b);
2634                /*
2635                 * Ensure that all callers have set skip_locking when
2636                 * p->search_commit_root = 1.
2637                 */
2638                ASSERT(p->skip_locking == 1);
2639
2640                goto out;
2641        }
2642
2643        if (p->skip_locking) {
2644                b = btrfs_root_node(root);
2645                level = btrfs_header_level(b);
2646                goto out;
2647        }
2648
2649        /*
2650         * If the level is set to maximum, we can skip trying to get the read
2651         * lock.
2652         */
2653        if (write_lock_level < BTRFS_MAX_LEVEL) {
2654                /*
2655                 * We don't know the level of the root node until we actually
2656                 * have it read locked
2657                 */
2658                b = btrfs_read_lock_root_node(root);
2659                level = btrfs_header_level(b);
2660                if (level > write_lock_level)
2661                        goto out;
2662
2663                /* Whoops, must trade for write lock */
2664                btrfs_tree_read_unlock(b);
2665                free_extent_buffer(b);
2666        }
2667
2668        b = btrfs_lock_root_node(root);
2669        root_lock = BTRFS_WRITE_LOCK;
2670
2671        /* The level might have changed, check again */
2672        level = btrfs_header_level(b);
2673
2674out:
2675        p->nodes[level] = b;
2676        if (!p->skip_locking)
2677                p->locks[level] = root_lock;
2678        /*
2679         * Callers are responsible for dropping b's references.
2680         */
2681        return b;
2682}
2683
2684
2685/*
2686 * btrfs_search_slot - look for a key in a tree and perform necessary
2687 * modifications to preserve tree invariants.
2688 *
2689 * @trans:      Handle of transaction, used when modifying the tree
2690 * @p:          Holds all btree nodes along the search path
2691 * @root:       The root node of the tree
2692 * @key:        The key we are looking for
2693 * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2694 *              deletions it's -1. 0 for plain searches
2695 * @cow:        boolean should CoW operations be performed. Must always be 1
2696 *              when modifying the tree.
2697 *
2698 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2699 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2700 *
2701 * If @key is found, 0 is returned and you can find the item in the leaf level
2702 * of the path (level 0)
2703 *
2704 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2705 * points to the slot where it should be inserted
2706 *
2707 * If an error is encountered while searching the tree a negative error number
2708 * is returned
2709 */
2710int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2711                      const struct btrfs_key *key, struct btrfs_path *p,
2712                      int ins_len, int cow)
2713{
2714        struct extent_buffer *b;
2715        int slot;
2716        int ret;
2717        int err;
2718        int level;
2719        int lowest_unlock = 1;
2720        /* everything at write_lock_level or lower must be write locked */
2721        int write_lock_level = 0;
2722        u8 lowest_level = 0;
2723        int min_write_lock_level;
2724        int prev_cmp;
2725
2726        lowest_level = p->lowest_level;
2727        WARN_ON(lowest_level && ins_len > 0);
2728        WARN_ON(p->nodes[0] != NULL);
2729        BUG_ON(!cow && ins_len);
2730
2731        if (ins_len < 0) {
2732                lowest_unlock = 2;
2733
2734                /* when we are removing items, we might have to go up to level
2735                 * two as we update tree pointers  Make sure we keep write
2736                 * for those levels as well
2737                 */
2738                write_lock_level = 2;
2739        } else if (ins_len > 0) {
2740                /*
2741                 * for inserting items, make sure we have a write lock on
2742                 * level 1 so we can update keys
2743                 */
2744                write_lock_level = 1;
2745        }
2746
2747        if (!cow)
2748                write_lock_level = -1;
2749
2750        if (cow && (p->keep_locks || p->lowest_level))
2751                write_lock_level = BTRFS_MAX_LEVEL;
2752
2753        min_write_lock_level = write_lock_level;
2754
2755again:
2756        prev_cmp = -1;
2757        b = btrfs_search_slot_get_root(root, p, write_lock_level);
2758        if (IS_ERR(b)) {
2759                ret = PTR_ERR(b);
2760                goto done;
2761        }
2762
2763        while (b) {
2764                level = btrfs_header_level(b);
2765
2766                /*
2767                 * setup the path here so we can release it under lock
2768                 * contention with the cow code
2769                 */
2770                if (cow) {
2771                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2772
2773                        /*
2774                         * if we don't really need to cow this block
2775                         * then we don't want to set the path blocking,
2776                         * so we test it here
2777                         */
2778                        if (!should_cow_block(trans, root, b)) {
2779                                trans->dirty = true;
2780                                goto cow_done;
2781                        }
2782
2783                        /*
2784                         * must have write locks on this node and the
2785                         * parent
2786                         */
2787                        if (level > write_lock_level ||
2788                            (level + 1 > write_lock_level &&
2789                            level + 1 < BTRFS_MAX_LEVEL &&
2790                            p->nodes[level + 1])) {
2791                                write_lock_level = level + 1;
2792                                btrfs_release_path(p);
2793                                goto again;
2794                        }
2795
2796                        btrfs_set_path_blocking(p);
2797                        if (last_level)
2798                                err = btrfs_cow_block(trans, root, b, NULL, 0,
2799                                                      &b);
2800                        else
2801                                err = btrfs_cow_block(trans, root, b,
2802                                                      p->nodes[level + 1],
2803                                                      p->slots[level + 1], &b);
2804                        if (err) {
2805                                ret = err;
2806                                goto done;
2807                        }
2808                }
2809cow_done:
2810                p->nodes[level] = b;
2811                /*
2812                 * Leave path with blocking locks to avoid massive
2813                 * lock context switch, this is made on purpose.
2814                 */
2815
2816                /*
2817                 * we have a lock on b and as long as we aren't changing
2818                 * the tree, there is no way to for the items in b to change.
2819                 * It is safe to drop the lock on our parent before we
2820                 * go through the expensive btree search on b.
2821                 *
2822                 * If we're inserting or deleting (ins_len != 0), then we might
2823                 * be changing slot zero, which may require changing the parent.
2824                 * So, we can't drop the lock until after we know which slot
2825                 * we're operating on.
2826                 */
2827                if (!ins_len && !p->keep_locks) {
2828                        int u = level + 1;
2829
2830                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2831                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2832                                p->locks[u] = 0;
2833                        }
2834                }
2835
2836                ret = key_search(b, key, level, &prev_cmp, &slot);
2837                if (ret < 0)
2838                        goto done;
2839
2840                if (level != 0) {
2841                        int dec = 0;
2842                        if (ret && slot > 0) {
2843                                dec = 1;
2844                                slot -= 1;
2845                        }
2846                        p->slots[level] = slot;
2847                        err = setup_nodes_for_search(trans, root, p, b, level,
2848                                             ins_len, &write_lock_level);
2849                        if (err == -EAGAIN)
2850                                goto again;
2851                        if (err) {
2852                                ret = err;
2853                                goto done;
2854                        }
2855                        b = p->nodes[level];
2856                        slot = p->slots[level];
2857
2858                        /*
2859                         * slot 0 is special, if we change the key
2860                         * we have to update the parent pointer
2861                         * which means we must have a write lock
2862                         * on the parent
2863                         */
2864                        if (slot == 0 && ins_len &&
2865                            write_lock_level < level + 1) {
2866                                write_lock_level = level + 1;
2867                                btrfs_release_path(p);
2868                                goto again;
2869                        }
2870
2871                        unlock_up(p, level, lowest_unlock,
2872                                  min_write_lock_level, &write_lock_level);
2873
2874                        if (level == lowest_level) {
2875                                if (dec)
2876                                        p->slots[level]++;
2877                                goto done;
2878                        }
2879
2880                        err = read_block_for_search(root, p, &b, level,
2881                                                    slot, key);
2882                        if (err == -EAGAIN)
2883                                goto again;
2884                        if (err) {
2885                                ret = err;
2886                                goto done;
2887                        }
2888
2889                        if (!p->skip_locking) {
2890                                level = btrfs_header_level(b);
2891                                if (level <= write_lock_level) {
2892                                        err = btrfs_try_tree_write_lock(b);
2893                                        if (!err) {
2894                                                btrfs_set_path_blocking(p);
2895                                                btrfs_tree_lock(b);
2896                                        }
2897                                        p->locks[level] = BTRFS_WRITE_LOCK;
2898                                } else {
2899                                        err = btrfs_tree_read_lock_atomic(b);
2900                                        if (!err) {
2901                                                btrfs_set_path_blocking(p);
2902                                                btrfs_tree_read_lock(b);
2903                                        }
2904                                        p->locks[level] = BTRFS_READ_LOCK;
2905                                }
2906                                p->nodes[level] = b;
2907                        }
2908                } else {
2909                        p->slots[level] = slot;
2910                        if (ins_len > 0 &&
2911                            btrfs_leaf_free_space(b) < ins_len) {
2912                                if (write_lock_level < 1) {
2913                                        write_lock_level = 1;
2914                                        btrfs_release_path(p);
2915                                        goto again;
2916                                }
2917
2918                                btrfs_set_path_blocking(p);
2919                                err = split_leaf(trans, root, key,
2920                                                 p, ins_len, ret == 0);
2921
2922                                BUG_ON(err > 0);
2923                                if (err) {
2924                                        ret = err;
2925                                        goto done;
2926                                }
2927                        }
2928                        if (!p->search_for_split)
2929                                unlock_up(p, level, lowest_unlock,
2930                                          min_write_lock_level, NULL);
2931                        goto done;
2932                }
2933        }
2934        ret = 1;
2935done:
2936        /*
2937         * we don't really know what they plan on doing with the path
2938         * from here on, so for now just mark it as blocking
2939         */
2940        if (!p->leave_spinning)
2941                btrfs_set_path_blocking(p);
2942        if (ret < 0 && !p->skip_release_on_error)
2943                btrfs_release_path(p);
2944        return ret;
2945}
2946
2947/*
2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2949 * current state of the tree together with the operations recorded in the tree
2950 * modification log to search for the key in a previous version of this tree, as
2951 * denoted by the time_seq parameter.
2952 *
2953 * Naturally, there is no support for insert, delete or cow operations.
2954 *
2955 * The resulting path and return value will be set up as if we called
2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2957 */
2958int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2959                          struct btrfs_path *p, u64 time_seq)
2960{
2961        struct btrfs_fs_info *fs_info = root->fs_info;
2962        struct extent_buffer *b;
2963        int slot;
2964        int ret;
2965        int err;
2966        int level;
2967        int lowest_unlock = 1;
2968        u8 lowest_level = 0;
2969        int prev_cmp = -1;
2970
2971        lowest_level = p->lowest_level;
2972        WARN_ON(p->nodes[0] != NULL);
2973
2974        if (p->search_commit_root) {
2975                BUG_ON(time_seq);
2976                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2977        }
2978
2979again:
2980        b = get_old_root(root, time_seq);
2981        if (!b) {
2982                ret = -EIO;
2983                goto done;
2984        }
2985        level = btrfs_header_level(b);
2986        p->locks[level] = BTRFS_READ_LOCK;
2987
2988        while (b) {
2989                level = btrfs_header_level(b);
2990                p->nodes[level] = b;
2991
2992                /*
2993                 * we have a lock on b and as long as we aren't changing
2994                 * the tree, there is no way to for the items in b to change.
2995                 * It is safe to drop the lock on our parent before we
2996                 * go through the expensive btree search on b.
2997                 */
2998                btrfs_unlock_up_safe(p, level + 1);
2999
3000                /*
3001                 * Since we can unwind ebs we want to do a real search every
3002                 * time.
3003                 */
3004                prev_cmp = -1;
3005                ret = key_search(b, key, level, &prev_cmp, &slot);
3006                if (ret < 0)
3007                        goto done;
3008
3009                if (level != 0) {
3010                        int dec = 0;
3011                        if (ret && slot > 0) {
3012                                dec = 1;
3013                                slot -= 1;
3014                        }
3015                        p->slots[level] = slot;
3016                        unlock_up(p, level, lowest_unlock, 0, NULL);
3017
3018                        if (level == lowest_level) {
3019                                if (dec)
3020                                        p->slots[level]++;
3021                                goto done;
3022                        }
3023
3024                        err = read_block_for_search(root, p, &b, level,
3025                                                    slot, key);
3026                        if (err == -EAGAIN)
3027                                goto again;
3028                        if (err) {
3029                                ret = err;
3030                                goto done;
3031                        }
3032
3033                        level = btrfs_header_level(b);
3034                        err = btrfs_tree_read_lock_atomic(b);
3035                        if (!err) {
3036                                btrfs_set_path_blocking(p);
3037                                btrfs_tree_read_lock(b);
3038                        }
3039                        b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040                        if (!b) {
3041                                ret = -ENOMEM;
3042                                goto done;
3043                        }
3044                        p->locks[level] = BTRFS_READ_LOCK;
3045                        p->nodes[level] = b;
3046                } else {
3047                        p->slots[level] = slot;
3048                        unlock_up(p, level, lowest_unlock, 0, NULL);
3049                        goto done;
3050                }
3051        }
3052        ret = 1;
3053done:
3054        if (!p->leave_spinning)
3055                btrfs_set_path_blocking(p);
3056        if (ret < 0)
3057                btrfs_release_path(p);
3058
3059        return ret;
3060}
3061
3062/*
3063 * helper to use instead of search slot if no exact match is needed but
3064 * instead the next or previous item should be returned.
3065 * When find_higher is true, the next higher item is returned, the next lower
3066 * otherwise.
3067 * When return_any and find_higher are both true, and no higher item is found,
3068 * return the next lower instead.
3069 * When return_any is true and find_higher is false, and no lower item is found,
3070 * return the next higher instead.
3071 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3072 * < 0 on error
3073 */
3074int btrfs_search_slot_for_read(struct btrfs_root *root,
3075                               const struct btrfs_key *key,
3076                               struct btrfs_path *p, int find_higher,
3077                               int return_any)
3078{
3079        int ret;
3080        struct extent_buffer *leaf;
3081
3082again:
3083        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3084        if (ret <= 0)
3085                return ret;
3086        /*
3087         * a return value of 1 means the path is at the position where the
3088         * item should be inserted. Normally this is the next bigger item,
3089         * but in case the previous item is the last in a leaf, path points
3090         * to the first free slot in the previous leaf, i.e. at an invalid
3091         * item.
3092         */
3093        leaf = p->nodes[0];
3094
3095        if (find_higher) {
3096                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3097                        ret = btrfs_next_leaf(root, p);
3098                        if (ret <= 0)
3099                                return ret;
3100                        if (!return_any)
3101                                return 1;
3102                        /*
3103                         * no higher item found, return the next
3104                         * lower instead
3105                         */
3106                        return_any = 0;
3107                        find_higher = 0;
3108                        btrfs_release_path(p);
3109                        goto again;
3110                }
3111        } else {
3112                if (p->slots[0] == 0) {
3113                        ret = btrfs_prev_leaf(root, p);
3114                        if (ret < 0)
3115                                return ret;
3116                        if (!ret) {
3117                                leaf = p->nodes[0];
3118                                if (p->slots[0] == btrfs_header_nritems(leaf))
3119                                        p->slots[0]--;
3120                                return 0;
3121                        }
3122                        if (!return_any)
3123                                return 1;
3124                        /*
3125                         * no lower item found, return the next
3126                         * higher instead
3127                         */
3128                        return_any = 0;
3129                        find_higher = 1;
3130                        btrfs_release_path(p);
3131                        goto again;
3132                } else {
3133                        --p->slots[0];
3134                }
3135        }
3136        return 0;
3137}
3138
3139/*
3140 * adjust the pointers going up the tree, starting at level
3141 * making sure the right key of each node is points to 'key'.
3142 * This is used after shifting pointers to the left, so it stops
3143 * fixing up pointers when a given leaf/node is not in slot 0 of the
3144 * higher levels
3145 *
3146 */
3147static void fixup_low_keys(struct btrfs_path *path,
3148                           struct btrfs_disk_key *key, int level)
3149{
3150        int i;
3151        struct extent_buffer *t;
3152        int ret;
3153
3154        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3155                int tslot = path->slots[i];
3156
3157                if (!path->nodes[i])
3158                        break;
3159                t = path->nodes[i];
3160                ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3161                                GFP_ATOMIC);
3162                BUG_ON(ret < 0);
3163                btrfs_set_node_key(t, key, tslot);
3164                btrfs_mark_buffer_dirty(path->nodes[i]);
3165                if (tslot != 0)
3166                        break;
3167        }
3168}
3169
3170/*
3171 * update item key.
3172 *
3173 * This function isn't completely safe. It's the caller's responsibility
3174 * that the new key won't break the order
3175 */
3176void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3177                             struct btrfs_path *path,
3178                             const struct btrfs_key *new_key)
3179{
3180        struct btrfs_disk_key disk_key;
3181        struct extent_buffer *eb;
3182        int slot;
3183
3184        eb = path->nodes[0];
3185        slot = path->slots[0];
3186        if (slot > 0) {
3187                btrfs_item_key(eb, &disk_key, slot - 1);
3188                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3189                        btrfs_crit(fs_info,
3190                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3191                                   slot, btrfs_disk_key_objectid(&disk_key),
3192                                   btrfs_disk_key_type(&disk_key),
3193                                   btrfs_disk_key_offset(&disk_key),
3194                                   new_key->objectid, new_key->type,
3195                                   new_key->offset);
3196                        btrfs_print_leaf(eb);
3197                        BUG();
3198                }
3199        }
3200        if (slot < btrfs_header_nritems(eb) - 1) {
3201                btrfs_item_key(eb, &disk_key, slot + 1);
3202                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3203                        btrfs_crit(fs_info,
3204                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3205                                   slot, btrfs_disk_key_objectid(&disk_key),
3206                                   btrfs_disk_key_type(&disk_key),
3207                                   btrfs_disk_key_offset(&disk_key),
3208                                   new_key->objectid, new_key->type,
3209                                   new_key->offset);
3210                        btrfs_print_leaf(eb);
3211                        BUG();
3212                }
3213        }
3214
3215        btrfs_cpu_key_to_disk(&disk_key, new_key);
3216        btrfs_set_item_key(eb, &disk_key, slot);
3217        btrfs_mark_buffer_dirty(eb);
3218        if (slot == 0)
3219                fixup_low_keys(path, &disk_key, 1);
3220}
3221
3222/*
3223 * try to push data from one node into the next node left in the
3224 * tree.
3225 *
3226 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3227 * error, and > 0 if there was no room in the left hand block.
3228 */
3229static int push_node_left(struct btrfs_trans_handle *trans,
3230                          struct extent_buffer *dst,
3231                          struct extent_buffer *src, int empty)
3232{
3233        struct btrfs_fs_info *fs_info = trans->fs_info;
3234        int push_items = 0;
3235        int src_nritems;
3236        int dst_nritems;
3237        int ret = 0;
3238
3239        src_nritems = btrfs_header_nritems(src);
3240        dst_nritems = btrfs_header_nritems(dst);
3241        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3242        WARN_ON(btrfs_header_generation(src) != trans->transid);
3243        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3244
3245        if (!empty && src_nritems <= 8)
3246                return 1;
3247
3248        if (push_items <= 0)
3249                return 1;
3250
3251        if (empty) {
3252                push_items = min(src_nritems, push_items);
3253                if (push_items < src_nritems) {
3254                        /* leave at least 8 pointers in the node if
3255                         * we aren't going to empty it
3256                         */
3257                        if (src_nritems - push_items < 8) {
3258                                if (push_items <= 8)
3259                                        return 1;
3260                                push_items -= 8;
3261                        }
3262                }
3263        } else
3264                push_items = min(src_nritems - 8, push_items);
3265
3266        ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3267        if (ret) {
3268                btrfs_abort_transaction(trans, ret);
3269                return ret;
3270        }
3271        copy_extent_buffer(dst, src,
3272                           btrfs_node_key_ptr_offset(dst_nritems),
3273                           btrfs_node_key_ptr_offset(0),
3274                           push_items * sizeof(struct btrfs_key_ptr));
3275
3276        if (push_items < src_nritems) {
3277                /*
3278                 * Don't call tree_mod_log_insert_move here, key removal was
3279                 * already fully logged by tree_mod_log_eb_copy above.
3280                 */
3281                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3282                                      btrfs_node_key_ptr_offset(push_items),
3283                                      (src_nritems - push_items) *
3284                                      sizeof(struct btrfs_key_ptr));
3285        }
3286        btrfs_set_header_nritems(src, src_nritems - push_items);
3287        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3288        btrfs_mark_buffer_dirty(src);
3289        btrfs_mark_buffer_dirty(dst);
3290
3291        return ret;
3292}
3293
3294/*
3295 * try to push data from one node into the next node right in the
3296 * tree.
3297 *
3298 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3299 * error, and > 0 if there was no room in the right hand block.
3300 *
3301 * this will  only push up to 1/2 the contents of the left node over
3302 */
3303static int balance_node_right(struct btrfs_trans_handle *trans,
3304                              struct extent_buffer *dst,
3305                              struct extent_buffer *src)
3306{
3307        struct btrfs_fs_info *fs_info = trans->fs_info;
3308        int push_items = 0;
3309        int max_push;
3310        int src_nritems;
3311        int dst_nritems;
3312        int ret = 0;
3313
3314        WARN_ON(btrfs_header_generation(src) != trans->transid);
3315        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3316
3317        src_nritems = btrfs_header_nritems(src);
3318        dst_nritems = btrfs_header_nritems(dst);
3319        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3320        if (push_items <= 0)
3321                return 1;
3322
3323        if (src_nritems < 4)
3324                return 1;
3325
3326        max_push = src_nritems / 2 + 1;
3327        /* don't try to empty the node */
3328        if (max_push >= src_nritems)
3329                return 1;
3330
3331        if (max_push < push_items)
3332                push_items = max_push;
3333
3334        ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3335        BUG_ON(ret < 0);
3336        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3337                                      btrfs_node_key_ptr_offset(0),
3338                                      (dst_nritems) *
3339                                      sizeof(struct btrfs_key_ptr));
3340
3341        ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3342                                   push_items);
3343        if (ret) {
3344                btrfs_abort_transaction(trans, ret);
3345                return ret;
3346        }
3347        copy_extent_buffer(dst, src,
3348                           btrfs_node_key_ptr_offset(0),
3349                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3350                           push_items * sizeof(struct btrfs_key_ptr));
3351
3352        btrfs_set_header_nritems(src, src_nritems - push_items);
3353        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3354
3355        btrfs_mark_buffer_dirty(src);
3356        btrfs_mark_buffer_dirty(dst);
3357
3358        return ret;
3359}
3360
3361/*
3362 * helper function to insert a new root level in the tree.
3363 * A new node is allocated, and a single item is inserted to
3364 * point to the existing root
3365 *
3366 * returns zero on success or < 0 on failure.
3367 */
3368static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3369                           struct btrfs_root *root,
3370                           struct btrfs_path *path, int level)
3371{
3372        struct btrfs_fs_info *fs_info = root->fs_info;
3373        u64 lower_gen;
3374        struct extent_buffer *lower;
3375        struct extent_buffer *c;
3376        struct extent_buffer *old;
3377        struct btrfs_disk_key lower_key;
3378        int ret;
3379
3380        BUG_ON(path->nodes[level]);
3381        BUG_ON(path->nodes[level-1] != root->node);
3382
3383        lower = path->nodes[level-1];
3384        if (level == 1)
3385                btrfs_item_key(lower, &lower_key, 0);
3386        else
3387                btrfs_node_key(lower, &lower_key, 0);
3388
3389        c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3390                                         root->node->start, 0);
3391        if (IS_ERR(c))
3392                return PTR_ERR(c);
3393
3394        root_add_used(root, fs_info->nodesize);
3395
3396        btrfs_set_header_nritems(c, 1);
3397        btrfs_set_node_key(c, &lower_key, 0);
3398        btrfs_set_node_blockptr(c, 0, lower->start);
3399        lower_gen = btrfs_header_generation(lower);
3400        WARN_ON(lower_gen != trans->transid);
3401
3402        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3403
3404        btrfs_mark_buffer_dirty(c);
3405
3406        old = root->node;
3407        ret = tree_mod_log_insert_root(root->node, c, 0);
3408        BUG_ON(ret < 0);
3409        rcu_assign_pointer(root->node, c);
3410
3411        /* the super has an extra ref to root->node */
3412        free_extent_buffer(old);
3413
3414        add_root_to_dirty_list(root);
3415        extent_buffer_get(c);
3416        path->nodes[level] = c;
3417        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3418        path->slots[level] = 0;
3419        return 0;
3420}
3421
3422/*
3423 * worker function to insert a single pointer in a node.
3424 * the node should have enough room for the pointer already
3425 *
3426 * slot and level indicate where you want the key to go, and
3427 * blocknr is the block the key points to.
3428 */
3429static void insert_ptr(struct btrfs_trans_handle *trans,
3430                       struct btrfs_path *path,
3431                       struct btrfs_disk_key *key, u64 bytenr,
3432                       int slot, int level)
3433{
3434        struct extent_buffer *lower;
3435        int nritems;
3436        int ret;
3437
3438        BUG_ON(!path->nodes[level]);
3439        btrfs_assert_tree_locked(path->nodes[level]);
3440        lower = path->nodes[level];
3441        nritems = btrfs_header_nritems(lower);
3442        BUG_ON(slot > nritems);
3443        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3444        if (slot != nritems) {
3445                if (level) {
3446                        ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3447                                        nritems - slot);
3448                        BUG_ON(ret < 0);
3449                }
3450                memmove_extent_buffer(lower,
3451                              btrfs_node_key_ptr_offset(slot + 1),
3452                              btrfs_node_key_ptr_offset(slot),
3453                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3454        }
3455        if (level) {
3456                ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3457                                GFP_NOFS);
3458                BUG_ON(ret < 0);
3459        }
3460        btrfs_set_node_key(lower, key, slot);
3461        btrfs_set_node_blockptr(lower, slot, bytenr);
3462        WARN_ON(trans->transid == 0);
3463        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3464        btrfs_set_header_nritems(lower, nritems + 1);
3465        btrfs_mark_buffer_dirty(lower);
3466}
3467
3468/*
3469 * split the node at the specified level in path in two.
3470 * The path is corrected to point to the appropriate node after the split
3471 *
3472 * Before splitting this tries to make some room in the node by pushing
3473 * left and right, if either one works, it returns right away.
3474 *
3475 * returns 0 on success and < 0 on failure
3476 */
3477static noinline int split_node(struct btrfs_trans_handle *trans,
3478                               struct btrfs_root *root,
3479                               struct btrfs_path *path, int level)
3480{
3481        struct btrfs_fs_info *fs_info = root->fs_info;
3482        struct extent_buffer *c;
3483        struct extent_buffer *split;
3484        struct btrfs_disk_key disk_key;
3485        int mid;
3486        int ret;
3487        u32 c_nritems;
3488
3489        c = path->nodes[level];
3490        WARN_ON(btrfs_header_generation(c) != trans->transid);
3491        if (c == root->node) {
3492                /*
3493                 * trying to split the root, lets make a new one
3494                 *
3495                 * tree mod log: We don't log_removal old root in
3496                 * insert_new_root, because that root buffer will be kept as a
3497                 * normal node. We are going to log removal of half of the
3498                 * elements below with tree_mod_log_eb_copy. We're holding a
3499                 * tree lock on the buffer, which is why we cannot race with
3500                 * other tree_mod_log users.
3501                 */
3502                ret = insert_new_root(trans, root, path, level + 1);
3503                if (ret)
3504                        return ret;
3505        } else {
3506                ret = push_nodes_for_insert(trans, root, path, level);
3507                c = path->nodes[level];
3508                if (!ret && btrfs_header_nritems(c) <
3509                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3510                        return 0;
3511                if (ret < 0)
3512                        return ret;
3513        }
3514
3515        c_nritems = btrfs_header_nritems(c);
3516        mid = (c_nritems + 1) / 2;
3517        btrfs_node_key(c, &disk_key, mid);
3518
3519        split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3520                                             c->start, 0);
3521        if (IS_ERR(split))
3522                return PTR_ERR(split);
3523
3524        root_add_used(root, fs_info->nodesize);
3525        ASSERT(btrfs_header_level(c) == level);
3526
3527        ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3528        if (ret) {
3529                btrfs_abort_transaction(trans, ret);
3530                return ret;
3531        }
3532        copy_extent_buffer(split, c,
3533                           btrfs_node_key_ptr_offset(0),
3534                           btrfs_node_key_ptr_offset(mid),
3535                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3536        btrfs_set_header_nritems(split, c_nritems - mid);
3537        btrfs_set_header_nritems(c, mid);
3538        ret = 0;
3539
3540        btrfs_mark_buffer_dirty(c);
3541        btrfs_mark_buffer_dirty(split);
3542
3543        insert_ptr(trans, path, &disk_key, split->start,
3544                   path->slots[level + 1] + 1, level + 1);
3545
3546        if (path->slots[level] >= mid) {
3547                path->slots[level] -= mid;
3548                btrfs_tree_unlock(c);
3549                free_extent_buffer(c);
3550                path->nodes[level] = split;
3551                path->slots[level + 1] += 1;
3552        } else {
3553                btrfs_tree_unlock(split);
3554                free_extent_buffer(split);
3555        }
3556        return ret;
3557}
3558
3559/*
3560 * how many bytes are required to store the items in a leaf.  start
3561 * and nr indicate which items in the leaf to check.  This totals up the
3562 * space used both by the item structs and the item data
3563 */
3564static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3565{
3566        struct btrfs_item *start_item;
3567        struct btrfs_item *end_item;
3568        struct btrfs_map_token token;
3569        int data_len;
3570        int nritems = btrfs_header_nritems(l);
3571        int end = min(nritems, start + nr) - 1;
3572
3573        if (!nr)
3574                return 0;
3575        btrfs_init_map_token(&token);
3576        start_item = btrfs_item_nr(start);
3577        end_item = btrfs_item_nr(end);
3578        data_len = btrfs_token_item_offset(l, start_item, &token) +
3579                btrfs_token_item_size(l, start_item, &token);
3580        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3581        data_len += sizeof(struct btrfs_item) * nr;
3582        WARN_ON(data_len < 0);
3583        return data_len;
3584}
3585
3586/*
3587 * The space between the end of the leaf items and
3588 * the start of the leaf data.  IOW, how much room
3589 * the leaf has left for both items and data
3590 */
3591noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3592{
3593        struct btrfs_fs_info *fs_info = leaf->fs_info;
3594        int nritems = btrfs_header_nritems(leaf);
3595        int ret;
3596
3597        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3598        if (ret < 0) {
3599                btrfs_crit(fs_info,
3600                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3601                           ret,
3602                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3603                           leaf_space_used(leaf, 0, nritems), nritems);
3604        }
3605        return ret;
3606}
3607
3608/*
3609 * min slot controls the lowest index we're willing to push to the
3610 * right.  We'll push up to and including min_slot, but no lower
3611 */
3612static noinline int __push_leaf_right(struct btrfs_path *path,
3613                                      int data_size, int empty,
3614                                      struct extent_buffer *right,
3615                                      int free_space, u32 left_nritems,
3616                                      u32 min_slot)
3617{
3618        struct btrfs_fs_info *fs_info = right->fs_info;
3619        struct extent_buffer *left = path->nodes[0];
3620        struct extent_buffer *upper = path->nodes[1];
3621        struct btrfs_map_token token;
3622        struct btrfs_disk_key disk_key;
3623        int slot;
3624        u32 i;
3625        int push_space = 0;
3626        int push_items = 0;
3627        struct btrfs_item *item;
3628        u32 nr;
3629        u32 right_nritems;
3630        u32 data_end;
3631        u32 this_item_size;
3632
3633        btrfs_init_map_token(&token);
3634
3635        if (empty)
3636                nr = 0;
3637        else
3638                nr = max_t(u32, 1, min_slot);
3639
3640        if (path->slots[0] >= left_nritems)
3641                push_space += data_size;
3642
3643        slot = path->slots[1];
3644        i = left_nritems - 1;
3645        while (i >= nr) {
3646                item = btrfs_item_nr(i);
3647
3648                if (!empty && push_items > 0) {
3649                        if (path->slots[0] > i)
3650                                break;
3651                        if (path->slots[0] == i) {
3652                                int space = btrfs_leaf_free_space(left);
3653
3654                                if (space + push_space * 2 > free_space)
3655                                        break;
3656                        }
3657                }
3658
3659                if (path->slots[0] == i)
3660                        push_space += data_size;
3661
3662                this_item_size = btrfs_item_size(left, item);
3663                if (this_item_size + sizeof(*item) + push_space > free_space)
3664                        break;
3665
3666                push_items++;
3667                push_space += this_item_size + sizeof(*item);
3668                if (i == 0)
3669                        break;
3670                i--;
3671        }
3672
3673        if (push_items == 0)
3674                goto out_unlock;
3675
3676        WARN_ON(!empty && push_items == left_nritems);
3677
3678        /* push left to right */
3679        right_nritems = btrfs_header_nritems(right);
3680
3681        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3682        push_space -= leaf_data_end(left);
3683
3684        /* make room in the right data area */
3685        data_end = leaf_data_end(right);
3686        memmove_extent_buffer(right,
3687                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3688                              BTRFS_LEAF_DATA_OFFSET + data_end,
3689                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3690
3691        /* copy from the left data area */
3692        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3693                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3694                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3695                     push_space);
3696
3697        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3698                              btrfs_item_nr_offset(0),
3699                              right_nritems * sizeof(struct btrfs_item));
3700
3701        /* copy the items from left to right */
3702        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3703                   btrfs_item_nr_offset(left_nritems - push_items),
3704                   push_items * sizeof(struct btrfs_item));
3705
3706        /* update the item pointers */
3707        right_nritems += push_items;
3708        btrfs_set_header_nritems(right, right_nritems);
3709        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3710        for (i = 0; i < right_nritems; i++) {
3711                item = btrfs_item_nr(i);
3712                push_space -= btrfs_token_item_size(right, item, &token);
3713                btrfs_set_token_item_offset(right, item, push_space, &token);
3714        }
3715
3716        left_nritems -= push_items;
3717        btrfs_set_header_nritems(left, left_nritems);
3718
3719        if (left_nritems)
3720                btrfs_mark_buffer_dirty(left);
3721        else
3722                btrfs_clean_tree_block(left);
3723
3724        btrfs_mark_buffer_dirty(right);
3725
3726        btrfs_item_key(right, &disk_key, 0);
3727        btrfs_set_node_key(upper, &disk_key, slot + 1);
3728        btrfs_mark_buffer_dirty(upper);
3729
3730        /* then fixup the leaf pointer in the path */
3731        if (path->slots[0] >= left_nritems) {
3732                path->slots[0] -= left_nritems;
3733                if (btrfs_header_nritems(path->nodes[0]) == 0)
3734                        btrfs_clean_tree_block(path->nodes[0]);
3735                btrfs_tree_unlock(path->nodes[0]);
3736                free_extent_buffer(path->nodes[0]);
3737                path->nodes[0] = right;
3738                path->slots[1] += 1;
3739        } else {
3740                btrfs_tree_unlock(right);
3741                free_extent_buffer(right);
3742        }
3743        return 0;
3744
3745out_unlock:
3746        btrfs_tree_unlock(right);
3747        free_extent_buffer(right);
3748        return 1;
3749}
3750
3751/*
3752 * push some data in the path leaf to the right, trying to free up at
3753 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3754 *
3755 * returns 1 if the push failed because the other node didn't have enough
3756 * room, 0 if everything worked out and < 0 if there were major errors.
3757 *
3758 * this will push starting from min_slot to the end of the leaf.  It won't
3759 * push any slot lower than min_slot
3760 */
3761static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3762                           *root, struct btrfs_path *path,
3763                           int min_data_size, int data_size,
3764                           int empty, u32 min_slot)
3765{
3766        struct extent_buffer *left = path->nodes[0];
3767        struct extent_buffer *right;
3768        struct extent_buffer *upper;
3769        int slot;
3770        int free_space;
3771        u32 left_nritems;
3772        int ret;
3773
3774        if (!path->nodes[1])
3775                return 1;
3776
3777        slot = path->slots[1];
3778        upper = path->nodes[1];
3779        if (slot >= btrfs_header_nritems(upper) - 1)
3780                return 1;
3781
3782        btrfs_assert_tree_locked(path->nodes[1]);
3783
3784        right = read_node_slot(upper, slot + 1);
3785        /*
3786         * slot + 1 is not valid or we fail to read the right node,
3787         * no big deal, just return.
3788         */
3789        if (IS_ERR(right))
3790                return 1;
3791
3792        btrfs_tree_lock(right);
3793        btrfs_set_lock_blocking_write(right);
3794
3795        free_space = btrfs_leaf_free_space(right);
3796        if (free_space < data_size)
3797                goto out_unlock;
3798
3799        /* cow and double check */
3800        ret = btrfs_cow_block(trans, root, right, upper,
3801                              slot + 1, &right);
3802        if (ret)
3803                goto out_unlock;
3804
3805        free_space = btrfs_leaf_free_space(right);
3806        if (free_space < data_size)
3807                goto out_unlock;
3808
3809        left_nritems = btrfs_header_nritems(left);
3810        if (left_nritems == 0)
3811                goto out_unlock;
3812
3813        if (path->slots[0] == left_nritems && !empty) {
3814                /* Key greater than all keys in the leaf, right neighbor has
3815                 * enough room for it and we're not emptying our leaf to delete
3816                 * it, therefore use right neighbor to insert the new item and
3817                 * no need to touch/dirty our left leaf. */
3818                btrfs_tree_unlock(left);
3819                free_extent_buffer(left);
3820                path->nodes[0] = right;
3821                path->slots[0] = 0;
3822                path->slots[1]++;
3823                return 0;
3824        }
3825
3826        return __push_leaf_right(path, min_data_size, empty,
3827                                right, free_space, left_nritems, min_slot);
3828out_unlock:
3829        btrfs_tree_unlock(right);
3830        free_extent_buffer(right);
3831        return 1;
3832}
3833
3834/*
3835 * push some data in the path leaf to the left, trying to free up at
3836 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3837 *
3838 * max_slot can put a limit on how far into the leaf we'll push items.  The
3839 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3840 * items
3841 */
3842static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3843                                     int empty, struct extent_buffer *left,
3844                                     int free_space, u32 right_nritems,
3845                                     u32 max_slot)
3846{
3847        struct btrfs_fs_info *fs_info = left->fs_info;
3848        struct btrfs_disk_key disk_key;
3849        struct extent_buffer *right = path->nodes[0];
3850        int i;
3851        int push_space = 0;
3852        int push_items = 0;
3853        struct btrfs_item *item;
3854        u32 old_left_nritems;
3855        u32 nr;
3856        int ret = 0;
3857        u32 this_item_size;
3858        u32 old_left_item_size;
3859        struct btrfs_map_token token;
3860
3861        btrfs_init_map_token(&token);
3862
3863        if (empty)
3864                nr = min(right_nritems, max_slot);
3865        else
3866                nr = min(right_nritems - 1, max_slot);
3867
3868        for (i = 0; i < nr; i++) {
3869                item = btrfs_item_nr(i);
3870
3871                if (!empty && push_items > 0) {
3872                        if (path->slots[0] < i)
3873                                break;
3874                        if (path->slots[0] == i) {
3875                                int space = btrfs_leaf_free_space(right);
3876
3877                                if (space + push_space * 2 > free_space)
3878                                        break;
3879                        }
3880                }
3881
3882                if (path->slots[0] == i)
3883                        push_space += data_size;
3884
3885                this_item_size = btrfs_item_size(right, item);
3886                if (this_item_size + sizeof(*item) + push_space > free_space)
3887                        break;
3888
3889                push_items++;
3890                push_space += this_item_size + sizeof(*item);
3891        }
3892
3893        if (push_items == 0) {
3894                ret = 1;
3895                goto out;
3896        }
3897        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3898
3899        /* push data from right to left */
3900        copy_extent_buffer(left, right,
3901                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3902                           btrfs_item_nr_offset(0),
3903                           push_items * sizeof(struct btrfs_item));
3904
3905        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3906                     btrfs_item_offset_nr(right, push_items - 1);
3907
3908        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3909                     leaf_data_end(left) - push_space,
3910                     BTRFS_LEAF_DATA_OFFSET +
3911                     btrfs_item_offset_nr(right, push_items - 1),
3912                     push_space);
3913        old_left_nritems = btrfs_header_nritems(left);
3914        BUG_ON(old_left_nritems <= 0);
3915
3916        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3917        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3918                u32 ioff;
3919
3920                item = btrfs_item_nr(i);
3921
3922                ioff = btrfs_token_item_offset(left, item, &token);
3923                btrfs_set_token_item_offset(left, item,
3924                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3925                      &token);
3926        }
3927        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3928
3929        /* fixup right node */
3930        if (push_items > right_nritems)
3931                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3932                       right_nritems);
3933
3934        if (push_items < right_nritems) {
3935                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3936                                                  leaf_data_end(right);
3937                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3938                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3939                                      BTRFS_LEAF_DATA_OFFSET +
3940                                      leaf_data_end(right), push_space);
3941
3942                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3943                              btrfs_item_nr_offset(push_items),
3944                             (btrfs_header_nritems(right) - push_items) *
3945                             sizeof(struct btrfs_item));
3946        }
3947        right_nritems -= push_items;
3948        btrfs_set_header_nritems(right, right_nritems);
3949        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3950        for (i = 0; i < right_nritems; i++) {
3951                item = btrfs_item_nr(i);
3952
3953                push_space = push_space - btrfs_token_item_size(right,
3954                                                                item, &token);
3955                btrfs_set_token_item_offset(right, item, push_space, &token);
3956        }
3957
3958        btrfs_mark_buffer_dirty(left);
3959        if (right_nritems)
3960                btrfs_mark_buffer_dirty(right);
3961        else
3962                btrfs_clean_tree_block(right);
3963
3964        btrfs_item_key(right, &disk_key, 0);
3965        fixup_low_keys(path, &disk_key, 1);
3966
3967        /* then fixup the leaf pointer in the path */
3968        if (path->slots[0] < push_items) {
3969                path->slots[0] += old_left_nritems;
3970                btrfs_tree_unlock(path->nodes[0]);
3971                free_extent_buffer(path->nodes[0]);
3972                path->nodes[0] = left;
3973                path->slots[1] -= 1;
3974        } else {
3975                btrfs_tree_unlock(left);
3976                free_extent_buffer(left);
3977                path->slots[0] -= push_items;
3978        }
3979        BUG_ON(path->slots[0] < 0);
3980        return ret;
3981out:
3982        btrfs_tree_unlock(left);
3983        free_extent_buffer(left);
3984        return ret;
3985}
3986
3987/*
3988 * push some data in the path leaf to the left, trying to free up at
3989 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3990 *
3991 * max_slot can put a limit on how far into the leaf we'll push items.  The
3992 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3993 * items
3994 */
3995static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3996                          *root, struct btrfs_path *path, int min_data_size,
3997                          int data_size, int empty, u32 max_slot)
3998{
3999        struct extent_buffer *right = path->nodes[0];
4000        struct extent_buffer *left;
4001        int slot;
4002        int free_space;
4003        u32 right_nritems;
4004        int ret = 0;
4005
4006        slot = path->slots[1];
4007        if (slot == 0)
4008                return 1;
4009        if (!path->nodes[1])
4010                return 1;
4011
4012        right_nritems = btrfs_header_nritems(right);
4013        if (right_nritems == 0)
4014                return 1;
4015
4016        btrfs_assert_tree_locked(path->nodes[1]);
4017
4018        left = read_node_slot(path->nodes[1], slot - 1);
4019        /*
4020         * slot - 1 is not valid or we fail to read the left node,
4021         * no big deal, just return.
4022         */
4023        if (IS_ERR(left))
4024                return 1;
4025
4026        btrfs_tree_lock(left);
4027        btrfs_set_lock_blocking_write(left);
4028
4029        free_space = btrfs_leaf_free_space(left);
4030        if (free_space < data_size) {
4031                ret = 1;
4032                goto out;
4033        }
4034
4035        /* cow and double check */
4036        ret = btrfs_cow_block(trans, root, left,
4037                              path->nodes[1], slot - 1, &left);
4038        if (ret) {
4039                /* we hit -ENOSPC, but it isn't fatal here */
4040                if (ret == -ENOSPC)
4041                        ret = 1;
4042                goto out;
4043        }
4044
4045        free_space = btrfs_leaf_free_space(left);
4046        if (free_space < data_size) {
4047                ret = 1;
4048                goto out;
4049        }
4050
4051        return __push_leaf_left(path, min_data_size,
4052                               empty, left, free_space, right_nritems,
4053                               max_slot);
4054out:
4055        btrfs_tree_unlock(left);
4056        free_extent_buffer(left);
4057        return ret;
4058}
4059
4060/*
4061 * split the path's leaf in two, making sure there is at least data_size
4062 * available for the resulting leaf level of the path.
4063 */
4064static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4065                                    struct btrfs_path *path,
4066                                    struct extent_buffer *l,
4067                                    struct extent_buffer *right,
4068                                    int slot, int mid, int nritems)
4069{
4070        struct btrfs_fs_info *fs_info = trans->fs_info;
4071        int data_copy_size;
4072        int rt_data_off;
4073        int i;
4074        struct btrfs_disk_key disk_key;
4075        struct btrfs_map_token token;
4076
4077        btrfs_init_map_token(&token);
4078
4079        nritems = nritems - mid;
4080        btrfs_set_header_nritems(right, nritems);
4081        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4082
4083        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4084                           btrfs_item_nr_offset(mid),
4085                           nritems * sizeof(struct btrfs_item));
4086
4087        copy_extent_buffer(right, l,
4088                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4089                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4090                     leaf_data_end(l), data_copy_size);
4091
4092        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4093
4094        for (i = 0; i < nritems; i++) {
4095                struct btrfs_item *item = btrfs_item_nr(i);
4096                u32 ioff;
4097
4098                ioff = btrfs_token_item_offset(right, item, &token);
4099                btrfs_set_token_item_offset(right, item,
4100                                            ioff + rt_data_off, &token);
4101        }
4102
4103        btrfs_set_header_nritems(l, mid);
4104        btrfs_item_key(right, &disk_key, 0);
4105        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4106
4107        btrfs_mark_buffer_dirty(right);
4108        btrfs_mark_buffer_dirty(l);
4109        BUG_ON(path->slots[0] != slot);
4110
4111        if (mid <= slot) {
4112                btrfs_tree_unlock(path->nodes[0]);
4113                free_extent_buffer(path->nodes[0]);
4114                path->nodes[0] = right;
4115                path->slots[0] -= mid;
4116                path->slots[1] += 1;
4117        } else {
4118                btrfs_tree_unlock(right);
4119                free_extent_buffer(right);
4120        }
4121
4122        BUG_ON(path->slots[0] < 0);
4123}
4124
4125/*
4126 * double splits happen when we need to insert a big item in the middle
4127 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4128 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4129 *          A                 B                 C
4130 *
4131 * We avoid this by trying to push the items on either side of our target
4132 * into the adjacent leaves.  If all goes well we can avoid the double split
4133 * completely.
4134 */
4135static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4136                                          struct btrfs_root *root,
4137                                          struct btrfs_path *path,
4138                                          int data_size)
4139{
4140        int ret;
4141        int progress = 0;
4142        int slot;
4143        u32 nritems;
4144        int space_needed = data_size;
4145
4146        slot = path->slots[0];
4147        if (slot < btrfs_header_nritems(path->nodes[0]))
4148                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4149
4150        /*
4151         * try to push all the items after our slot into the
4152         * right leaf
4153         */
4154        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4155        if (ret < 0)
4156                return ret;
4157
4158        if (ret == 0)
4159                progress++;
4160
4161        nritems = btrfs_header_nritems(path->nodes[0]);
4162        /*
4163         * our goal is to get our slot at the start or end of a leaf.  If
4164         * we've done so we're done
4165         */
4166        if (path->slots[0] == 0 || path->slots[0] == nritems)
4167                return 0;
4168
4169        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4170                return 0;
4171
4172        /* try to push all the items before our slot into the next leaf */
4173        slot = path->slots[0];
4174        space_needed = data_size;
4175        if (slot > 0)
4176                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4177        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4178        if (ret < 0)
4179                return ret;
4180
4181        if (ret == 0)
4182                progress++;
4183
4184        if (progress)
4185                return 0;
4186        return 1;
4187}
4188
4189/*
4190 * split the path's leaf in two, making sure there is at least data_size
4191 * available for the resulting leaf level of the path.
4192 *
4193 * returns 0 if all went well and < 0 on failure.
4194 */
4195static noinline int split_leaf(struct btrfs_trans_handle *trans,
4196                               struct btrfs_root *root,
4197                               const struct btrfs_key *ins_key,
4198                               struct btrfs_path *path, int data_size,
4199                               int extend)
4200{
4201        struct btrfs_disk_key disk_key;
4202        struct extent_buffer *l;
4203        u32 nritems;
4204        int mid;
4205        int slot;
4206        struct extent_buffer *right;
4207        struct btrfs_fs_info *fs_info = root->fs_info;
4208        int ret = 0;
4209        int wret;
4210        int split;
4211        int num_doubles = 0;
4212        int tried_avoid_double = 0;
4213
4214        l = path->nodes[0];
4215        slot = path->slots[0];
4216        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4217            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4218                return -EOVERFLOW;
4219
4220        /* first try to make some room by pushing left and right */
4221        if (data_size && path->nodes[1]) {
4222                int space_needed = data_size;
4223
4224                if (slot < btrfs_header_nritems(l))
4225                        space_needed -= btrfs_leaf_free_space(l);
4226
4227                wret = push_leaf_right(trans, root, path, space_needed,
4228                                       space_needed, 0, 0);
4229                if (wret < 0)
4230                        return wret;
4231                if (wret) {
4232                        space_needed = data_size;
4233                        if (slot > 0)
4234                                space_needed -= btrfs_leaf_free_space(l);
4235                        wret = push_leaf_left(trans, root, path, space_needed,
4236                                              space_needed, 0, (u32)-1);
4237                        if (wret < 0)
4238                                return wret;
4239                }
4240                l = path->nodes[0];
4241
4242                /* did the pushes work? */
4243                if (btrfs_leaf_free_space(l) >= data_size)
4244                        return 0;
4245        }
4246
4247        if (!path->nodes[1]) {
4248                ret = insert_new_root(trans, root, path, 1);
4249                if (ret)
4250                        return ret;
4251        }
4252again:
4253        split = 1;
4254        l = path->nodes[0];
4255        slot = path->slots[0];
4256        nritems = btrfs_header_nritems(l);
4257        mid = (nritems + 1) / 2;
4258
4259        if (mid <= slot) {
4260                if (nritems == 1 ||
4261                    leaf_space_used(l, mid, nritems - mid) + data_size >
4262                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4263                        if (slot >= nritems) {
4264                                split = 0;
4265                        } else {
4266                                mid = slot;
4267                                if (mid != nritems &&
4268                                    leaf_space_used(l, mid, nritems - mid) +
4269                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4270                                        if (data_size && !tried_avoid_double)
4271                                                goto push_for_double;
4272                                        split = 2;
4273                                }
4274                        }
4275                }
4276        } else {
4277                if (leaf_space_used(l, 0, mid) + data_size >
4278                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4279                        if (!extend && data_size && slot == 0) {
4280                                split = 0;
4281                        } else if ((extend || !data_size) && slot == 0) {
4282                                mid = 1;
4283                        } else {
4284                                mid = slot;
4285                                if (mid != nritems &&
4286                                    leaf_space_used(l, mid, nritems - mid) +
4287                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4288                                        if (data_size && !tried_avoid_double)
4289                                                goto push_for_double;
4290                                        split = 2;
4291                                }
4292                        }
4293                }
4294        }
4295
4296        if (split == 0)
4297                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4298        else
4299                btrfs_item_key(l, &disk_key, mid);
4300
4301        right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4302                                             l->start, 0);
4303        if (IS_ERR(right))
4304                return PTR_ERR(right);
4305
4306        root_add_used(root, fs_info->nodesize);
4307
4308        if (split == 0) {
4309                if (mid <= slot) {
4310                        btrfs_set_header_nritems(right, 0);
4311                        insert_ptr(trans, path, &disk_key,
4312                                   right->start, path->slots[1] + 1, 1);
4313                        btrfs_tree_unlock(path->nodes[0]);
4314                        free_extent_buffer(path->nodes[0]);
4315                        path->nodes[0] = right;
4316                        path->slots[0] = 0;
4317                        path->slots[1] += 1;
4318                } else {
4319                        btrfs_set_header_nritems(right, 0);
4320                        insert_ptr(trans, path, &disk_key,
4321                                   right->start, path->slots[1], 1);
4322                        btrfs_tree_unlock(path->nodes[0]);
4323                        free_extent_buffer(path->nodes[0]);
4324                        path->nodes[0] = right;
4325                        path->slots[0] = 0;
4326                        if (path->slots[1] == 0)
4327                                fixup_low_keys(path, &disk_key, 1);
4328                }
4329                /*
4330                 * We create a new leaf 'right' for the required ins_len and
4331                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4332                 * the content of ins_len to 'right'.
4333                 */
4334                return ret;
4335        }
4336
4337        copy_for_split(trans, path, l, right, slot, mid, nritems);
4338
4339        if (split == 2) {
4340                BUG_ON(num_doubles != 0);
4341                num_doubles++;
4342                goto again;
4343        }
4344
4345        return 0;
4346
4347push_for_double:
4348        push_for_double_split(trans, root, path, data_size);
4349        tried_avoid_double = 1;
4350        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4351                return 0;
4352        goto again;
4353}
4354
4355static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4356                                         struct btrfs_root *root,
4357                                         struct btrfs_path *path, int ins_len)
4358{
4359        struct btrfs_key key;
4360        struct extent_buffer *leaf;
4361        struct btrfs_file_extent_item *fi;
4362        u64 extent_len = 0;
4363        u32 item_size;
4364        int ret;
4365
4366        leaf = path->nodes[0];
4367        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368
4369        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4370               key.type != BTRFS_EXTENT_CSUM_KEY);
4371
4372        if (btrfs_leaf_free_space(leaf) >= ins_len)
4373                return 0;
4374
4375        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4376        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377                fi = btrfs_item_ptr(leaf, path->slots[0],
4378                                    struct btrfs_file_extent_item);
4379                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4380        }
4381        btrfs_release_path(path);
4382
4383        path->keep_locks = 1;
4384        path->search_for_split = 1;
4385        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4386        path->search_for_split = 0;
4387        if (ret > 0)
4388                ret = -EAGAIN;
4389        if (ret < 0)
4390                goto err;
4391
4392        ret = -EAGAIN;
4393        leaf = path->nodes[0];
4394        /* if our item isn't there, return now */
4395        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4396                goto err;
4397
4398        /* the leaf has  changed, it now has room.  return now */
4399        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4400                goto err;
4401
4402        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4403                fi = btrfs_item_ptr(leaf, path->slots[0],
4404                                    struct btrfs_file_extent_item);
4405                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4406                        goto err;
4407        }
4408
4409        btrfs_set_path_blocking(path);
4410        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4411        if (ret)
4412                goto err;
4413
4414        path->keep_locks = 0;
4415        btrfs_unlock_up_safe(path, 1);
4416        return 0;
4417err:
4418        path->keep_locks = 0;
4419        return ret;
4420}
4421
4422static noinline int split_item(struct btrfs_path *path,
4423                               const struct btrfs_key *new_key,
4424                               unsigned long split_offset)
4425{
4426        struct extent_buffer *leaf;
4427        struct btrfs_item *item;
4428        struct btrfs_item *new_item;
4429        int slot;
4430        char *buf;
4431        u32 nritems;
4432        u32 item_size;
4433        u32 orig_offset;
4434        struct btrfs_disk_key disk_key;
4435
4436        leaf = path->nodes[0];
4437        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4438
4439        btrfs_set_path_blocking(path);
4440
4441        item = btrfs_item_nr(path->slots[0]);
4442        orig_offset = btrfs_item_offset(leaf, item);
4443        item_size = btrfs_item_size(leaf, item);
4444
4445        buf = kmalloc(item_size, GFP_NOFS);
4446        if (!buf)
4447                return -ENOMEM;
4448
4449        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4450                            path->slots[0]), item_size);
4451
4452        slot = path->slots[0] + 1;
4453        nritems = btrfs_header_nritems(leaf);
4454        if (slot != nritems) {
4455                /* shift the items */
4456                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4457                                btrfs_item_nr_offset(slot),
4458                                (nritems - slot) * sizeof(struct btrfs_item));
4459        }
4460
4461        btrfs_cpu_key_to_disk(&disk_key, new_key);
4462        btrfs_set_item_key(leaf, &disk_key, slot);
4463
4464        new_item = btrfs_item_nr(slot);
4465
4466        btrfs_set_item_offset(leaf, new_item, orig_offset);
4467        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4468
4469        btrfs_set_item_offset(leaf, item,
4470                              orig_offset + item_size - split_offset);
4471        btrfs_set_item_size(leaf, item, split_offset);
4472
4473        btrfs_set_header_nritems(leaf, nritems + 1);
4474
4475        /* write the data for the start of the original item */
4476        write_extent_buffer(leaf, buf,
4477                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4478                            split_offset);
4479
4480        /* write the data for the new item */
4481        write_extent_buffer(leaf, buf + split_offset,
4482                            btrfs_item_ptr_offset(leaf, slot),
4483                            item_size - split_offset);
4484        btrfs_mark_buffer_dirty(leaf);
4485
4486        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4487        kfree(buf);
4488        return 0;
4489}
4490
4491/*
4492 * This function splits a single item into two items,
4493 * giving 'new_key' to the new item and splitting the
4494 * old one at split_offset (from the start of the item).
4495 *
4496 * The path may be released by this operation.  After
4497 * the split, the path is pointing to the old item.  The
4498 * new item is going to be in the same node as the old one.
4499 *
4500 * Note, the item being split must be smaller enough to live alone on
4501 * a tree block with room for one extra struct btrfs_item
4502 *
4503 * This allows us to split the item in place, keeping a lock on the
4504 * leaf the entire time.
4505 */
4506int btrfs_split_item(struct btrfs_trans_handle *trans,
4507                     struct btrfs_root *root,
4508                     struct btrfs_path *path,
4509                     const struct btrfs_key *new_key,
4510                     unsigned long split_offset)
4511{
4512        int ret;
4513        ret = setup_leaf_for_split(trans, root, path,
4514                                   sizeof(struct btrfs_item));
4515        if (ret)
4516                return ret;
4517
4518        ret = split_item(path, new_key, split_offset);
4519        return ret;
4520}
4521
4522/*
4523 * This function duplicate a item, giving 'new_key' to the new item.
4524 * It guarantees both items live in the same tree leaf and the new item
4525 * is contiguous with the original item.
4526 *
4527 * This allows us to split file extent in place, keeping a lock on the
4528 * leaf the entire time.
4529 */
4530int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4531                         struct btrfs_root *root,
4532                         struct btrfs_path *path,
4533                         const struct btrfs_key *new_key)
4534{
4535        struct extent_buffer *leaf;
4536        int ret;
4537        u32 item_size;
4538
4539        leaf = path->nodes[0];
4540        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4541        ret = setup_leaf_for_split(trans, root, path,
4542                                   item_size + sizeof(struct btrfs_item));
4543        if (ret)
4544                return ret;
4545
4546        path->slots[0]++;
4547        setup_items_for_insert(root, path, new_key, &item_size,
4548                               item_size, item_size +
4549                               sizeof(struct btrfs_item), 1);
4550        leaf = path->nodes[0];
4551        memcpy_extent_buffer(leaf,
4552                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4553                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4554                             item_size);
4555        return 0;
4556}
4557
4558/*
4559 * make the item pointed to by the path smaller.  new_size indicates
4560 * how small to make it, and from_end tells us if we just chop bytes
4561 * off the end of the item or if we shift the item to chop bytes off
4562 * the front.
4563 */
4564void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4565{
4566        int slot;
4567        struct extent_buffer *leaf;
4568        struct btrfs_item *item;
4569        u32 nritems;
4570        unsigned int data_end;
4571        unsigned int old_data_start;
4572        unsigned int old_size;
4573        unsigned int size_diff;
4574        int i;
4575        struct btrfs_map_token token;
4576
4577        btrfs_init_map_token(&token);
4578
4579        leaf = path->nodes[0];
4580        slot = path->slots[0];
4581
4582        old_size = btrfs_item_size_nr(leaf, slot);
4583        if (old_size == new_size)
4584                return;
4585
4586        nritems = btrfs_header_nritems(leaf);
4587        data_end = leaf_data_end(leaf);
4588
4589        old_data_start = btrfs_item_offset_nr(leaf, slot);
4590
4591        size_diff = old_size - new_size;
4592
4593        BUG_ON(slot < 0);
4594        BUG_ON(slot >= nritems);
4595
4596        /*
4597         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4598         */
4599        /* first correct the data pointers */
4600        for (i = slot; i < nritems; i++) {
4601                u32 ioff;
4602                item = btrfs_item_nr(i);
4603
4604                ioff = btrfs_token_item_offset(leaf, item, &token);
4605                btrfs_set_token_item_offset(leaf, item,
4606                                            ioff + size_diff, &token);
4607        }
4608
4609        /* shift the data */
4610        if (from_end) {
4611                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4612                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4613                              data_end, old_data_start + new_size - data_end);
4614        } else {
4615                struct btrfs_disk_key disk_key;
4616                u64 offset;
4617
4618                btrfs_item_key(leaf, &disk_key, slot);
4619
4620                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4621                        unsigned long ptr;
4622                        struct btrfs_file_extent_item *fi;
4623
4624                        fi = btrfs_item_ptr(leaf, slot,
4625                                            struct btrfs_file_extent_item);
4626                        fi = (struct btrfs_file_extent_item *)(
4627                             (unsigned long)fi - size_diff);
4628
4629                        if (btrfs_file_extent_type(leaf, fi) ==
4630                            BTRFS_FILE_EXTENT_INLINE) {
4631                                ptr = btrfs_item_ptr_offset(leaf, slot);
4632                                memmove_extent_buffer(leaf, ptr,
4633                                      (unsigned long)fi,
4634                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4635                        }
4636                }
4637
4638                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4639                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4640                              data_end, old_data_start - data_end);
4641
4642                offset = btrfs_disk_key_offset(&disk_key);
4643                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4644                btrfs_set_item_key(leaf, &disk_key, slot);
4645                if (slot == 0)
4646                        fixup_low_keys(path, &disk_key, 1);
4647        }
4648
4649        item = btrfs_item_nr(slot);
4650        btrfs_set_item_size(leaf, item, new_size);
4651        btrfs_mark_buffer_dirty(leaf);
4652
4653        if (btrfs_leaf_free_space(leaf) < 0) {
4654                btrfs_print_leaf(leaf);
4655                BUG();
4656        }
4657}
4658
4659/*
4660 * make the item pointed to by the path bigger, data_size is the added size.
4661 */
4662void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4663{
4664        int slot;
4665        struct extent_buffer *leaf;
4666        struct btrfs_item *item;
4667        u32 nritems;
4668        unsigned int data_end;
4669        unsigned int old_data;
4670        unsigned int old_size;
4671        int i;
4672        struct btrfs_map_token token;
4673
4674        btrfs_init_map_token(&token);
4675
4676        leaf = path->nodes[0];
4677
4678        nritems = btrfs_header_nritems(leaf);
4679        data_end = leaf_data_end(leaf);
4680
4681        if (btrfs_leaf_free_space(leaf) < data_size) {
4682                btrfs_print_leaf(leaf);
4683                BUG();
4684        }
4685        slot = path->slots[0];
4686        old_data = btrfs_item_end_nr(leaf, slot);
4687
4688        BUG_ON(slot < 0);
4689        if (slot >= nritems) {
4690                btrfs_print_leaf(leaf);
4691                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4692                           slot, nritems);
4693                BUG();
4694        }
4695
4696        /*
4697         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698         */
4699        /* first correct the data pointers */
4700        for (i = slot; i < nritems; i++) {
4701                u32 ioff;
4702                item = btrfs_item_nr(i);
4703
4704                ioff = btrfs_token_item_offset(leaf, item, &token);
4705                btrfs_set_token_item_offset(leaf, item,
4706                                            ioff - data_size, &token);
4707        }
4708
4709        /* shift the data */
4710        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712                      data_end, old_data - data_end);
4713
4714        data_end = old_data;
4715        old_size = btrfs_item_size_nr(leaf, slot);
4716        item = btrfs_item_nr(slot);
4717        btrfs_set_item_size(leaf, item, old_size + data_size);
4718        btrfs_mark_buffer_dirty(leaf);
4719
4720        if (btrfs_leaf_free_space(leaf) < 0) {
4721                btrfs_print_leaf(leaf);
4722                BUG();
4723        }
4724}
4725
4726/*
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4730 */
4731void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732                            const struct btrfs_key *cpu_key, u32 *data_size,
4733                            u32 total_data, u32 total_size, int nr)
4734{
4735        struct btrfs_fs_info *fs_info = root->fs_info;
4736        struct btrfs_item *item;
4737        int i;
4738        u32 nritems;
4739        unsigned int data_end;
4740        struct btrfs_disk_key disk_key;
4741        struct extent_buffer *leaf;
4742        int slot;
4743        struct btrfs_map_token token;
4744
4745        if (path->slots[0] == 0) {
4746                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747                fixup_low_keys(path, &disk_key, 1);
4748        }
4749        btrfs_unlock_up_safe(path, 1);
4750
4751        btrfs_init_map_token(&token);
4752
4753        leaf = path->nodes[0];
4754        slot = path->slots[0];
4755
4756        nritems = btrfs_header_nritems(leaf);
4757        data_end = leaf_data_end(leaf);
4758
4759        if (btrfs_leaf_free_space(leaf) < total_size) {
4760                btrfs_print_leaf(leaf);
4761                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762                           total_size, btrfs_leaf_free_space(leaf));
4763                BUG();
4764        }
4765
4766        if (slot != nritems) {
4767                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768
4769                if (old_data < data_end) {
4770                        btrfs_print_leaf(leaf);
4771                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772                                   slot, old_data, data_end);
4773                        BUG();
4774                }
4775                /*
4776                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777                 */
4778                /* first correct the data pointers */
4779                for (i = slot; i < nritems; i++) {
4780                        u32 ioff;
4781
4782                        item = btrfs_item_nr(i);
4783                        ioff = btrfs_token_item_offset(leaf, item, &token);
4784                        btrfs_set_token_item_offset(leaf, item,
4785                                                    ioff - total_data, &token);
4786                }
4787                /* shift the items */
4788                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789                              btrfs_item_nr_offset(slot),
4790                              (nritems - slot) * sizeof(struct btrfs_item));
4791
4792                /* shift the data */
4793                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795                              data_end, old_data - data_end);
4796                data_end = old_data;
4797        }
4798
4799        /* setup the item for the new data */
4800        for (i = 0; i < nr; i++) {
4801                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802                btrfs_set_item_key(leaf, &disk_key, slot + i);
4803                item = btrfs_item_nr(slot + i);
4804                btrfs_set_token_item_offset(leaf, item,
4805                                            data_end - data_size[i], &token);
4806                data_end -= data_size[i];
4807                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808        }
4809
4810        btrfs_set_header_nritems(leaf, nritems + nr);
4811        btrfs_mark_buffer_dirty(leaf);
4812
4813        if (btrfs_leaf_free_space(leaf) < 0) {
4814                btrfs_print_leaf(leaf);
4815                BUG();
4816        }
4817}
4818
4819/*
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
4823int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824                            struct btrfs_root *root,
4825                            struct btrfs_path *path,
4826                            const struct btrfs_key *cpu_key, u32 *data_size,
4827                            int nr)
4828{
4829        int ret = 0;
4830        int slot;
4831        int i;
4832        u32 total_size = 0;
4833        u32 total_data = 0;
4834
4835        for (i = 0; i < nr; i++)
4836                total_data += data_size[i];
4837
4838        total_size = total_data + (nr * sizeof(struct btrfs_item));
4839        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840        if (ret == 0)
4841                return -EEXIST;
4842        if (ret < 0)
4843                return ret;
4844
4845        slot = path->slots[0];
4846        BUG_ON(slot < 0);
4847
4848        setup_items_for_insert(root, path, cpu_key, data_size,
4849                               total_data, total_size, nr);
4850        return 0;
4851}
4852
4853/*
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4856 */
4857int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858                      const struct btrfs_key *cpu_key, void *data,
4859                      u32 data_size)
4860{
4861        int ret = 0;
4862        struct btrfs_path *path;
4863        struct extent_buffer *leaf;
4864        unsigned long ptr;
4865
4866        path = btrfs_alloc_path();
4867        if (!path)
4868                return -ENOMEM;
4869        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870        if (!ret) {
4871                leaf = path->nodes[0];
4872                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873                write_extent_buffer(leaf, data, ptr, data_size);
4874                btrfs_mark_buffer_dirty(leaf);
4875        }
4876        btrfs_free_path(path);
4877        return ret;
4878}
4879
4880/*
4881 * delete the pointer from a given node.
4882 *
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
4885 */
4886static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887                    int level, int slot)
4888{
4889        struct extent_buffer *parent = path->nodes[level];
4890        u32 nritems;
4891        int ret;
4892
4893        nritems = btrfs_header_nritems(parent);
4894        if (slot != nritems - 1) {
4895                if (level) {
4896                        ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4897                                        nritems - slot - 1);
4898                        BUG_ON(ret < 0);
4899                }
4900                memmove_extent_buffer(parent,
4901                              btrfs_node_key_ptr_offset(slot),
4902                              btrfs_node_key_ptr_offset(slot + 1),
4903                              sizeof(struct btrfs_key_ptr) *
4904                              (nritems - slot - 1));
4905        } else if (level) {
4906                ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4907                                GFP_NOFS);
4908                BUG_ON(ret < 0);
4909        }
4910
4911        nritems--;
4912        btrfs_set_header_nritems(parent, nritems);
4913        if (nritems == 0 && parent == root->node) {
4914                BUG_ON(btrfs_header_level(root->node) != 1);
4915                /* just turn the root into a leaf and break */
4916                btrfs_set_header_level(root->node, 0);
4917        } else if (slot == 0) {
4918                struct btrfs_disk_key disk_key;
4919
4920                btrfs_node_key(parent, &disk_key, 0);
4921                fixup_low_keys(path, &disk_key, level + 1);
4922        }
4923        btrfs_mark_buffer_dirty(parent);
4924}
4925
4926/*
4927 * a helper function to delete the leaf pointed to by path->slots[1] and
4928 * path->nodes[1].
4929 *
4930 * This deletes the pointer in path->nodes[1] and frees the leaf
4931 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4932 *
4933 * The path must have already been setup for deleting the leaf, including
4934 * all the proper balancing.  path->nodes[1] must be locked.
4935 */
4936static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4937                                    struct btrfs_root *root,
4938                                    struct btrfs_path *path,
4939                                    struct extent_buffer *leaf)
4940{
4941        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4942        del_ptr(root, path, 1, path->slots[1]);
4943
4944        /*
4945         * btrfs_free_extent is expensive, we want to make sure we
4946         * aren't holding any locks when we call it
4947         */
4948        btrfs_unlock_up_safe(path, 0);
4949
4950        root_sub_used(root, leaf->len);
4951
4952        extent_buffer_get(leaf);
4953        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4954        free_extent_buffer_stale(leaf);
4955}
4956/*
4957 * delete the item at the leaf level in path.  If that empties
4958 * the leaf, remove it from the tree
4959 */
4960int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4961                    struct btrfs_path *path, int slot, int nr)
4962{
4963        struct btrfs_fs_info *fs_info = root->fs_info;
4964        struct extent_buffer *leaf;
4965        struct btrfs_item *item;
4966        u32 last_off;
4967        u32 dsize = 0;
4968        int ret = 0;
4969        int wret;
4970        int i;
4971        u32 nritems;
4972        struct btrfs_map_token token;
4973
4974        btrfs_init_map_token(&token);
4975
4976        leaf = path->nodes[0];
4977        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4978
4979        for (i = 0; i < nr; i++)
4980                dsize += btrfs_item_size_nr(leaf, slot + i);
4981
4982        nritems = btrfs_header_nritems(leaf);
4983
4984        if (slot + nr != nritems) {
4985                int data_end = leaf_data_end(leaf);
4986
4987                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4988                              data_end + dsize,
4989                              BTRFS_LEAF_DATA_OFFSET + data_end,
4990                              last_off - data_end);
4991
4992                for (i = slot + nr; i < nritems; i++) {
4993                        u32 ioff;
4994
4995                        item = btrfs_item_nr(i);
4996                        ioff = btrfs_token_item_offset(leaf, item, &token);
4997                        btrfs_set_token_item_offset(leaf, item,
4998                                                    ioff + dsize, &token);
4999                }
5000
5001                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5002                              btrfs_item_nr_offset(slot + nr),
5003                              sizeof(struct btrfs_item) *
5004                              (nritems - slot - nr));
5005        }
5006        btrfs_set_header_nritems(leaf, nritems - nr);
5007        nritems -= nr;
5008
5009        /* delete the leaf if we've emptied it */
5010        if (nritems == 0) {
5011                if (leaf == root->node) {
5012                        btrfs_set_header_level(leaf, 0);
5013                } else {
5014                        btrfs_set_path_blocking(path);
5015                        btrfs_clean_tree_block(leaf);
5016                        btrfs_del_leaf(trans, root, path, leaf);
5017                }
5018        } else {
5019                int used = leaf_space_used(leaf, 0, nritems);
5020                if (slot == 0) {
5021                        struct btrfs_disk_key disk_key;
5022
5023                        btrfs_item_key(leaf, &disk_key, 0);
5024                        fixup_low_keys(path, &disk_key, 1);
5025                }
5026
5027                /* delete the leaf if it is mostly empty */
5028                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5029                        /* push_leaf_left fixes the path.
5030                         * make sure the path still points to our leaf
5031                         * for possible call to del_ptr below
5032                         */
5033                        slot = path->slots[1];
5034                        extent_buffer_get(leaf);
5035
5036                        btrfs_set_path_blocking(path);
5037                        wret = push_leaf_left(trans, root, path, 1, 1,
5038                                              1, (u32)-1);
5039                        if (wret < 0 && wret != -ENOSPC)
5040                                ret = wret;
5041
5042                        if (path->nodes[0] == leaf &&
5043                            btrfs_header_nritems(leaf)) {
5044                                wret = push_leaf_right(trans, root, path, 1,
5045                                                       1, 1, 0);
5046                                if (wret < 0 && wret != -ENOSPC)
5047                                        ret = wret;
5048                        }
5049
5050                        if (btrfs_header_nritems(leaf) == 0) {
5051                                path->slots[1] = slot;
5052                                btrfs_del_leaf(trans, root, path, leaf);
5053                                free_extent_buffer(leaf);
5054                                ret = 0;
5055                        } else {
5056                                /* if we're still in the path, make sure
5057                                 * we're dirty.  Otherwise, one of the
5058                                 * push_leaf functions must have already
5059                                 * dirtied this buffer
5060                                 */
5061                                if (path->nodes[0] == leaf)
5062                                        btrfs_mark_buffer_dirty(leaf);
5063                                free_extent_buffer(leaf);
5064                        }
5065                } else {
5066                        btrfs_mark_buffer_dirty(leaf);
5067                }
5068        }
5069        return ret;
5070}
5071
5072/*
5073 * search the tree again to find a leaf with lesser keys
5074 * returns 0 if it found something or 1 if there are no lesser leaves.
5075 * returns < 0 on io errors.
5076 *
5077 * This may release the path, and so you may lose any locks held at the
5078 * time you call it.
5079 */
5080int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5081{
5082        struct btrfs_key key;
5083        struct btrfs_disk_key found_key;
5084        int ret;
5085
5086        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5087
5088        if (key.offset > 0) {
5089                key.offset--;
5090        } else if (key.type > 0) {
5091                key.type--;
5092                key.offset = (u64)-1;
5093        } else if (key.objectid > 0) {
5094                key.objectid--;
5095                key.type = (u8)-1;
5096                key.offset = (u64)-1;
5097        } else {
5098                return 1;
5099        }
5100
5101        btrfs_release_path(path);
5102        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5103        if (ret < 0)
5104                return ret;
5105        btrfs_item_key(path->nodes[0], &found_key, 0);
5106        ret = comp_keys(&found_key, &key);
5107        /*
5108         * We might have had an item with the previous key in the tree right
5109         * before we released our path. And after we released our path, that
5110         * item might have been pushed to the first slot (0) of the leaf we
5111         * were holding due to a tree balance. Alternatively, an item with the
5112         * previous key can exist as the only element of a leaf (big fat item).
5113         * Therefore account for these 2 cases, so that our callers (like
5114         * btrfs_previous_item) don't miss an existing item with a key matching
5115         * the previous key we computed above.
5116         */
5117        if (ret <= 0)
5118                return 0;
5119        return 1;
5120}
5121
5122/*
5123 * A helper function to walk down the tree starting at min_key, and looking
5124 * for nodes or leaves that are have a minimum transaction id.
5125 * This is used by the btree defrag code, and tree logging
5126 *
5127 * This does not cow, but it does stuff the starting key it finds back
5128 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5129 * key and get a writable path.
5130 *
5131 * This honors path->lowest_level to prevent descent past a given level
5132 * of the tree.
5133 *
5134 * min_trans indicates the oldest transaction that you are interested
5135 * in walking through.  Any nodes or leaves older than min_trans are
5136 * skipped over (without reading them).
5137 *
5138 * returns zero if something useful was found, < 0 on error and 1 if there
5139 * was nothing in the tree that matched the search criteria.
5140 */
5141int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5142                         struct btrfs_path *path,
5143                         u64 min_trans)
5144{
5145        struct extent_buffer *cur;
5146        struct btrfs_key found_key;
5147        int slot;
5148        int sret;
5149        u32 nritems;
5150        int level;
5151        int ret = 1;
5152        int keep_locks = path->keep_locks;
5153
5154        path->keep_locks = 1;
5155again:
5156        cur = btrfs_read_lock_root_node(root);
5157        level = btrfs_header_level(cur);
5158        WARN_ON(path->nodes[level]);
5159        path->nodes[level] = cur;
5160        path->locks[level] = BTRFS_READ_LOCK;
5161
5162        if (btrfs_header_generation(cur) < min_trans) {
5163                ret = 1;
5164                goto out;
5165        }
5166        while (1) {
5167                nritems = btrfs_header_nritems(cur);
5168                level = btrfs_header_level(cur);
5169                sret = btrfs_bin_search(cur, min_key, level, &slot);
5170                if (sret < 0) {
5171                        ret = sret;
5172                        goto out;
5173                }
5174
5175                /* at the lowest level, we're done, setup the path and exit */
5176                if (level == path->lowest_level) {
5177                        if (slot >= nritems)
5178                                goto find_next_key;
5179                        ret = 0;
5180                        path->slots[level] = slot;
5181                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5182                        goto out;
5183                }
5184                if (sret && slot > 0)
5185                        slot--;
5186                /*
5187                 * check this node pointer against the min_trans parameters.
5188                 * If it is too old, old, skip to the next one.
5189                 */
5190                while (slot < nritems) {
5191                        u64 gen;
5192
5193                        gen = btrfs_node_ptr_generation(cur, slot);
5194                        if (gen < min_trans) {
5195                                slot++;
5196                                continue;
5197                        }
5198                        break;
5199                }
5200find_next_key:
5201                /*
5202                 * we didn't find a candidate key in this node, walk forward
5203                 * and find another one
5204                 */
5205                if (slot >= nritems) {
5206                        path->slots[level] = slot;
5207                        btrfs_set_path_blocking(path);
5208                        sret = btrfs_find_next_key(root, path, min_key, level,
5209                                                  min_trans);
5210                        if (sret == 0) {
5211                                btrfs_release_path(path);
5212                                goto again;
5213                        } else {
5214                                goto out;
5215                        }
5216                }
5217                /* save our key for returning back */
5218                btrfs_node_key_to_cpu(cur, &found_key, slot);
5219                path->slots[level] = slot;
5220                if (level == path->lowest_level) {
5221                        ret = 0;
5222                        goto out;
5223                }
5224                btrfs_set_path_blocking(path);
5225                cur = read_node_slot(cur, slot);
5226                if (IS_ERR(cur)) {
5227                        ret = PTR_ERR(cur);
5228                        goto out;
5229                }
5230
5231                btrfs_tree_read_lock(cur);
5232
5233                path->locks[level - 1] = BTRFS_READ_LOCK;
5234                path->nodes[level - 1] = cur;
5235                unlock_up(path, level, 1, 0, NULL);
5236        }
5237out:
5238        path->keep_locks = keep_locks;
5239        if (ret == 0) {
5240                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241                btrfs_set_path_blocking(path);
5242                memcpy(min_key, &found_key, sizeof(found_key));
5243        }
5244        return ret;
5245}
5246
5247static int tree_move_down(struct btrfs_path *path, int *level)
5248{
5249        struct extent_buffer *eb;
5250
5251        BUG_ON(*level == 0);
5252        eb = read_node_slot(path->nodes[*level], path->slots[*level]);
5253        if (IS_ERR(eb))
5254                return PTR_ERR(eb);
5255
5256        path->nodes[*level - 1] = eb;
5257        path->slots[*level - 1] = 0;
5258        (*level)--;
5259        return 0;
5260}
5261
5262static int tree_move_next_or_upnext(struct btrfs_path *path,
5263                                    int *level, int root_level)
5264{
5265        int ret = 0;
5266        int nritems;
5267        nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269        path->slots[*level]++;
5270
5271        while (path->slots[*level] >= nritems) {
5272                if (*level == root_level)
5273                        return -1;
5274
5275                /* move upnext */
5276                path->slots[*level] = 0;
5277                free_extent_buffer(path->nodes[*level]);
5278                path->nodes[*level] = NULL;
5279                (*level)++;
5280                path->slots[*level]++;
5281
5282                nritems = btrfs_header_nritems(path->nodes[*level]);
5283                ret = 1;
5284        }
5285        return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_path *path,
5293                        int *level, int root_level,
5294                        int allow_down,
5295                        struct btrfs_key *key)
5296{
5297        int ret;
5298
5299        if (*level == 0 || !allow_down) {
5300                ret = tree_move_next_or_upnext(path, level, root_level);
5301        } else {
5302                ret = tree_move_down(path, level);
5303        }
5304        if (ret >= 0) {
5305                if (*level == 0)
5306                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5307                                        path->slots[*level]);
5308                else
5309                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5310                                        path->slots[*level]);
5311        }
5312        return ret;
5313}
5314
5315static int tree_compare_item(struct btrfs_path *left_path,
5316                             struct btrfs_path *right_path,
5317                             char *tmp_buf)
5318{
5319        int cmp;
5320        int len1, len2;
5321        unsigned long off1, off2;
5322
5323        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5324        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5325        if (len1 != len2)
5326                return 1;
5327
5328        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5329        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5330                                right_path->slots[0]);
5331
5332        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5333
5334        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5335        if (cmp)
5336                return 1;
5337        return 0;
5338}
5339
5340#define ADVANCE 1
5341#define ADVANCE_ONLY_NEXT -1
5342
5343/*
5344 * This function compares two trees and calls the provided callback for
5345 * every changed/new/deleted item it finds.
5346 * If shared tree blocks are encountered, whole subtrees are skipped, making
5347 * the compare pretty fast on snapshotted subvolumes.
5348 *
5349 * This currently works on commit roots only. As commit roots are read only,
5350 * we don't do any locking. The commit roots are protected with transactions.
5351 * Transactions are ended and rejoined when a commit is tried in between.
5352 *
5353 * This function checks for modifications done to the trees while comparing.
5354 * If it detects a change, it aborts immediately.
5355 */
5356int btrfs_compare_trees(struct btrfs_root *left_root,
5357                        struct btrfs_root *right_root,
5358                        btrfs_changed_cb_t changed_cb, void *ctx)
5359{
5360        struct btrfs_fs_info *fs_info = left_root->fs_info;
5361        int ret;
5362        int cmp;
5363        struct btrfs_path *left_path = NULL;
5364        struct btrfs_path *right_path = NULL;
5365        struct btrfs_key left_key;
5366        struct btrfs_key right_key;
5367        char *tmp_buf = NULL;
5368        int left_root_level;
5369        int right_root_level;
5370        int left_level;
5371        int right_level;
5372        int left_end_reached;
5373        int right_end_reached;
5374        int advance_left;
5375        int advance_right;
5376        u64 left_blockptr;
5377        u64 right_blockptr;
5378        u64 left_gen;
5379        u64 right_gen;
5380
5381        left_path = btrfs_alloc_path();
5382        if (!left_path) {
5383                ret = -ENOMEM;
5384                goto out;
5385        }
5386        right_path = btrfs_alloc_path();
5387        if (!right_path) {
5388                ret = -ENOMEM;
5389                goto out;
5390        }
5391
5392        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5393        if (!tmp_buf) {
5394                ret = -ENOMEM;
5395                goto out;
5396        }
5397
5398        left_path->search_commit_root = 1;
5399        left_path->skip_locking = 1;
5400        right_path->search_commit_root = 1;
5401        right_path->skip_locking = 1;
5402
5403        /*
5404         * Strategy: Go to the first items of both trees. Then do
5405         *
5406         * If both trees are at level 0
5407         *   Compare keys of current items
5408         *     If left < right treat left item as new, advance left tree
5409         *       and repeat
5410         *     If left > right treat right item as deleted, advance right tree
5411         *       and repeat
5412         *     If left == right do deep compare of items, treat as changed if
5413         *       needed, advance both trees and repeat
5414         * If both trees are at the same level but not at level 0
5415         *   Compare keys of current nodes/leafs
5416         *     If left < right advance left tree and repeat
5417         *     If left > right advance right tree and repeat
5418         *     If left == right compare blockptrs of the next nodes/leafs
5419         *       If they match advance both trees but stay at the same level
5420         *         and repeat
5421         *       If they don't match advance both trees while allowing to go
5422         *         deeper and repeat
5423         * If tree levels are different
5424         *   Advance the tree that needs it and repeat
5425         *
5426         * Advancing a tree means:
5427         *   If we are at level 0, try to go to the next slot. If that's not
5428         *   possible, go one level up and repeat. Stop when we found a level
5429         *   where we could go to the next slot. We may at this point be on a
5430         *   node or a leaf.
5431         *
5432         *   If we are not at level 0 and not on shared tree blocks, go one
5433         *   level deeper.
5434         *
5435         *   If we are not at level 0 and on shared tree blocks, go one slot to
5436         *   the right if possible or go up and right.
5437         */
5438
5439        down_read(&fs_info->commit_root_sem);
5440        left_level = btrfs_header_level(left_root->commit_root);
5441        left_root_level = left_level;
5442        left_path->nodes[left_level] =
5443                        btrfs_clone_extent_buffer(left_root->commit_root);
5444        if (!left_path->nodes[left_level]) {
5445                up_read(&fs_info->commit_root_sem);
5446                ret = -ENOMEM;
5447                goto out;
5448        }
5449
5450        right_level = btrfs_header_level(right_root->commit_root);
5451        right_root_level = right_level;
5452        right_path->nodes[right_level] =
5453                        btrfs_clone_extent_buffer(right_root->commit_root);
5454        if (!right_path->nodes[right_level]) {
5455                up_read(&fs_info->commit_root_sem);
5456                ret = -ENOMEM;
5457                goto out;
5458        }
5459        up_read(&fs_info->commit_root_sem);
5460
5461        if (left_level == 0)
5462                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5463                                &left_key, left_path->slots[left_level]);
5464        else
5465                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5466                                &left_key, left_path->slots[left_level]);
5467        if (right_level == 0)
5468                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5469                                &right_key, right_path->slots[right_level]);
5470        else
5471                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5472                                &right_key, right_path->slots[right_level]);
5473
5474        left_end_reached = right_end_reached = 0;
5475        advance_left = advance_right = 0;
5476
5477        while (1) {
5478                if (advance_left && !left_end_reached) {
5479                        ret = tree_advance(left_path, &left_level,
5480                                        left_root_level,
5481                                        advance_left != ADVANCE_ONLY_NEXT,
5482                                        &left_key);
5483                        if (ret == -1)
5484                                left_end_reached = ADVANCE;
5485                        else if (ret < 0)
5486                                goto out;
5487                        advance_left = 0;
5488                }
5489                if (advance_right && !right_end_reached) {
5490                        ret = tree_advance(right_path, &right_level,
5491                                        right_root_level,
5492                                        advance_right != ADVANCE_ONLY_NEXT,
5493                                        &right_key);
5494                        if (ret == -1)
5495                                right_end_reached = ADVANCE;
5496                        else if (ret < 0)
5497                                goto out;
5498                        advance_right = 0;
5499                }
5500
5501                if (left_end_reached && right_end_reached) {
5502                        ret = 0;
5503                        goto out;
5504                } else if (left_end_reached) {
5505                        if (right_level == 0) {
5506                                ret = changed_cb(left_path, right_path,
5507                                                &right_key,
5508                                                BTRFS_COMPARE_TREE_DELETED,
5509                                                ctx);
5510                                if (ret < 0)
5511                                        goto out;
5512                        }
5513                        advance_right = ADVANCE;
5514                        continue;
5515                } else if (right_end_reached) {
5516                        if (left_level == 0) {
5517                                ret = changed_cb(left_path, right_path,
5518                                                &left_key,
5519                                                BTRFS_COMPARE_TREE_NEW,
5520                                                ctx);
5521                                if (ret < 0)
5522                                        goto out;
5523                        }
5524                        advance_left = ADVANCE;
5525                        continue;
5526                }
5527
5528                if (left_level == 0 && right_level == 0) {
5529                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5530                        if (cmp < 0) {
5531                                ret = changed_cb(left_path, right_path,
5532                                                &left_key,
5533                                                BTRFS_COMPARE_TREE_NEW,
5534                                                ctx);
5535                                if (ret < 0)
5536                                        goto out;
5537                                advance_left = ADVANCE;
5538                        } else if (cmp > 0) {
5539                                ret = changed_cb(left_path, right_path,
5540                                                &right_key,
5541                                                BTRFS_COMPARE_TREE_DELETED,
5542                                                ctx);
5543                                if (ret < 0)
5544                                        goto out;
5545                                advance_right = ADVANCE;
5546                        } else {
5547                                enum btrfs_compare_tree_result result;
5548
5549                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5550                                ret = tree_compare_item(left_path, right_path,
5551                                                        tmp_buf);
5552                                if (ret)
5553                                        result = BTRFS_COMPARE_TREE_CHANGED;
5554                                else
5555                                        result = BTRFS_COMPARE_TREE_SAME;
5556                                ret = changed_cb(left_path, right_path,
5557                                                 &left_key, result, ctx);
5558                                if (ret < 0)
5559                                        goto out;
5560                                advance_left = ADVANCE;
5561                                advance_right = ADVANCE;
5562                        }
5563                } else if (left_level == right_level) {
5564                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565                        if (cmp < 0) {
5566                                advance_left = ADVANCE;
5567                        } else if (cmp > 0) {
5568                                advance_right = ADVANCE;
5569                        } else {
5570                                left_blockptr = btrfs_node_blockptr(
5571                                                left_path->nodes[left_level],
5572                                                left_path->slots[left_level]);
5573                                right_blockptr = btrfs_node_blockptr(
5574                                                right_path->nodes[right_level],
5575                                                right_path->slots[right_level]);
5576                                left_gen = btrfs_node_ptr_generation(
5577                                                left_path->nodes[left_level],
5578                                                left_path->slots[left_level]);
5579                                right_gen = btrfs_node_ptr_generation(
5580                                                right_path->nodes[right_level],
5581                                                right_path->slots[right_level]);
5582                                if (left_blockptr == right_blockptr &&
5583                                    left_gen == right_gen) {
5584                                        /*
5585                                         * As we're on a shared block, don't
5586                                         * allow to go deeper.
5587                                         */
5588                                        advance_left = ADVANCE_ONLY_NEXT;
5589                                        advance_right = ADVANCE_ONLY_NEXT;
5590                                } else {
5591                                        advance_left = ADVANCE;
5592                                        advance_right = ADVANCE;
5593                                }
5594                        }
5595                } else if (left_level < right_level) {
5596                        advance_right = ADVANCE;
5597                } else {
5598                        advance_left = ADVANCE;
5599                }
5600        }
5601
5602out:
5603        btrfs_free_path(left_path);
5604        btrfs_free_path(right_path);
5605        kvfree(tmp_buf);
5606        return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621                        struct btrfs_key *key, int level, u64 min_trans)
5622{
5623        int slot;
5624        struct extent_buffer *c;
5625
5626        WARN_ON(!path->keep_locks);
5627        while (level < BTRFS_MAX_LEVEL) {
5628                if (!path->nodes[level])
5629                        return 1;
5630
5631                slot = path->slots[level] + 1;
5632                c = path->nodes[level];
5633next:
5634                if (slot >= btrfs_header_nritems(c)) {
5635                        int ret;
5636                        int orig_lowest;
5637                        struct btrfs_key cur_key;
5638                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5639                            !path->nodes[level + 1])
5640                                return 1;
5641
5642                        if (path->locks[level + 1]) {
5643                                level++;
5644                                continue;
5645                        }
5646
5647                        slot = btrfs_header_nritems(c) - 1;
5648                        if (level == 0)
5649                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5650                        else
5651                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653                        orig_lowest = path->lowest_level;
5654                        btrfs_release_path(path);
5655                        path->lowest_level = level;
5656                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657                                                0, 0);
5658                        path->lowest_level = orig_lowest;
5659                        if (ret < 0)
5660                                return ret;
5661
5662                        c = path->nodes[level];
5663                        slot = path->slots[level];
5664                        if (ret == 0)
5665                                slot++;
5666                        goto next;
5667                }
5668
5669                if (level == 0)
5670                        btrfs_item_key_to_cpu(c, key, slot);
5671                else {
5672                        u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674                        if (gen < min_trans) {
5675                                slot++;
5676                                goto next;
5677                        }
5678                        btrfs_node_key_to_cpu(c, key, slot);
5679                }
5680                return 0;
5681        }
5682        return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692        return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696                        u64 time_seq)
5697{
5698        int slot;
5699        int level;
5700        struct extent_buffer *c;
5701        struct extent_buffer *next;
5702        struct btrfs_key key;
5703        u32 nritems;
5704        int ret;
5705        int old_spinning = path->leave_spinning;
5706        int next_rw_lock = 0;
5707
5708        nritems = btrfs_header_nritems(path->nodes[0]);
5709        if (nritems == 0)
5710                return 1;
5711
5712        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714        level = 1;
5715        next = NULL;
5716        next_rw_lock = 0;
5717        btrfs_release_path(path);
5718
5719        path->keep_locks = 1;
5720        path->leave_spinning = 1;
5721
5722        if (time_seq)
5723                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724        else
5725                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726        path->keep_locks = 0;
5727
5728        if (ret < 0)
5729                return ret;
5730
5731        nritems = btrfs_header_nritems(path->nodes[0]);
5732        /*
5733         * by releasing the path above we dropped all our locks.  A balance
5734         * could have added more items next to the key that used to be
5735         * at the very end of the block.  So, check again here and
5736         * advance the path if there are now more items available.
5737         */
5738        if (nritems > 0 && path->slots[0] < nritems - 1) {
5739                if (ret == 0)
5740                        path->slots[0]++;
5741                ret = 0;
5742                goto done;
5743        }
5744        /*
5745         * So the above check misses one case:
5746         * - after releasing the path above, someone has removed the item that
5747         *   used to be at the very end of the block, and balance between leafs
5748         *   gets another one with bigger key.offset to replace it.
5749         *
5750         * This one should be returned as well, or we can get leaf corruption
5751         * later(esp. in __btrfs_drop_extents()).
5752         *
5753         * And a bit more explanation about this check,
5754         * with ret > 0, the key isn't found, the path points to the slot
5755         * where it should be inserted, so the path->slots[0] item must be the
5756         * bigger one.
5757         */
5758        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759                ret = 0;
5760                goto done;
5761        }
5762
5763        while (level < BTRFS_MAX_LEVEL) {
5764                if (!path->nodes[level]) {
5765                        ret = 1;
5766                        goto done;
5767                }
5768
5769                slot = path->slots[level] + 1;
5770                c = path->nodes[level];
5771                if (slot >= btrfs_header_nritems(c)) {
5772                        level++;
5773                        if (level == BTRFS_MAX_LEVEL) {
5774                                ret = 1;
5775                                goto done;
5776                        }
5777                        continue;
5778                }
5779
5780                if (next) {
5781                        btrfs_tree_unlock_rw(next, next_rw_lock);
5782                        free_extent_buffer(next);
5783                }
5784
5785                next = c;
5786                next_rw_lock = path->locks[level];
5787                ret = read_block_for_search(root, path, &next, level,
5788                                            slot, &key);
5789                if (ret == -EAGAIN)
5790                        goto again;
5791
5792                if (ret < 0) {
5793                        btrfs_release_path(path);
5794                        goto done;
5795                }
5796
5797                if (!path->skip_locking) {
5798                        ret = btrfs_try_tree_read_lock(next);
5799                        if (!ret && time_seq) {
5800                                /*
5801                                 * If we don't get the lock, we may be racing
5802                                 * with push_leaf_left, holding that lock while
5803                                 * itself waiting for the leaf we've currently
5804                                 * locked. To solve this situation, we give up
5805                                 * on our lock and cycle.
5806                                 */
5807                                free_extent_buffer(next);
5808                                btrfs_release_path(path);
5809                                cond_resched();
5810                                goto again;
5811                        }
5812                        if (!ret) {
5813                                btrfs_set_path_blocking(path);
5814                                btrfs_tree_read_lock(next);
5815                        }
5816                        next_rw_lock = BTRFS_READ_LOCK;
5817                }
5818                break;
5819        }
5820        path->slots[level] = slot;
5821        while (1) {
5822                level--;
5823                c = path->nodes[level];
5824                if (path->locks[level])
5825                        btrfs_tree_unlock_rw(c, path->locks[level]);
5826
5827                free_extent_buffer(c);
5828                path->nodes[level] = next;
5829                path->slots[level] = 0;
5830                if (!path->skip_locking)
5831                        path->locks[level] = next_rw_lock;
5832                if (!level)
5833                        break;
5834
5835                ret = read_block_for_search(root, path, &next, level,
5836                                            0, &key);
5837                if (ret == -EAGAIN)
5838                        goto again;
5839
5840                if (ret < 0) {
5841                        btrfs_release_path(path);
5842                        goto done;
5843                }
5844
5845                if (!path->skip_locking) {
5846                        ret = btrfs_try_tree_read_lock(next);
5847                        if (!ret) {
5848                                btrfs_set_path_blocking(path);
5849                                btrfs_tree_read_lock(next);
5850                        }
5851                        next_rw_lock = BTRFS_READ_LOCK;
5852                }
5853        }
5854        ret = 0;
5855done:
5856        unlock_up(path, 0, 1, 0, NULL);
5857        path->leave_spinning = old_spinning;
5858        if (!old_spinning)
5859                btrfs_set_path_blocking(path);
5860
5861        return ret;
5862}
5863
5864/*
5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866 * searching until it gets past min_objectid or finds an item of 'type'
5867 *
5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5869 */
5870int btrfs_previous_item(struct btrfs_root *root,
5871                        struct btrfs_path *path, u64 min_objectid,
5872                        int type)
5873{
5874        struct btrfs_key found_key;
5875        struct extent_buffer *leaf;
5876        u32 nritems;
5877        int ret;
5878
5879        while (1) {
5880                if (path->slots[0] == 0) {
5881                        btrfs_set_path_blocking(path);
5882                        ret = btrfs_prev_leaf(root, path);
5883                        if (ret != 0)
5884                                return ret;
5885                } else {
5886                        path->slots[0]--;
5887                }
5888                leaf = path->nodes[0];
5889                nritems = btrfs_header_nritems(leaf);
5890                if (nritems == 0)
5891                        return 1;
5892                if (path->slots[0] == nritems)
5893                        path->slots[0]--;
5894
5895                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5896                if (found_key.objectid < min_objectid)
5897                        break;
5898                if (found_key.type == type)
5899                        return 0;
5900                if (found_key.objectid == min_objectid &&
5901                    found_key.type < type)
5902                        break;
5903        }
5904        return 1;
5905}
5906
5907/*
5908 * search in extent tree to find a previous Metadata/Data extent item with
5909 * min objecitd.
5910 *
5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5912 */
5913int btrfs_previous_extent_item(struct btrfs_root *root,
5914                        struct btrfs_path *path, u64 min_objectid)
5915{
5916        struct btrfs_key found_key;
5917        struct extent_buffer *leaf;
5918        u32 nritems;
5919        int ret;
5920
5921        while (1) {
5922                if (path->slots[0] == 0) {
5923                        btrfs_set_path_blocking(path);
5924                        ret = btrfs_prev_leaf(root, path);
5925                        if (ret != 0)
5926                                return ret;
5927                } else {
5928                        path->slots[0]--;
5929                }
5930                leaf = path->nodes[0];
5931                nritems = btrfs_header_nritems(leaf);
5932                if (nritems == 0)
5933                        return 1;
5934                if (path->slots[0] == nritems)
5935                        path->slots[0]--;
5936
5937                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938                if (found_key.objectid < min_objectid)
5939                        break;
5940                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5942                        return 0;
5943                if (found_key.objectid == min_objectid &&
5944                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945                        break;
5946        }
5947        return 1;
5948}
5949