linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/buffer_head.h>
  11#include <linux/workqueue.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <linux/migrate.h>
  15#include <linux/ratelimit.h>
  16#include <linux/uuid.h>
  17#include <linux/semaphore.h>
  18#include <linux/error-injection.h>
  19#include <linux/crc32c.h>
  20#include <linux/sched/mm.h>
  21#include <asm/unaligned.h>
  22#include <crypto/hash.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43
  44#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  45                                 BTRFS_HEADER_FLAG_RELOC |\
  46                                 BTRFS_SUPER_FLAG_ERROR |\
  47                                 BTRFS_SUPER_FLAG_SEEDING |\
  48                                 BTRFS_SUPER_FLAG_METADUMP |\
  49                                 BTRFS_SUPER_FLAG_METADUMP_V2)
  50
  51static const struct extent_io_ops btree_extent_io_ops;
  52static void end_workqueue_fn(struct btrfs_work *work);
  53static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55                                      struct btrfs_fs_info *fs_info);
  56static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  58                                        struct extent_io_tree *dirty_pages,
  59                                        int mark);
  60static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  61                                       struct extent_io_tree *pinned_extents);
  62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  64
  65/*
  66 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  67 * is complete.  This is used during reads to verify checksums, and it is used
  68 * by writes to insert metadata for new file extents after IO is complete.
  69 */
  70struct btrfs_end_io_wq {
  71        struct bio *bio;
  72        bio_end_io_t *end_io;
  73        void *private;
  74        struct btrfs_fs_info *info;
  75        blk_status_t status;
  76        enum btrfs_wq_endio_type metadata;
  77        struct btrfs_work work;
  78};
  79
  80static struct kmem_cache *btrfs_end_io_wq_cache;
  81
  82int __init btrfs_end_io_wq_init(void)
  83{
  84        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  85                                        sizeof(struct btrfs_end_io_wq),
  86                                        0,
  87                                        SLAB_MEM_SPREAD,
  88                                        NULL);
  89        if (!btrfs_end_io_wq_cache)
  90                return -ENOMEM;
  91        return 0;
  92}
  93
  94void __cold btrfs_end_io_wq_exit(void)
  95{
  96        kmem_cache_destroy(btrfs_end_io_wq_cache);
  97}
  98
  99/*
 100 * async submit bios are used to offload expensive checksumming
 101 * onto the worker threads.  They checksum file and metadata bios
 102 * just before they are sent down the IO stack.
 103 */
 104struct async_submit_bio {
 105        void *private_data;
 106        struct bio *bio;
 107        extent_submit_bio_start_t *submit_bio_start;
 108        int mirror_num;
 109        /*
 110         * bio_offset is optional, can be used if the pages in the bio
 111         * can't tell us where in the file the bio should go
 112         */
 113        u64 bio_offset;
 114        struct btrfs_work work;
 115        blk_status_t status;
 116};
 117
 118/*
 119 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 120 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 121 * the level the eb occupies in the tree.
 122 *
 123 * Different roots are used for different purposes and may nest inside each
 124 * other and they require separate keysets.  As lockdep keys should be
 125 * static, assign keysets according to the purpose of the root as indicated
 126 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 127 * roots have separate keysets.
 128 *
 129 * Lock-nesting across peer nodes is always done with the immediate parent
 130 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 131 * subclass to avoid triggering lockdep warning in such cases.
 132 *
 133 * The key is set by the readpage_end_io_hook after the buffer has passed
 134 * csum validation but before the pages are unlocked.  It is also set by
 135 * btrfs_init_new_buffer on freshly allocated blocks.
 136 *
 137 * We also add a check to make sure the highest level of the tree is the
 138 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 139 * needs update as well.
 140 */
 141#ifdef CONFIG_DEBUG_LOCK_ALLOC
 142# if BTRFS_MAX_LEVEL != 8
 143#  error
 144# endif
 145
 146static struct btrfs_lockdep_keyset {
 147        u64                     id;             /* root objectid */
 148        const char              *name_stem;     /* lock name stem */
 149        char                    names[BTRFS_MAX_LEVEL + 1][20];
 150        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 151} btrfs_lockdep_keysets[] = {
 152        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 153        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 154        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 155        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 156        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 157        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 158        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 159        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 160        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 161        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 162        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 163        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 164        { .id = 0,                              .name_stem = "tree"     },
 165};
 166
 167void __init btrfs_init_lockdep(void)
 168{
 169        int i, j;
 170
 171        /* initialize lockdep class names */
 172        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 173                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 174
 175                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 176                        snprintf(ks->names[j], sizeof(ks->names[j]),
 177                                 "btrfs-%s-%02d", ks->name_stem, j);
 178        }
 179}
 180
 181void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 182                                    int level)
 183{
 184        struct btrfs_lockdep_keyset *ks;
 185
 186        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 187
 188        /* find the matching keyset, id 0 is the default entry */
 189        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 190                if (ks->id == objectid)
 191                        break;
 192
 193        lockdep_set_class_and_name(&eb->lock,
 194                                   &ks->keys[level], ks->names[level]);
 195}
 196
 197#endif
 198
 199/*
 200 * extents on the btree inode are pretty simple, there's one extent
 201 * that covers the entire device
 202 */
 203struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 204                struct page *page, size_t pg_offset, u64 start, u64 len,
 205                int create)
 206{
 207        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 208        struct extent_map_tree *em_tree = &inode->extent_tree;
 209        struct extent_map *em;
 210        int ret;
 211
 212        read_lock(&em_tree->lock);
 213        em = lookup_extent_mapping(em_tree, start, len);
 214        if (em) {
 215                em->bdev = fs_info->fs_devices->latest_bdev;
 216                read_unlock(&em_tree->lock);
 217                goto out;
 218        }
 219        read_unlock(&em_tree->lock);
 220
 221        em = alloc_extent_map();
 222        if (!em) {
 223                em = ERR_PTR(-ENOMEM);
 224                goto out;
 225        }
 226        em->start = 0;
 227        em->len = (u64)-1;
 228        em->block_len = (u64)-1;
 229        em->block_start = 0;
 230        em->bdev = fs_info->fs_devices->latest_bdev;
 231
 232        write_lock(&em_tree->lock);
 233        ret = add_extent_mapping(em_tree, em, 0);
 234        if (ret == -EEXIST) {
 235                free_extent_map(em);
 236                em = lookup_extent_mapping(em_tree, start, len);
 237                if (!em)
 238                        em = ERR_PTR(-EIO);
 239        } else if (ret) {
 240                free_extent_map(em);
 241                em = ERR_PTR(ret);
 242        }
 243        write_unlock(&em_tree->lock);
 244
 245out:
 246        return em;
 247}
 248
 249/*
 250 * Compute the csum of a btree block and store the result to provided buffer.
 251 *
 252 * Returns error if the extent buffer cannot be mapped.
 253 */
 254static int csum_tree_block(struct extent_buffer *buf, u8 *result)
 255{
 256        struct btrfs_fs_info *fs_info = buf->fs_info;
 257        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 258        unsigned long len;
 259        unsigned long cur_len;
 260        unsigned long offset = BTRFS_CSUM_SIZE;
 261        char *kaddr;
 262        unsigned long map_start;
 263        unsigned long map_len;
 264        int err;
 265
 266        shash->tfm = fs_info->csum_shash;
 267        crypto_shash_init(shash);
 268
 269        len = buf->len - offset;
 270
 271        while (len > 0) {
 272                /*
 273                 * Note: we don't need to check for the err == 1 case here, as
 274                 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
 275                 * and 'min_len = 32' and the currently implemented mapping
 276                 * algorithm we cannot cross a page boundary.
 277                 */
 278                err = map_private_extent_buffer(buf, offset, 32,
 279                                        &kaddr, &map_start, &map_len);
 280                if (WARN_ON(err))
 281                        return err;
 282                cur_len = min(len, map_len - (offset - map_start));
 283                crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
 284                len -= cur_len;
 285                offset += cur_len;
 286        }
 287        memset(result, 0, BTRFS_CSUM_SIZE);
 288
 289        crypto_shash_final(shash, result);
 290
 291        return 0;
 292}
 293
 294/*
 295 * we can't consider a given block up to date unless the transid of the
 296 * block matches the transid in the parent node's pointer.  This is how we
 297 * detect blocks that either didn't get written at all or got written
 298 * in the wrong place.
 299 */
 300static int verify_parent_transid(struct extent_io_tree *io_tree,
 301                                 struct extent_buffer *eb, u64 parent_transid,
 302                                 int atomic)
 303{
 304        struct extent_state *cached_state = NULL;
 305        int ret;
 306        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 307
 308        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 309                return 0;
 310
 311        if (atomic)
 312                return -EAGAIN;
 313
 314        if (need_lock) {
 315                btrfs_tree_read_lock(eb);
 316                btrfs_set_lock_blocking_read(eb);
 317        }
 318
 319        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 320                         &cached_state);
 321        if (extent_buffer_uptodate(eb) &&
 322            btrfs_header_generation(eb) == parent_transid) {
 323                ret = 0;
 324                goto out;
 325        }
 326        btrfs_err_rl(eb->fs_info,
 327                "parent transid verify failed on %llu wanted %llu found %llu",
 328                        eb->start,
 329                        parent_transid, btrfs_header_generation(eb));
 330        ret = 1;
 331
 332        /*
 333         * Things reading via commit roots that don't have normal protection,
 334         * like send, can have a really old block in cache that may point at a
 335         * block that has been freed and re-allocated.  So don't clear uptodate
 336         * if we find an eb that is under IO (dirty/writeback) because we could
 337         * end up reading in the stale data and then writing it back out and
 338         * making everybody very sad.
 339         */
 340        if (!extent_buffer_under_io(eb))
 341                clear_extent_buffer_uptodate(eb);
 342out:
 343        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 344                             &cached_state);
 345        if (need_lock)
 346                btrfs_tree_read_unlock_blocking(eb);
 347        return ret;
 348}
 349
 350static bool btrfs_supported_super_csum(u16 csum_type)
 351{
 352        switch (csum_type) {
 353        case BTRFS_CSUM_TYPE_CRC32:
 354                return true;
 355        default:
 356                return false;
 357        }
 358}
 359
 360/*
 361 * Return 0 if the superblock checksum type matches the checksum value of that
 362 * algorithm. Pass the raw disk superblock data.
 363 */
 364static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 365                                  char *raw_disk_sb)
 366{
 367        struct btrfs_super_block *disk_sb =
 368                (struct btrfs_super_block *)raw_disk_sb;
 369        char result[BTRFS_CSUM_SIZE];
 370        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 371
 372        shash->tfm = fs_info->csum_shash;
 373        crypto_shash_init(shash);
 374
 375        /*
 376         * The super_block structure does not span the whole
 377         * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 378         * filled with zeros and is included in the checksum.
 379         */
 380        crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 381                            BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 382        crypto_shash_final(shash, result);
 383
 384        if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 385                return 1;
 386
 387        return 0;
 388}
 389
 390int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 391                           struct btrfs_key *first_key, u64 parent_transid)
 392{
 393        struct btrfs_fs_info *fs_info = eb->fs_info;
 394        int found_level;
 395        struct btrfs_key found_key;
 396        int ret;
 397
 398        found_level = btrfs_header_level(eb);
 399        if (found_level != level) {
 400                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 401                     KERN_ERR "BTRFS: tree level check failed\n");
 402                btrfs_err(fs_info,
 403"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 404                          eb->start, level, found_level);
 405                return -EIO;
 406        }
 407
 408        if (!first_key)
 409                return 0;
 410
 411        /*
 412         * For live tree block (new tree blocks in current transaction),
 413         * we need proper lock context to avoid race, which is impossible here.
 414         * So we only checks tree blocks which is read from disk, whose
 415         * generation <= fs_info->last_trans_committed.
 416         */
 417        if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 418                return 0;
 419        if (found_level)
 420                btrfs_node_key_to_cpu(eb, &found_key, 0);
 421        else
 422                btrfs_item_key_to_cpu(eb, &found_key, 0);
 423        ret = btrfs_comp_cpu_keys(first_key, &found_key);
 424
 425        if (ret) {
 426                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 427                     KERN_ERR "BTRFS: tree first key check failed\n");
 428                btrfs_err(fs_info,
 429"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 430                          eb->start, parent_transid, first_key->objectid,
 431                          first_key->type, first_key->offset,
 432                          found_key.objectid, found_key.type,
 433                          found_key.offset);
 434        }
 435        return ret;
 436}
 437
 438/*
 439 * helper to read a given tree block, doing retries as required when
 440 * the checksums don't match and we have alternate mirrors to try.
 441 *
 442 * @parent_transid:     expected transid, skip check if 0
 443 * @level:              expected level, mandatory check
 444 * @first_key:          expected key of first slot, skip check if NULL
 445 */
 446static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 447                                          u64 parent_transid, int level,
 448                                          struct btrfs_key *first_key)
 449{
 450        struct btrfs_fs_info *fs_info = eb->fs_info;
 451        struct extent_io_tree *io_tree;
 452        int failed = 0;
 453        int ret;
 454        int num_copies = 0;
 455        int mirror_num = 0;
 456        int failed_mirror = 0;
 457
 458        io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 459        while (1) {
 460                clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 461                ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 462                if (!ret) {
 463                        if (verify_parent_transid(io_tree, eb,
 464                                                   parent_transid, 0))
 465                                ret = -EIO;
 466                        else if (btrfs_verify_level_key(eb, level,
 467                                                first_key, parent_transid))
 468                                ret = -EUCLEAN;
 469                        else
 470                                break;
 471                }
 472
 473                num_copies = btrfs_num_copies(fs_info,
 474                                              eb->start, eb->len);
 475                if (num_copies == 1)
 476                        break;
 477
 478                if (!failed_mirror) {
 479                        failed = 1;
 480                        failed_mirror = eb->read_mirror;
 481                }
 482
 483                mirror_num++;
 484                if (mirror_num == failed_mirror)
 485                        mirror_num++;
 486
 487                if (mirror_num > num_copies)
 488                        break;
 489        }
 490
 491        if (failed && !ret && failed_mirror)
 492                btrfs_repair_eb_io_failure(eb, failed_mirror);
 493
 494        return ret;
 495}
 496
 497/*
 498 * checksum a dirty tree block before IO.  This has extra checks to make sure
 499 * we only fill in the checksum field in the first page of a multi-page block
 500 */
 501
 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 503{
 504        u64 start = page_offset(page);
 505        u64 found_start;
 506        u8 result[BTRFS_CSUM_SIZE];
 507        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 508        struct extent_buffer *eb;
 509        int ret;
 510
 511        eb = (struct extent_buffer *)page->private;
 512        if (page != eb->pages[0])
 513                return 0;
 514
 515        found_start = btrfs_header_bytenr(eb);
 516        /*
 517         * Please do not consolidate these warnings into a single if.
 518         * It is useful to know what went wrong.
 519         */
 520        if (WARN_ON(found_start != start))
 521                return -EUCLEAN;
 522        if (WARN_ON(!PageUptodate(page)))
 523                return -EUCLEAN;
 524
 525        ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 526                        btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 527
 528        if (csum_tree_block(eb, result))
 529                return -EINVAL;
 530
 531        if (btrfs_header_level(eb))
 532                ret = btrfs_check_node(eb);
 533        else
 534                ret = btrfs_check_leaf_full(eb);
 535
 536        if (ret < 0) {
 537                btrfs_err(fs_info,
 538                "block=%llu write time tree block corruption detected",
 539                          eb->start);
 540                return ret;
 541        }
 542        write_extent_buffer(eb, result, 0, csum_size);
 543
 544        return 0;
 545}
 546
 547static int check_tree_block_fsid(struct extent_buffer *eb)
 548{
 549        struct btrfs_fs_info *fs_info = eb->fs_info;
 550        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 551        u8 fsid[BTRFS_FSID_SIZE];
 552        int ret = 1;
 553
 554        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 555        while (fs_devices) {
 556                u8 *metadata_uuid;
 557
 558                /*
 559                 * Checking the incompat flag is only valid for the current
 560                 * fs. For seed devices it's forbidden to have their uuid
 561                 * changed so reading ->fsid in this case is fine
 562                 */
 563                if (fs_devices == fs_info->fs_devices &&
 564                    btrfs_fs_incompat(fs_info, METADATA_UUID))
 565                        metadata_uuid = fs_devices->metadata_uuid;
 566                else
 567                        metadata_uuid = fs_devices->fsid;
 568
 569                if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 570                        ret = 0;
 571                        break;
 572                }
 573                fs_devices = fs_devices->seed;
 574        }
 575        return ret;
 576}
 577
 578static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 579                                      u64 phy_offset, struct page *page,
 580                                      u64 start, u64 end, int mirror)
 581{
 582        u64 found_start;
 583        int found_level;
 584        struct extent_buffer *eb;
 585        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 588        int ret = 0;
 589        u8 result[BTRFS_CSUM_SIZE];
 590        int reads_done;
 591
 592        if (!page->private)
 593                goto out;
 594
 595        eb = (struct extent_buffer *)page->private;
 596
 597        /* the pending IO might have been the only thing that kept this buffer
 598         * in memory.  Make sure we have a ref for all this other checks
 599         */
 600        extent_buffer_get(eb);
 601
 602        reads_done = atomic_dec_and_test(&eb->io_pages);
 603        if (!reads_done)
 604                goto err;
 605
 606        eb->read_mirror = mirror;
 607        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 608                ret = -EIO;
 609                goto err;
 610        }
 611
 612        found_start = btrfs_header_bytenr(eb);
 613        if (found_start != eb->start) {
 614                btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 615                             eb->start, found_start);
 616                ret = -EIO;
 617                goto err;
 618        }
 619        if (check_tree_block_fsid(eb)) {
 620                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 621                             eb->start);
 622                ret = -EIO;
 623                goto err;
 624        }
 625        found_level = btrfs_header_level(eb);
 626        if (found_level >= BTRFS_MAX_LEVEL) {
 627                btrfs_err(fs_info, "bad tree block level %d on %llu",
 628                          (int)btrfs_header_level(eb), eb->start);
 629                ret = -EIO;
 630                goto err;
 631        }
 632
 633        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 634                                       eb, found_level);
 635
 636        ret = csum_tree_block(eb, result);
 637        if (ret)
 638                goto err;
 639
 640        if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 641                u32 val;
 642                u32 found = 0;
 643
 644                memcpy(&found, result, csum_size);
 645
 646                read_extent_buffer(eb, &val, 0, csum_size);
 647                btrfs_warn_rl(fs_info,
 648                "%s checksum verify failed on %llu wanted %x found %x level %d",
 649                              fs_info->sb->s_id, eb->start,
 650                              val, found, btrfs_header_level(eb));
 651                ret = -EUCLEAN;
 652                goto err;
 653        }
 654
 655        /*
 656         * If this is a leaf block and it is corrupt, set the corrupt bit so
 657         * that we don't try and read the other copies of this block, just
 658         * return -EIO.
 659         */
 660        if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 661                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 662                ret = -EIO;
 663        }
 664
 665        if (found_level > 0 && btrfs_check_node(eb))
 666                ret = -EIO;
 667
 668        if (!ret)
 669                set_extent_buffer_uptodate(eb);
 670        else
 671                btrfs_err(fs_info,
 672                          "block=%llu read time tree block corruption detected",
 673                          eb->start);
 674err:
 675        if (reads_done &&
 676            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 677                btree_readahead_hook(eb, ret);
 678
 679        if (ret) {
 680                /*
 681                 * our io error hook is going to dec the io pages
 682                 * again, we have to make sure it has something
 683                 * to decrement
 684                 */
 685                atomic_inc(&eb->io_pages);
 686                clear_extent_buffer_uptodate(eb);
 687        }
 688        free_extent_buffer(eb);
 689out:
 690        return ret;
 691}
 692
 693static void end_workqueue_bio(struct bio *bio)
 694{
 695        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 696        struct btrfs_fs_info *fs_info;
 697        struct btrfs_workqueue *wq;
 698        btrfs_work_func_t func;
 699
 700        fs_info = end_io_wq->info;
 701        end_io_wq->status = bio->bi_status;
 702
 703        if (bio_op(bio) == REQ_OP_WRITE) {
 704                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 705                        wq = fs_info->endio_meta_write_workers;
 706                        func = btrfs_endio_meta_write_helper;
 707                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 708                        wq = fs_info->endio_freespace_worker;
 709                        func = btrfs_freespace_write_helper;
 710                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 711                        wq = fs_info->endio_raid56_workers;
 712                        func = btrfs_endio_raid56_helper;
 713                } else {
 714                        wq = fs_info->endio_write_workers;
 715                        func = btrfs_endio_write_helper;
 716                }
 717        } else {
 718                if (unlikely(end_io_wq->metadata ==
 719                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 720                        wq = fs_info->endio_repair_workers;
 721                        func = btrfs_endio_repair_helper;
 722                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 723                        wq = fs_info->endio_raid56_workers;
 724                        func = btrfs_endio_raid56_helper;
 725                } else if (end_io_wq->metadata) {
 726                        wq = fs_info->endio_meta_workers;
 727                        func = btrfs_endio_meta_helper;
 728                } else {
 729                        wq = fs_info->endio_workers;
 730                        func = btrfs_endio_helper;
 731                }
 732        }
 733
 734        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 735        btrfs_queue_work(wq, &end_io_wq->work);
 736}
 737
 738blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 739                        enum btrfs_wq_endio_type metadata)
 740{
 741        struct btrfs_end_io_wq *end_io_wq;
 742
 743        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 744        if (!end_io_wq)
 745                return BLK_STS_RESOURCE;
 746
 747        end_io_wq->private = bio->bi_private;
 748        end_io_wq->end_io = bio->bi_end_io;
 749        end_io_wq->info = info;
 750        end_io_wq->status = 0;
 751        end_io_wq->bio = bio;
 752        end_io_wq->metadata = metadata;
 753
 754        bio->bi_private = end_io_wq;
 755        bio->bi_end_io = end_workqueue_bio;
 756        return 0;
 757}
 758
 759static void run_one_async_start(struct btrfs_work *work)
 760{
 761        struct async_submit_bio *async;
 762        blk_status_t ret;
 763
 764        async = container_of(work, struct  async_submit_bio, work);
 765        ret = async->submit_bio_start(async->private_data, async->bio,
 766                                      async->bio_offset);
 767        if (ret)
 768                async->status = ret;
 769}
 770
 771/*
 772 * In order to insert checksums into the metadata in large chunks, we wait
 773 * until bio submission time.   All the pages in the bio are checksummed and
 774 * sums are attached onto the ordered extent record.
 775 *
 776 * At IO completion time the csums attached on the ordered extent record are
 777 * inserted into the tree.
 778 */
 779static void run_one_async_done(struct btrfs_work *work)
 780{
 781        struct async_submit_bio *async;
 782        struct inode *inode;
 783        blk_status_t ret;
 784
 785        async = container_of(work, struct  async_submit_bio, work);
 786        inode = async->private_data;
 787
 788        /* If an error occurred we just want to clean up the bio and move on */
 789        if (async->status) {
 790                async->bio->bi_status = async->status;
 791                bio_endio(async->bio);
 792                return;
 793        }
 794
 795        ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
 796                        async->mirror_num, 1);
 797        if (ret) {
 798                async->bio->bi_status = ret;
 799                bio_endio(async->bio);
 800        }
 801}
 802
 803static void run_one_async_free(struct btrfs_work *work)
 804{
 805        struct async_submit_bio *async;
 806
 807        async = container_of(work, struct  async_submit_bio, work);
 808        kfree(async);
 809}
 810
 811blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 812                                 int mirror_num, unsigned long bio_flags,
 813                                 u64 bio_offset, void *private_data,
 814                                 extent_submit_bio_start_t *submit_bio_start)
 815{
 816        struct async_submit_bio *async;
 817
 818        async = kmalloc(sizeof(*async), GFP_NOFS);
 819        if (!async)
 820                return BLK_STS_RESOURCE;
 821
 822        async->private_data = private_data;
 823        async->bio = bio;
 824        async->mirror_num = mirror_num;
 825        async->submit_bio_start = submit_bio_start;
 826
 827        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 828                        run_one_async_done, run_one_async_free);
 829
 830        async->bio_offset = bio_offset;
 831
 832        async->status = 0;
 833
 834        if (op_is_sync(bio->bi_opf))
 835                btrfs_set_work_high_priority(&async->work);
 836
 837        btrfs_queue_work(fs_info->workers, &async->work);
 838        return 0;
 839}
 840
 841static blk_status_t btree_csum_one_bio(struct bio *bio)
 842{
 843        struct bio_vec *bvec;
 844        struct btrfs_root *root;
 845        int ret = 0;
 846        struct bvec_iter_all iter_all;
 847
 848        ASSERT(!bio_flagged(bio, BIO_CLONED));
 849        bio_for_each_segment_all(bvec, bio, iter_all) {
 850                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 851                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 852                if (ret)
 853                        break;
 854        }
 855
 856        return errno_to_blk_status(ret);
 857}
 858
 859static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 860                                             u64 bio_offset)
 861{
 862        /*
 863         * when we're called for a write, we're already in the async
 864         * submission context.  Just jump into btrfs_map_bio
 865         */
 866        return btree_csum_one_bio(bio);
 867}
 868
 869static int check_async_write(struct btrfs_fs_info *fs_info,
 870                             struct btrfs_inode *bi)
 871{
 872        if (atomic_read(&bi->sync_writers))
 873                return 0;
 874        if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 875                return 0;
 876        return 1;
 877}
 878
 879static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 880                                          int mirror_num,
 881                                          unsigned long bio_flags)
 882{
 883        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 884        int async = check_async_write(fs_info, BTRFS_I(inode));
 885        blk_status_t ret;
 886
 887        if (bio_op(bio) != REQ_OP_WRITE) {
 888                /*
 889                 * called for a read, do the setup so that checksum validation
 890                 * can happen in the async kernel threads
 891                 */
 892                ret = btrfs_bio_wq_end_io(fs_info, bio,
 893                                          BTRFS_WQ_ENDIO_METADATA);
 894                if (ret)
 895                        goto out_w_error;
 896                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 897        } else if (!async) {
 898                ret = btree_csum_one_bio(bio);
 899                if (ret)
 900                        goto out_w_error;
 901                ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 902        } else {
 903                /*
 904                 * kthread helpers are used to submit writes so that
 905                 * checksumming can happen in parallel across all CPUs
 906                 */
 907                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 908                                          0, inode, btree_submit_bio_start);
 909        }
 910
 911        if (ret)
 912                goto out_w_error;
 913        return 0;
 914
 915out_w_error:
 916        bio->bi_status = ret;
 917        bio_endio(bio);
 918        return ret;
 919}
 920
 921#ifdef CONFIG_MIGRATION
 922static int btree_migratepage(struct address_space *mapping,
 923                        struct page *newpage, struct page *page,
 924                        enum migrate_mode mode)
 925{
 926        /*
 927         * we can't safely write a btree page from here,
 928         * we haven't done the locking hook
 929         */
 930        if (PageDirty(page))
 931                return -EAGAIN;
 932        /*
 933         * Buffers may be managed in a filesystem specific way.
 934         * We must have no buffers or drop them.
 935         */
 936        if (page_has_private(page) &&
 937            !try_to_release_page(page, GFP_KERNEL))
 938                return -EAGAIN;
 939        return migrate_page(mapping, newpage, page, mode);
 940}
 941#endif
 942
 943
 944static int btree_writepages(struct address_space *mapping,
 945                            struct writeback_control *wbc)
 946{
 947        struct btrfs_fs_info *fs_info;
 948        int ret;
 949
 950        if (wbc->sync_mode == WB_SYNC_NONE) {
 951
 952                if (wbc->for_kupdate)
 953                        return 0;
 954
 955                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 956                /* this is a bit racy, but that's ok */
 957                ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 958                                             BTRFS_DIRTY_METADATA_THRESH,
 959                                             fs_info->dirty_metadata_batch);
 960                if (ret < 0)
 961                        return 0;
 962        }
 963        return btree_write_cache_pages(mapping, wbc);
 964}
 965
 966static int btree_readpage(struct file *file, struct page *page)
 967{
 968        struct extent_io_tree *tree;
 969        tree = &BTRFS_I(page->mapping->host)->io_tree;
 970        return extent_read_full_page(tree, page, btree_get_extent, 0);
 971}
 972
 973static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 974{
 975        if (PageWriteback(page) || PageDirty(page))
 976                return 0;
 977
 978        return try_release_extent_buffer(page);
 979}
 980
 981static void btree_invalidatepage(struct page *page, unsigned int offset,
 982                                 unsigned int length)
 983{
 984        struct extent_io_tree *tree;
 985        tree = &BTRFS_I(page->mapping->host)->io_tree;
 986        extent_invalidatepage(tree, page, offset);
 987        btree_releasepage(page, GFP_NOFS);
 988        if (PagePrivate(page)) {
 989                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 990                           "page private not zero on page %llu",
 991                           (unsigned long long)page_offset(page));
 992                ClearPagePrivate(page);
 993                set_page_private(page, 0);
 994                put_page(page);
 995        }
 996}
 997
 998static int btree_set_page_dirty(struct page *page)
 999{
1000#ifdef DEBUG
1001        struct extent_buffer *eb;
1002
1003        BUG_ON(!PagePrivate(page));
1004        eb = (struct extent_buffer *)page->private;
1005        BUG_ON(!eb);
1006        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007        BUG_ON(!atomic_read(&eb->refs));
1008        btrfs_assert_tree_locked(eb);
1009#endif
1010        return __set_page_dirty_nobuffers(page);
1011}
1012
1013static const struct address_space_operations btree_aops = {
1014        .readpage       = btree_readpage,
1015        .writepages     = btree_writepages,
1016        .releasepage    = btree_releasepage,
1017        .invalidatepage = btree_invalidatepage,
1018#ifdef CONFIG_MIGRATION
1019        .migratepage    = btree_migratepage,
1020#endif
1021        .set_page_dirty = btree_set_page_dirty,
1022};
1023
1024void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1025{
1026        struct extent_buffer *buf = NULL;
1027        int ret;
1028
1029        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1030        if (IS_ERR(buf))
1031                return;
1032
1033        ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1034        if (ret < 0)
1035                free_extent_buffer_stale(buf);
1036        else
1037                free_extent_buffer(buf);
1038}
1039
1040int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1041                         int mirror_num, struct extent_buffer **eb)
1042{
1043        struct extent_buffer *buf = NULL;
1044        int ret;
1045
1046        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1047        if (IS_ERR(buf))
1048                return 0;
1049
1050        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1051
1052        ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1053        if (ret) {
1054                free_extent_buffer_stale(buf);
1055                return ret;
1056        }
1057
1058        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1059                free_extent_buffer_stale(buf);
1060                return -EIO;
1061        } else if (extent_buffer_uptodate(buf)) {
1062                *eb = buf;
1063        } else {
1064                free_extent_buffer(buf);
1065        }
1066        return 0;
1067}
1068
1069struct extent_buffer *btrfs_find_create_tree_block(
1070                                                struct btrfs_fs_info *fs_info,
1071                                                u64 bytenr)
1072{
1073        if (btrfs_is_testing(fs_info))
1074                return alloc_test_extent_buffer(fs_info, bytenr);
1075        return alloc_extent_buffer(fs_info, bytenr);
1076}
1077
1078/*
1079 * Read tree block at logical address @bytenr and do variant basic but critical
1080 * verification.
1081 *
1082 * @parent_transid:     expected transid of this tree block, skip check if 0
1083 * @level:              expected level, mandatory check
1084 * @first_key:          expected key in slot 0, skip check if NULL
1085 */
1086struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1087                                      u64 parent_transid, int level,
1088                                      struct btrfs_key *first_key)
1089{
1090        struct extent_buffer *buf = NULL;
1091        int ret;
1092
1093        buf = btrfs_find_create_tree_block(fs_info, bytenr);
1094        if (IS_ERR(buf))
1095                return buf;
1096
1097        ret = btree_read_extent_buffer_pages(buf, parent_transid,
1098                                             level, first_key);
1099        if (ret) {
1100                free_extent_buffer_stale(buf);
1101                return ERR_PTR(ret);
1102        }
1103        return buf;
1104
1105}
1106
1107void btrfs_clean_tree_block(struct extent_buffer *buf)
1108{
1109        struct btrfs_fs_info *fs_info = buf->fs_info;
1110        if (btrfs_header_generation(buf) ==
1111            fs_info->running_transaction->transid) {
1112                btrfs_assert_tree_locked(buf);
1113
1114                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115                        percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116                                                 -buf->len,
1117                                                 fs_info->dirty_metadata_batch);
1118                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119                        btrfs_set_lock_blocking_write(buf);
1120                        clear_extent_buffer_dirty(buf);
1121                }
1122        }
1123}
1124
1125static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126{
1127        struct btrfs_subvolume_writers *writers;
1128        int ret;
1129
1130        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131        if (!writers)
1132                return ERR_PTR(-ENOMEM);
1133
1134        ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135        if (ret < 0) {
1136                kfree(writers);
1137                return ERR_PTR(ret);
1138        }
1139
1140        init_waitqueue_head(&writers->wait);
1141        return writers;
1142}
1143
1144static void
1145btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146{
1147        percpu_counter_destroy(&writers->counter);
1148        kfree(writers);
1149}
1150
1151static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152                         u64 objectid)
1153{
1154        bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155        root->node = NULL;
1156        root->commit_root = NULL;
1157        root->state = 0;
1158        root->orphan_cleanup_state = 0;
1159
1160        root->last_trans = 0;
1161        root->highest_objectid = 0;
1162        root->nr_delalloc_inodes = 0;
1163        root->nr_ordered_extents = 0;
1164        root->inode_tree = RB_ROOT;
1165        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1166        root->block_rsv = NULL;
1167
1168        INIT_LIST_HEAD(&root->dirty_list);
1169        INIT_LIST_HEAD(&root->root_list);
1170        INIT_LIST_HEAD(&root->delalloc_inodes);
1171        INIT_LIST_HEAD(&root->delalloc_root);
1172        INIT_LIST_HEAD(&root->ordered_extents);
1173        INIT_LIST_HEAD(&root->ordered_root);
1174        INIT_LIST_HEAD(&root->reloc_dirty_list);
1175        INIT_LIST_HEAD(&root->logged_list[0]);
1176        INIT_LIST_HEAD(&root->logged_list[1]);
1177        spin_lock_init(&root->inode_lock);
1178        spin_lock_init(&root->delalloc_lock);
1179        spin_lock_init(&root->ordered_extent_lock);
1180        spin_lock_init(&root->accounting_lock);
1181        spin_lock_init(&root->log_extents_lock[0]);
1182        spin_lock_init(&root->log_extents_lock[1]);
1183        spin_lock_init(&root->qgroup_meta_rsv_lock);
1184        mutex_init(&root->objectid_mutex);
1185        mutex_init(&root->log_mutex);
1186        mutex_init(&root->ordered_extent_mutex);
1187        mutex_init(&root->delalloc_mutex);
1188        init_waitqueue_head(&root->log_writer_wait);
1189        init_waitqueue_head(&root->log_commit_wait[0]);
1190        init_waitqueue_head(&root->log_commit_wait[1]);
1191        INIT_LIST_HEAD(&root->log_ctxs[0]);
1192        INIT_LIST_HEAD(&root->log_ctxs[1]);
1193        atomic_set(&root->log_commit[0], 0);
1194        atomic_set(&root->log_commit[1], 0);
1195        atomic_set(&root->log_writers, 0);
1196        atomic_set(&root->log_batch, 0);
1197        refcount_set(&root->refs, 1);
1198        atomic_set(&root->will_be_snapshotted, 0);
1199        atomic_set(&root->snapshot_force_cow, 0);
1200        atomic_set(&root->nr_swapfiles, 0);
1201        root->log_transid = 0;
1202        root->log_transid_committed = -1;
1203        root->last_log_commit = 0;
1204        if (!dummy)
1205                extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206                                    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1207
1208        memset(&root->root_key, 0, sizeof(root->root_key));
1209        memset(&root->root_item, 0, sizeof(root->root_item));
1210        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1211        if (!dummy)
1212                root->defrag_trans_start = fs_info->generation;
1213        else
1214                root->defrag_trans_start = 0;
1215        root->root_key.objectid = objectid;
1216        root->anon_dev = 0;
1217
1218        spin_lock_init(&root->root_item_lock);
1219        btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1220}
1221
1222static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223                gfp_t flags)
1224{
1225        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226        if (root)
1227                root->fs_info = fs_info;
1228        return root;
1229}
1230
1231#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232/* Should only be used by the testing infrastructure */
1233struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234{
1235        struct btrfs_root *root;
1236
1237        if (!fs_info)
1238                return ERR_PTR(-EINVAL);
1239
1240        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241        if (!root)
1242                return ERR_PTR(-ENOMEM);
1243
1244        /* We don't use the stripesize in selftest, set it as sectorsize */
1245        __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246        root->alloc_bytenr = 0;
1247
1248        return root;
1249}
1250#endif
1251
1252struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253                                     u64 objectid)
1254{
1255        struct btrfs_fs_info *fs_info = trans->fs_info;
1256        struct extent_buffer *leaf;
1257        struct btrfs_root *tree_root = fs_info->tree_root;
1258        struct btrfs_root *root;
1259        struct btrfs_key key;
1260        unsigned int nofs_flag;
1261        int ret = 0;
1262        uuid_le uuid = NULL_UUID_LE;
1263
1264        /*
1265         * We're holding a transaction handle, so use a NOFS memory allocation
1266         * context to avoid deadlock if reclaim happens.
1267         */
1268        nofs_flag = memalloc_nofs_save();
1269        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1270        memalloc_nofs_restore(nofs_flag);
1271        if (!root)
1272                return ERR_PTR(-ENOMEM);
1273
1274        __setup_root(root, fs_info, objectid);
1275        root->root_key.objectid = objectid;
1276        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277        root->root_key.offset = 0;
1278
1279        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1280        if (IS_ERR(leaf)) {
1281                ret = PTR_ERR(leaf);
1282                leaf = NULL;
1283                goto fail;
1284        }
1285
1286        root->node = leaf;
1287        btrfs_mark_buffer_dirty(leaf);
1288
1289        root->commit_root = btrfs_root_node(root);
1290        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1291
1292        root->root_item.flags = 0;
1293        root->root_item.byte_limit = 0;
1294        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295        btrfs_set_root_generation(&root->root_item, trans->transid);
1296        btrfs_set_root_level(&root->root_item, 0);
1297        btrfs_set_root_refs(&root->root_item, 1);
1298        btrfs_set_root_used(&root->root_item, leaf->len);
1299        btrfs_set_root_last_snapshot(&root->root_item, 0);
1300        btrfs_set_root_dirid(&root->root_item, 0);
1301        if (is_fstree(objectid))
1302                uuid_le_gen(&uuid);
1303        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304        root->root_item.drop_level = 0;
1305
1306        key.objectid = objectid;
1307        key.type = BTRFS_ROOT_ITEM_KEY;
1308        key.offset = 0;
1309        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310        if (ret)
1311                goto fail;
1312
1313        btrfs_tree_unlock(leaf);
1314
1315        return root;
1316
1317fail:
1318        if (leaf) {
1319                btrfs_tree_unlock(leaf);
1320                free_extent_buffer(root->commit_root);
1321                free_extent_buffer(leaf);
1322        }
1323        kfree(root);
1324
1325        return ERR_PTR(ret);
1326}
1327
1328static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329                                         struct btrfs_fs_info *fs_info)
1330{
1331        struct btrfs_root *root;
1332        struct extent_buffer *leaf;
1333
1334        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335        if (!root)
1336                return ERR_PTR(-ENOMEM);
1337
1338        __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339
1340        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343
1344        /*
1345         * DON'T set REF_COWS for log trees
1346         *
1347         * log trees do not get reference counted because they go away
1348         * before a real commit is actually done.  They do store pointers
1349         * to file data extents, and those reference counts still get
1350         * updated (along with back refs to the log tree).
1351         */
1352
1353        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354                        NULL, 0, 0, 0);
1355        if (IS_ERR(leaf)) {
1356                kfree(root);
1357                return ERR_CAST(leaf);
1358        }
1359
1360        root->node = leaf;
1361
1362        btrfs_mark_buffer_dirty(root->node);
1363        btrfs_tree_unlock(root->node);
1364        return root;
1365}
1366
1367int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1368                             struct btrfs_fs_info *fs_info)
1369{
1370        struct btrfs_root *log_root;
1371
1372        log_root = alloc_log_tree(trans, fs_info);
1373        if (IS_ERR(log_root))
1374                return PTR_ERR(log_root);
1375        WARN_ON(fs_info->log_root_tree);
1376        fs_info->log_root_tree = log_root;
1377        return 0;
1378}
1379
1380int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1381                       struct btrfs_root *root)
1382{
1383        struct btrfs_fs_info *fs_info = root->fs_info;
1384        struct btrfs_root *log_root;
1385        struct btrfs_inode_item *inode_item;
1386
1387        log_root = alloc_log_tree(trans, fs_info);
1388        if (IS_ERR(log_root))
1389                return PTR_ERR(log_root);
1390
1391        log_root->last_trans = trans->transid;
1392        log_root->root_key.offset = root->root_key.objectid;
1393
1394        inode_item = &log_root->root_item.inode;
1395        btrfs_set_stack_inode_generation(inode_item, 1);
1396        btrfs_set_stack_inode_size(inode_item, 3);
1397        btrfs_set_stack_inode_nlink(inode_item, 1);
1398        btrfs_set_stack_inode_nbytes(inode_item,
1399                                     fs_info->nodesize);
1400        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1401
1402        btrfs_set_root_node(&log_root->root_item, log_root->node);
1403
1404        WARN_ON(root->log_root);
1405        root->log_root = log_root;
1406        root->log_transid = 0;
1407        root->log_transid_committed = -1;
1408        root->last_log_commit = 0;
1409        return 0;
1410}
1411
1412static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413                                               struct btrfs_key *key)
1414{
1415        struct btrfs_root *root;
1416        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1417        struct btrfs_path *path;
1418        u64 generation;
1419        int ret;
1420        int level;
1421
1422        path = btrfs_alloc_path();
1423        if (!path)
1424                return ERR_PTR(-ENOMEM);
1425
1426        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427        if (!root) {
1428                ret = -ENOMEM;
1429                goto alloc_fail;
1430        }
1431
1432        __setup_root(root, fs_info, key->objectid);
1433
1434        ret = btrfs_find_root(tree_root, key, path,
1435                              &root->root_item, &root->root_key);
1436        if (ret) {
1437                if (ret > 0)
1438                        ret = -ENOENT;
1439                goto find_fail;
1440        }
1441
1442        generation = btrfs_root_generation(&root->root_item);
1443        level = btrfs_root_level(&root->root_item);
1444        root->node = read_tree_block(fs_info,
1445                                     btrfs_root_bytenr(&root->root_item),
1446                                     generation, level, NULL);
1447        if (IS_ERR(root->node)) {
1448                ret = PTR_ERR(root->node);
1449                goto find_fail;
1450        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1451                ret = -EIO;
1452                free_extent_buffer(root->node);
1453                goto find_fail;
1454        }
1455        root->commit_root = btrfs_root_node(root);
1456out:
1457        btrfs_free_path(path);
1458        return root;
1459
1460find_fail:
1461        kfree(root);
1462alloc_fail:
1463        root = ERR_PTR(ret);
1464        goto out;
1465}
1466
1467struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1468                                      struct btrfs_key *location)
1469{
1470        struct btrfs_root *root;
1471
1472        root = btrfs_read_tree_root(tree_root, location);
1473        if (IS_ERR(root))
1474                return root;
1475
1476        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1477                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1478                btrfs_check_and_init_root_item(&root->root_item);
1479        }
1480
1481        return root;
1482}
1483
1484int btrfs_init_fs_root(struct btrfs_root *root)
1485{
1486        int ret;
1487        struct btrfs_subvolume_writers *writers;
1488
1489        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1490        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1491                                        GFP_NOFS);
1492        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1493                ret = -ENOMEM;
1494                goto fail;
1495        }
1496
1497        writers = btrfs_alloc_subvolume_writers();
1498        if (IS_ERR(writers)) {
1499                ret = PTR_ERR(writers);
1500                goto fail;
1501        }
1502        root->subv_writers = writers;
1503
1504        btrfs_init_free_ino_ctl(root);
1505        spin_lock_init(&root->ino_cache_lock);
1506        init_waitqueue_head(&root->ino_cache_wait);
1507
1508        ret = get_anon_bdev(&root->anon_dev);
1509        if (ret)
1510                goto fail;
1511
1512        mutex_lock(&root->objectid_mutex);
1513        ret = btrfs_find_highest_objectid(root,
1514                                        &root->highest_objectid);
1515        if (ret) {
1516                mutex_unlock(&root->objectid_mutex);
1517                goto fail;
1518        }
1519
1520        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1521
1522        mutex_unlock(&root->objectid_mutex);
1523
1524        return 0;
1525fail:
1526        /* The caller is responsible to call btrfs_free_fs_root */
1527        return ret;
1528}
1529
1530struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531                                        u64 root_id)
1532{
1533        struct btrfs_root *root;
1534
1535        spin_lock(&fs_info->fs_roots_radix_lock);
1536        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537                                 (unsigned long)root_id);
1538        spin_unlock(&fs_info->fs_roots_radix_lock);
1539        return root;
1540}
1541
1542int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543                         struct btrfs_root *root)
1544{
1545        int ret;
1546
1547        ret = radix_tree_preload(GFP_NOFS);
1548        if (ret)
1549                return ret;
1550
1551        spin_lock(&fs_info->fs_roots_radix_lock);
1552        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553                                (unsigned long)root->root_key.objectid,
1554                                root);
1555        if (ret == 0)
1556                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1557        spin_unlock(&fs_info->fs_roots_radix_lock);
1558        radix_tree_preload_end();
1559
1560        return ret;
1561}
1562
1563struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564                                     struct btrfs_key *location,
1565                                     bool check_ref)
1566{
1567        struct btrfs_root *root;
1568        struct btrfs_path *path;
1569        struct btrfs_key key;
1570        int ret;
1571
1572        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573                return fs_info->tree_root;
1574        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575                return fs_info->extent_root;
1576        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577                return fs_info->chunk_root;
1578        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579                return fs_info->dev_root;
1580        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581                return fs_info->csum_root;
1582        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583                return fs_info->quota_root ? fs_info->quota_root :
1584                                             ERR_PTR(-ENOENT);
1585        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586                return fs_info->uuid_root ? fs_info->uuid_root :
1587                                            ERR_PTR(-ENOENT);
1588        if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1589                return fs_info->free_space_root ? fs_info->free_space_root :
1590                                                  ERR_PTR(-ENOENT);
1591again:
1592        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1593        if (root) {
1594                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1595                        return ERR_PTR(-ENOENT);
1596                return root;
1597        }
1598
1599        root = btrfs_read_fs_root(fs_info->tree_root, location);
1600        if (IS_ERR(root))
1601                return root;
1602
1603        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1604                ret = -ENOENT;
1605                goto fail;
1606        }
1607
1608        ret = btrfs_init_fs_root(root);
1609        if (ret)
1610                goto fail;
1611
1612        path = btrfs_alloc_path();
1613        if (!path) {
1614                ret = -ENOMEM;
1615                goto fail;
1616        }
1617        key.objectid = BTRFS_ORPHAN_OBJECTID;
1618        key.type = BTRFS_ORPHAN_ITEM_KEY;
1619        key.offset = location->objectid;
1620
1621        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1622        btrfs_free_path(path);
1623        if (ret < 0)
1624                goto fail;
1625        if (ret == 0)
1626                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1627
1628        ret = btrfs_insert_fs_root(fs_info, root);
1629        if (ret) {
1630                if (ret == -EEXIST) {
1631                        btrfs_free_fs_root(root);
1632                        goto again;
1633                }
1634                goto fail;
1635        }
1636        return root;
1637fail:
1638        btrfs_free_fs_root(root);
1639        return ERR_PTR(ret);
1640}
1641
1642static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1643{
1644        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1645        int ret = 0;
1646        struct btrfs_device *device;
1647        struct backing_dev_info *bdi;
1648
1649        rcu_read_lock();
1650        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1651                if (!device->bdev)
1652                        continue;
1653                bdi = device->bdev->bd_bdi;
1654                if (bdi_congested(bdi, bdi_bits)) {
1655                        ret = 1;
1656                        break;
1657                }
1658        }
1659        rcu_read_unlock();
1660        return ret;
1661}
1662
1663/*
1664 * called by the kthread helper functions to finally call the bio end_io
1665 * functions.  This is where read checksum verification actually happens
1666 */
1667static void end_workqueue_fn(struct btrfs_work *work)
1668{
1669        struct bio *bio;
1670        struct btrfs_end_io_wq *end_io_wq;
1671
1672        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1673        bio = end_io_wq->bio;
1674
1675        bio->bi_status = end_io_wq->status;
1676        bio->bi_private = end_io_wq->private;
1677        bio->bi_end_io = end_io_wq->end_io;
1678        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1679        bio_endio(bio);
1680}
1681
1682static int cleaner_kthread(void *arg)
1683{
1684        struct btrfs_root *root = arg;
1685        struct btrfs_fs_info *fs_info = root->fs_info;
1686        int again;
1687
1688        while (1) {
1689                again = 0;
1690
1691                set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1692
1693                /* Make the cleaner go to sleep early. */
1694                if (btrfs_need_cleaner_sleep(fs_info))
1695                        goto sleep;
1696
1697                /*
1698                 * Do not do anything if we might cause open_ctree() to block
1699                 * before we have finished mounting the filesystem.
1700                 */
1701                if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1702                        goto sleep;
1703
1704                if (!mutex_trylock(&fs_info->cleaner_mutex))
1705                        goto sleep;
1706
1707                /*
1708                 * Avoid the problem that we change the status of the fs
1709                 * during the above check and trylock.
1710                 */
1711                if (btrfs_need_cleaner_sleep(fs_info)) {
1712                        mutex_unlock(&fs_info->cleaner_mutex);
1713                        goto sleep;
1714                }
1715
1716                btrfs_run_delayed_iputs(fs_info);
1717
1718                again = btrfs_clean_one_deleted_snapshot(root);
1719                mutex_unlock(&fs_info->cleaner_mutex);
1720
1721                /*
1722                 * The defragger has dealt with the R/O remount and umount,
1723                 * needn't do anything special here.
1724                 */
1725                btrfs_run_defrag_inodes(fs_info);
1726
1727                /*
1728                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1729                 * with relocation (btrfs_relocate_chunk) and relocation
1730                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1731                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1732                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1733                 * unused block groups.
1734                 */
1735                btrfs_delete_unused_bgs(fs_info);
1736sleep:
1737                clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1738                if (kthread_should_park())
1739                        kthread_parkme();
1740                if (kthread_should_stop())
1741                        return 0;
1742                if (!again) {
1743                        set_current_state(TASK_INTERRUPTIBLE);
1744                        schedule();
1745                        __set_current_state(TASK_RUNNING);
1746                }
1747        }
1748}
1749
1750static int transaction_kthread(void *arg)
1751{
1752        struct btrfs_root *root = arg;
1753        struct btrfs_fs_info *fs_info = root->fs_info;
1754        struct btrfs_trans_handle *trans;
1755        struct btrfs_transaction *cur;
1756        u64 transid;
1757        time64_t now;
1758        unsigned long delay;
1759        bool cannot_commit;
1760
1761        do {
1762                cannot_commit = false;
1763                delay = HZ * fs_info->commit_interval;
1764                mutex_lock(&fs_info->transaction_kthread_mutex);
1765
1766                spin_lock(&fs_info->trans_lock);
1767                cur = fs_info->running_transaction;
1768                if (!cur) {
1769                        spin_unlock(&fs_info->trans_lock);
1770                        goto sleep;
1771                }
1772
1773                now = ktime_get_seconds();
1774                if (cur->state < TRANS_STATE_BLOCKED &&
1775                    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1776                    (now < cur->start_time ||
1777                     now - cur->start_time < fs_info->commit_interval)) {
1778                        spin_unlock(&fs_info->trans_lock);
1779                        delay = HZ * 5;
1780                        goto sleep;
1781                }
1782                transid = cur->transid;
1783                spin_unlock(&fs_info->trans_lock);
1784
1785                /* If the file system is aborted, this will always fail. */
1786                trans = btrfs_attach_transaction(root);
1787                if (IS_ERR(trans)) {
1788                        if (PTR_ERR(trans) != -ENOENT)
1789                                cannot_commit = true;
1790                        goto sleep;
1791                }
1792                if (transid == trans->transid) {
1793                        btrfs_commit_transaction(trans);
1794                } else {
1795                        btrfs_end_transaction(trans);
1796                }
1797sleep:
1798                wake_up_process(fs_info->cleaner_kthread);
1799                mutex_unlock(&fs_info->transaction_kthread_mutex);
1800
1801                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1802                                      &fs_info->fs_state)))
1803                        btrfs_cleanup_transaction(fs_info);
1804                if (!kthread_should_stop() &&
1805                                (!btrfs_transaction_blocked(fs_info) ||
1806                                 cannot_commit))
1807                        schedule_timeout_interruptible(delay);
1808        } while (!kthread_should_stop());
1809        return 0;
1810}
1811
1812/*
1813 * this will find the highest generation in the array of
1814 * root backups.  The index of the highest array is returned,
1815 * or -1 if we can't find anything.
1816 *
1817 * We check to make sure the array is valid by comparing the
1818 * generation of the latest  root in the array with the generation
1819 * in the super block.  If they don't match we pitch it.
1820 */
1821static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1822{
1823        u64 cur;
1824        int newest_index = -1;
1825        struct btrfs_root_backup *root_backup;
1826        int i;
1827
1828        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1829                root_backup = info->super_copy->super_roots + i;
1830                cur = btrfs_backup_tree_root_gen(root_backup);
1831                if (cur == newest_gen)
1832                        newest_index = i;
1833        }
1834
1835        /* check to see if we actually wrapped around */
1836        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1837                root_backup = info->super_copy->super_roots;
1838                cur = btrfs_backup_tree_root_gen(root_backup);
1839                if (cur == newest_gen)
1840                        newest_index = 0;
1841        }
1842        return newest_index;
1843}
1844
1845
1846/*
1847 * find the oldest backup so we know where to store new entries
1848 * in the backup array.  This will set the backup_root_index
1849 * field in the fs_info struct
1850 */
1851static void find_oldest_super_backup(struct btrfs_fs_info *info,
1852                                     u64 newest_gen)
1853{
1854        int newest_index = -1;
1855
1856        newest_index = find_newest_super_backup(info, newest_gen);
1857        /* if there was garbage in there, just move along */
1858        if (newest_index == -1) {
1859                info->backup_root_index = 0;
1860        } else {
1861                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1862        }
1863}
1864
1865/*
1866 * copy all the root pointers into the super backup array.
1867 * this will bump the backup pointer by one when it is
1868 * done
1869 */
1870static void backup_super_roots(struct btrfs_fs_info *info)
1871{
1872        int next_backup;
1873        struct btrfs_root_backup *root_backup;
1874        int last_backup;
1875
1876        next_backup = info->backup_root_index;
1877        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1878                BTRFS_NUM_BACKUP_ROOTS;
1879
1880        /*
1881         * just overwrite the last backup if we're at the same generation
1882         * this happens only at umount
1883         */
1884        root_backup = info->super_for_commit->super_roots + last_backup;
1885        if (btrfs_backup_tree_root_gen(root_backup) ==
1886            btrfs_header_generation(info->tree_root->node))
1887                next_backup = last_backup;
1888
1889        root_backup = info->super_for_commit->super_roots + next_backup;
1890
1891        /*
1892         * make sure all of our padding and empty slots get zero filled
1893         * regardless of which ones we use today
1894         */
1895        memset(root_backup, 0, sizeof(*root_backup));
1896
1897        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898
1899        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1900        btrfs_set_backup_tree_root_gen(root_backup,
1901                               btrfs_header_generation(info->tree_root->node));
1902
1903        btrfs_set_backup_tree_root_level(root_backup,
1904                               btrfs_header_level(info->tree_root->node));
1905
1906        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1907        btrfs_set_backup_chunk_root_gen(root_backup,
1908                               btrfs_header_generation(info->chunk_root->node));
1909        btrfs_set_backup_chunk_root_level(root_backup,
1910                               btrfs_header_level(info->chunk_root->node));
1911
1912        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1913        btrfs_set_backup_extent_root_gen(root_backup,
1914                               btrfs_header_generation(info->extent_root->node));
1915        btrfs_set_backup_extent_root_level(root_backup,
1916                               btrfs_header_level(info->extent_root->node));
1917
1918        /*
1919         * we might commit during log recovery, which happens before we set
1920         * the fs_root.  Make sure it is valid before we fill it in.
1921         */
1922        if (info->fs_root && info->fs_root->node) {
1923                btrfs_set_backup_fs_root(root_backup,
1924                                         info->fs_root->node->start);
1925                btrfs_set_backup_fs_root_gen(root_backup,
1926                               btrfs_header_generation(info->fs_root->node));
1927                btrfs_set_backup_fs_root_level(root_backup,
1928                               btrfs_header_level(info->fs_root->node));
1929        }
1930
1931        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1932        btrfs_set_backup_dev_root_gen(root_backup,
1933                               btrfs_header_generation(info->dev_root->node));
1934        btrfs_set_backup_dev_root_level(root_backup,
1935                                       btrfs_header_level(info->dev_root->node));
1936
1937        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1938        btrfs_set_backup_csum_root_gen(root_backup,
1939                               btrfs_header_generation(info->csum_root->node));
1940        btrfs_set_backup_csum_root_level(root_backup,
1941                               btrfs_header_level(info->csum_root->node));
1942
1943        btrfs_set_backup_total_bytes(root_backup,
1944                             btrfs_super_total_bytes(info->super_copy));
1945        btrfs_set_backup_bytes_used(root_backup,
1946                             btrfs_super_bytes_used(info->super_copy));
1947        btrfs_set_backup_num_devices(root_backup,
1948                             btrfs_super_num_devices(info->super_copy));
1949
1950        /*
1951         * if we don't copy this out to the super_copy, it won't get remembered
1952         * for the next commit
1953         */
1954        memcpy(&info->super_copy->super_roots,
1955               &info->super_for_commit->super_roots,
1956               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957}
1958
1959/*
1960 * this copies info out of the root backup array and back into
1961 * the in-memory super block.  It is meant to help iterate through
1962 * the array, so you send it the number of backups you've already
1963 * tried and the last backup index you used.
1964 *
1965 * this returns -1 when it has tried all the backups
1966 */
1967static noinline int next_root_backup(struct btrfs_fs_info *info,
1968                                     struct btrfs_super_block *super,
1969                                     int *num_backups_tried, int *backup_index)
1970{
1971        struct btrfs_root_backup *root_backup;
1972        int newest = *backup_index;
1973
1974        if (*num_backups_tried == 0) {
1975                u64 gen = btrfs_super_generation(super);
1976
1977                newest = find_newest_super_backup(info, gen);
1978                if (newest == -1)
1979                        return -1;
1980
1981                *backup_index = newest;
1982                *num_backups_tried = 1;
1983        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1984                /* we've tried all the backups, all done */
1985                return -1;
1986        } else {
1987                /* jump to the next oldest backup */
1988                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1989                        BTRFS_NUM_BACKUP_ROOTS;
1990                *backup_index = newest;
1991                *num_backups_tried += 1;
1992        }
1993        root_backup = super->super_roots + newest;
1994
1995        btrfs_set_super_generation(super,
1996                                   btrfs_backup_tree_root_gen(root_backup));
1997        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1998        btrfs_set_super_root_level(super,
1999                                   btrfs_backup_tree_root_level(root_backup));
2000        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2001
2002        /*
2003         * fixme: the total bytes and num_devices need to match or we should
2004         * need a fsck
2005         */
2006        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2007        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2008        return 0;
2009}
2010
2011/* helper to cleanup workers */
2012static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2013{
2014        btrfs_destroy_workqueue(fs_info->fixup_workers);
2015        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2016        btrfs_destroy_workqueue(fs_info->workers);
2017        btrfs_destroy_workqueue(fs_info->endio_workers);
2018        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2019        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2020        btrfs_destroy_workqueue(fs_info->rmw_workers);
2021        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2022        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2023        btrfs_destroy_workqueue(fs_info->submit_workers);
2024        btrfs_destroy_workqueue(fs_info->delayed_workers);
2025        btrfs_destroy_workqueue(fs_info->caching_workers);
2026        btrfs_destroy_workqueue(fs_info->readahead_workers);
2027        btrfs_destroy_workqueue(fs_info->flush_workers);
2028        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2029        btrfs_destroy_workqueue(fs_info->extent_workers);
2030        /*
2031         * Now that all other work queues are destroyed, we can safely destroy
2032         * the queues used for metadata I/O, since tasks from those other work
2033         * queues can do metadata I/O operations.
2034         */
2035        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2036        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2037}
2038
2039static void free_root_extent_buffers(struct btrfs_root *root)
2040{
2041        if (root) {
2042                free_extent_buffer(root->node);
2043                free_extent_buffer(root->commit_root);
2044                root->node = NULL;
2045                root->commit_root = NULL;
2046        }
2047}
2048
2049/* helper to cleanup tree roots */
2050static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2051{
2052        free_root_extent_buffers(info->tree_root);
2053
2054        free_root_extent_buffers(info->dev_root);
2055        free_root_extent_buffers(info->extent_root);
2056        free_root_extent_buffers(info->csum_root);
2057        free_root_extent_buffers(info->quota_root);
2058        free_root_extent_buffers(info->uuid_root);
2059        if (chunk_root)
2060                free_root_extent_buffers(info->chunk_root);
2061        free_root_extent_buffers(info->free_space_root);
2062}
2063
2064void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2065{
2066        int ret;
2067        struct btrfs_root *gang[8];
2068        int i;
2069
2070        while (!list_empty(&fs_info->dead_roots)) {
2071                gang[0] = list_entry(fs_info->dead_roots.next,
2072                                     struct btrfs_root, root_list);
2073                list_del(&gang[0]->root_list);
2074
2075                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2076                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2077                } else {
2078                        free_extent_buffer(gang[0]->node);
2079                        free_extent_buffer(gang[0]->commit_root);
2080                        btrfs_put_fs_root(gang[0]);
2081                }
2082        }
2083
2084        while (1) {
2085                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086                                             (void **)gang, 0,
2087                                             ARRAY_SIZE(gang));
2088                if (!ret)
2089                        break;
2090                for (i = 0; i < ret; i++)
2091                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2092        }
2093
2094        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2095                btrfs_free_log_root_tree(NULL, fs_info);
2096                btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2097        }
2098}
2099
2100static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2101{
2102        mutex_init(&fs_info->scrub_lock);
2103        atomic_set(&fs_info->scrubs_running, 0);
2104        atomic_set(&fs_info->scrub_pause_req, 0);
2105        atomic_set(&fs_info->scrubs_paused, 0);
2106        atomic_set(&fs_info->scrub_cancel_req, 0);
2107        init_waitqueue_head(&fs_info->scrub_pause_wait);
2108        refcount_set(&fs_info->scrub_workers_refcnt, 0);
2109}
2110
2111static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2112{
2113        spin_lock_init(&fs_info->balance_lock);
2114        mutex_init(&fs_info->balance_mutex);
2115        atomic_set(&fs_info->balance_pause_req, 0);
2116        atomic_set(&fs_info->balance_cancel_req, 0);
2117        fs_info->balance_ctl = NULL;
2118        init_waitqueue_head(&fs_info->balance_wait_q);
2119}
2120
2121static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2122{
2123        struct inode *inode = fs_info->btree_inode;
2124
2125        inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2126        set_nlink(inode, 1);
2127        /*
2128         * we set the i_size on the btree inode to the max possible int.
2129         * the real end of the address space is determined by all of
2130         * the devices in the system
2131         */
2132        inode->i_size = OFFSET_MAX;
2133        inode->i_mapping->a_ops = &btree_aops;
2134
2135        RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2136        extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2137                            IO_TREE_INODE_IO, inode);
2138        BTRFS_I(inode)->io_tree.track_uptodate = false;
2139        extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2140
2141        BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2142
2143        BTRFS_I(inode)->root = fs_info->tree_root;
2144        memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146        btrfs_insert_inode_hash(inode);
2147}
2148
2149static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150{
2151        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152        init_rwsem(&fs_info->dev_replace.rwsem);
2153        init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2154}
2155
2156static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2157{
2158        spin_lock_init(&fs_info->qgroup_lock);
2159        mutex_init(&fs_info->qgroup_ioctl_lock);
2160        fs_info->qgroup_tree = RB_ROOT;
2161        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2162        fs_info->qgroup_seq = 1;
2163        fs_info->qgroup_ulist = NULL;
2164        fs_info->qgroup_rescan_running = false;
2165        mutex_init(&fs_info->qgroup_rescan_lock);
2166}
2167
2168static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2169                struct btrfs_fs_devices *fs_devices)
2170{
2171        u32 max_active = fs_info->thread_pool_size;
2172        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2173
2174        fs_info->workers =
2175                btrfs_alloc_workqueue(fs_info, "worker",
2176                                      flags | WQ_HIGHPRI, max_active, 16);
2177
2178        fs_info->delalloc_workers =
2179                btrfs_alloc_workqueue(fs_info, "delalloc",
2180                                      flags, max_active, 2);
2181
2182        fs_info->flush_workers =
2183                btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2184                                      flags, max_active, 0);
2185
2186        fs_info->caching_workers =
2187                btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2188
2189        /*
2190         * a higher idle thresh on the submit workers makes it much more
2191         * likely that bios will be send down in a sane order to the
2192         * devices
2193         */
2194        fs_info->submit_workers =
2195                btrfs_alloc_workqueue(fs_info, "submit", flags,
2196                                      min_t(u64, fs_devices->num_devices,
2197                                            max_active), 64);
2198
2199        fs_info->fixup_workers =
2200                btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2201
2202        /*
2203         * endios are largely parallel and should have a very
2204         * low idle thresh
2205         */
2206        fs_info->endio_workers =
2207                btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2208        fs_info->endio_meta_workers =
2209                btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2210                                      max_active, 4);
2211        fs_info->endio_meta_write_workers =
2212                btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2213                                      max_active, 2);
2214        fs_info->endio_raid56_workers =
2215                btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2216                                      max_active, 4);
2217        fs_info->endio_repair_workers =
2218                btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2219        fs_info->rmw_workers =
2220                btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2221        fs_info->endio_write_workers =
2222                btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2223                                      max_active, 2);
2224        fs_info->endio_freespace_worker =
2225                btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2226                                      max_active, 0);
2227        fs_info->delayed_workers =
2228                btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2229                                      max_active, 0);
2230        fs_info->readahead_workers =
2231                btrfs_alloc_workqueue(fs_info, "readahead", flags,
2232                                      max_active, 2);
2233        fs_info->qgroup_rescan_workers =
2234                btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2235        fs_info->extent_workers =
2236                btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2237                                      min_t(u64, fs_devices->num_devices,
2238                                            max_active), 8);
2239
2240        if (!(fs_info->workers && fs_info->delalloc_workers &&
2241              fs_info->submit_workers && fs_info->flush_workers &&
2242              fs_info->endio_workers && fs_info->endio_meta_workers &&
2243              fs_info->endio_meta_write_workers &&
2244              fs_info->endio_repair_workers &&
2245              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2246              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2247              fs_info->caching_workers && fs_info->readahead_workers &&
2248              fs_info->fixup_workers && fs_info->delayed_workers &&
2249              fs_info->extent_workers &&
2250              fs_info->qgroup_rescan_workers)) {
2251                return -ENOMEM;
2252        }
2253
2254        return 0;
2255}
2256
2257static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2258{
2259        struct crypto_shash *csum_shash;
2260        const char *csum_name = btrfs_super_csum_name(csum_type);
2261
2262        csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2263
2264        if (IS_ERR(csum_shash)) {
2265                btrfs_err(fs_info, "error allocating %s hash for checksum",
2266                          csum_name);
2267                return PTR_ERR(csum_shash);
2268        }
2269
2270        fs_info->csum_shash = csum_shash;
2271
2272        return 0;
2273}
2274
2275static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2276{
2277        crypto_free_shash(fs_info->csum_shash);
2278}
2279
2280static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281                            struct btrfs_fs_devices *fs_devices)
2282{
2283        int ret;
2284        struct btrfs_root *log_tree_root;
2285        struct btrfs_super_block *disk_super = fs_info->super_copy;
2286        u64 bytenr = btrfs_super_log_root(disk_super);
2287        int level = btrfs_super_log_root_level(disk_super);
2288
2289        if (fs_devices->rw_devices == 0) {
2290                btrfs_warn(fs_info, "log replay required on RO media");
2291                return -EIO;
2292        }
2293
2294        log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2295        if (!log_tree_root)
2296                return -ENOMEM;
2297
2298        __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2299
2300        log_tree_root->node = read_tree_block(fs_info, bytenr,
2301                                              fs_info->generation + 1,
2302                                              level, NULL);
2303        if (IS_ERR(log_tree_root->node)) {
2304                btrfs_warn(fs_info, "failed to read log tree");
2305                ret = PTR_ERR(log_tree_root->node);
2306                kfree(log_tree_root);
2307                return ret;
2308        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2309                btrfs_err(fs_info, "failed to read log tree");
2310                free_extent_buffer(log_tree_root->node);
2311                kfree(log_tree_root);
2312                return -EIO;
2313        }
2314        /* returns with log_tree_root freed on success */
2315        ret = btrfs_recover_log_trees(log_tree_root);
2316        if (ret) {
2317                btrfs_handle_fs_error(fs_info, ret,
2318                                      "Failed to recover log tree");
2319                free_extent_buffer(log_tree_root->node);
2320                kfree(log_tree_root);
2321                return ret;
2322        }
2323
2324        if (sb_rdonly(fs_info->sb)) {
2325                ret = btrfs_commit_super(fs_info);
2326                if (ret)
2327                        return ret;
2328        }
2329
2330        return 0;
2331}
2332
2333static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2334{
2335        struct btrfs_root *tree_root = fs_info->tree_root;
2336        struct btrfs_root *root;
2337        struct btrfs_key location;
2338        int ret;
2339
2340        BUG_ON(!fs_info->tree_root);
2341
2342        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2343        location.type = BTRFS_ROOT_ITEM_KEY;
2344        location.offset = 0;
2345
2346        root = btrfs_read_tree_root(tree_root, &location);
2347        if (IS_ERR(root)) {
2348                ret = PTR_ERR(root);
2349                goto out;
2350        }
2351        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352        fs_info->extent_root = root;
2353
2354        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2355        root = btrfs_read_tree_root(tree_root, &location);
2356        if (IS_ERR(root)) {
2357                ret = PTR_ERR(root);
2358                goto out;
2359        }
2360        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361        fs_info->dev_root = root;
2362        btrfs_init_devices_late(fs_info);
2363
2364        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2365        root = btrfs_read_tree_root(tree_root, &location);
2366        if (IS_ERR(root)) {
2367                ret = PTR_ERR(root);
2368                goto out;
2369        }
2370        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371        fs_info->csum_root = root;
2372
2373        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2374        root = btrfs_read_tree_root(tree_root, &location);
2375        if (!IS_ERR(root)) {
2376                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377                set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2378                fs_info->quota_root = root;
2379        }
2380
2381        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2382        root = btrfs_read_tree_root(tree_root, &location);
2383        if (IS_ERR(root)) {
2384                ret = PTR_ERR(root);
2385                if (ret != -ENOENT)
2386                        goto out;
2387        } else {
2388                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389                fs_info->uuid_root = root;
2390        }
2391
2392        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2393                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2394                root = btrfs_read_tree_root(tree_root, &location);
2395                if (IS_ERR(root)) {
2396                        ret = PTR_ERR(root);
2397                        goto out;
2398                }
2399                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2400                fs_info->free_space_root = root;
2401        }
2402
2403        return 0;
2404out:
2405        btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2406                   location.objectid, ret);
2407        return ret;
2408}
2409
2410/*
2411 * Real super block validation
2412 * NOTE: super csum type and incompat features will not be checked here.
2413 *
2414 * @sb:         super block to check
2415 * @mirror_num: the super block number to check its bytenr:
2416 *              0       the primary (1st) sb
2417 *              1, 2    2nd and 3rd backup copy
2418 *             -1       skip bytenr check
2419 */
2420static int validate_super(struct btrfs_fs_info *fs_info,
2421                            struct btrfs_super_block *sb, int mirror_num)
2422{
2423        u64 nodesize = btrfs_super_nodesize(sb);
2424        u64 sectorsize = btrfs_super_sectorsize(sb);
2425        int ret = 0;
2426
2427        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2428                btrfs_err(fs_info, "no valid FS found");
2429                ret = -EINVAL;
2430        }
2431        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2432                btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2433                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2434                ret = -EINVAL;
2435        }
2436        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437                btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2438                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2439                ret = -EINVAL;
2440        }
2441        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2442                btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2443                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2444                ret = -EINVAL;
2445        }
2446        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2447                btrfs_err(fs_info, "log_root level too big: %d >= %d",
2448                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2449                ret = -EINVAL;
2450        }
2451
2452        /*
2453         * Check sectorsize and nodesize first, other check will need it.
2454         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2455         */
2456        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2457            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2458                btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2459                ret = -EINVAL;
2460        }
2461        /* Only PAGE SIZE is supported yet */
2462        if (sectorsize != PAGE_SIZE) {
2463                btrfs_err(fs_info,
2464                        "sectorsize %llu not supported yet, only support %lu",
2465                        sectorsize, PAGE_SIZE);
2466                ret = -EINVAL;
2467        }
2468        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2469            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470                btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2471                ret = -EINVAL;
2472        }
2473        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2474                btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2475                          le32_to_cpu(sb->__unused_leafsize), nodesize);
2476                ret = -EINVAL;
2477        }
2478
2479        /* Root alignment check */
2480        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2481                btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2482                           btrfs_super_root(sb));
2483                ret = -EINVAL;
2484        }
2485        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2486                btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2487                           btrfs_super_chunk_root(sb));
2488                ret = -EINVAL;
2489        }
2490        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2491                btrfs_warn(fs_info, "log_root block unaligned: %llu",
2492                           btrfs_super_log_root(sb));
2493                ret = -EINVAL;
2494        }
2495
2496        if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2497                   BTRFS_FSID_SIZE) != 0) {
2498                btrfs_err(fs_info,
2499                        "dev_item UUID does not match metadata fsid: %pU != %pU",
2500                        fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2501                ret = -EINVAL;
2502        }
2503
2504        /*
2505         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506         * done later
2507         */
2508        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509                btrfs_err(fs_info, "bytes_used is too small %llu",
2510                          btrfs_super_bytes_used(sb));
2511                ret = -EINVAL;
2512        }
2513        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514                btrfs_err(fs_info, "invalid stripesize %u",
2515                          btrfs_super_stripesize(sb));
2516                ret = -EINVAL;
2517        }
2518        if (btrfs_super_num_devices(sb) > (1UL << 31))
2519                btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520                           btrfs_super_num_devices(sb));
2521        if (btrfs_super_num_devices(sb) == 0) {
2522                btrfs_err(fs_info, "number of devices is 0");
2523                ret = -EINVAL;
2524        }
2525
2526        if (mirror_num >= 0 &&
2527            btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2528                btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529                          btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530                ret = -EINVAL;
2531        }
2532
2533        /*
2534         * Obvious sys_chunk_array corruptions, it must hold at least one key
2535         * and one chunk
2536         */
2537        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538                btrfs_err(fs_info, "system chunk array too big %u > %u",
2539                          btrfs_super_sys_array_size(sb),
2540                          BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541                ret = -EINVAL;
2542        }
2543        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544                        + sizeof(struct btrfs_chunk)) {
2545                btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546                          btrfs_super_sys_array_size(sb),
2547                          sizeof(struct btrfs_disk_key)
2548                          + sizeof(struct btrfs_chunk));
2549                ret = -EINVAL;
2550        }
2551
2552        /*
2553         * The generation is a global counter, we'll trust it more than the others
2554         * but it's still possible that it's the one that's wrong.
2555         */
2556        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557                btrfs_warn(fs_info,
2558                        "suspicious: generation < chunk_root_generation: %llu < %llu",
2559                        btrfs_super_generation(sb),
2560                        btrfs_super_chunk_root_generation(sb));
2561        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562            && btrfs_super_cache_generation(sb) != (u64)-1)
2563                btrfs_warn(fs_info,
2564                        "suspicious: generation < cache_generation: %llu < %llu",
2565                        btrfs_super_generation(sb),
2566                        btrfs_super_cache_generation(sb));
2567
2568        return ret;
2569}
2570
2571/*
2572 * Validation of super block at mount time.
2573 * Some checks already done early at mount time, like csum type and incompat
2574 * flags will be skipped.
2575 */
2576static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577{
2578        return validate_super(fs_info, fs_info->super_copy, 0);
2579}
2580
2581/*
2582 * Validation of super block at write time.
2583 * Some checks like bytenr check will be skipped as their values will be
2584 * overwritten soon.
2585 * Extra checks like csum type and incompat flags will be done here.
2586 */
2587static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588                                      struct btrfs_super_block *sb)
2589{
2590        int ret;
2591
2592        ret = validate_super(fs_info, sb, -1);
2593        if (ret < 0)
2594                goto out;
2595        if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2596                ret = -EUCLEAN;
2597                btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598                          btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599                goto out;
2600        }
2601        if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602                ret = -EUCLEAN;
2603                btrfs_err(fs_info,
2604                "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605                          btrfs_super_incompat_flags(sb),
2606                          (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607                goto out;
2608        }
2609out:
2610        if (ret < 0)
2611                btrfs_err(fs_info,
2612                "super block corruption detected before writing it to disk");
2613        return ret;
2614}
2615
2616int open_ctree(struct super_block *sb,
2617               struct btrfs_fs_devices *fs_devices,
2618               char *options)
2619{
2620        u32 sectorsize;
2621        u32 nodesize;
2622        u32 stripesize;
2623        u64 generation;
2624        u64 features;
2625        u16 csum_type;
2626        struct btrfs_key location;
2627        struct buffer_head *bh;
2628        struct btrfs_super_block *disk_super;
2629        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2630        struct btrfs_root *tree_root;
2631        struct btrfs_root *chunk_root;
2632        int ret;
2633        int err = -EINVAL;
2634        int num_backups_tried = 0;
2635        int backup_index = 0;
2636        int clear_free_space_tree = 0;
2637        int level;
2638
2639        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2640        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2641        if (!tree_root || !chunk_root) {
2642                err = -ENOMEM;
2643                goto fail;
2644        }
2645
2646        ret = init_srcu_struct(&fs_info->subvol_srcu);
2647        if (ret) {
2648                err = ret;
2649                goto fail;
2650        }
2651
2652        ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2653        if (ret) {
2654                err = ret;
2655                goto fail_srcu;
2656        }
2657
2658        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2659        if (ret) {
2660                err = ret;
2661                goto fail_dio_bytes;
2662        }
2663        fs_info->dirty_metadata_batch = PAGE_SIZE *
2664                                        (1 + ilog2(nr_cpu_ids));
2665
2666        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2667        if (ret) {
2668                err = ret;
2669                goto fail_dirty_metadata_bytes;
2670        }
2671
2672        ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2673                        GFP_KERNEL);
2674        if (ret) {
2675                err = ret;
2676                goto fail_delalloc_bytes;
2677        }
2678
2679        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2680        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2681        INIT_LIST_HEAD(&fs_info->trans_list);
2682        INIT_LIST_HEAD(&fs_info->dead_roots);
2683        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2684        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2685        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2686        spin_lock_init(&fs_info->delalloc_root_lock);
2687        spin_lock_init(&fs_info->trans_lock);
2688        spin_lock_init(&fs_info->fs_roots_radix_lock);
2689        spin_lock_init(&fs_info->delayed_iput_lock);
2690        spin_lock_init(&fs_info->defrag_inodes_lock);
2691        spin_lock_init(&fs_info->tree_mod_seq_lock);
2692        spin_lock_init(&fs_info->super_lock);
2693        spin_lock_init(&fs_info->buffer_lock);
2694        spin_lock_init(&fs_info->unused_bgs_lock);
2695        rwlock_init(&fs_info->tree_mod_log_lock);
2696        mutex_init(&fs_info->unused_bg_unpin_mutex);
2697        mutex_init(&fs_info->delete_unused_bgs_mutex);
2698        mutex_init(&fs_info->reloc_mutex);
2699        mutex_init(&fs_info->delalloc_root_mutex);
2700        seqlock_init(&fs_info->profiles_lock);
2701
2702        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2703        INIT_LIST_HEAD(&fs_info->space_info);
2704        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2705        INIT_LIST_HEAD(&fs_info->unused_bgs);
2706        extent_map_tree_init(&fs_info->mapping_tree);
2707        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2708                             BTRFS_BLOCK_RSV_GLOBAL);
2709        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2710        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2711        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2712        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2713                             BTRFS_BLOCK_RSV_DELOPS);
2714        btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2715                             BTRFS_BLOCK_RSV_DELREFS);
2716
2717        atomic_set(&fs_info->async_delalloc_pages, 0);
2718        atomic_set(&fs_info->defrag_running, 0);
2719        atomic_set(&fs_info->reada_works_cnt, 0);
2720        atomic_set(&fs_info->nr_delayed_iputs, 0);
2721        atomic64_set(&fs_info->tree_mod_seq, 0);
2722        fs_info->sb = sb;
2723        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2724        fs_info->metadata_ratio = 0;
2725        fs_info->defrag_inodes = RB_ROOT;
2726        atomic64_set(&fs_info->free_chunk_space, 0);
2727        fs_info->tree_mod_log = RB_ROOT;
2728        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2729        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2730        /* readahead state */
2731        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2732        spin_lock_init(&fs_info->reada_lock);
2733        btrfs_init_ref_verify(fs_info);
2734
2735        fs_info->thread_pool_size = min_t(unsigned long,
2736                                          num_online_cpus() + 2, 8);
2737
2738        INIT_LIST_HEAD(&fs_info->ordered_roots);
2739        spin_lock_init(&fs_info->ordered_root_lock);
2740
2741        fs_info->btree_inode = new_inode(sb);
2742        if (!fs_info->btree_inode) {
2743                err = -ENOMEM;
2744                goto fail_bio_counter;
2745        }
2746        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2747
2748        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2749                                        GFP_KERNEL);
2750        if (!fs_info->delayed_root) {
2751                err = -ENOMEM;
2752                goto fail_iput;
2753        }
2754        btrfs_init_delayed_root(fs_info->delayed_root);
2755
2756        btrfs_init_scrub(fs_info);
2757#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2758        fs_info->check_integrity_print_mask = 0;
2759#endif
2760        btrfs_init_balance(fs_info);
2761        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2762
2763        sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2764        sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2765
2766        btrfs_init_btree_inode(fs_info);
2767
2768        spin_lock_init(&fs_info->block_group_cache_lock);
2769        fs_info->block_group_cache_tree = RB_ROOT;
2770        fs_info->first_logical_byte = (u64)-1;
2771
2772        extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2773                            IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2774        extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2775                            IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2776        fs_info->pinned_extents = &fs_info->freed_extents[0];
2777        set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2778
2779        mutex_init(&fs_info->ordered_operations_mutex);
2780        mutex_init(&fs_info->tree_log_mutex);
2781        mutex_init(&fs_info->chunk_mutex);
2782        mutex_init(&fs_info->transaction_kthread_mutex);
2783        mutex_init(&fs_info->cleaner_mutex);
2784        mutex_init(&fs_info->ro_block_group_mutex);
2785        init_rwsem(&fs_info->commit_root_sem);
2786        init_rwsem(&fs_info->cleanup_work_sem);
2787        init_rwsem(&fs_info->subvol_sem);
2788        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2789
2790        btrfs_init_dev_replace_locks(fs_info);
2791        btrfs_init_qgroup(fs_info);
2792
2793        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2794        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2795
2796        init_waitqueue_head(&fs_info->transaction_throttle);
2797        init_waitqueue_head(&fs_info->transaction_wait);
2798        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2799        init_waitqueue_head(&fs_info->async_submit_wait);
2800        init_waitqueue_head(&fs_info->delayed_iputs_wait);
2801
2802        /* Usable values until the real ones are cached from the superblock */
2803        fs_info->nodesize = 4096;
2804        fs_info->sectorsize = 4096;
2805        fs_info->stripesize = 4096;
2806
2807        spin_lock_init(&fs_info->swapfile_pins_lock);
2808        fs_info->swapfile_pins = RB_ROOT;
2809
2810        fs_info->send_in_progress = 0;
2811
2812        ret = btrfs_alloc_stripe_hash_table(fs_info);
2813        if (ret) {
2814                err = ret;
2815                goto fail_alloc;
2816        }
2817
2818        __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2819
2820        invalidate_bdev(fs_devices->latest_bdev);
2821
2822        /*
2823         * Read super block and check the signature bytes only
2824         */
2825        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2826        if (IS_ERR(bh)) {
2827                err = PTR_ERR(bh);
2828                goto fail_alloc;
2829        }
2830
2831        /*
2832         * Verify the type first, if that or the the checksum value are
2833         * corrupted, we'll find out
2834         */
2835        csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2836        if (!btrfs_supported_super_csum(csum_type)) {
2837                btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2838                          csum_type);
2839                err = -EINVAL;
2840                brelse(bh);
2841                goto fail_alloc;
2842        }
2843
2844        ret = btrfs_init_csum_hash(fs_info, csum_type);
2845        if (ret) {
2846                err = ret;
2847                goto fail_alloc;
2848        }
2849
2850        /*
2851         * We want to check superblock checksum, the type is stored inside.
2852         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853         */
2854        if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2855                btrfs_err(fs_info, "superblock checksum mismatch");
2856                err = -EINVAL;
2857                brelse(bh);
2858                goto fail_csum;
2859        }
2860
2861        /*
2862         * super_copy is zeroed at allocation time and we never touch the
2863         * following bytes up to INFO_SIZE, the checksum is calculated from
2864         * the whole block of INFO_SIZE
2865         */
2866        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2867        brelse(bh);
2868
2869        disk_super = fs_info->super_copy;
2870
2871        ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2872                       BTRFS_FSID_SIZE));
2873
2874        if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2875                ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2876                                fs_info->super_copy->metadata_uuid,
2877                                BTRFS_FSID_SIZE));
2878        }
2879
2880        features = btrfs_super_flags(disk_super);
2881        if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2882                features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2883                btrfs_set_super_flags(disk_super, features);
2884                btrfs_info(fs_info,
2885                        "found metadata UUID change in progress flag, clearing");
2886        }
2887
2888        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2889               sizeof(*fs_info->super_for_commit));
2890
2891        ret = btrfs_validate_mount_super(fs_info);
2892        if (ret) {
2893                btrfs_err(fs_info, "superblock contains fatal errors");
2894                err = -EINVAL;
2895                goto fail_csum;
2896        }
2897
2898        if (!btrfs_super_root(disk_super))
2899                goto fail_csum;
2900
2901        /* check FS state, whether FS is broken. */
2902        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2903                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2904
2905        /*
2906         * run through our array of backup supers and setup
2907         * our ring pointer to the oldest one
2908         */
2909        generation = btrfs_super_generation(disk_super);
2910        find_oldest_super_backup(fs_info, generation);
2911
2912        /*
2913         * In the long term, we'll store the compression type in the super
2914         * block, and it'll be used for per file compression control.
2915         */
2916        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2917
2918        ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2919        if (ret) {
2920                err = ret;
2921                goto fail_csum;
2922        }
2923
2924        features = btrfs_super_incompat_flags(disk_super) &
2925                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2926        if (features) {
2927                btrfs_err(fs_info,
2928                    "cannot mount because of unsupported optional features (%llx)",
2929                    features);
2930                err = -EINVAL;
2931                goto fail_csum;
2932        }
2933
2934        features = btrfs_super_incompat_flags(disk_super);
2935        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2936        if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2937                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2938        else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2939                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2940
2941        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2942                btrfs_info(fs_info, "has skinny extents");
2943
2944        /*
2945         * flag our filesystem as having big metadata blocks if
2946         * they are bigger than the page size
2947         */
2948        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2949                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2950                        btrfs_info(fs_info,
2951                                "flagging fs with big metadata feature");
2952                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2953        }
2954
2955        nodesize = btrfs_super_nodesize(disk_super);
2956        sectorsize = btrfs_super_sectorsize(disk_super);
2957        stripesize = sectorsize;
2958        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2959        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2960
2961        /* Cache block sizes */
2962        fs_info->nodesize = nodesize;
2963        fs_info->sectorsize = sectorsize;
2964        fs_info->stripesize = stripesize;
2965
2966        /*
2967         * mixed block groups end up with duplicate but slightly offset
2968         * extent buffers for the same range.  It leads to corruptions
2969         */
2970        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2971            (sectorsize != nodesize)) {
2972                btrfs_err(fs_info,
2973"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2974                        nodesize, sectorsize);
2975                goto fail_csum;
2976        }
2977
2978        /*
2979         * Needn't use the lock because there is no other task which will
2980         * update the flag.
2981         */
2982        btrfs_set_super_incompat_flags(disk_super, features);
2983
2984        features = btrfs_super_compat_ro_flags(disk_super) &
2985                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2986        if (!sb_rdonly(sb) && features) {
2987                btrfs_err(fs_info,
2988        "cannot mount read-write because of unsupported optional features (%llx)",
2989                       features);
2990                err = -EINVAL;
2991                goto fail_csum;
2992        }
2993
2994        ret = btrfs_init_workqueues(fs_info, fs_devices);
2995        if (ret) {
2996                err = ret;
2997                goto fail_sb_buffer;
2998        }
2999
3000        sb->s_bdi->congested_fn = btrfs_congested_fn;
3001        sb->s_bdi->congested_data = fs_info;
3002        sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3003        sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3004        sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3005        sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3006
3007        sb->s_blocksize = sectorsize;
3008        sb->s_blocksize_bits = blksize_bits(sectorsize);
3009        memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3010
3011        mutex_lock(&fs_info->chunk_mutex);
3012        ret = btrfs_read_sys_array(fs_info);
3013        mutex_unlock(&fs_info->chunk_mutex);
3014        if (ret) {
3015                btrfs_err(fs_info, "failed to read the system array: %d", ret);
3016                goto fail_sb_buffer;
3017        }
3018
3019        generation = btrfs_super_chunk_root_generation(disk_super);
3020        level = btrfs_super_chunk_root_level(disk_super);
3021
3022        __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3023
3024        chunk_root->node = read_tree_block(fs_info,
3025                                           btrfs_super_chunk_root(disk_super),
3026                                           generation, level, NULL);
3027        if (IS_ERR(chunk_root->node) ||
3028            !extent_buffer_uptodate(chunk_root->node)) {
3029                btrfs_err(fs_info, "failed to read chunk root");
3030                if (!IS_ERR(chunk_root->node))
3031                        free_extent_buffer(chunk_root->node);
3032                chunk_root->node = NULL;
3033                goto fail_tree_roots;
3034        }
3035        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3036        chunk_root->commit_root = btrfs_root_node(chunk_root);
3037
3038        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3039           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3040
3041        ret = btrfs_read_chunk_tree(fs_info);
3042        if (ret) {
3043                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3044                goto fail_tree_roots;
3045        }
3046
3047        /*
3048         * Keep the devid that is marked to be the target device for the
3049         * device replace procedure
3050         */
3051        btrfs_free_extra_devids(fs_devices, 0);
3052
3053        if (!fs_devices->latest_bdev) {
3054                btrfs_err(fs_info, "failed to read devices");
3055                goto fail_tree_roots;
3056        }
3057
3058retry_root_backup:
3059        generation = btrfs_super_generation(disk_super);
3060        level = btrfs_super_root_level(disk_super);
3061
3062        tree_root->node = read_tree_block(fs_info,
3063                                          btrfs_super_root(disk_super),
3064                                          generation, level, NULL);
3065        if (IS_ERR(tree_root->node) ||
3066            !extent_buffer_uptodate(tree_root->node)) {
3067                btrfs_warn(fs_info, "failed to read tree root");
3068                if (!IS_ERR(tree_root->node))
3069                        free_extent_buffer(tree_root->node);
3070                tree_root->node = NULL;
3071                goto recovery_tree_root;
3072        }
3073
3074        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3075        tree_root->commit_root = btrfs_root_node(tree_root);
3076        btrfs_set_root_refs(&tree_root->root_item, 1);
3077
3078        mutex_lock(&tree_root->objectid_mutex);
3079        ret = btrfs_find_highest_objectid(tree_root,
3080                                        &tree_root->highest_objectid);
3081        if (ret) {
3082                mutex_unlock(&tree_root->objectid_mutex);
3083                goto recovery_tree_root;
3084        }
3085
3086        ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3087
3088        mutex_unlock(&tree_root->objectid_mutex);
3089
3090        ret = btrfs_read_roots(fs_info);
3091        if (ret)
3092                goto recovery_tree_root;
3093
3094        fs_info->generation = generation;
3095        fs_info->last_trans_committed = generation;
3096
3097        ret = btrfs_verify_dev_extents(fs_info);
3098        if (ret) {
3099                btrfs_err(fs_info,
3100                          "failed to verify dev extents against chunks: %d",
3101                          ret);
3102                goto fail_block_groups;
3103        }
3104        ret = btrfs_recover_balance(fs_info);
3105        if (ret) {
3106                btrfs_err(fs_info, "failed to recover balance: %d", ret);
3107                goto fail_block_groups;
3108        }
3109
3110        ret = btrfs_init_dev_stats(fs_info);
3111        if (ret) {
3112                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3113                goto fail_block_groups;
3114        }
3115
3116        ret = btrfs_init_dev_replace(fs_info);
3117        if (ret) {
3118                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3119                goto fail_block_groups;
3120        }
3121
3122        btrfs_free_extra_devids(fs_devices, 1);
3123
3124        ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3125        if (ret) {
3126                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3127                                ret);
3128                goto fail_block_groups;
3129        }
3130
3131        ret = btrfs_sysfs_add_device(fs_devices);
3132        if (ret) {
3133                btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3134                                ret);
3135                goto fail_fsdev_sysfs;
3136        }
3137
3138        ret = btrfs_sysfs_add_mounted(fs_info);
3139        if (ret) {
3140                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141                goto fail_fsdev_sysfs;
3142        }
3143
3144        ret = btrfs_init_space_info(fs_info);
3145        if (ret) {
3146                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3147                goto fail_sysfs;
3148        }
3149
3150        ret = btrfs_read_block_groups(fs_info);
3151        if (ret) {
3152                btrfs_err(fs_info, "failed to read block groups: %d", ret);
3153                goto fail_sysfs;
3154        }
3155
3156        if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3157                btrfs_warn(fs_info,
3158                "writable mount is not allowed due to too many missing devices");
3159                goto fail_sysfs;
3160        }
3161
3162        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163                                               "btrfs-cleaner");
3164        if (IS_ERR(fs_info->cleaner_kthread))
3165                goto fail_sysfs;
3166
3167        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168                                                   tree_root,
3169                                                   "btrfs-transaction");
3170        if (IS_ERR(fs_info->transaction_kthread))
3171                goto fail_cleaner;
3172
3173        if (!btrfs_test_opt(fs_info, NOSSD) &&
3174            !fs_info->fs_devices->rotating) {
3175                btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3176        }
3177
3178        /*
3179         * Mount does not set all options immediately, we can do it now and do
3180         * not have to wait for transaction commit
3181         */
3182        btrfs_apply_pending_changes(fs_info);
3183
3184#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186                ret = btrfsic_mount(fs_info, fs_devices,
3187                                    btrfs_test_opt(fs_info,
3188                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189                                    1 : 0,
3190                                    fs_info->check_integrity_print_mask);
3191                if (ret)
3192                        btrfs_warn(fs_info,
3193                                "failed to initialize integrity check module: %d",
3194                                ret);
3195        }
3196#endif
3197        ret = btrfs_read_qgroup_config(fs_info);
3198        if (ret)
3199                goto fail_trans_kthread;
3200
3201        if (btrfs_build_ref_tree(fs_info))
3202                btrfs_err(fs_info, "couldn't build ref tree");
3203
3204        /* do not make disk changes in broken FS or nologreplay is given */
3205        if (btrfs_super_log_root(disk_super) != 0 &&
3206            !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207                ret = btrfs_replay_log(fs_info, fs_devices);
3208                if (ret) {
3209                        err = ret;
3210                        goto fail_qgroup;
3211                }
3212        }
3213
3214        ret = btrfs_find_orphan_roots(fs_info);
3215        if (ret)
3216                goto fail_qgroup;
3217
3218        if (!sb_rdonly(sb)) {
3219                ret = btrfs_cleanup_fs_roots(fs_info);
3220                if (ret)
3221                        goto fail_qgroup;
3222
3223                mutex_lock(&fs_info->cleaner_mutex);
3224                ret = btrfs_recover_relocation(tree_root);
3225                mutex_unlock(&fs_info->cleaner_mutex);
3226                if (ret < 0) {
3227                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3228                                        ret);
3229                        err = -EINVAL;
3230                        goto fail_qgroup;
3231                }
3232        }
3233
3234        location.objectid = BTRFS_FS_TREE_OBJECTID;
3235        location.type = BTRFS_ROOT_ITEM_KEY;
3236        location.offset = 0;
3237
3238        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3239        if (IS_ERR(fs_info->fs_root)) {
3240                err = PTR_ERR(fs_info->fs_root);
3241                btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3242                goto fail_qgroup;
3243        }
3244
3245        if (sb_rdonly(sb))
3246                return 0;
3247
3248        if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3249            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3250                clear_free_space_tree = 1;
3251        } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3252                   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3253                btrfs_warn(fs_info, "free space tree is invalid");
3254                clear_free_space_tree = 1;
3255        }
3256
3257        if (clear_free_space_tree) {
3258                btrfs_info(fs_info, "clearing free space tree");
3259                ret = btrfs_clear_free_space_tree(fs_info);
3260                if (ret) {
3261                        btrfs_warn(fs_info,
3262                                   "failed to clear free space tree: %d", ret);
3263                        close_ctree(fs_info);
3264                        return ret;
3265                }
3266        }
3267
3268        if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3269            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3270                btrfs_info(fs_info, "creating free space tree");
3271                ret = btrfs_create_free_space_tree(fs_info);
3272                if (ret) {
3273                        btrfs_warn(fs_info,
3274                                "failed to create free space tree: %d", ret);
3275                        close_ctree(fs_info);
3276                        return ret;
3277                }
3278        }
3279
3280        down_read(&fs_info->cleanup_work_sem);
3281        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3282            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3283                up_read(&fs_info->cleanup_work_sem);
3284                close_ctree(fs_info);
3285                return ret;
3286        }
3287        up_read(&fs_info->cleanup_work_sem);
3288
3289        ret = btrfs_resume_balance_async(fs_info);
3290        if (ret) {
3291                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3292                close_ctree(fs_info);
3293                return ret;
3294        }
3295
3296        ret = btrfs_resume_dev_replace_async(fs_info);
3297        if (ret) {
3298                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3299                close_ctree(fs_info);
3300                return ret;
3301        }
3302
3303        btrfs_qgroup_rescan_resume(fs_info);
3304
3305        if (!fs_info->uuid_root) {
3306                btrfs_info(fs_info, "creating UUID tree");
3307                ret = btrfs_create_uuid_tree(fs_info);
3308                if (ret) {
3309                        btrfs_warn(fs_info,
3310                                "failed to create the UUID tree: %d", ret);
3311                        close_ctree(fs_info);
3312                        return ret;
3313                }
3314        } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3315                   fs_info->generation !=
3316                                btrfs_super_uuid_tree_generation(disk_super)) {
3317                btrfs_info(fs_info, "checking UUID tree");
3318                ret = btrfs_check_uuid_tree(fs_info);
3319                if (ret) {
3320                        btrfs_warn(fs_info,
3321                                "failed to check the UUID tree: %d", ret);
3322                        close_ctree(fs_info);
3323                        return ret;
3324                }
3325        } else {
3326                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3327        }
3328        set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3329
3330        /*
3331         * backuproot only affect mount behavior, and if open_ctree succeeded,
3332         * no need to keep the flag
3333         */
3334        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3335
3336        return 0;
3337
3338fail_qgroup:
3339        btrfs_free_qgroup_config(fs_info);
3340fail_trans_kthread:
3341        kthread_stop(fs_info->transaction_kthread);
3342        btrfs_cleanup_transaction(fs_info);
3343        btrfs_free_fs_roots(fs_info);
3344fail_cleaner:
3345        kthread_stop(fs_info->cleaner_kthread);
3346
3347        /*
3348         * make sure we're done with the btree inode before we stop our
3349         * kthreads
3350         */
3351        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3352
3353fail_sysfs:
3354        btrfs_sysfs_remove_mounted(fs_info);
3355
3356fail_fsdev_sysfs:
3357        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3358
3359fail_block_groups:
3360        btrfs_put_block_group_cache(fs_info);
3361
3362fail_tree_roots:
3363        free_root_pointers(fs_info, 1);
3364        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3365
3366fail_sb_buffer:
3367        btrfs_stop_all_workers(fs_info);
3368        btrfs_free_block_groups(fs_info);
3369fail_csum:
3370        btrfs_free_csum_hash(fs_info);
3371fail_alloc:
3372fail_iput:
3373        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3374
3375        iput(fs_info->btree_inode);
3376fail_bio_counter:
3377        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3378fail_delalloc_bytes:
3379        percpu_counter_destroy(&fs_info->delalloc_bytes);
3380fail_dirty_metadata_bytes:
3381        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3382fail_dio_bytes:
3383        percpu_counter_destroy(&fs_info->dio_bytes);
3384fail_srcu:
3385        cleanup_srcu_struct(&fs_info->subvol_srcu);
3386fail:
3387        btrfs_free_stripe_hash_table(fs_info);
3388        btrfs_close_devices(fs_info->fs_devices);
3389        return err;
3390
3391recovery_tree_root:
3392        if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3393                goto fail_tree_roots;
3394
3395        free_root_pointers(fs_info, 0);
3396
3397        /* don't use the log in recovery mode, it won't be valid */
3398        btrfs_set_super_log_root(disk_super, 0);
3399
3400        /* we can't trust the free space cache either */
3401        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3402
3403        ret = next_root_backup(fs_info, fs_info->super_copy,
3404                               &num_backups_tried, &backup_index);
3405        if (ret == -1)
3406                goto fail_block_groups;
3407        goto retry_root_backup;
3408}
3409ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3410
3411static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3412{
3413        if (uptodate) {
3414                set_buffer_uptodate(bh);
3415        } else {
3416                struct btrfs_device *device = (struct btrfs_device *)
3417                        bh->b_private;
3418
3419                btrfs_warn_rl_in_rcu(device->fs_info,
3420                                "lost page write due to IO error on %s",
3421                                          rcu_str_deref(device->name));
3422                /* note, we don't set_buffer_write_io_error because we have
3423                 * our own ways of dealing with the IO errors
3424                 */
3425                clear_buffer_uptodate(bh);
3426                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3427        }
3428        unlock_buffer(bh);
3429        put_bh(bh);
3430}
3431
3432int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3433                        struct buffer_head **bh_ret)
3434{
3435        struct buffer_head *bh;
3436        struct btrfs_super_block *super;
3437        u64 bytenr;
3438
3439        bytenr = btrfs_sb_offset(copy_num);
3440        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441                return -EINVAL;
3442
3443        bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3444        /*
3445         * If we fail to read from the underlying devices, as of now
3446         * the best option we have is to mark it EIO.
3447         */
3448        if (!bh)
3449                return -EIO;
3450
3451        super = (struct btrfs_super_block *)bh->b_data;
3452        if (btrfs_super_bytenr(super) != bytenr ||
3453                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3454                brelse(bh);
3455                return -EINVAL;
3456        }
3457
3458        *bh_ret = bh;
3459        return 0;
3460}
3461
3462
3463struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3464{
3465        struct buffer_head *bh;
3466        struct buffer_head *latest = NULL;
3467        struct btrfs_super_block *super;
3468        int i;
3469        u64 transid = 0;
3470        int ret = -EINVAL;
3471
3472        /* we would like to check all the supers, but that would make
3473         * a btrfs mount succeed after a mkfs from a different FS.
3474         * So, we need to add a special mount option to scan for
3475         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3476         */
3477        for (i = 0; i < 1; i++) {
3478                ret = btrfs_read_dev_one_super(bdev, i, &bh);
3479                if (ret)
3480                        continue;
3481
3482                super = (struct btrfs_super_block *)bh->b_data;
3483
3484                if (!latest || btrfs_super_generation(super) > transid) {
3485                        brelse(latest);
3486                        latest = bh;
3487                        transid = btrfs_super_generation(super);
3488                } else {
3489                        brelse(bh);
3490                }
3491        }
3492
3493        if (!latest)
3494                return ERR_PTR(ret);
3495
3496        return latest;
3497}
3498
3499/*
3500 * Write superblock @sb to the @device. Do not wait for completion, all the
3501 * buffer heads we write are pinned.
3502 *
3503 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3504 * the expected device size at commit time. Note that max_mirrors must be
3505 * same for write and wait phases.
3506 *
3507 * Return number of errors when buffer head is not found or submission fails.
3508 */
3509static int write_dev_supers(struct btrfs_device *device,
3510                            struct btrfs_super_block *sb, int max_mirrors)
3511{
3512        struct btrfs_fs_info *fs_info = device->fs_info;
3513        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3514        struct buffer_head *bh;
3515        int i;
3516        int ret;
3517        int errors = 0;
3518        u64 bytenr;
3519        int op_flags;
3520
3521        if (max_mirrors == 0)
3522                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3523
3524        shash->tfm = fs_info->csum_shash;
3525
3526        for (i = 0; i < max_mirrors; i++) {
3527                bytenr = btrfs_sb_offset(i);
3528                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529                    device->commit_total_bytes)
3530                        break;
3531
3532                btrfs_set_super_bytenr(sb, bytenr);
3533
3534                crypto_shash_init(shash);
3535                crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3536                                    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3537                crypto_shash_final(shash, sb->csum);
3538
3539                /* One reference for us, and we leave it for the caller */
3540                bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3541                              BTRFS_SUPER_INFO_SIZE);
3542                if (!bh) {
3543                        btrfs_err(device->fs_info,
3544                            "couldn't get super buffer head for bytenr %llu",
3545                            bytenr);
3546                        errors++;
3547                        continue;
3548                }
3549
3550                memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3551
3552                /* one reference for submit_bh */
3553                get_bh(bh);
3554
3555                set_buffer_uptodate(bh);
3556                lock_buffer(bh);
3557                bh->b_end_io = btrfs_end_buffer_write_sync;
3558                bh->b_private = device;
3559
3560                /*
3561                 * we fua the first super.  The others we allow
3562                 * to go down lazy.
3563                 */
3564                op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3565                if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3566                        op_flags |= REQ_FUA;
3567                ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3568                if (ret)
3569                        errors++;
3570        }
3571        return errors < i ? 0 : -1;
3572}
3573
3574/*
3575 * Wait for write completion of superblocks done by write_dev_supers,
3576 * @max_mirrors same for write and wait phases.
3577 *
3578 * Return number of errors when buffer head is not found or not marked up to
3579 * date.
3580 */
3581static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3582{
3583        struct buffer_head *bh;
3584        int i;
3585        int errors = 0;
3586        bool primary_failed = false;
3587        u64 bytenr;
3588
3589        if (max_mirrors == 0)
3590                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3591
3592        for (i = 0; i < max_mirrors; i++) {
3593                bytenr = btrfs_sb_offset(i);
3594                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3595                    device->commit_total_bytes)
3596                        break;
3597
3598                bh = __find_get_block(device->bdev,
3599                                      bytenr / BTRFS_BDEV_BLOCKSIZE,
3600                                      BTRFS_SUPER_INFO_SIZE);
3601                if (!bh) {
3602                        errors++;
3603                        if (i == 0)
3604                                primary_failed = true;
3605                        continue;
3606                }
3607                wait_on_buffer(bh);
3608                if (!buffer_uptodate(bh)) {
3609                        errors++;
3610                        if (i == 0)
3611                                primary_failed = true;
3612                }
3613
3614                /* drop our reference */
3615                brelse(bh);
3616
3617                /* drop the reference from the writing run */
3618                brelse(bh);
3619        }
3620
3621        /* log error, force error return */
3622        if (primary_failed) {
3623                btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3624                          device->devid);
3625                return -1;
3626        }
3627
3628        return errors < i ? 0 : -1;
3629}
3630
3631/*
3632 * endio for the write_dev_flush, this will wake anyone waiting
3633 * for the barrier when it is done
3634 */
3635static void btrfs_end_empty_barrier(struct bio *bio)
3636{
3637        complete(bio->bi_private);
3638}
3639
3640/*
3641 * Submit a flush request to the device if it supports it. Error handling is
3642 * done in the waiting counterpart.
3643 */
3644static void write_dev_flush(struct btrfs_device *device)
3645{
3646        struct request_queue *q = bdev_get_queue(device->bdev);
3647        struct bio *bio = device->flush_bio;
3648
3649        if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3650                return;
3651
3652        bio_reset(bio);
3653        bio->bi_end_io = btrfs_end_empty_barrier;
3654        bio_set_dev(bio, device->bdev);
3655        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3656        init_completion(&device->flush_wait);
3657        bio->bi_private = &device->flush_wait;
3658
3659        btrfsic_submit_bio(bio);
3660        set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3661}
3662
3663/*
3664 * If the flush bio has been submitted by write_dev_flush, wait for it.
3665 */
3666static blk_status_t wait_dev_flush(struct btrfs_device *device)
3667{
3668        struct bio *bio = device->flush_bio;
3669
3670        if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3671                return BLK_STS_OK;
3672
3673        clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3674        wait_for_completion_io(&device->flush_wait);
3675
3676        return bio->bi_status;
3677}
3678
3679static int check_barrier_error(struct btrfs_fs_info *fs_info)
3680{
3681        if (!btrfs_check_rw_degradable(fs_info, NULL))
3682                return -EIO;
3683        return 0;
3684}
3685
3686/*
3687 * send an empty flush down to each device in parallel,
3688 * then wait for them
3689 */
3690static int barrier_all_devices(struct btrfs_fs_info *info)
3691{
3692        struct list_head *head;
3693        struct btrfs_device *dev;
3694        int errors_wait = 0;
3695        blk_status_t ret;
3696
3697        lockdep_assert_held(&info->fs_devices->device_list_mutex);
3698        /* send down all the barriers */
3699        head = &info->fs_devices->devices;
3700        list_for_each_entry(dev, head, dev_list) {
3701                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3702                        continue;
3703                if (!dev->bdev)
3704                        continue;
3705                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3706                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3707                        continue;
3708
3709                write_dev_flush(dev);
3710                dev->last_flush_error = BLK_STS_OK;
3711        }
3712
3713        /* wait for all the barriers */
3714        list_for_each_entry(dev, head, dev_list) {
3715                if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3716                        continue;
3717                if (!dev->bdev) {
3718                        errors_wait++;
3719                        continue;
3720                }
3721                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3722                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3723                        continue;
3724
3725                ret = wait_dev_flush(dev);
3726                if (ret) {
3727                        dev->last_flush_error = ret;
3728                        btrfs_dev_stat_inc_and_print(dev,
3729                                        BTRFS_DEV_STAT_FLUSH_ERRS);
3730                        errors_wait++;
3731                }
3732        }
3733
3734        if (errors_wait) {
3735                /*
3736                 * At some point we need the status of all disks
3737                 * to arrive at the volume status. So error checking
3738                 * is being pushed to a separate loop.
3739                 */
3740                return check_barrier_error(info);
3741        }
3742        return 0;
3743}
3744
3745int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3746{
3747        int raid_type;
3748        int min_tolerated = INT_MAX;
3749
3750        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3751            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3752                min_tolerated = min_t(int, min_tolerated,
3753                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3754                                    tolerated_failures);
3755
3756        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3757                if (raid_type == BTRFS_RAID_SINGLE)
3758                        continue;
3759                if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3760                        continue;
3761                min_tolerated = min_t(int, min_tolerated,
3762                                    btrfs_raid_array[raid_type].
3763                                    tolerated_failures);
3764        }
3765
3766        if (min_tolerated == INT_MAX) {
3767                pr_warn("BTRFS: unknown raid flag: %llu", flags);
3768                min_tolerated = 0;
3769        }
3770
3771        return min_tolerated;
3772}
3773
3774int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3775{
3776        struct list_head *head;
3777        struct btrfs_device *dev;
3778        struct btrfs_super_block *sb;
3779        struct btrfs_dev_item *dev_item;
3780        int ret;
3781        int do_barriers;
3782        int max_errors;
3783        int total_errors = 0;
3784        u64 flags;
3785
3786        do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3787
3788        /*
3789         * max_mirrors == 0 indicates we're from commit_transaction,
3790         * not from fsync where the tree roots in fs_info have not
3791         * been consistent on disk.
3792         */
3793        if (max_mirrors == 0)
3794                backup_super_roots(fs_info);
3795
3796        sb = fs_info->super_for_commit;
3797        dev_item = &sb->dev_item;
3798
3799        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3800        head = &fs_info->fs_devices->devices;
3801        max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3802
3803        if (do_barriers) {
3804                ret = barrier_all_devices(fs_info);
3805                if (ret) {
3806                        mutex_unlock(
3807                                &fs_info->fs_devices->device_list_mutex);
3808                        btrfs_handle_fs_error(fs_info, ret,
3809                                              "errors while submitting device barriers.");
3810                        return ret;
3811                }
3812        }
3813
3814        list_for_each_entry(dev, head, dev_list) {
3815                if (!dev->bdev) {
3816                        total_errors++;
3817                        continue;
3818                }
3819                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821                        continue;
3822
3823                btrfs_set_stack_device_generation(dev_item, 0);
3824                btrfs_set_stack_device_type(dev_item, dev->type);
3825                btrfs_set_stack_device_id(dev_item, dev->devid);
3826                btrfs_set_stack_device_total_bytes(dev_item,
3827                                                   dev->commit_total_bytes);
3828                btrfs_set_stack_device_bytes_used(dev_item,
3829                                                  dev->commit_bytes_used);
3830                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3831                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3832                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3833                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3834                memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3835                       BTRFS_FSID_SIZE);
3836
3837                flags = btrfs_super_flags(sb);
3838                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3839
3840                ret = btrfs_validate_write_super(fs_info, sb);
3841                if (ret < 0) {
3842                        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843                        btrfs_handle_fs_error(fs_info, -EUCLEAN,
3844                                "unexpected superblock corruption detected");
3845                        return -EUCLEAN;
3846                }
3847
3848                ret = write_dev_supers(dev, sb, max_mirrors);
3849                if (ret)
3850                        total_errors++;
3851        }
3852        if (total_errors > max_errors) {
3853                btrfs_err(fs_info, "%d errors while writing supers",
3854                          total_errors);
3855                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856
3857                /* FUA is masked off if unsupported and can't be the reason */
3858                btrfs_handle_fs_error(fs_info, -EIO,
3859                                      "%d errors while writing supers",
3860                                      total_errors);
3861                return -EIO;
3862        }
3863
3864        total_errors = 0;
3865        list_for_each_entry(dev, head, dev_list) {
3866                if (!dev->bdev)
3867                        continue;
3868                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3869                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3870                        continue;
3871
3872                ret = wait_dev_supers(dev, max_mirrors);
3873                if (ret)
3874                        total_errors++;
3875        }
3876        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877        if (total_errors > max_errors) {
3878                btrfs_handle_fs_error(fs_info, -EIO,
3879                                      "%d errors while writing supers",
3880                                      total_errors);
3881                return -EIO;
3882        }
3883        return 0;
3884}
3885
3886/* Drop a fs root from the radix tree and free it. */
3887void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3888                                  struct btrfs_root *root)
3889{
3890        spin_lock(&fs_info->fs_roots_radix_lock);
3891        radix_tree_delete(&fs_info->fs_roots_radix,
3892                          (unsigned long)root->root_key.objectid);
3893        spin_unlock(&fs_info->fs_roots_radix_lock);
3894
3895        if (btrfs_root_refs(&root->root_item) == 0)
3896                synchronize_srcu(&fs_info->subvol_srcu);
3897
3898        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3899                btrfs_free_log(NULL, root);
3900                if (root->reloc_root) {
3901                        free_extent_buffer(root->reloc_root->node);
3902                        free_extent_buffer(root->reloc_root->commit_root);
3903                        btrfs_put_fs_root(root->reloc_root);
3904                        root->reloc_root = NULL;
3905                }
3906        }
3907
3908        if (root->free_ino_pinned)
3909                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3910        if (root->free_ino_ctl)
3911                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3912        btrfs_free_fs_root(root);
3913}
3914
3915void btrfs_free_fs_root(struct btrfs_root *root)
3916{
3917        iput(root->ino_cache_inode);
3918        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3919        if (root->anon_dev)
3920                free_anon_bdev(root->anon_dev);
3921        if (root->subv_writers)
3922                btrfs_free_subvolume_writers(root->subv_writers);
3923        free_extent_buffer(root->node);
3924        free_extent_buffer(root->commit_root);
3925        kfree(root->free_ino_ctl);
3926        kfree(root->free_ino_pinned);
3927        btrfs_put_fs_root(root);
3928}
3929
3930int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3931{
3932        u64 root_objectid = 0;
3933        struct btrfs_root *gang[8];
3934        int i = 0;
3935        int err = 0;
3936        unsigned int ret = 0;
3937        int index;
3938
3939        while (1) {
3940                index = srcu_read_lock(&fs_info->subvol_srcu);
3941                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3942                                             (void **)gang, root_objectid,
3943                                             ARRAY_SIZE(gang));
3944                if (!ret) {
3945                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3946                        break;
3947                }
3948                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3949
3950                for (i = 0; i < ret; i++) {
3951                        /* Avoid to grab roots in dead_roots */
3952                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3953                                gang[i] = NULL;
3954                                continue;
3955                        }
3956                        /* grab all the search result for later use */
3957                        gang[i] = btrfs_grab_fs_root(gang[i]);
3958                }
3959                srcu_read_unlock(&fs_info->subvol_srcu, index);
3960
3961                for (i = 0; i < ret; i++) {
3962                        if (!gang[i])
3963                                continue;
3964                        root_objectid = gang[i]->root_key.objectid;
3965                        err = btrfs_orphan_cleanup(gang[i]);
3966                        if (err)
3967                                break;
3968                        btrfs_put_fs_root(gang[i]);
3969                }
3970                root_objectid++;
3971        }
3972
3973        /* release the uncleaned roots due to error */
3974        for (; i < ret; i++) {
3975                if (gang[i])
3976                        btrfs_put_fs_root(gang[i]);
3977        }
3978        return err;
3979}
3980
3981int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3982{
3983        struct btrfs_root *root = fs_info->tree_root;
3984        struct btrfs_trans_handle *trans;
3985
3986        mutex_lock(&fs_info->cleaner_mutex);
3987        btrfs_run_delayed_iputs(fs_info);
3988        mutex_unlock(&fs_info->cleaner_mutex);
3989        wake_up_process(fs_info->cleaner_kthread);
3990
3991        /* wait until ongoing cleanup work done */
3992        down_write(&fs_info->cleanup_work_sem);
3993        up_write(&fs_info->cleanup_work_sem);
3994
3995        trans = btrfs_join_transaction(root);
3996        if (IS_ERR(trans))
3997                return PTR_ERR(trans);
3998        return btrfs_commit_transaction(trans);
3999}
4000
4001void close_ctree(struct btrfs_fs_info *fs_info)
4002{
4003        int ret;
4004
4005        set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4006        /*
4007         * We don't want the cleaner to start new transactions, add more delayed
4008         * iputs, etc. while we're closing. We can't use kthread_stop() yet
4009         * because that frees the task_struct, and the transaction kthread might
4010         * still try to wake up the cleaner.
4011         */
4012        kthread_park(fs_info->cleaner_kthread);
4013
4014        /* wait for the qgroup rescan worker to stop */
4015        btrfs_qgroup_wait_for_completion(fs_info, false);
4016
4017        /* wait for the uuid_scan task to finish */
4018        down(&fs_info->uuid_tree_rescan_sem);
4019        /* avoid complains from lockdep et al., set sem back to initial state */
4020        up(&fs_info->uuid_tree_rescan_sem);
4021
4022        /* pause restriper - we want to resume on mount */
4023        btrfs_pause_balance(fs_info);
4024
4025        btrfs_dev_replace_suspend_for_unmount(fs_info);
4026
4027        btrfs_scrub_cancel(fs_info);
4028
4029        /* wait for any defraggers to finish */
4030        wait_event(fs_info->transaction_wait,
4031                   (atomic_read(&fs_info->defrag_running) == 0));
4032
4033        /* clear out the rbtree of defraggable inodes */
4034        btrfs_cleanup_defrag_inodes(fs_info);
4035
4036        cancel_work_sync(&fs_info->async_reclaim_work);
4037
4038        if (!sb_rdonly(fs_info->sb)) {
4039                /*
4040                 * The cleaner kthread is stopped, so do one final pass over
4041                 * unused block groups.
4042                 */
4043                btrfs_delete_unused_bgs(fs_info);
4044
4045                ret = btrfs_commit_super(fs_info);
4046                if (ret)
4047                        btrfs_err(fs_info, "commit super ret %d", ret);
4048        }
4049
4050        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4051            test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4052                btrfs_error_commit_super(fs_info);
4053
4054        kthread_stop(fs_info->transaction_kthread);
4055        kthread_stop(fs_info->cleaner_kthread);
4056
4057        ASSERT(list_empty(&fs_info->delayed_iputs));
4058        set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4059
4060        btrfs_free_qgroup_config(fs_info);
4061        ASSERT(list_empty(&fs_info->delalloc_roots));
4062
4063        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4064                btrfs_info(fs_info, "at unmount delalloc count %lld",
4065                       percpu_counter_sum(&fs_info->delalloc_bytes));
4066        }
4067
4068        if (percpu_counter_sum(&fs_info->dio_bytes))
4069                btrfs_info(fs_info, "at unmount dio bytes count %lld",
4070                           percpu_counter_sum(&fs_info->dio_bytes));
4071
4072        btrfs_sysfs_remove_mounted(fs_info);
4073        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4074
4075        btrfs_free_fs_roots(fs_info);
4076
4077        btrfs_put_block_group_cache(fs_info);
4078
4079        /*
4080         * we must make sure there is not any read request to
4081         * submit after we stopping all workers.
4082         */
4083        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4084        btrfs_stop_all_workers(fs_info);
4085
4086        btrfs_free_block_groups(fs_info);
4087
4088        clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4089        free_root_pointers(fs_info, 1);
4090
4091        iput(fs_info->btree_inode);
4092
4093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4094        if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4095                btrfsic_unmount(fs_info->fs_devices);
4096#endif
4097
4098        btrfs_mapping_tree_free(&fs_info->mapping_tree);
4099        btrfs_close_devices(fs_info->fs_devices);
4100
4101        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4102        percpu_counter_destroy(&fs_info->delalloc_bytes);
4103        percpu_counter_destroy(&fs_info->dio_bytes);
4104        percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4105        cleanup_srcu_struct(&fs_info->subvol_srcu);
4106
4107        btrfs_free_csum_hash(fs_info);
4108        btrfs_free_stripe_hash_table(fs_info);
4109        btrfs_free_ref_cache(fs_info);
4110}
4111
4112int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4113                          int atomic)
4114{
4115        int ret;
4116        struct inode *btree_inode = buf->pages[0]->mapping->host;
4117
4118        ret = extent_buffer_uptodate(buf);
4119        if (!ret)
4120                return ret;
4121
4122        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4123                                    parent_transid, atomic);
4124        if (ret == -EAGAIN)
4125                return ret;
4126        return !ret;
4127}
4128
4129void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4130{
4131        struct btrfs_fs_info *fs_info;
4132        struct btrfs_root *root;
4133        u64 transid = btrfs_header_generation(buf);
4134        int was_dirty;
4135
4136#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4137        /*
4138         * This is a fast path so only do this check if we have sanity tests
4139         * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4140         * outside of the sanity tests.
4141         */
4142        if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4143                return;
4144#endif
4145        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4146        fs_info = root->fs_info;
4147        btrfs_assert_tree_locked(buf);
4148        if (transid != fs_info->generation)
4149                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4150                        buf->start, transid, fs_info->generation);
4151        was_dirty = set_extent_buffer_dirty(buf);
4152        if (!was_dirty)
4153                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4154                                         buf->len,
4155                                         fs_info->dirty_metadata_batch);
4156#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4157        /*
4158         * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4159         * but item data not updated.
4160         * So here we should only check item pointers, not item data.
4161         */
4162        if (btrfs_header_level(buf) == 0 &&
4163            btrfs_check_leaf_relaxed(buf)) {
4164                btrfs_print_leaf(buf);
4165                ASSERT(0);
4166        }
4167#endif
4168}
4169
4170static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4171                                        int flush_delayed)
4172{
4173        /*
4174         * looks as though older kernels can get into trouble with
4175         * this code, they end up stuck in balance_dirty_pages forever
4176         */
4177        int ret;
4178
4179        if (current->flags & PF_MEMALLOC)
4180                return;
4181
4182        if (flush_delayed)
4183                btrfs_balance_delayed_items(fs_info);
4184
4185        ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4186                                     BTRFS_DIRTY_METADATA_THRESH,
4187                                     fs_info->dirty_metadata_batch);
4188        if (ret > 0) {
4189                balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4190        }
4191}
4192
4193void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4194{
4195        __btrfs_btree_balance_dirty(fs_info, 1);
4196}
4197
4198void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4199{
4200        __btrfs_btree_balance_dirty(fs_info, 0);
4201}
4202
4203int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4204                      struct btrfs_key *first_key)
4205{
4206        return btree_read_extent_buffer_pages(buf, parent_transid,
4207                                              level, first_key);
4208}
4209
4210static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4211{
4212        /* cleanup FS via transaction */
4213        btrfs_cleanup_transaction(fs_info);
4214
4215        mutex_lock(&fs_info->cleaner_mutex);
4216        btrfs_run_delayed_iputs(fs_info);
4217        mutex_unlock(&fs_info->cleaner_mutex);
4218
4219        down_write(&fs_info->cleanup_work_sem);
4220        up_write(&fs_info->cleanup_work_sem);
4221}
4222
4223static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4224{
4225        struct btrfs_ordered_extent *ordered;
4226
4227        spin_lock(&root->ordered_extent_lock);
4228        /*
4229         * This will just short circuit the ordered completion stuff which will
4230         * make sure the ordered extent gets properly cleaned up.
4231         */
4232        list_for_each_entry(ordered, &root->ordered_extents,
4233                            root_extent_list)
4234                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4235        spin_unlock(&root->ordered_extent_lock);
4236}
4237
4238static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4239{
4240        struct btrfs_root *root;
4241        struct list_head splice;
4242
4243        INIT_LIST_HEAD(&splice);
4244
4245        spin_lock(&fs_info->ordered_root_lock);
4246        list_splice_init(&fs_info->ordered_roots, &splice);
4247        while (!list_empty(&splice)) {
4248                root = list_first_entry(&splice, struct btrfs_root,
4249                                        ordered_root);
4250                list_move_tail(&root->ordered_root,
4251                               &fs_info->ordered_roots);
4252
4253                spin_unlock(&fs_info->ordered_root_lock);
4254                btrfs_destroy_ordered_extents(root);
4255
4256                cond_resched();
4257                spin_lock(&fs_info->ordered_root_lock);
4258        }
4259        spin_unlock(&fs_info->ordered_root_lock);
4260
4261        /*
4262         * We need this here because if we've been flipped read-only we won't
4263         * get sync() from the umount, so we need to make sure any ordered
4264         * extents that haven't had their dirty pages IO start writeout yet
4265         * actually get run and error out properly.
4266         */
4267        btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4268}
4269
4270static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4271                                      struct btrfs_fs_info *fs_info)
4272{
4273        struct rb_node *node;
4274        struct btrfs_delayed_ref_root *delayed_refs;
4275        struct btrfs_delayed_ref_node *ref;
4276        int ret = 0;
4277
4278        delayed_refs = &trans->delayed_refs;
4279
4280        spin_lock(&delayed_refs->lock);
4281        if (atomic_read(&delayed_refs->num_entries) == 0) {
4282                spin_unlock(&delayed_refs->lock);
4283                btrfs_info(fs_info, "delayed_refs has NO entry");
4284                return ret;
4285        }
4286
4287        while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4288                struct btrfs_delayed_ref_head *head;
4289                struct rb_node *n;
4290                bool pin_bytes = false;
4291
4292                head = rb_entry(node, struct btrfs_delayed_ref_head,
4293                                href_node);
4294                if (btrfs_delayed_ref_lock(delayed_refs, head))
4295                        continue;
4296
4297                spin_lock(&head->lock);
4298                while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4299                        ref = rb_entry(n, struct btrfs_delayed_ref_node,
4300                                       ref_node);
4301                        ref->in_tree = 0;
4302                        rb_erase_cached(&ref->ref_node, &head->ref_tree);
4303                        RB_CLEAR_NODE(&ref->ref_node);
4304                        if (!list_empty(&ref->add_list))
4305                                list_del(&ref->add_list);
4306                        atomic_dec(&delayed_refs->num_entries);
4307                        btrfs_put_delayed_ref(ref);
4308                }
4309                if (head->must_insert_reserved)
4310                        pin_bytes = true;
4311                btrfs_free_delayed_extent_op(head->extent_op);
4312                btrfs_delete_ref_head(delayed_refs, head);
4313                spin_unlock(&head->lock);
4314                spin_unlock(&delayed_refs->lock);
4315                mutex_unlock(&head->mutex);
4316
4317                if (pin_bytes)
4318                        btrfs_pin_extent(fs_info, head->bytenr,
4319                                         head->num_bytes, 1);
4320                btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4321                btrfs_put_delayed_ref_head(head);
4322                cond_resched();
4323                spin_lock(&delayed_refs->lock);
4324        }
4325
4326        spin_unlock(&delayed_refs->lock);
4327
4328        return ret;
4329}
4330
4331static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4332{
4333        struct btrfs_inode *btrfs_inode;
4334        struct list_head splice;
4335
4336        INIT_LIST_HEAD(&splice);
4337
4338        spin_lock(&root->delalloc_lock);
4339        list_splice_init(&root->delalloc_inodes, &splice);
4340
4341        while (!list_empty(&splice)) {
4342                struct inode *inode = NULL;
4343                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4344                                               delalloc_inodes);
4345                __btrfs_del_delalloc_inode(root, btrfs_inode);
4346                spin_unlock(&root->delalloc_lock);
4347
4348                /*
4349                 * Make sure we get a live inode and that it'll not disappear
4350                 * meanwhile.
4351                 */
4352                inode = igrab(&btrfs_inode->vfs_inode);
4353                if (inode) {
4354                        invalidate_inode_pages2(inode->i_mapping);
4355                        iput(inode);
4356                }
4357                spin_lock(&root->delalloc_lock);
4358        }
4359        spin_unlock(&root->delalloc_lock);
4360}
4361
4362static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4363{
4364        struct btrfs_root *root;
4365        struct list_head splice;
4366
4367        INIT_LIST_HEAD(&splice);
4368
4369        spin_lock(&fs_info->delalloc_root_lock);
4370        list_splice_init(&fs_info->delalloc_roots, &splice);
4371        while (!list_empty(&splice)) {
4372                root = list_first_entry(&splice, struct btrfs_root,
4373                                         delalloc_root);
4374                root = btrfs_grab_fs_root(root);
4375                BUG_ON(!root);
4376                spin_unlock(&fs_info->delalloc_root_lock);
4377
4378                btrfs_destroy_delalloc_inodes(root);
4379                btrfs_put_fs_root(root);
4380
4381                spin_lock(&fs_info->delalloc_root_lock);
4382        }
4383        spin_unlock(&fs_info->delalloc_root_lock);
4384}
4385
4386static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4387                                        struct extent_io_tree *dirty_pages,
4388                                        int mark)
4389{
4390        int ret;
4391        struct extent_buffer *eb;
4392        u64 start = 0;
4393        u64 end;
4394
4395        while (1) {
4396                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4397                                            mark, NULL);
4398                if (ret)
4399                        break;
4400
4401                clear_extent_bits(dirty_pages, start, end, mark);
4402                while (start <= end) {
4403                        eb = find_extent_buffer(fs_info, start);
4404                        start += fs_info->nodesize;
4405                        if (!eb)
4406                                continue;
4407                        wait_on_extent_buffer_writeback(eb);
4408
4409                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4410                                               &eb->bflags))
4411                                clear_extent_buffer_dirty(eb);
4412                        free_extent_buffer_stale(eb);
4413                }
4414        }
4415
4416        return ret;
4417}
4418
4419static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4420                                       struct extent_io_tree *pinned_extents)
4421{
4422        struct extent_io_tree *unpin;
4423        u64 start;
4424        u64 end;
4425        int ret;
4426        bool loop = true;
4427
4428        unpin = pinned_extents;
4429again:
4430        while (1) {
4431                struct extent_state *cached_state = NULL;
4432
4433                /*
4434                 * The btrfs_finish_extent_commit() may get the same range as
4435                 * ours between find_first_extent_bit and clear_extent_dirty.
4436                 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4437                 * the same extent range.
4438                 */
4439                mutex_lock(&fs_info->unused_bg_unpin_mutex);
4440                ret = find_first_extent_bit(unpin, 0, &start, &end,
4441                                            EXTENT_DIRTY, &cached_state);
4442                if (ret) {
4443                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4444                        break;
4445                }
4446
4447                clear_extent_dirty(unpin, start, end, &cached_state);
4448                free_extent_state(cached_state);
4449                btrfs_error_unpin_extent_range(fs_info, start, end);
4450                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4451                cond_resched();
4452        }
4453
4454        if (loop) {
4455                if (unpin == &fs_info->freed_extents[0])
4456                        unpin = &fs_info->freed_extents[1];
4457                else
4458                        unpin = &fs_info->freed_extents[0];
4459                loop = false;
4460                goto again;
4461        }
4462
4463        return 0;
4464}
4465
4466static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4467{
4468        struct inode *inode;
4469
4470        inode = cache->io_ctl.inode;
4471        if (inode) {
4472                invalidate_inode_pages2(inode->i_mapping);
4473                BTRFS_I(inode)->generation = 0;
4474                cache->io_ctl.inode = NULL;
4475                iput(inode);
4476        }
4477        btrfs_put_block_group(cache);
4478}
4479
4480void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4481                             struct btrfs_fs_info *fs_info)
4482{
4483        struct btrfs_block_group_cache *cache;
4484
4485        spin_lock(&cur_trans->dirty_bgs_lock);
4486        while (!list_empty(&cur_trans->dirty_bgs)) {
4487                cache = list_first_entry(&cur_trans->dirty_bgs,
4488                                         struct btrfs_block_group_cache,
4489                                         dirty_list);
4490
4491                if (!list_empty(&cache->io_list)) {
4492                        spin_unlock(&cur_trans->dirty_bgs_lock);
4493                        list_del_init(&cache->io_list);
4494                        btrfs_cleanup_bg_io(cache);
4495                        spin_lock(&cur_trans->dirty_bgs_lock);
4496                }
4497
4498                list_del_init(&cache->dirty_list);
4499                spin_lock(&cache->lock);
4500                cache->disk_cache_state = BTRFS_DC_ERROR;
4501                spin_unlock(&cache->lock);
4502
4503                spin_unlock(&cur_trans->dirty_bgs_lock);
4504                btrfs_put_block_group(cache);
4505                btrfs_delayed_refs_rsv_release(fs_info, 1);
4506                spin_lock(&cur_trans->dirty_bgs_lock);
4507        }
4508        spin_unlock(&cur_trans->dirty_bgs_lock);
4509
4510        /*
4511         * Refer to the definition of io_bgs member for details why it's safe
4512         * to use it without any locking
4513         */
4514        while (!list_empty(&cur_trans->io_bgs)) {
4515                cache = list_first_entry(&cur_trans->io_bgs,
4516                                         struct btrfs_block_group_cache,
4517                                         io_list);
4518
4519                list_del_init(&cache->io_list);
4520                spin_lock(&cache->lock);
4521                cache->disk_cache_state = BTRFS_DC_ERROR;
4522                spin_unlock(&cache->lock);
4523                btrfs_cleanup_bg_io(cache);
4524        }
4525}
4526
4527void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4528                                   struct btrfs_fs_info *fs_info)
4529{
4530        struct btrfs_device *dev, *tmp;
4531
4532        btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4533        ASSERT(list_empty(&cur_trans->dirty_bgs));
4534        ASSERT(list_empty(&cur_trans->io_bgs));
4535
4536        list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537                                 post_commit_list) {
4538                list_del_init(&dev->post_commit_list);
4539        }
4540
4541        btrfs_destroy_delayed_refs(cur_trans, fs_info);
4542
4543        cur_trans->state = TRANS_STATE_COMMIT_START;
4544        wake_up(&fs_info->transaction_blocked_wait);
4545
4546        cur_trans->state = TRANS_STATE_UNBLOCKED;
4547        wake_up(&fs_info->transaction_wait);
4548
4549        btrfs_destroy_delayed_inodes(fs_info);
4550        btrfs_assert_delayed_root_empty(fs_info);
4551
4552        btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4553                                     EXTENT_DIRTY);
4554        btrfs_destroy_pinned_extent(fs_info,
4555                                    fs_info->pinned_extents);
4556
4557        cur_trans->state =TRANS_STATE_COMPLETED;
4558        wake_up(&cur_trans->commit_wait);
4559}
4560
4561static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4562{
4563        struct btrfs_transaction *t;
4564
4565        mutex_lock(&fs_info->transaction_kthread_mutex);
4566
4567        spin_lock(&fs_info->trans_lock);
4568        while (!list_empty(&fs_info->trans_list)) {
4569                t = list_first_entry(&fs_info->trans_list,
4570                                     struct btrfs_transaction, list);
4571                if (t->state >= TRANS_STATE_COMMIT_START) {
4572                        refcount_inc(&t->use_count);
4573                        spin_unlock(&fs_info->trans_lock);
4574                        btrfs_wait_for_commit(fs_info, t->transid);
4575                        btrfs_put_transaction(t);
4576                        spin_lock(&fs_info->trans_lock);
4577                        continue;
4578                }
4579                if (t == fs_info->running_transaction) {
4580                        t->state = TRANS_STATE_COMMIT_DOING;
4581                        spin_unlock(&fs_info->trans_lock);
4582                        /*
4583                         * We wait for 0 num_writers since we don't hold a trans
4584                         * handle open currently for this transaction.
4585                         */
4586                        wait_event(t->writer_wait,
4587                                   atomic_read(&t->num_writers) == 0);
4588                } else {
4589                        spin_unlock(&fs_info->trans_lock);
4590                }
4591                btrfs_cleanup_one_transaction(t, fs_info);
4592
4593                spin_lock(&fs_info->trans_lock);
4594                if (t == fs_info->running_transaction)
4595                        fs_info->running_transaction = NULL;
4596                list_del_init(&t->list);
4597                spin_unlock(&fs_info->trans_lock);
4598
4599                btrfs_put_transaction(t);
4600                trace_btrfs_transaction_commit(fs_info->tree_root);
4601                spin_lock(&fs_info->trans_lock);
4602        }
4603        spin_unlock(&fs_info->trans_lock);
4604        btrfs_destroy_all_ordered_extents(fs_info);
4605        btrfs_destroy_delayed_inodes(fs_info);
4606        btrfs_assert_delayed_root_empty(fs_info);
4607        btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4608        btrfs_destroy_all_delalloc_inodes(fs_info);
4609        mutex_unlock(&fs_info->transaction_kthread_mutex);
4610
4611        return 0;
4612}
4613
4614static const struct extent_io_ops btree_extent_io_ops = {
4615        /* mandatory callbacks */
4616        .submit_bio_hook = btree_submit_bio_hook,
4617        .readpage_end_io_hook = btree_readpage_end_io_hook,
4618};
4619