linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include "delayed-inode.h"
  10#include "disk-io.h"
  11#include "transaction.h"
  12#include "ctree.h"
  13#include "qgroup.h"
  14
  15#define BTRFS_DELAYED_WRITEBACK         512
  16#define BTRFS_DELAYED_BACKGROUND        128
  17#define BTRFS_DELAYED_BATCH             16
  18
  19static struct kmem_cache *delayed_node_cache;
  20
  21int __init btrfs_delayed_inode_init(void)
  22{
  23        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  24                                        sizeof(struct btrfs_delayed_node),
  25                                        0,
  26                                        SLAB_MEM_SPREAD,
  27                                        NULL);
  28        if (!delayed_node_cache)
  29                return -ENOMEM;
  30        return 0;
  31}
  32
  33void __cold btrfs_delayed_inode_exit(void)
  34{
  35        kmem_cache_destroy(delayed_node_cache);
  36}
  37
  38static inline void btrfs_init_delayed_node(
  39                                struct btrfs_delayed_node *delayed_node,
  40                                struct btrfs_root *root, u64 inode_id)
  41{
  42        delayed_node->root = root;
  43        delayed_node->inode_id = inode_id;
  44        refcount_set(&delayed_node->refs, 0);
  45        delayed_node->ins_root = RB_ROOT_CACHED;
  46        delayed_node->del_root = RB_ROOT_CACHED;
  47        mutex_init(&delayed_node->mutex);
  48        INIT_LIST_HEAD(&delayed_node->n_list);
  49        INIT_LIST_HEAD(&delayed_node->p_list);
  50}
  51
  52static inline int btrfs_is_continuous_delayed_item(
  53                                        struct btrfs_delayed_item *item1,
  54                                        struct btrfs_delayed_item *item2)
  55{
  56        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  57            item1->key.objectid == item2->key.objectid &&
  58            item1->key.type == item2->key.type &&
  59            item1->key.offset + 1 == item2->key.offset)
  60                return 1;
  61        return 0;
  62}
  63
  64static struct btrfs_delayed_node *btrfs_get_delayed_node(
  65                struct btrfs_inode *btrfs_inode)
  66{
  67        struct btrfs_root *root = btrfs_inode->root;
  68        u64 ino = btrfs_ino(btrfs_inode);
  69        struct btrfs_delayed_node *node;
  70
  71        node = READ_ONCE(btrfs_inode->delayed_node);
  72        if (node) {
  73                refcount_inc(&node->refs);
  74                return node;
  75        }
  76
  77        spin_lock(&root->inode_lock);
  78        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  79
  80        if (node) {
  81                if (btrfs_inode->delayed_node) {
  82                        refcount_inc(&node->refs);      /* can be accessed */
  83                        BUG_ON(btrfs_inode->delayed_node != node);
  84                        spin_unlock(&root->inode_lock);
  85                        return node;
  86                }
  87
  88                /*
  89                 * It's possible that we're racing into the middle of removing
  90                 * this node from the radix tree.  In this case, the refcount
  91                 * was zero and it should never go back to one.  Just return
  92                 * NULL like it was never in the radix at all; our release
  93                 * function is in the process of removing it.
  94                 *
  95                 * Some implementations of refcount_inc refuse to bump the
  96                 * refcount once it has hit zero.  If we don't do this dance
  97                 * here, refcount_inc() may decide to just WARN_ONCE() instead
  98                 * of actually bumping the refcount.
  99                 *
 100                 * If this node is properly in the radix, we want to bump the
 101                 * refcount twice, once for the inode and once for this get
 102                 * operation.
 103                 */
 104                if (refcount_inc_not_zero(&node->refs)) {
 105                        refcount_inc(&node->refs);
 106                        btrfs_inode->delayed_node = node;
 107                } else {
 108                        node = NULL;
 109                }
 110
 111                spin_unlock(&root->inode_lock);
 112                return node;
 113        }
 114        spin_unlock(&root->inode_lock);
 115
 116        return NULL;
 117}
 118
 119/* Will return either the node or PTR_ERR(-ENOMEM) */
 120static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 121                struct btrfs_inode *btrfs_inode)
 122{
 123        struct btrfs_delayed_node *node;
 124        struct btrfs_root *root = btrfs_inode->root;
 125        u64 ino = btrfs_ino(btrfs_inode);
 126        int ret;
 127
 128again:
 129        node = btrfs_get_delayed_node(btrfs_inode);
 130        if (node)
 131                return node;
 132
 133        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 134        if (!node)
 135                return ERR_PTR(-ENOMEM);
 136        btrfs_init_delayed_node(node, root, ino);
 137
 138        /* cached in the btrfs inode and can be accessed */
 139        refcount_set(&node->refs, 2);
 140
 141        ret = radix_tree_preload(GFP_NOFS);
 142        if (ret) {
 143                kmem_cache_free(delayed_node_cache, node);
 144                return ERR_PTR(ret);
 145        }
 146
 147        spin_lock(&root->inode_lock);
 148        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 149        if (ret == -EEXIST) {
 150                spin_unlock(&root->inode_lock);
 151                kmem_cache_free(delayed_node_cache, node);
 152                radix_tree_preload_end();
 153                goto again;
 154        }
 155        btrfs_inode->delayed_node = node;
 156        spin_unlock(&root->inode_lock);
 157        radix_tree_preload_end();
 158
 159        return node;
 160}
 161
 162/*
 163 * Call it when holding delayed_node->mutex
 164 *
 165 * If mod = 1, add this node into the prepared list.
 166 */
 167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 168                                     struct btrfs_delayed_node *node,
 169                                     int mod)
 170{
 171        spin_lock(&root->lock);
 172        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 173                if (!list_empty(&node->p_list))
 174                        list_move_tail(&node->p_list, &root->prepare_list);
 175                else if (mod)
 176                        list_add_tail(&node->p_list, &root->prepare_list);
 177        } else {
 178                list_add_tail(&node->n_list, &root->node_list);
 179                list_add_tail(&node->p_list, &root->prepare_list);
 180                refcount_inc(&node->refs);      /* inserted into list */
 181                root->nodes++;
 182                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 183        }
 184        spin_unlock(&root->lock);
 185}
 186
 187/* Call it when holding delayed_node->mutex */
 188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 189                                       struct btrfs_delayed_node *node)
 190{
 191        spin_lock(&root->lock);
 192        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 193                root->nodes--;
 194                refcount_dec(&node->refs);      /* not in the list */
 195                list_del_init(&node->n_list);
 196                if (!list_empty(&node->p_list))
 197                        list_del_init(&node->p_list);
 198                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 199        }
 200        spin_unlock(&root->lock);
 201}
 202
 203static struct btrfs_delayed_node *btrfs_first_delayed_node(
 204                        struct btrfs_delayed_root *delayed_root)
 205{
 206        struct list_head *p;
 207        struct btrfs_delayed_node *node = NULL;
 208
 209        spin_lock(&delayed_root->lock);
 210        if (list_empty(&delayed_root->node_list))
 211                goto out;
 212
 213        p = delayed_root->node_list.next;
 214        node = list_entry(p, struct btrfs_delayed_node, n_list);
 215        refcount_inc(&node->refs);
 216out:
 217        spin_unlock(&delayed_root->lock);
 218
 219        return node;
 220}
 221
 222static struct btrfs_delayed_node *btrfs_next_delayed_node(
 223                                                struct btrfs_delayed_node *node)
 224{
 225        struct btrfs_delayed_root *delayed_root;
 226        struct list_head *p;
 227        struct btrfs_delayed_node *next = NULL;
 228
 229        delayed_root = node->root->fs_info->delayed_root;
 230        spin_lock(&delayed_root->lock);
 231        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 232                /* not in the list */
 233                if (list_empty(&delayed_root->node_list))
 234                        goto out;
 235                p = delayed_root->node_list.next;
 236        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 237                goto out;
 238        else
 239                p = node->n_list.next;
 240
 241        next = list_entry(p, struct btrfs_delayed_node, n_list);
 242        refcount_inc(&next->refs);
 243out:
 244        spin_unlock(&delayed_root->lock);
 245
 246        return next;
 247}
 248
 249static void __btrfs_release_delayed_node(
 250                                struct btrfs_delayed_node *delayed_node,
 251                                int mod)
 252{
 253        struct btrfs_delayed_root *delayed_root;
 254
 255        if (!delayed_node)
 256                return;
 257
 258        delayed_root = delayed_node->root->fs_info->delayed_root;
 259
 260        mutex_lock(&delayed_node->mutex);
 261        if (delayed_node->count)
 262                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 263        else
 264                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 265        mutex_unlock(&delayed_node->mutex);
 266
 267        if (refcount_dec_and_test(&delayed_node->refs)) {
 268                struct btrfs_root *root = delayed_node->root;
 269
 270                spin_lock(&root->inode_lock);
 271                /*
 272                 * Once our refcount goes to zero, nobody is allowed to bump it
 273                 * back up.  We can delete it now.
 274                 */
 275                ASSERT(refcount_read(&delayed_node->refs) == 0);
 276                radix_tree_delete(&root->delayed_nodes_tree,
 277                                  delayed_node->inode_id);
 278                spin_unlock(&root->inode_lock);
 279                kmem_cache_free(delayed_node_cache, delayed_node);
 280        }
 281}
 282
 283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 284{
 285        __btrfs_release_delayed_node(node, 0);
 286}
 287
 288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 289                                        struct btrfs_delayed_root *delayed_root)
 290{
 291        struct list_head *p;
 292        struct btrfs_delayed_node *node = NULL;
 293
 294        spin_lock(&delayed_root->lock);
 295        if (list_empty(&delayed_root->prepare_list))
 296                goto out;
 297
 298        p = delayed_root->prepare_list.next;
 299        list_del_init(p);
 300        node = list_entry(p, struct btrfs_delayed_node, p_list);
 301        refcount_inc(&node->refs);
 302out:
 303        spin_unlock(&delayed_root->lock);
 304
 305        return node;
 306}
 307
 308static inline void btrfs_release_prepared_delayed_node(
 309                                        struct btrfs_delayed_node *node)
 310{
 311        __btrfs_release_delayed_node(node, 1);
 312}
 313
 314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 315{
 316        struct btrfs_delayed_item *item;
 317        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 318        if (item) {
 319                item->data_len = data_len;
 320                item->ins_or_del = 0;
 321                item->bytes_reserved = 0;
 322                item->delayed_node = NULL;
 323                refcount_set(&item->refs, 1);
 324        }
 325        return item;
 326}
 327
 328/*
 329 * __btrfs_lookup_delayed_item - look up the delayed item by key
 330 * @delayed_node: pointer to the delayed node
 331 * @key:          the key to look up
 332 * @prev:         used to store the prev item if the right item isn't found
 333 * @next:         used to store the next item if the right item isn't found
 334 *
 335 * Note: if we don't find the right item, we will return the prev item and
 336 * the next item.
 337 */
 338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 339                                struct rb_root *root,
 340                                struct btrfs_key *key,
 341                                struct btrfs_delayed_item **prev,
 342                                struct btrfs_delayed_item **next)
 343{
 344        struct rb_node *node, *prev_node = NULL;
 345        struct btrfs_delayed_item *delayed_item = NULL;
 346        int ret = 0;
 347
 348        node = root->rb_node;
 349
 350        while (node) {
 351                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 352                                        rb_node);
 353                prev_node = node;
 354                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 355                if (ret < 0)
 356                        node = node->rb_right;
 357                else if (ret > 0)
 358                        node = node->rb_left;
 359                else
 360                        return delayed_item;
 361        }
 362
 363        if (prev) {
 364                if (!prev_node)
 365                        *prev = NULL;
 366                else if (ret < 0)
 367                        *prev = delayed_item;
 368                else if ((node = rb_prev(prev_node)) != NULL) {
 369                        *prev = rb_entry(node, struct btrfs_delayed_item,
 370                                         rb_node);
 371                } else
 372                        *prev = NULL;
 373        }
 374
 375        if (next) {
 376                if (!prev_node)
 377                        *next = NULL;
 378                else if (ret > 0)
 379                        *next = delayed_item;
 380                else if ((node = rb_next(prev_node)) != NULL) {
 381                        *next = rb_entry(node, struct btrfs_delayed_item,
 382                                         rb_node);
 383                } else
 384                        *next = NULL;
 385        }
 386        return NULL;
 387}
 388
 389static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 390                                        struct btrfs_delayed_node *delayed_node,
 391                                        struct btrfs_key *key)
 392{
 393        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 394                                           NULL, NULL);
 395}
 396
 397static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 398                                    struct btrfs_delayed_item *ins,
 399                                    int action)
 400{
 401        struct rb_node **p, *node;
 402        struct rb_node *parent_node = NULL;
 403        struct rb_root_cached *root;
 404        struct btrfs_delayed_item *item;
 405        int cmp;
 406        bool leftmost = true;
 407
 408        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 409                root = &delayed_node->ins_root;
 410        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 411                root = &delayed_node->del_root;
 412        else
 413                BUG();
 414        p = &root->rb_root.rb_node;
 415        node = &ins->rb_node;
 416
 417        while (*p) {
 418                parent_node = *p;
 419                item = rb_entry(parent_node, struct btrfs_delayed_item,
 420                                 rb_node);
 421
 422                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 423                if (cmp < 0) {
 424                        p = &(*p)->rb_right;
 425                        leftmost = false;
 426                } else if (cmp > 0) {
 427                        p = &(*p)->rb_left;
 428                } else {
 429                        return -EEXIST;
 430                }
 431        }
 432
 433        rb_link_node(node, parent_node, p);
 434        rb_insert_color_cached(node, root, leftmost);
 435        ins->delayed_node = delayed_node;
 436        ins->ins_or_del = action;
 437
 438        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 439            action == BTRFS_DELAYED_INSERTION_ITEM &&
 440            ins->key.offset >= delayed_node->index_cnt)
 441                        delayed_node->index_cnt = ins->key.offset + 1;
 442
 443        delayed_node->count++;
 444        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 445        return 0;
 446}
 447
 448static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 449                                              struct btrfs_delayed_item *item)
 450{
 451        return __btrfs_add_delayed_item(node, item,
 452                                        BTRFS_DELAYED_INSERTION_ITEM);
 453}
 454
 455static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 456                                             struct btrfs_delayed_item *item)
 457{
 458        return __btrfs_add_delayed_item(node, item,
 459                                        BTRFS_DELAYED_DELETION_ITEM);
 460}
 461
 462static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 463{
 464        int seq = atomic_inc_return(&delayed_root->items_seq);
 465
 466        /* atomic_dec_return implies a barrier */
 467        if ((atomic_dec_return(&delayed_root->items) <
 468            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 469                cond_wake_up_nomb(&delayed_root->wait);
 470}
 471
 472static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 473{
 474        struct rb_root_cached *root;
 475        struct btrfs_delayed_root *delayed_root;
 476
 477        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 478
 479        BUG_ON(!delayed_root);
 480        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 481               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 482
 483        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 484                root = &delayed_item->delayed_node->ins_root;
 485        else
 486                root = &delayed_item->delayed_node->del_root;
 487
 488        rb_erase_cached(&delayed_item->rb_node, root);
 489        delayed_item->delayed_node->count--;
 490
 491        finish_one_item(delayed_root);
 492}
 493
 494static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 495{
 496        if (item) {
 497                __btrfs_remove_delayed_item(item);
 498                if (refcount_dec_and_test(&item->refs))
 499                        kfree(item);
 500        }
 501}
 502
 503static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 504                                        struct btrfs_delayed_node *delayed_node)
 505{
 506        struct rb_node *p;
 507        struct btrfs_delayed_item *item = NULL;
 508
 509        p = rb_first_cached(&delayed_node->ins_root);
 510        if (p)
 511                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 512
 513        return item;
 514}
 515
 516static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 517                                        struct btrfs_delayed_node *delayed_node)
 518{
 519        struct rb_node *p;
 520        struct btrfs_delayed_item *item = NULL;
 521
 522        p = rb_first_cached(&delayed_node->del_root);
 523        if (p)
 524                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 525
 526        return item;
 527}
 528
 529static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 530                                                struct btrfs_delayed_item *item)
 531{
 532        struct rb_node *p;
 533        struct btrfs_delayed_item *next = NULL;
 534
 535        p = rb_next(&item->rb_node);
 536        if (p)
 537                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 538
 539        return next;
 540}
 541
 542static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 543                                               struct btrfs_root *root,
 544                                               struct btrfs_delayed_item *item)
 545{
 546        struct btrfs_block_rsv *src_rsv;
 547        struct btrfs_block_rsv *dst_rsv;
 548        struct btrfs_fs_info *fs_info = root->fs_info;
 549        u64 num_bytes;
 550        int ret;
 551
 552        if (!trans->bytes_reserved)
 553                return 0;
 554
 555        src_rsv = trans->block_rsv;
 556        dst_rsv = &fs_info->delayed_block_rsv;
 557
 558        num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 559
 560        /*
 561         * Here we migrate space rsv from transaction rsv, since have already
 562         * reserved space when starting a transaction.  So no need to reserve
 563         * qgroup space here.
 564         */
 565        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 566        if (!ret) {
 567                trace_btrfs_space_reservation(fs_info, "delayed_item",
 568                                              item->key.objectid,
 569                                              num_bytes, 1);
 570                item->bytes_reserved = num_bytes;
 571        }
 572
 573        return ret;
 574}
 575
 576static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 577                                                struct btrfs_delayed_item *item)
 578{
 579        struct btrfs_block_rsv *rsv;
 580        struct btrfs_fs_info *fs_info = root->fs_info;
 581
 582        if (!item->bytes_reserved)
 583                return;
 584
 585        rsv = &fs_info->delayed_block_rsv;
 586        /*
 587         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 588         * to release/reserve qgroup space.
 589         */
 590        trace_btrfs_space_reservation(fs_info, "delayed_item",
 591                                      item->key.objectid, item->bytes_reserved,
 592                                      0);
 593        btrfs_block_rsv_release(fs_info, rsv,
 594                                item->bytes_reserved);
 595}
 596
 597static int btrfs_delayed_inode_reserve_metadata(
 598                                        struct btrfs_trans_handle *trans,
 599                                        struct btrfs_root *root,
 600                                        struct btrfs_inode *inode,
 601                                        struct btrfs_delayed_node *node)
 602{
 603        struct btrfs_fs_info *fs_info = root->fs_info;
 604        struct btrfs_block_rsv *src_rsv;
 605        struct btrfs_block_rsv *dst_rsv;
 606        u64 num_bytes;
 607        int ret;
 608
 609        src_rsv = trans->block_rsv;
 610        dst_rsv = &fs_info->delayed_block_rsv;
 611
 612        num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 613
 614        /*
 615         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 616         * which doesn't reserve space for speed.  This is a problem since we
 617         * still need to reserve space for this update, so try to reserve the
 618         * space.
 619         *
 620         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 621         * we always reserve enough to update the inode item.
 622         */
 623        if (!src_rsv || (!trans->bytes_reserved &&
 624                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 625                ret = btrfs_qgroup_reserve_meta_prealloc(root,
 626                                fs_info->nodesize, true);
 627                if (ret < 0)
 628                        return ret;
 629                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 630                                          BTRFS_RESERVE_NO_FLUSH);
 631                /*
 632                 * Since we're under a transaction reserve_metadata_bytes could
 633                 * try to commit the transaction which will make it return
 634                 * EAGAIN to make us stop the transaction we have, so return
 635                 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 636                 */
 637                if (ret == -EAGAIN) {
 638                        ret = -ENOSPC;
 639                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 640                }
 641                if (!ret) {
 642                        node->bytes_reserved = num_bytes;
 643                        trace_btrfs_space_reservation(fs_info,
 644                                                      "delayed_inode",
 645                                                      btrfs_ino(inode),
 646                                                      num_bytes, 1);
 647                } else {
 648                        btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 649                }
 650                return ret;
 651        }
 652
 653        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 654        if (!ret) {
 655                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 656                                              btrfs_ino(inode), num_bytes, 1);
 657                node->bytes_reserved = num_bytes;
 658        }
 659
 660        return ret;
 661}
 662
 663static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 664                                                struct btrfs_delayed_node *node,
 665                                                bool qgroup_free)
 666{
 667        struct btrfs_block_rsv *rsv;
 668
 669        if (!node->bytes_reserved)
 670                return;
 671
 672        rsv = &fs_info->delayed_block_rsv;
 673        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 674                                      node->inode_id, node->bytes_reserved, 0);
 675        btrfs_block_rsv_release(fs_info, rsv,
 676                                node->bytes_reserved);
 677        if (qgroup_free)
 678                btrfs_qgroup_free_meta_prealloc(node->root,
 679                                node->bytes_reserved);
 680        else
 681                btrfs_qgroup_convert_reserved_meta(node->root,
 682                                node->bytes_reserved);
 683        node->bytes_reserved = 0;
 684}
 685
 686/*
 687 * This helper will insert some continuous items into the same leaf according
 688 * to the free space of the leaf.
 689 */
 690static int btrfs_batch_insert_items(struct btrfs_root *root,
 691                                    struct btrfs_path *path,
 692                                    struct btrfs_delayed_item *item)
 693{
 694        struct btrfs_delayed_item *curr, *next;
 695        int free_space;
 696        int total_data_size = 0, total_size = 0;
 697        struct extent_buffer *leaf;
 698        char *data_ptr;
 699        struct btrfs_key *keys;
 700        u32 *data_size;
 701        struct list_head head;
 702        int slot;
 703        int nitems;
 704        int i;
 705        int ret = 0;
 706
 707        BUG_ON(!path->nodes[0]);
 708
 709        leaf = path->nodes[0];
 710        free_space = btrfs_leaf_free_space(leaf);
 711        INIT_LIST_HEAD(&head);
 712
 713        next = item;
 714        nitems = 0;
 715
 716        /*
 717         * count the number of the continuous items that we can insert in batch
 718         */
 719        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 720               free_space) {
 721                total_data_size += next->data_len;
 722                total_size += next->data_len + sizeof(struct btrfs_item);
 723                list_add_tail(&next->tree_list, &head);
 724                nitems++;
 725
 726                curr = next;
 727                next = __btrfs_next_delayed_item(curr);
 728                if (!next)
 729                        break;
 730
 731                if (!btrfs_is_continuous_delayed_item(curr, next))
 732                        break;
 733        }
 734
 735        if (!nitems) {
 736                ret = 0;
 737                goto out;
 738        }
 739
 740        /*
 741         * we need allocate some memory space, but it might cause the task
 742         * to sleep, so we set all locked nodes in the path to blocking locks
 743         * first.
 744         */
 745        btrfs_set_path_blocking(path);
 746
 747        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 748        if (!keys) {
 749                ret = -ENOMEM;
 750                goto out;
 751        }
 752
 753        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 754        if (!data_size) {
 755                ret = -ENOMEM;
 756                goto error;
 757        }
 758
 759        /* get keys of all the delayed items */
 760        i = 0;
 761        list_for_each_entry(next, &head, tree_list) {
 762                keys[i] = next->key;
 763                data_size[i] = next->data_len;
 764                i++;
 765        }
 766
 767        /* insert the keys of the items */
 768        setup_items_for_insert(root, path, keys, data_size,
 769                               total_data_size, total_size, nitems);
 770
 771        /* insert the dir index items */
 772        slot = path->slots[0];
 773        list_for_each_entry_safe(curr, next, &head, tree_list) {
 774                data_ptr = btrfs_item_ptr(leaf, slot, char);
 775                write_extent_buffer(leaf, &curr->data,
 776                                    (unsigned long)data_ptr,
 777                                    curr->data_len);
 778                slot++;
 779
 780                btrfs_delayed_item_release_metadata(root, curr);
 781
 782                list_del(&curr->tree_list);
 783                btrfs_release_delayed_item(curr);
 784        }
 785
 786error:
 787        kfree(data_size);
 788        kfree(keys);
 789out:
 790        return ret;
 791}
 792
 793/*
 794 * This helper can just do simple insertion that needn't extend item for new
 795 * data, such as directory name index insertion, inode insertion.
 796 */
 797static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 798                                     struct btrfs_root *root,
 799                                     struct btrfs_path *path,
 800                                     struct btrfs_delayed_item *delayed_item)
 801{
 802        struct extent_buffer *leaf;
 803        char *ptr;
 804        int ret;
 805
 806        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 807                                      delayed_item->data_len);
 808        if (ret < 0 && ret != -EEXIST)
 809                return ret;
 810
 811        leaf = path->nodes[0];
 812
 813        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 814
 815        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 816                            delayed_item->data_len);
 817        btrfs_mark_buffer_dirty(leaf);
 818
 819        btrfs_delayed_item_release_metadata(root, delayed_item);
 820        return 0;
 821}
 822
 823/*
 824 * we insert an item first, then if there are some continuous items, we try
 825 * to insert those items into the same leaf.
 826 */
 827static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 828                                      struct btrfs_path *path,
 829                                      struct btrfs_root *root,
 830                                      struct btrfs_delayed_node *node)
 831{
 832        struct btrfs_delayed_item *curr, *prev;
 833        int ret = 0;
 834
 835do_again:
 836        mutex_lock(&node->mutex);
 837        curr = __btrfs_first_delayed_insertion_item(node);
 838        if (!curr)
 839                goto insert_end;
 840
 841        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 842        if (ret < 0) {
 843                btrfs_release_path(path);
 844                goto insert_end;
 845        }
 846
 847        prev = curr;
 848        curr = __btrfs_next_delayed_item(prev);
 849        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 850                /* insert the continuous items into the same leaf */
 851                path->slots[0]++;
 852                btrfs_batch_insert_items(root, path, curr);
 853        }
 854        btrfs_release_delayed_item(prev);
 855        btrfs_mark_buffer_dirty(path->nodes[0]);
 856
 857        btrfs_release_path(path);
 858        mutex_unlock(&node->mutex);
 859        goto do_again;
 860
 861insert_end:
 862        mutex_unlock(&node->mutex);
 863        return ret;
 864}
 865
 866static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 867                                    struct btrfs_root *root,
 868                                    struct btrfs_path *path,
 869                                    struct btrfs_delayed_item *item)
 870{
 871        struct btrfs_delayed_item *curr, *next;
 872        struct extent_buffer *leaf;
 873        struct btrfs_key key;
 874        struct list_head head;
 875        int nitems, i, last_item;
 876        int ret = 0;
 877
 878        BUG_ON(!path->nodes[0]);
 879
 880        leaf = path->nodes[0];
 881
 882        i = path->slots[0];
 883        last_item = btrfs_header_nritems(leaf) - 1;
 884        if (i > last_item)
 885                return -ENOENT; /* FIXME: Is errno suitable? */
 886
 887        next = item;
 888        INIT_LIST_HEAD(&head);
 889        btrfs_item_key_to_cpu(leaf, &key, i);
 890        nitems = 0;
 891        /*
 892         * count the number of the dir index items that we can delete in batch
 893         */
 894        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 895                list_add_tail(&next->tree_list, &head);
 896                nitems++;
 897
 898                curr = next;
 899                next = __btrfs_next_delayed_item(curr);
 900                if (!next)
 901                        break;
 902
 903                if (!btrfs_is_continuous_delayed_item(curr, next))
 904                        break;
 905
 906                i++;
 907                if (i > last_item)
 908                        break;
 909                btrfs_item_key_to_cpu(leaf, &key, i);
 910        }
 911
 912        if (!nitems)
 913                return 0;
 914
 915        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 916        if (ret)
 917                goto out;
 918
 919        list_for_each_entry_safe(curr, next, &head, tree_list) {
 920                btrfs_delayed_item_release_metadata(root, curr);
 921                list_del(&curr->tree_list);
 922                btrfs_release_delayed_item(curr);
 923        }
 924
 925out:
 926        return ret;
 927}
 928
 929static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 930                                      struct btrfs_path *path,
 931                                      struct btrfs_root *root,
 932                                      struct btrfs_delayed_node *node)
 933{
 934        struct btrfs_delayed_item *curr, *prev;
 935        int ret = 0;
 936
 937do_again:
 938        mutex_lock(&node->mutex);
 939        curr = __btrfs_first_delayed_deletion_item(node);
 940        if (!curr)
 941                goto delete_fail;
 942
 943        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 944        if (ret < 0)
 945                goto delete_fail;
 946        else if (ret > 0) {
 947                /*
 948                 * can't find the item which the node points to, so this node
 949                 * is invalid, just drop it.
 950                 */
 951                prev = curr;
 952                curr = __btrfs_next_delayed_item(prev);
 953                btrfs_release_delayed_item(prev);
 954                ret = 0;
 955                btrfs_release_path(path);
 956                if (curr) {
 957                        mutex_unlock(&node->mutex);
 958                        goto do_again;
 959                } else
 960                        goto delete_fail;
 961        }
 962
 963        btrfs_batch_delete_items(trans, root, path, curr);
 964        btrfs_release_path(path);
 965        mutex_unlock(&node->mutex);
 966        goto do_again;
 967
 968delete_fail:
 969        btrfs_release_path(path);
 970        mutex_unlock(&node->mutex);
 971        return ret;
 972}
 973
 974static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 975{
 976        struct btrfs_delayed_root *delayed_root;
 977
 978        if (delayed_node &&
 979            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 980                BUG_ON(!delayed_node->root);
 981                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 982                delayed_node->count--;
 983
 984                delayed_root = delayed_node->root->fs_info->delayed_root;
 985                finish_one_item(delayed_root);
 986        }
 987}
 988
 989static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 990{
 991        struct btrfs_delayed_root *delayed_root;
 992
 993        ASSERT(delayed_node->root);
 994        clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
 995        delayed_node->count--;
 996
 997        delayed_root = delayed_node->root->fs_info->delayed_root;
 998        finish_one_item(delayed_root);
 999}
1000
1001static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1002                                        struct btrfs_root *root,
1003                                        struct btrfs_path *path,
1004                                        struct btrfs_delayed_node *node)
1005{
1006        struct btrfs_fs_info *fs_info = root->fs_info;
1007        struct btrfs_key key;
1008        struct btrfs_inode_item *inode_item;
1009        struct extent_buffer *leaf;
1010        int mod;
1011        int ret;
1012
1013        key.objectid = node->inode_id;
1014        key.type = BTRFS_INODE_ITEM_KEY;
1015        key.offset = 0;
1016
1017        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1018                mod = -1;
1019        else
1020                mod = 1;
1021
1022        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1023        if (ret > 0) {
1024                btrfs_release_path(path);
1025                return -ENOENT;
1026        } else if (ret < 0) {
1027                return ret;
1028        }
1029
1030        leaf = path->nodes[0];
1031        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1032                                    struct btrfs_inode_item);
1033        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1034                            sizeof(struct btrfs_inode_item));
1035        btrfs_mark_buffer_dirty(leaf);
1036
1037        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1038                goto no_iref;
1039
1040        path->slots[0]++;
1041        if (path->slots[0] >= btrfs_header_nritems(leaf))
1042                goto search;
1043again:
1044        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1045        if (key.objectid != node->inode_id)
1046                goto out;
1047
1048        if (key.type != BTRFS_INODE_REF_KEY &&
1049            key.type != BTRFS_INODE_EXTREF_KEY)
1050                goto out;
1051
1052        /*
1053         * Delayed iref deletion is for the inode who has only one link,
1054         * so there is only one iref. The case that several irefs are
1055         * in the same item doesn't exist.
1056         */
1057        btrfs_del_item(trans, root, path);
1058out:
1059        btrfs_release_delayed_iref(node);
1060no_iref:
1061        btrfs_release_path(path);
1062err_out:
1063        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1064        btrfs_release_delayed_inode(node);
1065
1066        return ret;
1067
1068search:
1069        btrfs_release_path(path);
1070
1071        key.type = BTRFS_INODE_EXTREF_KEY;
1072        key.offset = -1;
1073        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1074        if (ret < 0)
1075                goto err_out;
1076        ASSERT(ret);
1077
1078        ret = 0;
1079        leaf = path->nodes[0];
1080        path->slots[0]--;
1081        goto again;
1082}
1083
1084static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1085                                             struct btrfs_root *root,
1086                                             struct btrfs_path *path,
1087                                             struct btrfs_delayed_node *node)
1088{
1089        int ret;
1090
1091        mutex_lock(&node->mutex);
1092        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1093                mutex_unlock(&node->mutex);
1094                return 0;
1095        }
1096
1097        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1098        mutex_unlock(&node->mutex);
1099        return ret;
1100}
1101
1102static inline int
1103__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1104                                   struct btrfs_path *path,
1105                                   struct btrfs_delayed_node *node)
1106{
1107        int ret;
1108
1109        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1110        if (ret)
1111                return ret;
1112
1113        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1114        if (ret)
1115                return ret;
1116
1117        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1118        return ret;
1119}
1120
1121/*
1122 * Called when committing the transaction.
1123 * Returns 0 on success.
1124 * Returns < 0 on error and returns with an aborted transaction with any
1125 * outstanding delayed items cleaned up.
1126 */
1127static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1128{
1129        struct btrfs_fs_info *fs_info = trans->fs_info;
1130        struct btrfs_delayed_root *delayed_root;
1131        struct btrfs_delayed_node *curr_node, *prev_node;
1132        struct btrfs_path *path;
1133        struct btrfs_block_rsv *block_rsv;
1134        int ret = 0;
1135        bool count = (nr > 0);
1136
1137        if (trans->aborted)
1138                return -EIO;
1139
1140        path = btrfs_alloc_path();
1141        if (!path)
1142                return -ENOMEM;
1143        path->leave_spinning = 1;
1144
1145        block_rsv = trans->block_rsv;
1146        trans->block_rsv = &fs_info->delayed_block_rsv;
1147
1148        delayed_root = fs_info->delayed_root;
1149
1150        curr_node = btrfs_first_delayed_node(delayed_root);
1151        while (curr_node && (!count || (count && nr--))) {
1152                ret = __btrfs_commit_inode_delayed_items(trans, path,
1153                                                         curr_node);
1154                if (ret) {
1155                        btrfs_release_delayed_node(curr_node);
1156                        curr_node = NULL;
1157                        btrfs_abort_transaction(trans, ret);
1158                        break;
1159                }
1160
1161                prev_node = curr_node;
1162                curr_node = btrfs_next_delayed_node(curr_node);
1163                btrfs_release_delayed_node(prev_node);
1164        }
1165
1166        if (curr_node)
1167                btrfs_release_delayed_node(curr_node);
1168        btrfs_free_path(path);
1169        trans->block_rsv = block_rsv;
1170
1171        return ret;
1172}
1173
1174int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1175{
1176        return __btrfs_run_delayed_items(trans, -1);
1177}
1178
1179int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1180{
1181        return __btrfs_run_delayed_items(trans, nr);
1182}
1183
1184int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1185                                     struct btrfs_inode *inode)
1186{
1187        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1188        struct btrfs_path *path;
1189        struct btrfs_block_rsv *block_rsv;
1190        int ret;
1191
1192        if (!delayed_node)
1193                return 0;
1194
1195        mutex_lock(&delayed_node->mutex);
1196        if (!delayed_node->count) {
1197                mutex_unlock(&delayed_node->mutex);
1198                btrfs_release_delayed_node(delayed_node);
1199                return 0;
1200        }
1201        mutex_unlock(&delayed_node->mutex);
1202
1203        path = btrfs_alloc_path();
1204        if (!path) {
1205                btrfs_release_delayed_node(delayed_node);
1206                return -ENOMEM;
1207        }
1208        path->leave_spinning = 1;
1209
1210        block_rsv = trans->block_rsv;
1211        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215        btrfs_release_delayed_node(delayed_node);
1216        btrfs_free_path(path);
1217        trans->block_rsv = block_rsv;
1218
1219        return ret;
1220}
1221
1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223{
1224        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225        struct btrfs_trans_handle *trans;
1226        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227        struct btrfs_path *path;
1228        struct btrfs_block_rsv *block_rsv;
1229        int ret;
1230
1231        if (!delayed_node)
1232                return 0;
1233
1234        mutex_lock(&delayed_node->mutex);
1235        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236                mutex_unlock(&delayed_node->mutex);
1237                btrfs_release_delayed_node(delayed_node);
1238                return 0;
1239        }
1240        mutex_unlock(&delayed_node->mutex);
1241
1242        trans = btrfs_join_transaction(delayed_node->root);
1243        if (IS_ERR(trans)) {
1244                ret = PTR_ERR(trans);
1245                goto out;
1246        }
1247
1248        path = btrfs_alloc_path();
1249        if (!path) {
1250                ret = -ENOMEM;
1251                goto trans_out;
1252        }
1253        path->leave_spinning = 1;
1254
1255        block_rsv = trans->block_rsv;
1256        trans->block_rsv = &fs_info->delayed_block_rsv;
1257
1258        mutex_lock(&delayed_node->mutex);
1259        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1260                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1261                                                   path, delayed_node);
1262        else
1263                ret = 0;
1264        mutex_unlock(&delayed_node->mutex);
1265
1266        btrfs_free_path(path);
1267        trans->block_rsv = block_rsv;
1268trans_out:
1269        btrfs_end_transaction(trans);
1270        btrfs_btree_balance_dirty(fs_info);
1271out:
1272        btrfs_release_delayed_node(delayed_node);
1273
1274        return ret;
1275}
1276
1277void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1278{
1279        struct btrfs_delayed_node *delayed_node;
1280
1281        delayed_node = READ_ONCE(inode->delayed_node);
1282        if (!delayed_node)
1283                return;
1284
1285        inode->delayed_node = NULL;
1286        btrfs_release_delayed_node(delayed_node);
1287}
1288
1289struct btrfs_async_delayed_work {
1290        struct btrfs_delayed_root *delayed_root;
1291        int nr;
1292        struct btrfs_work work;
1293};
1294
1295static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1296{
1297        struct btrfs_async_delayed_work *async_work;
1298        struct btrfs_delayed_root *delayed_root;
1299        struct btrfs_trans_handle *trans;
1300        struct btrfs_path *path;
1301        struct btrfs_delayed_node *delayed_node = NULL;
1302        struct btrfs_root *root;
1303        struct btrfs_block_rsv *block_rsv;
1304        int total_done = 0;
1305
1306        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1307        delayed_root = async_work->delayed_root;
1308
1309        path = btrfs_alloc_path();
1310        if (!path)
1311                goto out;
1312
1313        do {
1314                if (atomic_read(&delayed_root->items) <
1315                    BTRFS_DELAYED_BACKGROUND / 2)
1316                        break;
1317
1318                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1319                if (!delayed_node)
1320                        break;
1321
1322                path->leave_spinning = 1;
1323                root = delayed_node->root;
1324
1325                trans = btrfs_join_transaction(root);
1326                if (IS_ERR(trans)) {
1327                        btrfs_release_path(path);
1328                        btrfs_release_prepared_delayed_node(delayed_node);
1329                        total_done++;
1330                        continue;
1331                }
1332
1333                block_rsv = trans->block_rsv;
1334                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1335
1336                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1337
1338                trans->block_rsv = block_rsv;
1339                btrfs_end_transaction(trans);
1340                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1341
1342                btrfs_release_path(path);
1343                btrfs_release_prepared_delayed_node(delayed_node);
1344                total_done++;
1345
1346        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1347                 || total_done < async_work->nr);
1348
1349        btrfs_free_path(path);
1350out:
1351        wake_up(&delayed_root->wait);
1352        kfree(async_work);
1353}
1354
1355
1356static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1357                                     struct btrfs_fs_info *fs_info, int nr)
1358{
1359        struct btrfs_async_delayed_work *async_work;
1360
1361        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1362        if (!async_work)
1363                return -ENOMEM;
1364
1365        async_work->delayed_root = delayed_root;
1366        btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1367                        btrfs_async_run_delayed_root, NULL, NULL);
1368        async_work->nr = nr;
1369
1370        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1371        return 0;
1372}
1373
1374void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1375{
1376        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1377}
1378
1379static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1380{
1381        int val = atomic_read(&delayed_root->items_seq);
1382
1383        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1384                return 1;
1385
1386        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1387                return 1;
1388
1389        return 0;
1390}
1391
1392void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1393{
1394        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1395
1396        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1397                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1398                return;
1399
1400        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1401                int seq;
1402                int ret;
1403
1404                seq = atomic_read(&delayed_root->items_seq);
1405
1406                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1407                if (ret)
1408                        return;
1409
1410                wait_event_interruptible(delayed_root->wait,
1411                                         could_end_wait(delayed_root, seq));
1412                return;
1413        }
1414
1415        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1416}
1417
1418/* Will return 0 or -ENOMEM */
1419int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1420                                   const char *name, int name_len,
1421                                   struct btrfs_inode *dir,
1422                                   struct btrfs_disk_key *disk_key, u8 type,
1423                                   u64 index)
1424{
1425        struct btrfs_delayed_node *delayed_node;
1426        struct btrfs_delayed_item *delayed_item;
1427        struct btrfs_dir_item *dir_item;
1428        int ret;
1429
1430        delayed_node = btrfs_get_or_create_delayed_node(dir);
1431        if (IS_ERR(delayed_node))
1432                return PTR_ERR(delayed_node);
1433
1434        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1435        if (!delayed_item) {
1436                ret = -ENOMEM;
1437                goto release_node;
1438        }
1439
1440        delayed_item->key.objectid = btrfs_ino(dir);
1441        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1442        delayed_item->key.offset = index;
1443
1444        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1445        dir_item->location = *disk_key;
1446        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1447        btrfs_set_stack_dir_data_len(dir_item, 0);
1448        btrfs_set_stack_dir_name_len(dir_item, name_len);
1449        btrfs_set_stack_dir_type(dir_item, type);
1450        memcpy((char *)(dir_item + 1), name, name_len);
1451
1452        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1453        /*
1454         * we have reserved enough space when we start a new transaction,
1455         * so reserving metadata failure is impossible
1456         */
1457        BUG_ON(ret);
1458
1459        mutex_lock(&delayed_node->mutex);
1460        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1461        if (unlikely(ret)) {
1462                btrfs_err(trans->fs_info,
1463                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1464                          name_len, name, delayed_node->root->root_key.objectid,
1465                          delayed_node->inode_id, ret);
1466                BUG();
1467        }
1468        mutex_unlock(&delayed_node->mutex);
1469
1470release_node:
1471        btrfs_release_delayed_node(delayed_node);
1472        return ret;
1473}
1474
1475static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1476                                               struct btrfs_delayed_node *node,
1477                                               struct btrfs_key *key)
1478{
1479        struct btrfs_delayed_item *item;
1480
1481        mutex_lock(&node->mutex);
1482        item = __btrfs_lookup_delayed_insertion_item(node, key);
1483        if (!item) {
1484                mutex_unlock(&node->mutex);
1485                return 1;
1486        }
1487
1488        btrfs_delayed_item_release_metadata(node->root, item);
1489        btrfs_release_delayed_item(item);
1490        mutex_unlock(&node->mutex);
1491        return 0;
1492}
1493
1494int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1495                                   struct btrfs_inode *dir, u64 index)
1496{
1497        struct btrfs_delayed_node *node;
1498        struct btrfs_delayed_item *item;
1499        struct btrfs_key item_key;
1500        int ret;
1501
1502        node = btrfs_get_or_create_delayed_node(dir);
1503        if (IS_ERR(node))
1504                return PTR_ERR(node);
1505
1506        item_key.objectid = btrfs_ino(dir);
1507        item_key.type = BTRFS_DIR_INDEX_KEY;
1508        item_key.offset = index;
1509
1510        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1511                                                  &item_key);
1512        if (!ret)
1513                goto end;
1514
1515        item = btrfs_alloc_delayed_item(0);
1516        if (!item) {
1517                ret = -ENOMEM;
1518                goto end;
1519        }
1520
1521        item->key = item_key;
1522
1523        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1524        /*
1525         * we have reserved enough space when we start a new transaction,
1526         * so reserving metadata failure is impossible.
1527         */
1528        BUG_ON(ret);
1529
1530        mutex_lock(&node->mutex);
1531        ret = __btrfs_add_delayed_deletion_item(node, item);
1532        if (unlikely(ret)) {
1533                btrfs_err(trans->fs_info,
1534                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1535                          index, node->root->root_key.objectid,
1536                          node->inode_id, ret);
1537                BUG();
1538        }
1539        mutex_unlock(&node->mutex);
1540end:
1541        btrfs_release_delayed_node(node);
1542        return ret;
1543}
1544
1545int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546{
1547        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549        if (!delayed_node)
1550                return -ENOENT;
1551
1552        /*
1553         * Since we have held i_mutex of this directory, it is impossible that
1554         * a new directory index is added into the delayed node and index_cnt
1555         * is updated now. So we needn't lock the delayed node.
1556         */
1557        if (!delayed_node->index_cnt) {
1558                btrfs_release_delayed_node(delayed_node);
1559                return -EINVAL;
1560        }
1561
1562        inode->index_cnt = delayed_node->index_cnt;
1563        btrfs_release_delayed_node(delayed_node);
1564        return 0;
1565}
1566
1567bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568                                     struct list_head *ins_list,
1569                                     struct list_head *del_list)
1570{
1571        struct btrfs_delayed_node *delayed_node;
1572        struct btrfs_delayed_item *item;
1573
1574        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575        if (!delayed_node)
1576                return false;
1577
1578        /*
1579         * We can only do one readdir with delayed items at a time because of
1580         * item->readdir_list.
1581         */
1582        inode_unlock_shared(inode);
1583        inode_lock(inode);
1584
1585        mutex_lock(&delayed_node->mutex);
1586        item = __btrfs_first_delayed_insertion_item(delayed_node);
1587        while (item) {
1588                refcount_inc(&item->refs);
1589                list_add_tail(&item->readdir_list, ins_list);
1590                item = __btrfs_next_delayed_item(item);
1591        }
1592
1593        item = __btrfs_first_delayed_deletion_item(delayed_node);
1594        while (item) {
1595                refcount_inc(&item->refs);
1596                list_add_tail(&item->readdir_list, del_list);
1597                item = __btrfs_next_delayed_item(item);
1598        }
1599        mutex_unlock(&delayed_node->mutex);
1600        /*
1601         * This delayed node is still cached in the btrfs inode, so refs
1602         * must be > 1 now, and we needn't check it is going to be freed
1603         * or not.
1604         *
1605         * Besides that, this function is used to read dir, we do not
1606         * insert/delete delayed items in this period. So we also needn't
1607         * requeue or dequeue this delayed node.
1608         */
1609        refcount_dec(&delayed_node->refs);
1610
1611        return true;
1612}
1613
1614void btrfs_readdir_put_delayed_items(struct inode *inode,
1615                                     struct list_head *ins_list,
1616                                     struct list_head *del_list)
1617{
1618        struct btrfs_delayed_item *curr, *next;
1619
1620        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621                list_del(&curr->readdir_list);
1622                if (refcount_dec_and_test(&curr->refs))
1623                        kfree(curr);
1624        }
1625
1626        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627                list_del(&curr->readdir_list);
1628                if (refcount_dec_and_test(&curr->refs))
1629                        kfree(curr);
1630        }
1631
1632        /*
1633         * The VFS is going to do up_read(), so we need to downgrade back to a
1634         * read lock.
1635         */
1636        downgrade_write(&inode->i_rwsem);
1637}
1638
1639int btrfs_should_delete_dir_index(struct list_head *del_list,
1640                                  u64 index)
1641{
1642        struct btrfs_delayed_item *curr;
1643        int ret = 0;
1644
1645        list_for_each_entry(curr, del_list, readdir_list) {
1646                if (curr->key.offset > index)
1647                        break;
1648                if (curr->key.offset == index) {
1649                        ret = 1;
1650                        break;
1651                }
1652        }
1653        return ret;
1654}
1655
1656/*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661                                    struct list_head *ins_list)
1662{
1663        struct btrfs_dir_item *di;
1664        struct btrfs_delayed_item *curr, *next;
1665        struct btrfs_key location;
1666        char *name;
1667        int name_len;
1668        int over = 0;
1669        unsigned char d_type;
1670
1671        if (list_empty(ins_list))
1672                return 0;
1673
1674        /*
1675         * Changing the data of the delayed item is impossible. So
1676         * we needn't lock them. And we have held i_mutex of the
1677         * directory, nobody can delete any directory indexes now.
1678         */
1679        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680                list_del(&curr->readdir_list);
1681
1682                if (curr->key.offset < ctx->pos) {
1683                        if (refcount_dec_and_test(&curr->refs))
1684                                kfree(curr);
1685                        continue;
1686                }
1687
1688                ctx->pos = curr->key.offset;
1689
1690                di = (struct btrfs_dir_item *)curr->data;
1691                name = (char *)(di + 1);
1692                name_len = btrfs_stack_dir_name_len(di);
1693
1694                d_type = fs_ftype_to_dtype(di->type);
1695                btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697                over = !dir_emit(ctx, name, name_len,
1698                               location.objectid, d_type);
1699
1700                if (refcount_dec_and_test(&curr->refs))
1701                        kfree(curr);
1702
1703                if (over)
1704                        return 1;
1705                ctx->pos++;
1706        }
1707        return 0;
1708}
1709
1710static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711                                  struct btrfs_inode_item *inode_item,
1712                                  struct inode *inode)
1713{
1714        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720        btrfs_set_stack_inode_generation(inode_item,
1721                                         BTRFS_I(inode)->generation);
1722        btrfs_set_stack_inode_sequence(inode_item,
1723                                       inode_peek_iversion(inode));
1724        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727        btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729        btrfs_set_stack_timespec_sec(&inode_item->atime,
1730                                     inode->i_atime.tv_sec);
1731        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732                                      inode->i_atime.tv_nsec);
1733
1734        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735                                     inode->i_mtime.tv_sec);
1736        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737                                      inode->i_mtime.tv_nsec);
1738
1739        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740                                     inode->i_ctime.tv_sec);
1741        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742                                      inode->i_ctime.tv_nsec);
1743
1744        btrfs_set_stack_timespec_sec(&inode_item->otime,
1745                                     BTRFS_I(inode)->i_otime.tv_sec);
1746        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747                                     BTRFS_I(inode)->i_otime.tv_nsec);
1748}
1749
1750int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751{
1752        struct btrfs_delayed_node *delayed_node;
1753        struct btrfs_inode_item *inode_item;
1754
1755        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1756        if (!delayed_node)
1757                return -ENOENT;
1758
1759        mutex_lock(&delayed_node->mutex);
1760        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1761                mutex_unlock(&delayed_node->mutex);
1762                btrfs_release_delayed_node(delayed_node);
1763                return -ENOENT;
1764        }
1765
1766        inode_item = &delayed_node->inode_item;
1767
1768        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1769        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1770        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1771        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1772        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1773        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1774        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1775        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1776
1777        inode_set_iversion_queried(inode,
1778                                   btrfs_stack_inode_sequence(inode_item));
1779        inode->i_rdev = 0;
1780        *rdev = btrfs_stack_inode_rdev(inode_item);
1781        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1782
1783        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1784        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1785
1786        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1787        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1788
1789        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1790        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1791
1792        BTRFS_I(inode)->i_otime.tv_sec =
1793                btrfs_stack_timespec_sec(&inode_item->otime);
1794        BTRFS_I(inode)->i_otime.tv_nsec =
1795                btrfs_stack_timespec_nsec(&inode_item->otime);
1796
1797        inode->i_generation = BTRFS_I(inode)->generation;
1798        BTRFS_I(inode)->index_cnt = (u64)-1;
1799
1800        mutex_unlock(&delayed_node->mutex);
1801        btrfs_release_delayed_node(delayed_node);
1802        return 0;
1803}
1804
1805int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1806                               struct btrfs_root *root, struct inode *inode)
1807{
1808        struct btrfs_delayed_node *delayed_node;
1809        int ret = 0;
1810
1811        delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1812        if (IS_ERR(delayed_node))
1813                return PTR_ERR(delayed_node);
1814
1815        mutex_lock(&delayed_node->mutex);
1816        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1817                fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1818                goto release_node;
1819        }
1820
1821        ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1822                                                   delayed_node);
1823        if (ret)
1824                goto release_node;
1825
1826        fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1827        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1828        delayed_node->count++;
1829        atomic_inc(&root->fs_info->delayed_root->items);
1830release_node:
1831        mutex_unlock(&delayed_node->mutex);
1832        btrfs_release_delayed_node(delayed_node);
1833        return ret;
1834}
1835
1836int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1837{
1838        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1839        struct btrfs_delayed_node *delayed_node;
1840
1841        /*
1842         * we don't do delayed inode updates during log recovery because it
1843         * leads to enospc problems.  This means we also can't do
1844         * delayed inode refs
1845         */
1846        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1847                return -EAGAIN;
1848
1849        delayed_node = btrfs_get_or_create_delayed_node(inode);
1850        if (IS_ERR(delayed_node))
1851                return PTR_ERR(delayed_node);
1852
1853        /*
1854         * We don't reserve space for inode ref deletion is because:
1855         * - We ONLY do async inode ref deletion for the inode who has only
1856         *   one link(i_nlink == 1), it means there is only one inode ref.
1857         *   And in most case, the inode ref and the inode item are in the
1858         *   same leaf, and we will deal with them at the same time.
1859         *   Since we are sure we will reserve the space for the inode item,
1860         *   it is unnecessary to reserve space for inode ref deletion.
1861         * - If the inode ref and the inode item are not in the same leaf,
1862         *   We also needn't worry about enospc problem, because we reserve
1863         *   much more space for the inode update than it needs.
1864         * - At the worst, we can steal some space from the global reservation.
1865         *   It is very rare.
1866         */
1867        mutex_lock(&delayed_node->mutex);
1868        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1869                goto release_node;
1870
1871        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1872        delayed_node->count++;
1873        atomic_inc(&fs_info->delayed_root->items);
1874release_node:
1875        mutex_unlock(&delayed_node->mutex);
1876        btrfs_release_delayed_node(delayed_node);
1877        return 0;
1878}
1879
1880static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1881{
1882        struct btrfs_root *root = delayed_node->root;
1883        struct btrfs_fs_info *fs_info = root->fs_info;
1884        struct btrfs_delayed_item *curr_item, *prev_item;
1885
1886        mutex_lock(&delayed_node->mutex);
1887        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1888        while (curr_item) {
1889                btrfs_delayed_item_release_metadata(root, curr_item);
1890                prev_item = curr_item;
1891                curr_item = __btrfs_next_delayed_item(prev_item);
1892                btrfs_release_delayed_item(prev_item);
1893        }
1894
1895        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1896        while (curr_item) {
1897                btrfs_delayed_item_release_metadata(root, curr_item);
1898                prev_item = curr_item;
1899                curr_item = __btrfs_next_delayed_item(prev_item);
1900                btrfs_release_delayed_item(prev_item);
1901        }
1902
1903        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1904                btrfs_release_delayed_iref(delayed_node);
1905
1906        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1907                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1908                btrfs_release_delayed_inode(delayed_node);
1909        }
1910        mutex_unlock(&delayed_node->mutex);
1911}
1912
1913void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1914{
1915        struct btrfs_delayed_node *delayed_node;
1916
1917        delayed_node = btrfs_get_delayed_node(inode);
1918        if (!delayed_node)
1919                return;
1920
1921        __btrfs_kill_delayed_node(delayed_node);
1922        btrfs_release_delayed_node(delayed_node);
1923}
1924
1925void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1926{
1927        u64 inode_id = 0;
1928        struct btrfs_delayed_node *delayed_nodes[8];
1929        int i, n;
1930
1931        while (1) {
1932                spin_lock(&root->inode_lock);
1933                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1934                                           (void **)delayed_nodes, inode_id,
1935                                           ARRAY_SIZE(delayed_nodes));
1936                if (!n) {
1937                        spin_unlock(&root->inode_lock);
1938                        break;
1939                }
1940
1941                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1942
1943                for (i = 0; i < n; i++)
1944                        refcount_inc(&delayed_nodes[i]->refs);
1945                spin_unlock(&root->inode_lock);
1946
1947                for (i = 0; i < n; i++) {
1948                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1949                        btrfs_release_delayed_node(delayed_nodes[i]);
1950                }
1951        }
1952}
1953
1954void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1955{
1956        struct btrfs_delayed_node *curr_node, *prev_node;
1957
1958        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1959        while (curr_node) {
1960                __btrfs_kill_delayed_node(curr_node);
1961
1962                prev_node = curr_node;
1963                curr_node = btrfs_next_delayed_node(curr_node);
1964                btrfs_release_delayed_node(prev_node);
1965        }
1966}
1967
1968