linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/sched/signal.h>
   9#include <linux/pagemap.h>
  10#include <linux/writeback.h>
  11#include <linux/blkdev.h>
  12#include <linux/sort.h>
  13#include <linux/rcupdate.h>
  14#include <linux/kthread.h>
  15#include <linux/slab.h>
  16#include <linux/ratelimit.h>
  17#include <linux/percpu_counter.h>
  18#include <linux/lockdep.h>
  19#include <linux/crc32c.h>
  20#include "tree-log.h"
  21#include "disk-io.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "locking.h"
  26#include "free-space-cache.h"
  27#include "free-space-tree.h"
  28#include "math.h"
  29#include "sysfs.h"
  30#include "qgroup.h"
  31#include "ref-verify.h"
  32#include "space-info.h"
  33#include "block-rsv.h"
  34#include "delalloc-space.h"
  35
  36#undef SCRAMBLE_DELAYED_REFS
  37
  38
  39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  40                               struct btrfs_delayed_ref_node *node, u64 parent,
  41                               u64 root_objectid, u64 owner_objectid,
  42                               u64 owner_offset, int refs_to_drop,
  43                               struct btrfs_delayed_extent_op *extra_op);
  44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  45                                    struct extent_buffer *leaf,
  46                                    struct btrfs_extent_item *ei);
  47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  48                                      u64 parent, u64 root_objectid,
  49                                      u64 flags, u64 owner, u64 offset,
  50                                      struct btrfs_key *ins, int ref_mod);
  51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  52                                     struct btrfs_delayed_ref_node *node,
  53                                     struct btrfs_delayed_extent_op *extent_op);
  54static int find_next_key(struct btrfs_path *path, int level,
  55                         struct btrfs_key *key);
  56
  57static noinline int
  58block_group_cache_done(struct btrfs_block_group_cache *cache)
  59{
  60        smp_mb();
  61        return cache->cached == BTRFS_CACHE_FINISHED ||
  62                cache->cached == BTRFS_CACHE_ERROR;
  63}
  64
  65static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  66{
  67        return (cache->flags & bits) == bits;
  68}
  69
  70void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  71{
  72        atomic_inc(&cache->count);
  73}
  74
  75void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  76{
  77        if (atomic_dec_and_test(&cache->count)) {
  78                WARN_ON(cache->pinned > 0);
  79                WARN_ON(cache->reserved > 0);
  80
  81                /*
  82                 * If not empty, someone is still holding mutex of
  83                 * full_stripe_lock, which can only be released by caller.
  84                 * And it will definitely cause use-after-free when caller
  85                 * tries to release full stripe lock.
  86                 *
  87                 * No better way to resolve, but only to warn.
  88                 */
  89                WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
  90                kfree(cache->free_space_ctl);
  91                kfree(cache);
  92        }
  93}
  94
  95/*
  96 * this adds the block group to the fs_info rb tree for the block group
  97 * cache
  98 */
  99static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 100                                struct btrfs_block_group_cache *block_group)
 101{
 102        struct rb_node **p;
 103        struct rb_node *parent = NULL;
 104        struct btrfs_block_group_cache *cache;
 105
 106        spin_lock(&info->block_group_cache_lock);
 107        p = &info->block_group_cache_tree.rb_node;
 108
 109        while (*p) {
 110                parent = *p;
 111                cache = rb_entry(parent, struct btrfs_block_group_cache,
 112                                 cache_node);
 113                if (block_group->key.objectid < cache->key.objectid) {
 114                        p = &(*p)->rb_left;
 115                } else if (block_group->key.objectid > cache->key.objectid) {
 116                        p = &(*p)->rb_right;
 117                } else {
 118                        spin_unlock(&info->block_group_cache_lock);
 119                        return -EEXIST;
 120                }
 121        }
 122
 123        rb_link_node(&block_group->cache_node, parent, p);
 124        rb_insert_color(&block_group->cache_node,
 125                        &info->block_group_cache_tree);
 126
 127        if (info->first_logical_byte > block_group->key.objectid)
 128                info->first_logical_byte = block_group->key.objectid;
 129
 130        spin_unlock(&info->block_group_cache_lock);
 131
 132        return 0;
 133}
 134
 135/*
 136 * This will return the block group at or after bytenr if contains is 0, else
 137 * it will return the block group that contains the bytenr
 138 */
 139static struct btrfs_block_group_cache *
 140block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 141                              int contains)
 142{
 143        struct btrfs_block_group_cache *cache, *ret = NULL;
 144        struct rb_node *n;
 145        u64 end, start;
 146
 147        spin_lock(&info->block_group_cache_lock);
 148        n = info->block_group_cache_tree.rb_node;
 149
 150        while (n) {
 151                cache = rb_entry(n, struct btrfs_block_group_cache,
 152                                 cache_node);
 153                end = cache->key.objectid + cache->key.offset - 1;
 154                start = cache->key.objectid;
 155
 156                if (bytenr < start) {
 157                        if (!contains && (!ret || start < ret->key.objectid))
 158                                ret = cache;
 159                        n = n->rb_left;
 160                } else if (bytenr > start) {
 161                        if (contains && bytenr <= end) {
 162                                ret = cache;
 163                                break;
 164                        }
 165                        n = n->rb_right;
 166                } else {
 167                        ret = cache;
 168                        break;
 169                }
 170        }
 171        if (ret) {
 172                btrfs_get_block_group(ret);
 173                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 174                        info->first_logical_byte = ret->key.objectid;
 175        }
 176        spin_unlock(&info->block_group_cache_lock);
 177
 178        return ret;
 179}
 180
 181static int add_excluded_extent(struct btrfs_fs_info *fs_info,
 182                               u64 start, u64 num_bytes)
 183{
 184        u64 end = start + num_bytes - 1;
 185        set_extent_bits(&fs_info->freed_extents[0],
 186                        start, end, EXTENT_UPTODATE);
 187        set_extent_bits(&fs_info->freed_extents[1],
 188                        start, end, EXTENT_UPTODATE);
 189        return 0;
 190}
 191
 192static void free_excluded_extents(struct btrfs_block_group_cache *cache)
 193{
 194        struct btrfs_fs_info *fs_info = cache->fs_info;
 195        u64 start, end;
 196
 197        start = cache->key.objectid;
 198        end = start + cache->key.offset - 1;
 199
 200        clear_extent_bits(&fs_info->freed_extents[0],
 201                          start, end, EXTENT_UPTODATE);
 202        clear_extent_bits(&fs_info->freed_extents[1],
 203                          start, end, EXTENT_UPTODATE);
 204}
 205
 206static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
 207{
 208        struct btrfs_fs_info *fs_info = cache->fs_info;
 209        u64 bytenr;
 210        u64 *logical;
 211        int stripe_len;
 212        int i, nr, ret;
 213
 214        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 215                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 216                cache->bytes_super += stripe_len;
 217                ret = add_excluded_extent(fs_info, cache->key.objectid,
 218                                          stripe_len);
 219                if (ret)
 220                        return ret;
 221        }
 222
 223        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 224                bytenr = btrfs_sb_offset(i);
 225                ret = btrfs_rmap_block(fs_info, cache->key.objectid,
 226                                       bytenr, &logical, &nr, &stripe_len);
 227                if (ret)
 228                        return ret;
 229
 230                while (nr--) {
 231                        u64 start, len;
 232
 233                        if (logical[nr] > cache->key.objectid +
 234                            cache->key.offset)
 235                                continue;
 236
 237                        if (logical[nr] + stripe_len <= cache->key.objectid)
 238                                continue;
 239
 240                        start = logical[nr];
 241                        if (start < cache->key.objectid) {
 242                                start = cache->key.objectid;
 243                                len = (logical[nr] + stripe_len) - start;
 244                        } else {
 245                                len = min_t(u64, stripe_len,
 246                                            cache->key.objectid +
 247                                            cache->key.offset - start);
 248                        }
 249
 250                        cache->bytes_super += len;
 251                        ret = add_excluded_extent(fs_info, start, len);
 252                        if (ret) {
 253                                kfree(logical);
 254                                return ret;
 255                        }
 256                }
 257
 258                kfree(logical);
 259        }
 260        return 0;
 261}
 262
 263static struct btrfs_caching_control *
 264get_caching_control(struct btrfs_block_group_cache *cache)
 265{
 266        struct btrfs_caching_control *ctl;
 267
 268        spin_lock(&cache->lock);
 269        if (!cache->caching_ctl) {
 270                spin_unlock(&cache->lock);
 271                return NULL;
 272        }
 273
 274        ctl = cache->caching_ctl;
 275        refcount_inc(&ctl->count);
 276        spin_unlock(&cache->lock);
 277        return ctl;
 278}
 279
 280static void put_caching_control(struct btrfs_caching_control *ctl)
 281{
 282        if (refcount_dec_and_test(&ctl->count))
 283                kfree(ctl);
 284}
 285
 286#ifdef CONFIG_BTRFS_DEBUG
 287static void fragment_free_space(struct btrfs_block_group_cache *block_group)
 288{
 289        struct btrfs_fs_info *fs_info = block_group->fs_info;
 290        u64 start = block_group->key.objectid;
 291        u64 len = block_group->key.offset;
 292        u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 293                fs_info->nodesize : fs_info->sectorsize;
 294        u64 step = chunk << 1;
 295
 296        while (len > chunk) {
 297                btrfs_remove_free_space(block_group, start, chunk);
 298                start += step;
 299                if (len < step)
 300                        len = 0;
 301                else
 302                        len -= step;
 303        }
 304}
 305#endif
 306
 307/*
 308 * this is only called by cache_block_group, since we could have freed extents
 309 * we need to check the pinned_extents for any extents that can't be used yet
 310 * since their free space will be released as soon as the transaction commits.
 311 */
 312u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 313                       u64 start, u64 end)
 314{
 315        struct btrfs_fs_info *info = block_group->fs_info;
 316        u64 extent_start, extent_end, size, total_added = 0;
 317        int ret;
 318
 319        while (start < end) {
 320                ret = find_first_extent_bit(info->pinned_extents, start,
 321                                            &extent_start, &extent_end,
 322                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 323                                            NULL);
 324                if (ret)
 325                        break;
 326
 327                if (extent_start <= start) {
 328                        start = extent_end + 1;
 329                } else if (extent_start > start && extent_start < end) {
 330                        size = extent_start - start;
 331                        total_added += size;
 332                        ret = btrfs_add_free_space(block_group, start,
 333                                                   size);
 334                        BUG_ON(ret); /* -ENOMEM or logic error */
 335                        start = extent_end + 1;
 336                } else {
 337                        break;
 338                }
 339        }
 340
 341        if (start < end) {
 342                size = end - start;
 343                total_added += size;
 344                ret = btrfs_add_free_space(block_group, start, size);
 345                BUG_ON(ret); /* -ENOMEM or logic error */
 346        }
 347
 348        return total_added;
 349}
 350
 351static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 352{
 353        struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
 354        struct btrfs_fs_info *fs_info = block_group->fs_info;
 355        struct btrfs_root *extent_root = fs_info->extent_root;
 356        struct btrfs_path *path;
 357        struct extent_buffer *leaf;
 358        struct btrfs_key key;
 359        u64 total_found = 0;
 360        u64 last = 0;
 361        u32 nritems;
 362        int ret;
 363        bool wakeup = true;
 364
 365        path = btrfs_alloc_path();
 366        if (!path)
 367                return -ENOMEM;
 368
 369        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 370
 371#ifdef CONFIG_BTRFS_DEBUG
 372        /*
 373         * If we're fragmenting we don't want to make anybody think we can
 374         * allocate from this block group until we've had a chance to fragment
 375         * the free space.
 376         */
 377        if (btrfs_should_fragment_free_space(block_group))
 378                wakeup = false;
 379#endif
 380        /*
 381         * We don't want to deadlock with somebody trying to allocate a new
 382         * extent for the extent root while also trying to search the extent
 383         * root to add free space.  So we skip locking and search the commit
 384         * root, since its read-only
 385         */
 386        path->skip_locking = 1;
 387        path->search_commit_root = 1;
 388        path->reada = READA_FORWARD;
 389
 390        key.objectid = last;
 391        key.offset = 0;
 392        key.type = BTRFS_EXTENT_ITEM_KEY;
 393
 394next:
 395        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 396        if (ret < 0)
 397                goto out;
 398
 399        leaf = path->nodes[0];
 400        nritems = btrfs_header_nritems(leaf);
 401
 402        while (1) {
 403                if (btrfs_fs_closing(fs_info) > 1) {
 404                        last = (u64)-1;
 405                        break;
 406                }
 407
 408                if (path->slots[0] < nritems) {
 409                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 410                } else {
 411                        ret = find_next_key(path, 0, &key);
 412                        if (ret)
 413                                break;
 414
 415                        if (need_resched() ||
 416                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 417                                if (wakeup)
 418                                        caching_ctl->progress = last;
 419                                btrfs_release_path(path);
 420                                up_read(&fs_info->commit_root_sem);
 421                                mutex_unlock(&caching_ctl->mutex);
 422                                cond_resched();
 423                                mutex_lock(&caching_ctl->mutex);
 424                                down_read(&fs_info->commit_root_sem);
 425                                goto next;
 426                        }
 427
 428                        ret = btrfs_next_leaf(extent_root, path);
 429                        if (ret < 0)
 430                                goto out;
 431                        if (ret)
 432                                break;
 433                        leaf = path->nodes[0];
 434                        nritems = btrfs_header_nritems(leaf);
 435                        continue;
 436                }
 437
 438                if (key.objectid < last) {
 439                        key.objectid = last;
 440                        key.offset = 0;
 441                        key.type = BTRFS_EXTENT_ITEM_KEY;
 442
 443                        if (wakeup)
 444                                caching_ctl->progress = last;
 445                        btrfs_release_path(path);
 446                        goto next;
 447                }
 448
 449                if (key.objectid < block_group->key.objectid) {
 450                        path->slots[0]++;
 451                        continue;
 452                }
 453
 454                if (key.objectid >= block_group->key.objectid +
 455                    block_group->key.offset)
 456                        break;
 457
 458                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 459                    key.type == BTRFS_METADATA_ITEM_KEY) {
 460                        total_found += add_new_free_space(block_group, last,
 461                                                          key.objectid);
 462                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 463                                last = key.objectid +
 464                                        fs_info->nodesize;
 465                        else
 466                                last = key.objectid + key.offset;
 467
 468                        if (total_found > CACHING_CTL_WAKE_UP) {
 469                                total_found = 0;
 470                                if (wakeup)
 471                                        wake_up(&caching_ctl->wait);
 472                        }
 473                }
 474                path->slots[0]++;
 475        }
 476        ret = 0;
 477
 478        total_found += add_new_free_space(block_group, last,
 479                                          block_group->key.objectid +
 480                                          block_group->key.offset);
 481        caching_ctl->progress = (u64)-1;
 482
 483out:
 484        btrfs_free_path(path);
 485        return ret;
 486}
 487
 488static noinline void caching_thread(struct btrfs_work *work)
 489{
 490        struct btrfs_block_group_cache *block_group;
 491        struct btrfs_fs_info *fs_info;
 492        struct btrfs_caching_control *caching_ctl;
 493        int ret;
 494
 495        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 496        block_group = caching_ctl->block_group;
 497        fs_info = block_group->fs_info;
 498
 499        mutex_lock(&caching_ctl->mutex);
 500        down_read(&fs_info->commit_root_sem);
 501
 502        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 503                ret = load_free_space_tree(caching_ctl);
 504        else
 505                ret = load_extent_tree_free(caching_ctl);
 506
 507        spin_lock(&block_group->lock);
 508        block_group->caching_ctl = NULL;
 509        block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 510        spin_unlock(&block_group->lock);
 511
 512#ifdef CONFIG_BTRFS_DEBUG
 513        if (btrfs_should_fragment_free_space(block_group)) {
 514                u64 bytes_used;
 515
 516                spin_lock(&block_group->space_info->lock);
 517                spin_lock(&block_group->lock);
 518                bytes_used = block_group->key.offset -
 519                        btrfs_block_group_used(&block_group->item);
 520                block_group->space_info->bytes_used += bytes_used >> 1;
 521                spin_unlock(&block_group->lock);
 522                spin_unlock(&block_group->space_info->lock);
 523                fragment_free_space(block_group);
 524        }
 525#endif
 526
 527        caching_ctl->progress = (u64)-1;
 528
 529        up_read(&fs_info->commit_root_sem);
 530        free_excluded_extents(block_group);
 531        mutex_unlock(&caching_ctl->mutex);
 532
 533        wake_up(&caching_ctl->wait);
 534
 535        put_caching_control(caching_ctl);
 536        btrfs_put_block_group(block_group);
 537}
 538
 539static int cache_block_group(struct btrfs_block_group_cache *cache,
 540                             int load_cache_only)
 541{
 542        DEFINE_WAIT(wait);
 543        struct btrfs_fs_info *fs_info = cache->fs_info;
 544        struct btrfs_caching_control *caching_ctl;
 545        int ret = 0;
 546
 547        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 548        if (!caching_ctl)
 549                return -ENOMEM;
 550
 551        INIT_LIST_HEAD(&caching_ctl->list);
 552        mutex_init(&caching_ctl->mutex);
 553        init_waitqueue_head(&caching_ctl->wait);
 554        caching_ctl->block_group = cache;
 555        caching_ctl->progress = cache->key.objectid;
 556        refcount_set(&caching_ctl->count, 1);
 557        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 558                        caching_thread, NULL, NULL);
 559
 560        spin_lock(&cache->lock);
 561        /*
 562         * This should be a rare occasion, but this could happen I think in the
 563         * case where one thread starts to load the space cache info, and then
 564         * some other thread starts a transaction commit which tries to do an
 565         * allocation while the other thread is still loading the space cache
 566         * info.  The previous loop should have kept us from choosing this block
 567         * group, but if we've moved to the state where we will wait on caching
 568         * block groups we need to first check if we're doing a fast load here,
 569         * so we can wait for it to finish, otherwise we could end up allocating
 570         * from a block group who's cache gets evicted for one reason or
 571         * another.
 572         */
 573        while (cache->cached == BTRFS_CACHE_FAST) {
 574                struct btrfs_caching_control *ctl;
 575
 576                ctl = cache->caching_ctl;
 577                refcount_inc(&ctl->count);
 578                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 579                spin_unlock(&cache->lock);
 580
 581                schedule();
 582
 583                finish_wait(&ctl->wait, &wait);
 584                put_caching_control(ctl);
 585                spin_lock(&cache->lock);
 586        }
 587
 588        if (cache->cached != BTRFS_CACHE_NO) {
 589                spin_unlock(&cache->lock);
 590                kfree(caching_ctl);
 591                return 0;
 592        }
 593        WARN_ON(cache->caching_ctl);
 594        cache->caching_ctl = caching_ctl;
 595        cache->cached = BTRFS_CACHE_FAST;
 596        spin_unlock(&cache->lock);
 597
 598        if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 599                mutex_lock(&caching_ctl->mutex);
 600                ret = load_free_space_cache(cache);
 601
 602                spin_lock(&cache->lock);
 603                if (ret == 1) {
 604                        cache->caching_ctl = NULL;
 605                        cache->cached = BTRFS_CACHE_FINISHED;
 606                        cache->last_byte_to_unpin = (u64)-1;
 607                        caching_ctl->progress = (u64)-1;
 608                } else {
 609                        if (load_cache_only) {
 610                                cache->caching_ctl = NULL;
 611                                cache->cached = BTRFS_CACHE_NO;
 612                        } else {
 613                                cache->cached = BTRFS_CACHE_STARTED;
 614                                cache->has_caching_ctl = 1;
 615                        }
 616                }
 617                spin_unlock(&cache->lock);
 618#ifdef CONFIG_BTRFS_DEBUG
 619                if (ret == 1 &&
 620                    btrfs_should_fragment_free_space(cache)) {
 621                        u64 bytes_used;
 622
 623                        spin_lock(&cache->space_info->lock);
 624                        spin_lock(&cache->lock);
 625                        bytes_used = cache->key.offset -
 626                                btrfs_block_group_used(&cache->item);
 627                        cache->space_info->bytes_used += bytes_used >> 1;
 628                        spin_unlock(&cache->lock);
 629                        spin_unlock(&cache->space_info->lock);
 630                        fragment_free_space(cache);
 631                }
 632#endif
 633                mutex_unlock(&caching_ctl->mutex);
 634
 635                wake_up(&caching_ctl->wait);
 636                if (ret == 1) {
 637                        put_caching_control(caching_ctl);
 638                        free_excluded_extents(cache);
 639                        return 0;
 640                }
 641        } else {
 642                /*
 643                 * We're either using the free space tree or no caching at all.
 644                 * Set cached to the appropriate value and wakeup any waiters.
 645                 */
 646                spin_lock(&cache->lock);
 647                if (load_cache_only) {
 648                        cache->caching_ctl = NULL;
 649                        cache->cached = BTRFS_CACHE_NO;
 650                } else {
 651                        cache->cached = BTRFS_CACHE_STARTED;
 652                        cache->has_caching_ctl = 1;
 653                }
 654                spin_unlock(&cache->lock);
 655                wake_up(&caching_ctl->wait);
 656        }
 657
 658        if (load_cache_only) {
 659                put_caching_control(caching_ctl);
 660                return 0;
 661        }
 662
 663        down_write(&fs_info->commit_root_sem);
 664        refcount_inc(&caching_ctl->count);
 665        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 666        up_write(&fs_info->commit_root_sem);
 667
 668        btrfs_get_block_group(cache);
 669
 670        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 671
 672        return ret;
 673}
 674
 675/*
 676 * return the block group that starts at or after bytenr
 677 */
 678static struct btrfs_block_group_cache *
 679btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 680{
 681        return block_group_cache_tree_search(info, bytenr, 0);
 682}
 683
 684/*
 685 * return the block group that contains the given bytenr
 686 */
 687struct btrfs_block_group_cache *btrfs_lookup_block_group(
 688                                                 struct btrfs_fs_info *info,
 689                                                 u64 bytenr)
 690{
 691        return block_group_cache_tree_search(info, bytenr, 1);
 692}
 693
 694static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
 695{
 696        if (ref->type == BTRFS_REF_METADATA) {
 697                if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
 698                        return BTRFS_BLOCK_GROUP_SYSTEM;
 699                else
 700                        return BTRFS_BLOCK_GROUP_METADATA;
 701        }
 702        return BTRFS_BLOCK_GROUP_DATA;
 703}
 704
 705static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
 706                             struct btrfs_ref *ref)
 707{
 708        struct btrfs_space_info *space_info;
 709        u64 flags = generic_ref_to_space_flags(ref);
 710
 711        space_info = btrfs_find_space_info(fs_info, flags);
 712        ASSERT(space_info);
 713        percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
 714                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 715}
 716
 717static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
 718                             struct btrfs_ref *ref)
 719{
 720        struct btrfs_space_info *space_info;
 721        u64 flags = generic_ref_to_space_flags(ref);
 722
 723        space_info = btrfs_find_space_info(fs_info, flags);
 724        ASSERT(space_info);
 725        percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
 726                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 727}
 728
 729/* simple helper to search for an existing data extent at a given offset */
 730int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 731{
 732        int ret;
 733        struct btrfs_key key;
 734        struct btrfs_path *path;
 735
 736        path = btrfs_alloc_path();
 737        if (!path)
 738                return -ENOMEM;
 739
 740        key.objectid = start;
 741        key.offset = len;
 742        key.type = BTRFS_EXTENT_ITEM_KEY;
 743        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 744        btrfs_free_path(path);
 745        return ret;
 746}
 747
 748/*
 749 * helper function to lookup reference count and flags of a tree block.
 750 *
 751 * the head node for delayed ref is used to store the sum of all the
 752 * reference count modifications queued up in the rbtree. the head
 753 * node may also store the extent flags to set. This way you can check
 754 * to see what the reference count and extent flags would be if all of
 755 * the delayed refs are not processed.
 756 */
 757int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 758                             struct btrfs_fs_info *fs_info, u64 bytenr,
 759                             u64 offset, int metadata, u64 *refs, u64 *flags)
 760{
 761        struct btrfs_delayed_ref_head *head;
 762        struct btrfs_delayed_ref_root *delayed_refs;
 763        struct btrfs_path *path;
 764        struct btrfs_extent_item *ei;
 765        struct extent_buffer *leaf;
 766        struct btrfs_key key;
 767        u32 item_size;
 768        u64 num_refs;
 769        u64 extent_flags;
 770        int ret;
 771
 772        /*
 773         * If we don't have skinny metadata, don't bother doing anything
 774         * different
 775         */
 776        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 777                offset = fs_info->nodesize;
 778                metadata = 0;
 779        }
 780
 781        path = btrfs_alloc_path();
 782        if (!path)
 783                return -ENOMEM;
 784
 785        if (!trans) {
 786                path->skip_locking = 1;
 787                path->search_commit_root = 1;
 788        }
 789
 790search_again:
 791        key.objectid = bytenr;
 792        key.offset = offset;
 793        if (metadata)
 794                key.type = BTRFS_METADATA_ITEM_KEY;
 795        else
 796                key.type = BTRFS_EXTENT_ITEM_KEY;
 797
 798        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 799        if (ret < 0)
 800                goto out_free;
 801
 802        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 803                if (path->slots[0]) {
 804                        path->slots[0]--;
 805                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 806                                              path->slots[0]);
 807                        if (key.objectid == bytenr &&
 808                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 809                            key.offset == fs_info->nodesize)
 810                                ret = 0;
 811                }
 812        }
 813
 814        if (ret == 0) {
 815                leaf = path->nodes[0];
 816                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 817                if (item_size >= sizeof(*ei)) {
 818                        ei = btrfs_item_ptr(leaf, path->slots[0],
 819                                            struct btrfs_extent_item);
 820                        num_refs = btrfs_extent_refs(leaf, ei);
 821                        extent_flags = btrfs_extent_flags(leaf, ei);
 822                } else {
 823                        ret = -EINVAL;
 824                        btrfs_print_v0_err(fs_info);
 825                        if (trans)
 826                                btrfs_abort_transaction(trans, ret);
 827                        else
 828                                btrfs_handle_fs_error(fs_info, ret, NULL);
 829
 830                        goto out_free;
 831                }
 832
 833                BUG_ON(num_refs == 0);
 834        } else {
 835                num_refs = 0;
 836                extent_flags = 0;
 837                ret = 0;
 838        }
 839
 840        if (!trans)
 841                goto out;
 842
 843        delayed_refs = &trans->transaction->delayed_refs;
 844        spin_lock(&delayed_refs->lock);
 845        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 846        if (head) {
 847                if (!mutex_trylock(&head->mutex)) {
 848                        refcount_inc(&head->refs);
 849                        spin_unlock(&delayed_refs->lock);
 850
 851                        btrfs_release_path(path);
 852
 853                        /*
 854                         * Mutex was contended, block until it's released and try
 855                         * again
 856                         */
 857                        mutex_lock(&head->mutex);
 858                        mutex_unlock(&head->mutex);
 859                        btrfs_put_delayed_ref_head(head);
 860                        goto search_again;
 861                }
 862                spin_lock(&head->lock);
 863                if (head->extent_op && head->extent_op->update_flags)
 864                        extent_flags |= head->extent_op->flags_to_set;
 865                else
 866                        BUG_ON(num_refs == 0);
 867
 868                num_refs += head->ref_mod;
 869                spin_unlock(&head->lock);
 870                mutex_unlock(&head->mutex);
 871        }
 872        spin_unlock(&delayed_refs->lock);
 873out:
 874        WARN_ON(num_refs == 0);
 875        if (refs)
 876                *refs = num_refs;
 877        if (flags)
 878                *flags = extent_flags;
 879out_free:
 880        btrfs_free_path(path);
 881        return ret;
 882}
 883
 884/*
 885 * Back reference rules.  Back refs have three main goals:
 886 *
 887 * 1) differentiate between all holders of references to an extent so that
 888 *    when a reference is dropped we can make sure it was a valid reference
 889 *    before freeing the extent.
 890 *
 891 * 2) Provide enough information to quickly find the holders of an extent
 892 *    if we notice a given block is corrupted or bad.
 893 *
 894 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 895 *    maintenance.  This is actually the same as #2, but with a slightly
 896 *    different use case.
 897 *
 898 * There are two kinds of back refs. The implicit back refs is optimized
 899 * for pointers in non-shared tree blocks. For a given pointer in a block,
 900 * back refs of this kind provide information about the block's owner tree
 901 * and the pointer's key. These information allow us to find the block by
 902 * b-tree searching. The full back refs is for pointers in tree blocks not
 903 * referenced by their owner trees. The location of tree block is recorded
 904 * in the back refs. Actually the full back refs is generic, and can be
 905 * used in all cases the implicit back refs is used. The major shortcoming
 906 * of the full back refs is its overhead. Every time a tree block gets
 907 * COWed, we have to update back refs entry for all pointers in it.
 908 *
 909 * For a newly allocated tree block, we use implicit back refs for
 910 * pointers in it. This means most tree related operations only involve
 911 * implicit back refs. For a tree block created in old transaction, the
 912 * only way to drop a reference to it is COW it. So we can detect the
 913 * event that tree block loses its owner tree's reference and do the
 914 * back refs conversion.
 915 *
 916 * When a tree block is COWed through a tree, there are four cases:
 917 *
 918 * The reference count of the block is one and the tree is the block's
 919 * owner tree. Nothing to do in this case.
 920 *
 921 * The reference count of the block is one and the tree is not the
 922 * block's owner tree. In this case, full back refs is used for pointers
 923 * in the block. Remove these full back refs, add implicit back refs for
 924 * every pointers in the new block.
 925 *
 926 * The reference count of the block is greater than one and the tree is
 927 * the block's owner tree. In this case, implicit back refs is used for
 928 * pointers in the block. Add full back refs for every pointers in the
 929 * block, increase lower level extents' reference counts. The original
 930 * implicit back refs are entailed to the new block.
 931 *
 932 * The reference count of the block is greater than one and the tree is
 933 * not the block's owner tree. Add implicit back refs for every pointer in
 934 * the new block, increase lower level extents' reference count.
 935 *
 936 * Back Reference Key composing:
 937 *
 938 * The key objectid corresponds to the first byte in the extent,
 939 * The key type is used to differentiate between types of back refs.
 940 * There are different meanings of the key offset for different types
 941 * of back refs.
 942 *
 943 * File extents can be referenced by:
 944 *
 945 * - multiple snapshots, subvolumes, or different generations in one subvol
 946 * - different files inside a single subvolume
 947 * - different offsets inside a file (bookend extents in file.c)
 948 *
 949 * The extent ref structure for the implicit back refs has fields for:
 950 *
 951 * - Objectid of the subvolume root
 952 * - objectid of the file holding the reference
 953 * - original offset in the file
 954 * - how many bookend extents
 955 *
 956 * The key offset for the implicit back refs is hash of the first
 957 * three fields.
 958 *
 959 * The extent ref structure for the full back refs has field for:
 960 *
 961 * - number of pointers in the tree leaf
 962 *
 963 * The key offset for the implicit back refs is the first byte of
 964 * the tree leaf
 965 *
 966 * When a file extent is allocated, The implicit back refs is used.
 967 * the fields are filled in:
 968 *
 969 *     (root_key.objectid, inode objectid, offset in file, 1)
 970 *
 971 * When a file extent is removed file truncation, we find the
 972 * corresponding implicit back refs and check the following fields:
 973 *
 974 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 975 *
 976 * Btree extents can be referenced by:
 977 *
 978 * - Different subvolumes
 979 *
 980 * Both the implicit back refs and the full back refs for tree blocks
 981 * only consist of key. The key offset for the implicit back refs is
 982 * objectid of block's owner tree. The key offset for the full back refs
 983 * is the first byte of parent block.
 984 *
 985 * When implicit back refs is used, information about the lowest key and
 986 * level of the tree block are required. These information are stored in
 987 * tree block info structure.
 988 */
 989
 990/*
 991 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 992 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 993 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 994 */
 995int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 996                                     struct btrfs_extent_inline_ref *iref,
 997                                     enum btrfs_inline_ref_type is_data)
 998{
 999        int type = btrfs_extent_inline_ref_type(eb, iref);
1000        u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1001
1002        if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1003            type == BTRFS_SHARED_BLOCK_REF_KEY ||
1004            type == BTRFS_SHARED_DATA_REF_KEY ||
1005            type == BTRFS_EXTENT_DATA_REF_KEY) {
1006                if (is_data == BTRFS_REF_TYPE_BLOCK) {
1007                        if (type == BTRFS_TREE_BLOCK_REF_KEY)
1008                                return type;
1009                        if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1010                                ASSERT(eb->fs_info);
1011                                /*
1012                                 * Every shared one has parent tree
1013                                 * block, which must be aligned to
1014                                 * nodesize.
1015                                 */
1016                                if (offset &&
1017                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1018                                        return type;
1019                        }
1020                } else if (is_data == BTRFS_REF_TYPE_DATA) {
1021                        if (type == BTRFS_EXTENT_DATA_REF_KEY)
1022                                return type;
1023                        if (type == BTRFS_SHARED_DATA_REF_KEY) {
1024                                ASSERT(eb->fs_info);
1025                                /*
1026                                 * Every shared one has parent tree
1027                                 * block, which must be aligned to
1028                                 * nodesize.
1029                                 */
1030                                if (offset &&
1031                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1032                                        return type;
1033                        }
1034                } else {
1035                        ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1036                        return type;
1037                }
1038        }
1039
1040        btrfs_print_leaf((struct extent_buffer *)eb);
1041        btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1042                  eb->start, type);
1043        WARN_ON(1);
1044
1045        return BTRFS_REF_TYPE_INVALID;
1046}
1047
1048static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1049{
1050        u32 high_crc = ~(u32)0;
1051        u32 low_crc = ~(u32)0;
1052        __le64 lenum;
1053
1054        lenum = cpu_to_le64(root_objectid);
1055        high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1056        lenum = cpu_to_le64(owner);
1057        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1058        lenum = cpu_to_le64(offset);
1059        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1060
1061        return ((u64)high_crc << 31) ^ (u64)low_crc;
1062}
1063
1064static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1065                                     struct btrfs_extent_data_ref *ref)
1066{
1067        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1068                                    btrfs_extent_data_ref_objectid(leaf, ref),
1069                                    btrfs_extent_data_ref_offset(leaf, ref));
1070}
1071
1072static int match_extent_data_ref(struct extent_buffer *leaf,
1073                                 struct btrfs_extent_data_ref *ref,
1074                                 u64 root_objectid, u64 owner, u64 offset)
1075{
1076        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1077            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1078            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1079                return 0;
1080        return 1;
1081}
1082
1083static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1084                                           struct btrfs_path *path,
1085                                           u64 bytenr, u64 parent,
1086                                           u64 root_objectid,
1087                                           u64 owner, u64 offset)
1088{
1089        struct btrfs_root *root = trans->fs_info->extent_root;
1090        struct btrfs_key key;
1091        struct btrfs_extent_data_ref *ref;
1092        struct extent_buffer *leaf;
1093        u32 nritems;
1094        int ret;
1095        int recow;
1096        int err = -ENOENT;
1097
1098        key.objectid = bytenr;
1099        if (parent) {
1100                key.type = BTRFS_SHARED_DATA_REF_KEY;
1101                key.offset = parent;
1102        } else {
1103                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1104                key.offset = hash_extent_data_ref(root_objectid,
1105                                                  owner, offset);
1106        }
1107again:
1108        recow = 0;
1109        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110        if (ret < 0) {
1111                err = ret;
1112                goto fail;
1113        }
1114
1115        if (parent) {
1116                if (!ret)
1117                        return 0;
1118                goto fail;
1119        }
1120
1121        leaf = path->nodes[0];
1122        nritems = btrfs_header_nritems(leaf);
1123        while (1) {
1124                if (path->slots[0] >= nritems) {
1125                        ret = btrfs_next_leaf(root, path);
1126                        if (ret < 0)
1127                                err = ret;
1128                        if (ret)
1129                                goto fail;
1130
1131                        leaf = path->nodes[0];
1132                        nritems = btrfs_header_nritems(leaf);
1133                        recow = 1;
1134                }
1135
1136                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137                if (key.objectid != bytenr ||
1138                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139                        goto fail;
1140
1141                ref = btrfs_item_ptr(leaf, path->slots[0],
1142                                     struct btrfs_extent_data_ref);
1143
1144                if (match_extent_data_ref(leaf, ref, root_objectid,
1145                                          owner, offset)) {
1146                        if (recow) {
1147                                btrfs_release_path(path);
1148                                goto again;
1149                        }
1150                        err = 0;
1151                        break;
1152                }
1153                path->slots[0]++;
1154        }
1155fail:
1156        return err;
1157}
1158
1159static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160                                           struct btrfs_path *path,
1161                                           u64 bytenr, u64 parent,
1162                                           u64 root_objectid, u64 owner,
1163                                           u64 offset, int refs_to_add)
1164{
1165        struct btrfs_root *root = trans->fs_info->extent_root;
1166        struct btrfs_key key;
1167        struct extent_buffer *leaf;
1168        u32 size;
1169        u32 num_refs;
1170        int ret;
1171
1172        key.objectid = bytenr;
1173        if (parent) {
1174                key.type = BTRFS_SHARED_DATA_REF_KEY;
1175                key.offset = parent;
1176                size = sizeof(struct btrfs_shared_data_ref);
1177        } else {
1178                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179                key.offset = hash_extent_data_ref(root_objectid,
1180                                                  owner, offset);
1181                size = sizeof(struct btrfs_extent_data_ref);
1182        }
1183
1184        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185        if (ret && ret != -EEXIST)
1186                goto fail;
1187
1188        leaf = path->nodes[0];
1189        if (parent) {
1190                struct btrfs_shared_data_ref *ref;
1191                ref = btrfs_item_ptr(leaf, path->slots[0],
1192                                     struct btrfs_shared_data_ref);
1193                if (ret == 0) {
1194                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195                } else {
1196                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197                        num_refs += refs_to_add;
1198                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199                }
1200        } else {
1201                struct btrfs_extent_data_ref *ref;
1202                while (ret == -EEXIST) {
1203                        ref = btrfs_item_ptr(leaf, path->slots[0],
1204                                             struct btrfs_extent_data_ref);
1205                        if (match_extent_data_ref(leaf, ref, root_objectid,
1206                                                  owner, offset))
1207                                break;
1208                        btrfs_release_path(path);
1209                        key.offset++;
1210                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1211                                                      size);
1212                        if (ret && ret != -EEXIST)
1213                                goto fail;
1214
1215                        leaf = path->nodes[0];
1216                }
1217                ref = btrfs_item_ptr(leaf, path->slots[0],
1218                                     struct btrfs_extent_data_ref);
1219                if (ret == 0) {
1220                        btrfs_set_extent_data_ref_root(leaf, ref,
1221                                                       root_objectid);
1222                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225                } else {
1226                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227                        num_refs += refs_to_add;
1228                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229                }
1230        }
1231        btrfs_mark_buffer_dirty(leaf);
1232        ret = 0;
1233fail:
1234        btrfs_release_path(path);
1235        return ret;
1236}
1237
1238static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239                                           struct btrfs_path *path,
1240                                           int refs_to_drop, int *last_ref)
1241{
1242        struct btrfs_key key;
1243        struct btrfs_extent_data_ref *ref1 = NULL;
1244        struct btrfs_shared_data_ref *ref2 = NULL;
1245        struct extent_buffer *leaf;
1246        u32 num_refs = 0;
1247        int ret = 0;
1248
1249        leaf = path->nodes[0];
1250        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251
1252        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254                                      struct btrfs_extent_data_ref);
1255                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258                                      struct btrfs_shared_data_ref);
1259                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260        } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1261                btrfs_print_v0_err(trans->fs_info);
1262                btrfs_abort_transaction(trans, -EINVAL);
1263                return -EINVAL;
1264        } else {
1265                BUG();
1266        }
1267
1268        BUG_ON(num_refs < refs_to_drop);
1269        num_refs -= refs_to_drop;
1270
1271        if (num_refs == 0) {
1272                ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1273                *last_ref = 1;
1274        } else {
1275                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1276                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1277                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1278                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1279                btrfs_mark_buffer_dirty(leaf);
1280        }
1281        return ret;
1282}
1283
1284static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1285                                          struct btrfs_extent_inline_ref *iref)
1286{
1287        struct btrfs_key key;
1288        struct extent_buffer *leaf;
1289        struct btrfs_extent_data_ref *ref1;
1290        struct btrfs_shared_data_ref *ref2;
1291        u32 num_refs = 0;
1292        int type;
1293
1294        leaf = path->nodes[0];
1295        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1296
1297        BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1298        if (iref) {
1299                /*
1300                 * If type is invalid, we should have bailed out earlier than
1301                 * this call.
1302                 */
1303                type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1304                ASSERT(type != BTRFS_REF_TYPE_INVALID);
1305                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1306                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1307                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1308                } else {
1309                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1310                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1311                }
1312        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1313                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1314                                      struct btrfs_extent_data_ref);
1315                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1316        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1317                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1318                                      struct btrfs_shared_data_ref);
1319                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1320        } else {
1321                WARN_ON(1);
1322        }
1323        return num_refs;
1324}
1325
1326static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1327                                          struct btrfs_path *path,
1328                                          u64 bytenr, u64 parent,
1329                                          u64 root_objectid)
1330{
1331        struct btrfs_root *root = trans->fs_info->extent_root;
1332        struct btrfs_key key;
1333        int ret;
1334
1335        key.objectid = bytenr;
1336        if (parent) {
1337                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1338                key.offset = parent;
1339        } else {
1340                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1341                key.offset = root_objectid;
1342        }
1343
1344        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1345        if (ret > 0)
1346                ret = -ENOENT;
1347        return ret;
1348}
1349
1350static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1351                                          struct btrfs_path *path,
1352                                          u64 bytenr, u64 parent,
1353                                          u64 root_objectid)
1354{
1355        struct btrfs_key key;
1356        int ret;
1357
1358        key.objectid = bytenr;
1359        if (parent) {
1360                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1361                key.offset = parent;
1362        } else {
1363                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1364                key.offset = root_objectid;
1365        }
1366
1367        ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1368                                      path, &key, 0);
1369        btrfs_release_path(path);
1370        return ret;
1371}
1372
1373static inline int extent_ref_type(u64 parent, u64 owner)
1374{
1375        int type;
1376        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1377                if (parent > 0)
1378                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1379                else
1380                        type = BTRFS_TREE_BLOCK_REF_KEY;
1381        } else {
1382                if (parent > 0)
1383                        type = BTRFS_SHARED_DATA_REF_KEY;
1384                else
1385                        type = BTRFS_EXTENT_DATA_REF_KEY;
1386        }
1387        return type;
1388}
1389
1390static int find_next_key(struct btrfs_path *path, int level,
1391                         struct btrfs_key *key)
1392
1393{
1394        for (; level < BTRFS_MAX_LEVEL; level++) {
1395                if (!path->nodes[level])
1396                        break;
1397                if (path->slots[level] + 1 >=
1398                    btrfs_header_nritems(path->nodes[level]))
1399                        continue;
1400                if (level == 0)
1401                        btrfs_item_key_to_cpu(path->nodes[level], key,
1402                                              path->slots[level] + 1);
1403                else
1404                        btrfs_node_key_to_cpu(path->nodes[level], key,
1405                                              path->slots[level] + 1);
1406                return 0;
1407        }
1408        return 1;
1409}
1410
1411/*
1412 * look for inline back ref. if back ref is found, *ref_ret is set
1413 * to the address of inline back ref, and 0 is returned.
1414 *
1415 * if back ref isn't found, *ref_ret is set to the address where it
1416 * should be inserted, and -ENOENT is returned.
1417 *
1418 * if insert is true and there are too many inline back refs, the path
1419 * points to the extent item, and -EAGAIN is returned.
1420 *
1421 * NOTE: inline back refs are ordered in the same way that back ref
1422 *       items in the tree are ordered.
1423 */
1424static noinline_for_stack
1425int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1426                                 struct btrfs_path *path,
1427                                 struct btrfs_extent_inline_ref **ref_ret,
1428                                 u64 bytenr, u64 num_bytes,
1429                                 u64 parent, u64 root_objectid,
1430                                 u64 owner, u64 offset, int insert)
1431{
1432        struct btrfs_fs_info *fs_info = trans->fs_info;
1433        struct btrfs_root *root = fs_info->extent_root;
1434        struct btrfs_key key;
1435        struct extent_buffer *leaf;
1436        struct btrfs_extent_item *ei;
1437        struct btrfs_extent_inline_ref *iref;
1438        u64 flags;
1439        u64 item_size;
1440        unsigned long ptr;
1441        unsigned long end;
1442        int extra_size;
1443        int type;
1444        int want;
1445        int ret;
1446        int err = 0;
1447        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1448        int needed;
1449
1450        key.objectid = bytenr;
1451        key.type = BTRFS_EXTENT_ITEM_KEY;
1452        key.offset = num_bytes;
1453
1454        want = extent_ref_type(parent, owner);
1455        if (insert) {
1456                extra_size = btrfs_extent_inline_ref_size(want);
1457                path->keep_locks = 1;
1458        } else
1459                extra_size = -1;
1460
1461        /*
1462         * Owner is our level, so we can just add one to get the level for the
1463         * block we are interested in.
1464         */
1465        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1466                key.type = BTRFS_METADATA_ITEM_KEY;
1467                key.offset = owner;
1468        }
1469
1470again:
1471        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1472        if (ret < 0) {
1473                err = ret;
1474                goto out;
1475        }
1476
1477        /*
1478         * We may be a newly converted file system which still has the old fat
1479         * extent entries for metadata, so try and see if we have one of those.
1480         */
1481        if (ret > 0 && skinny_metadata) {
1482                skinny_metadata = false;
1483                if (path->slots[0]) {
1484                        path->slots[0]--;
1485                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1486                                              path->slots[0]);
1487                        if (key.objectid == bytenr &&
1488                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1489                            key.offset == num_bytes)
1490                                ret = 0;
1491                }
1492                if (ret) {
1493                        key.objectid = bytenr;
1494                        key.type = BTRFS_EXTENT_ITEM_KEY;
1495                        key.offset = num_bytes;
1496                        btrfs_release_path(path);
1497                        goto again;
1498                }
1499        }
1500
1501        if (ret && !insert) {
1502                err = -ENOENT;
1503                goto out;
1504        } else if (WARN_ON(ret)) {
1505                err = -EIO;
1506                goto out;
1507        }
1508
1509        leaf = path->nodes[0];
1510        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1511        if (unlikely(item_size < sizeof(*ei))) {
1512                err = -EINVAL;
1513                btrfs_print_v0_err(fs_info);
1514                btrfs_abort_transaction(trans, err);
1515                goto out;
1516        }
1517
1518        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1519        flags = btrfs_extent_flags(leaf, ei);
1520
1521        ptr = (unsigned long)(ei + 1);
1522        end = (unsigned long)ei + item_size;
1523
1524        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1525                ptr += sizeof(struct btrfs_tree_block_info);
1526                BUG_ON(ptr > end);
1527        }
1528
1529        if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1530                needed = BTRFS_REF_TYPE_DATA;
1531        else
1532                needed = BTRFS_REF_TYPE_BLOCK;
1533
1534        err = -ENOENT;
1535        while (1) {
1536                if (ptr >= end) {
1537                        WARN_ON(ptr > end);
1538                        break;
1539                }
1540                iref = (struct btrfs_extent_inline_ref *)ptr;
1541                type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1542                if (type == BTRFS_REF_TYPE_INVALID) {
1543                        err = -EUCLEAN;
1544                        goto out;
1545                }
1546
1547                if (want < type)
1548                        break;
1549                if (want > type) {
1550                        ptr += btrfs_extent_inline_ref_size(type);
1551                        continue;
1552                }
1553
1554                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1555                        struct btrfs_extent_data_ref *dref;
1556                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1557                        if (match_extent_data_ref(leaf, dref, root_objectid,
1558                                                  owner, offset)) {
1559                                err = 0;
1560                                break;
1561                        }
1562                        if (hash_extent_data_ref_item(leaf, dref) <
1563                            hash_extent_data_ref(root_objectid, owner, offset))
1564                                break;
1565                } else {
1566                        u64 ref_offset;
1567                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1568                        if (parent > 0) {
1569                                if (parent == ref_offset) {
1570                                        err = 0;
1571                                        break;
1572                                }
1573                                if (ref_offset < parent)
1574                                        break;
1575                        } else {
1576                                if (root_objectid == ref_offset) {
1577                                        err = 0;
1578                                        break;
1579                                }
1580                                if (ref_offset < root_objectid)
1581                                        break;
1582                        }
1583                }
1584                ptr += btrfs_extent_inline_ref_size(type);
1585        }
1586        if (err == -ENOENT && insert) {
1587                if (item_size + extra_size >=
1588                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1589                        err = -EAGAIN;
1590                        goto out;
1591                }
1592                /*
1593                 * To add new inline back ref, we have to make sure
1594                 * there is no corresponding back ref item.
1595                 * For simplicity, we just do not add new inline back
1596                 * ref if there is any kind of item for this block
1597                 */
1598                if (find_next_key(path, 0, &key) == 0 &&
1599                    key.objectid == bytenr &&
1600                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1601                        err = -EAGAIN;
1602                        goto out;
1603                }
1604        }
1605        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1606out:
1607        if (insert) {
1608                path->keep_locks = 0;
1609                btrfs_unlock_up_safe(path, 1);
1610        }
1611        return err;
1612}
1613
1614/*
1615 * helper to add new inline back ref
1616 */
1617static noinline_for_stack
1618void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1619                                 struct btrfs_path *path,
1620                                 struct btrfs_extent_inline_ref *iref,
1621                                 u64 parent, u64 root_objectid,
1622                                 u64 owner, u64 offset, int refs_to_add,
1623                                 struct btrfs_delayed_extent_op *extent_op)
1624{
1625        struct extent_buffer *leaf;
1626        struct btrfs_extent_item *ei;
1627        unsigned long ptr;
1628        unsigned long end;
1629        unsigned long item_offset;
1630        u64 refs;
1631        int size;
1632        int type;
1633
1634        leaf = path->nodes[0];
1635        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636        item_offset = (unsigned long)iref - (unsigned long)ei;
1637
1638        type = extent_ref_type(parent, owner);
1639        size = btrfs_extent_inline_ref_size(type);
1640
1641        btrfs_extend_item(path, size);
1642
1643        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1644        refs = btrfs_extent_refs(leaf, ei);
1645        refs += refs_to_add;
1646        btrfs_set_extent_refs(leaf, ei, refs);
1647        if (extent_op)
1648                __run_delayed_extent_op(extent_op, leaf, ei);
1649
1650        ptr = (unsigned long)ei + item_offset;
1651        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1652        if (ptr < end - size)
1653                memmove_extent_buffer(leaf, ptr + size, ptr,
1654                                      end - size - ptr);
1655
1656        iref = (struct btrfs_extent_inline_ref *)ptr;
1657        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1658        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1659                struct btrfs_extent_data_ref *dref;
1660                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1661                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1662                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1663                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1664                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1665        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1666                struct btrfs_shared_data_ref *sref;
1667                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1668                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1669                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1670        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1671                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1672        } else {
1673                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1674        }
1675        btrfs_mark_buffer_dirty(leaf);
1676}
1677
1678static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1679                                 struct btrfs_path *path,
1680                                 struct btrfs_extent_inline_ref **ref_ret,
1681                                 u64 bytenr, u64 num_bytes, u64 parent,
1682                                 u64 root_objectid, u64 owner, u64 offset)
1683{
1684        int ret;
1685
1686        ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1687                                           num_bytes, parent, root_objectid,
1688                                           owner, offset, 0);
1689        if (ret != -ENOENT)
1690                return ret;
1691
1692        btrfs_release_path(path);
1693        *ref_ret = NULL;
1694
1695        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1696                ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1697                                            root_objectid);
1698        } else {
1699                ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1700                                             root_objectid, owner, offset);
1701        }
1702        return ret;
1703}
1704
1705/*
1706 * helper to update/remove inline back ref
1707 */
1708static noinline_for_stack
1709void update_inline_extent_backref(struct btrfs_path *path,
1710                                  struct btrfs_extent_inline_ref *iref,
1711                                  int refs_to_mod,
1712                                  struct btrfs_delayed_extent_op *extent_op,
1713                                  int *last_ref)
1714{
1715        struct extent_buffer *leaf = path->nodes[0];
1716        struct btrfs_extent_item *ei;
1717        struct btrfs_extent_data_ref *dref = NULL;
1718        struct btrfs_shared_data_ref *sref = NULL;
1719        unsigned long ptr;
1720        unsigned long end;
1721        u32 item_size;
1722        int size;
1723        int type;
1724        u64 refs;
1725
1726        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1727        refs = btrfs_extent_refs(leaf, ei);
1728        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1729        refs += refs_to_mod;
1730        btrfs_set_extent_refs(leaf, ei, refs);
1731        if (extent_op)
1732                __run_delayed_extent_op(extent_op, leaf, ei);
1733
1734        /*
1735         * If type is invalid, we should have bailed out after
1736         * lookup_inline_extent_backref().
1737         */
1738        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1739        ASSERT(type != BTRFS_REF_TYPE_INVALID);
1740
1741        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1742                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1743                refs = btrfs_extent_data_ref_count(leaf, dref);
1744        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1745                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1746                refs = btrfs_shared_data_ref_count(leaf, sref);
1747        } else {
1748                refs = 1;
1749                BUG_ON(refs_to_mod != -1);
1750        }
1751
1752        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1753        refs += refs_to_mod;
1754
1755        if (refs > 0) {
1756                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1757                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1758                else
1759                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1760        } else {
1761                *last_ref = 1;
1762                size =  btrfs_extent_inline_ref_size(type);
1763                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1764                ptr = (unsigned long)iref;
1765                end = (unsigned long)ei + item_size;
1766                if (ptr + size < end)
1767                        memmove_extent_buffer(leaf, ptr, ptr + size,
1768                                              end - ptr - size);
1769                item_size -= size;
1770                btrfs_truncate_item(path, item_size, 1);
1771        }
1772        btrfs_mark_buffer_dirty(leaf);
1773}
1774
1775static noinline_for_stack
1776int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1777                                 struct btrfs_path *path,
1778                                 u64 bytenr, u64 num_bytes, u64 parent,
1779                                 u64 root_objectid, u64 owner,
1780                                 u64 offset, int refs_to_add,
1781                                 struct btrfs_delayed_extent_op *extent_op)
1782{
1783        struct btrfs_extent_inline_ref *iref;
1784        int ret;
1785
1786        ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1787                                           num_bytes, parent, root_objectid,
1788                                           owner, offset, 1);
1789        if (ret == 0) {
1790                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1791                update_inline_extent_backref(path, iref, refs_to_add,
1792                                             extent_op, NULL);
1793        } else if (ret == -ENOENT) {
1794                setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1795                                            root_objectid, owner, offset,
1796                                            refs_to_add, extent_op);
1797                ret = 0;
1798        }
1799        return ret;
1800}
1801
1802static int insert_extent_backref(struct btrfs_trans_handle *trans,
1803                                 struct btrfs_path *path,
1804                                 u64 bytenr, u64 parent, u64 root_objectid,
1805                                 u64 owner, u64 offset, int refs_to_add)
1806{
1807        int ret;
1808        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1809                BUG_ON(refs_to_add != 1);
1810                ret = insert_tree_block_ref(trans, path, bytenr, parent,
1811                                            root_objectid);
1812        } else {
1813                ret = insert_extent_data_ref(trans, path, bytenr, parent,
1814                                             root_objectid, owner, offset,
1815                                             refs_to_add);
1816        }
1817        return ret;
1818}
1819
1820static int remove_extent_backref(struct btrfs_trans_handle *trans,
1821                                 struct btrfs_path *path,
1822                                 struct btrfs_extent_inline_ref *iref,
1823                                 int refs_to_drop, int is_data, int *last_ref)
1824{
1825        int ret = 0;
1826
1827        BUG_ON(!is_data && refs_to_drop != 1);
1828        if (iref) {
1829                update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1830                                             last_ref);
1831        } else if (is_data) {
1832                ret = remove_extent_data_ref(trans, path, refs_to_drop,
1833                                             last_ref);
1834        } else {
1835                *last_ref = 1;
1836                ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1837        }
1838        return ret;
1839}
1840
1841static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1842                               u64 *discarded_bytes)
1843{
1844        int j, ret = 0;
1845        u64 bytes_left, end;
1846        u64 aligned_start = ALIGN(start, 1 << 9);
1847
1848        if (WARN_ON(start != aligned_start)) {
1849                len -= aligned_start - start;
1850                len = round_down(len, 1 << 9);
1851                start = aligned_start;
1852        }
1853
1854        *discarded_bytes = 0;
1855
1856        if (!len)
1857                return 0;
1858
1859        end = start + len;
1860        bytes_left = len;
1861
1862        /* Skip any superblocks on this device. */
1863        for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1864                u64 sb_start = btrfs_sb_offset(j);
1865                u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1866                u64 size = sb_start - start;
1867
1868                if (!in_range(sb_start, start, bytes_left) &&
1869                    !in_range(sb_end, start, bytes_left) &&
1870                    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1871                        continue;
1872
1873                /*
1874                 * Superblock spans beginning of range.  Adjust start and
1875                 * try again.
1876                 */
1877                if (sb_start <= start) {
1878                        start += sb_end - start;
1879                        if (start > end) {
1880                                bytes_left = 0;
1881                                break;
1882                        }
1883                        bytes_left = end - start;
1884                        continue;
1885                }
1886
1887                if (size) {
1888                        ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1889                                                   GFP_NOFS, 0);
1890                        if (!ret)
1891                                *discarded_bytes += size;
1892                        else if (ret != -EOPNOTSUPP)
1893                                return ret;
1894                }
1895
1896                start = sb_end;
1897                if (start > end) {
1898                        bytes_left = 0;
1899                        break;
1900                }
1901                bytes_left = end - start;
1902        }
1903
1904        if (bytes_left) {
1905                ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1906                                           GFP_NOFS, 0);
1907                if (!ret)
1908                        *discarded_bytes += bytes_left;
1909        }
1910        return ret;
1911}
1912
1913int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1914                         u64 num_bytes, u64 *actual_bytes)
1915{
1916        int ret;
1917        u64 discarded_bytes = 0;
1918        struct btrfs_bio *bbio = NULL;
1919
1920
1921        /*
1922         * Avoid races with device replace and make sure our bbio has devices
1923         * associated to its stripes that don't go away while we are discarding.
1924         */
1925        btrfs_bio_counter_inc_blocked(fs_info);
1926        /* Tell the block device(s) that the sectors can be discarded */
1927        ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1928                              &bbio, 0);
1929        /* Error condition is -ENOMEM */
1930        if (!ret) {
1931                struct btrfs_bio_stripe *stripe = bbio->stripes;
1932                int i;
1933
1934
1935                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1936                        u64 bytes;
1937                        struct request_queue *req_q;
1938
1939                        if (!stripe->dev->bdev) {
1940                                ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1941                                continue;
1942                        }
1943                        req_q = bdev_get_queue(stripe->dev->bdev);
1944                        if (!blk_queue_discard(req_q))
1945                                continue;
1946
1947                        ret = btrfs_issue_discard(stripe->dev->bdev,
1948                                                  stripe->physical,
1949                                                  stripe->length,
1950                                                  &bytes);
1951                        if (!ret)
1952                                discarded_bytes += bytes;
1953                        else if (ret != -EOPNOTSUPP)
1954                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1955
1956                        /*
1957                         * Just in case we get back EOPNOTSUPP for some reason,
1958                         * just ignore the return value so we don't screw up
1959                         * people calling discard_extent.
1960                         */
1961                        ret = 0;
1962                }
1963                btrfs_put_bbio(bbio);
1964        }
1965        btrfs_bio_counter_dec(fs_info);
1966
1967        if (actual_bytes)
1968                *actual_bytes = discarded_bytes;
1969
1970
1971        if (ret == -EOPNOTSUPP)
1972                ret = 0;
1973        return ret;
1974}
1975
1976/* Can return -ENOMEM */
1977int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1978                         struct btrfs_ref *generic_ref)
1979{
1980        struct btrfs_fs_info *fs_info = trans->fs_info;
1981        int old_ref_mod, new_ref_mod;
1982        int ret;
1983
1984        ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1985               generic_ref->action);
1986        BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1987               generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1988
1989        if (generic_ref->type == BTRFS_REF_METADATA)
1990                ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1991                                NULL, &old_ref_mod, &new_ref_mod);
1992        else
1993                ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1994                                                 &old_ref_mod, &new_ref_mod);
1995
1996        btrfs_ref_tree_mod(fs_info, generic_ref);
1997
1998        if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1999                sub_pinned_bytes(fs_info, generic_ref);
2000
2001        return ret;
2002}
2003
2004/*
2005 * __btrfs_inc_extent_ref - insert backreference for a given extent
2006 *
2007 * @trans:          Handle of transaction
2008 *
2009 * @node:           The delayed ref node used to get the bytenr/length for
2010 *                  extent whose references are incremented.
2011 *
2012 * @parent:         If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2013 *                  BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2014 *                  bytenr of the parent block. Since new extents are always
2015 *                  created with indirect references, this will only be the case
2016 *                  when relocating a shared extent. In that case, root_objectid
2017 *                  will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2018 *                  be 0
2019 *
2020 * @root_objectid:  The id of the root where this modification has originated,
2021 *                  this can be either one of the well-known metadata trees or
2022 *                  the subvolume id which references this extent.
2023 *
2024 * @owner:          For data extents it is the inode number of the owning file.
2025 *                  For metadata extents this parameter holds the level in the
2026 *                  tree of the extent.
2027 *
2028 * @offset:         For metadata extents the offset is ignored and is currently
2029 *                  always passed as 0. For data extents it is the fileoffset
2030 *                  this extent belongs to.
2031 *
2032 * @refs_to_add     Number of references to add
2033 *
2034 * @extent_op       Pointer to a structure, holding information necessary when
2035 *                  updating a tree block's flags
2036 *
2037 */
2038static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2039                                  struct btrfs_delayed_ref_node *node,
2040                                  u64 parent, u64 root_objectid,
2041                                  u64 owner, u64 offset, int refs_to_add,
2042                                  struct btrfs_delayed_extent_op *extent_op)
2043{
2044        struct btrfs_path *path;
2045        struct extent_buffer *leaf;
2046        struct btrfs_extent_item *item;
2047        struct btrfs_key key;
2048        u64 bytenr = node->bytenr;
2049        u64 num_bytes = node->num_bytes;
2050        u64 refs;
2051        int ret;
2052
2053        path = btrfs_alloc_path();
2054        if (!path)
2055                return -ENOMEM;
2056
2057        path->reada = READA_FORWARD;
2058        path->leave_spinning = 1;
2059        /* this will setup the path even if it fails to insert the back ref */
2060        ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2061                                           parent, root_objectid, owner,
2062                                           offset, refs_to_add, extent_op);
2063        if ((ret < 0 && ret != -EAGAIN) || !ret)
2064                goto out;
2065
2066        /*
2067         * Ok we had -EAGAIN which means we didn't have space to insert and
2068         * inline extent ref, so just update the reference count and add a
2069         * normal backref.
2070         */
2071        leaf = path->nodes[0];
2072        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2073        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2074        refs = btrfs_extent_refs(leaf, item);
2075        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2076        if (extent_op)
2077                __run_delayed_extent_op(extent_op, leaf, item);
2078
2079        btrfs_mark_buffer_dirty(leaf);
2080        btrfs_release_path(path);
2081
2082        path->reada = READA_FORWARD;
2083        path->leave_spinning = 1;
2084        /* now insert the actual backref */
2085        ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2086                                    owner, offset, refs_to_add);
2087        if (ret)
2088                btrfs_abort_transaction(trans, ret);
2089out:
2090        btrfs_free_path(path);
2091        return ret;
2092}
2093
2094static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2095                                struct btrfs_delayed_ref_node *node,
2096                                struct btrfs_delayed_extent_op *extent_op,
2097                                int insert_reserved)
2098{
2099        int ret = 0;
2100        struct btrfs_delayed_data_ref *ref;
2101        struct btrfs_key ins;
2102        u64 parent = 0;
2103        u64 ref_root = 0;
2104        u64 flags = 0;
2105
2106        ins.objectid = node->bytenr;
2107        ins.offset = node->num_bytes;
2108        ins.type = BTRFS_EXTENT_ITEM_KEY;
2109
2110        ref = btrfs_delayed_node_to_data_ref(node);
2111        trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2112
2113        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2114                parent = ref->parent;
2115        ref_root = ref->root;
2116
2117        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2118                if (extent_op)
2119                        flags |= extent_op->flags_to_set;
2120                ret = alloc_reserved_file_extent(trans, parent, ref_root,
2121                                                 flags, ref->objectid,
2122                                                 ref->offset, &ins,
2123                                                 node->ref_mod);
2124        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2125                ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2126                                             ref->objectid, ref->offset,
2127                                             node->ref_mod, extent_op);
2128        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2129                ret = __btrfs_free_extent(trans, node, parent,
2130                                          ref_root, ref->objectid,
2131                                          ref->offset, node->ref_mod,
2132                                          extent_op);
2133        } else {
2134                BUG();
2135        }
2136        return ret;
2137}
2138
2139static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2140                                    struct extent_buffer *leaf,
2141                                    struct btrfs_extent_item *ei)
2142{
2143        u64 flags = btrfs_extent_flags(leaf, ei);
2144        if (extent_op->update_flags) {
2145                flags |= extent_op->flags_to_set;
2146                btrfs_set_extent_flags(leaf, ei, flags);
2147        }
2148
2149        if (extent_op->update_key) {
2150                struct btrfs_tree_block_info *bi;
2151                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2152                bi = (struct btrfs_tree_block_info *)(ei + 1);
2153                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2154        }
2155}
2156
2157static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2158                                 struct btrfs_delayed_ref_head *head,
2159                                 struct btrfs_delayed_extent_op *extent_op)
2160{
2161        struct btrfs_fs_info *fs_info = trans->fs_info;
2162        struct btrfs_key key;
2163        struct btrfs_path *path;
2164        struct btrfs_extent_item *ei;
2165        struct extent_buffer *leaf;
2166        u32 item_size;
2167        int ret;
2168        int err = 0;
2169        int metadata = !extent_op->is_data;
2170
2171        if (trans->aborted)
2172                return 0;
2173
2174        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2175                metadata = 0;
2176
2177        path = btrfs_alloc_path();
2178        if (!path)
2179                return -ENOMEM;
2180
2181        key.objectid = head->bytenr;
2182
2183        if (metadata) {
2184                key.type = BTRFS_METADATA_ITEM_KEY;
2185                key.offset = extent_op->level;
2186        } else {
2187                key.type = BTRFS_EXTENT_ITEM_KEY;
2188                key.offset = head->num_bytes;
2189        }
2190
2191again:
2192        path->reada = READA_FORWARD;
2193        path->leave_spinning = 1;
2194        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2195        if (ret < 0) {
2196                err = ret;
2197                goto out;
2198        }
2199        if (ret > 0) {
2200                if (metadata) {
2201                        if (path->slots[0] > 0) {
2202                                path->slots[0]--;
2203                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2204                                                      path->slots[0]);
2205                                if (key.objectid == head->bytenr &&
2206                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2207                                    key.offset == head->num_bytes)
2208                                        ret = 0;
2209                        }
2210                        if (ret > 0) {
2211                                btrfs_release_path(path);
2212                                metadata = 0;
2213
2214                                key.objectid = head->bytenr;
2215                                key.offset = head->num_bytes;
2216                                key.type = BTRFS_EXTENT_ITEM_KEY;
2217                                goto again;
2218                        }
2219                } else {
2220                        err = -EIO;
2221                        goto out;
2222                }
2223        }
2224
2225        leaf = path->nodes[0];
2226        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2227
2228        if (unlikely(item_size < sizeof(*ei))) {
2229                err = -EINVAL;
2230                btrfs_print_v0_err(fs_info);
2231                btrfs_abort_transaction(trans, err);
2232                goto out;
2233        }
2234
2235        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2236        __run_delayed_extent_op(extent_op, leaf, ei);
2237
2238        btrfs_mark_buffer_dirty(leaf);
2239out:
2240        btrfs_free_path(path);
2241        return err;
2242}
2243
2244static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2245                                struct btrfs_delayed_ref_node *node,
2246                                struct btrfs_delayed_extent_op *extent_op,
2247                                int insert_reserved)
2248{
2249        int ret = 0;
2250        struct btrfs_delayed_tree_ref *ref;
2251        u64 parent = 0;
2252        u64 ref_root = 0;
2253
2254        ref = btrfs_delayed_node_to_tree_ref(node);
2255        trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2256
2257        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2258                parent = ref->parent;
2259        ref_root = ref->root;
2260
2261        if (node->ref_mod != 1) {
2262                btrfs_err(trans->fs_info,
2263        "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2264                          node->bytenr, node->ref_mod, node->action, ref_root,
2265                          parent);
2266                return -EIO;
2267        }
2268        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2269                BUG_ON(!extent_op || !extent_op->update_flags);
2270                ret = alloc_reserved_tree_block(trans, node, extent_op);
2271        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2272                ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2273                                             ref->level, 0, 1, extent_op);
2274        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2275                ret = __btrfs_free_extent(trans, node, parent, ref_root,
2276                                          ref->level, 0, 1, extent_op);
2277        } else {
2278                BUG();
2279        }
2280        return ret;
2281}
2282
2283/* helper function to actually process a single delayed ref entry */
2284static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2285                               struct btrfs_delayed_ref_node *node,
2286                               struct btrfs_delayed_extent_op *extent_op,
2287                               int insert_reserved)
2288{
2289        int ret = 0;
2290
2291        if (trans->aborted) {
2292                if (insert_reserved)
2293                        btrfs_pin_extent(trans->fs_info, node->bytenr,
2294                                         node->num_bytes, 1);
2295                return 0;
2296        }
2297
2298        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2299            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2300                ret = run_delayed_tree_ref(trans, node, extent_op,
2301                                           insert_reserved);
2302        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2303                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2304                ret = run_delayed_data_ref(trans, node, extent_op,
2305                                           insert_reserved);
2306        else
2307                BUG();
2308        if (ret && insert_reserved)
2309                btrfs_pin_extent(trans->fs_info, node->bytenr,
2310                                 node->num_bytes, 1);
2311        return ret;
2312}
2313
2314static inline struct btrfs_delayed_ref_node *
2315select_delayed_ref(struct btrfs_delayed_ref_head *head)
2316{
2317        struct btrfs_delayed_ref_node *ref;
2318
2319        if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2320                return NULL;
2321
2322        /*
2323         * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2324         * This is to prevent a ref count from going down to zero, which deletes
2325         * the extent item from the extent tree, when there still are references
2326         * to add, which would fail because they would not find the extent item.
2327         */
2328        if (!list_empty(&head->ref_add_list))
2329                return list_first_entry(&head->ref_add_list,
2330                                struct btrfs_delayed_ref_node, add_list);
2331
2332        ref = rb_entry(rb_first_cached(&head->ref_tree),
2333                       struct btrfs_delayed_ref_node, ref_node);
2334        ASSERT(list_empty(&ref->add_list));
2335        return ref;
2336}
2337
2338static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2339                                      struct btrfs_delayed_ref_head *head)
2340{
2341        spin_lock(&delayed_refs->lock);
2342        head->processing = 0;
2343        delayed_refs->num_heads_ready++;
2344        spin_unlock(&delayed_refs->lock);
2345        btrfs_delayed_ref_unlock(head);
2346}
2347
2348static struct btrfs_delayed_extent_op *cleanup_extent_op(
2349                                struct btrfs_delayed_ref_head *head)
2350{
2351        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2352
2353        if (!extent_op)
2354                return NULL;
2355
2356        if (head->must_insert_reserved) {
2357                head->extent_op = NULL;
2358                btrfs_free_delayed_extent_op(extent_op);
2359                return NULL;
2360        }
2361        return extent_op;
2362}
2363
2364static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2365                                     struct btrfs_delayed_ref_head *head)
2366{
2367        struct btrfs_delayed_extent_op *extent_op;
2368        int ret;
2369
2370        extent_op = cleanup_extent_op(head);
2371        if (!extent_op)
2372                return 0;
2373        head->extent_op = NULL;
2374        spin_unlock(&head->lock);
2375        ret = run_delayed_extent_op(trans, head, extent_op);
2376        btrfs_free_delayed_extent_op(extent_op);
2377        return ret ? ret : 1;
2378}
2379
2380void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2381                                  struct btrfs_delayed_ref_root *delayed_refs,
2382                                  struct btrfs_delayed_ref_head *head)
2383{
2384        int nr_items = 1;       /* Dropping this ref head update. */
2385
2386        if (head->total_ref_mod < 0) {
2387                struct btrfs_space_info *space_info;
2388                u64 flags;
2389
2390                if (head->is_data)
2391                        flags = BTRFS_BLOCK_GROUP_DATA;
2392                else if (head->is_system)
2393                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
2394                else
2395                        flags = BTRFS_BLOCK_GROUP_METADATA;
2396                space_info = btrfs_find_space_info(fs_info, flags);
2397                ASSERT(space_info);
2398                percpu_counter_add_batch(&space_info->total_bytes_pinned,
2399                                   -head->num_bytes,
2400                                   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2401
2402                /*
2403                 * We had csum deletions accounted for in our delayed refs rsv,
2404                 * we need to drop the csum leaves for this update from our
2405                 * delayed_refs_rsv.
2406                 */
2407                if (head->is_data) {
2408                        spin_lock(&delayed_refs->lock);
2409                        delayed_refs->pending_csums -= head->num_bytes;
2410                        spin_unlock(&delayed_refs->lock);
2411                        nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2412                                head->num_bytes);
2413                }
2414        }
2415
2416        btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2417}
2418
2419static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2420                            struct btrfs_delayed_ref_head *head)
2421{
2422
2423        struct btrfs_fs_info *fs_info = trans->fs_info;
2424        struct btrfs_delayed_ref_root *delayed_refs;
2425        int ret;
2426
2427        delayed_refs = &trans->transaction->delayed_refs;
2428
2429        ret = run_and_cleanup_extent_op(trans, head);
2430        if (ret < 0) {
2431                unselect_delayed_ref_head(delayed_refs, head);
2432                btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433                return ret;
2434        } else if (ret) {
2435                return ret;
2436        }
2437
2438        /*
2439         * Need to drop our head ref lock and re-acquire the delayed ref lock
2440         * and then re-check to make sure nobody got added.
2441         */
2442        spin_unlock(&head->lock);
2443        spin_lock(&delayed_refs->lock);
2444        spin_lock(&head->lock);
2445        if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2446                spin_unlock(&head->lock);
2447                spin_unlock(&delayed_refs->lock);
2448                return 1;
2449        }
2450        btrfs_delete_ref_head(delayed_refs, head);
2451        spin_unlock(&head->lock);
2452        spin_unlock(&delayed_refs->lock);
2453
2454        if (head->must_insert_reserved) {
2455                btrfs_pin_extent(fs_info, head->bytenr,
2456                                 head->num_bytes, 1);
2457                if (head->is_data) {
2458                        ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2459                                              head->num_bytes);
2460                }
2461        }
2462
2463        btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2464
2465        trace_run_delayed_ref_head(fs_info, head, 0);
2466        btrfs_delayed_ref_unlock(head);
2467        btrfs_put_delayed_ref_head(head);
2468        return 0;
2469}
2470
2471static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2472                                        struct btrfs_trans_handle *trans)
2473{
2474        struct btrfs_delayed_ref_root *delayed_refs =
2475                &trans->transaction->delayed_refs;
2476        struct btrfs_delayed_ref_head *head = NULL;
2477        int ret;
2478
2479        spin_lock(&delayed_refs->lock);
2480        head = btrfs_select_ref_head(delayed_refs);
2481        if (!head) {
2482                spin_unlock(&delayed_refs->lock);
2483                return head;
2484        }
2485
2486        /*
2487         * Grab the lock that says we are going to process all the refs for
2488         * this head
2489         */
2490        ret = btrfs_delayed_ref_lock(delayed_refs, head);
2491        spin_unlock(&delayed_refs->lock);
2492
2493        /*
2494         * We may have dropped the spin lock to get the head mutex lock, and
2495         * that might have given someone else time to free the head.  If that's
2496         * true, it has been removed from our list and we can move on.
2497         */
2498        if (ret == -EAGAIN)
2499                head = ERR_PTR(-EAGAIN);
2500
2501        return head;
2502}
2503
2504static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2505                                    struct btrfs_delayed_ref_head *locked_ref,
2506                                    unsigned long *run_refs)
2507{
2508        struct btrfs_fs_info *fs_info = trans->fs_info;
2509        struct btrfs_delayed_ref_root *delayed_refs;
2510        struct btrfs_delayed_extent_op *extent_op;
2511        struct btrfs_delayed_ref_node *ref;
2512        int must_insert_reserved = 0;
2513        int ret;
2514
2515        delayed_refs = &trans->transaction->delayed_refs;
2516
2517        lockdep_assert_held(&locked_ref->mutex);
2518        lockdep_assert_held(&locked_ref->lock);
2519
2520        while ((ref = select_delayed_ref(locked_ref))) {
2521                if (ref->seq &&
2522                    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2523                        spin_unlock(&locked_ref->lock);
2524                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2525                        return -EAGAIN;
2526                }
2527
2528                (*run_refs)++;
2529                ref->in_tree = 0;
2530                rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2531                RB_CLEAR_NODE(&ref->ref_node);
2532                if (!list_empty(&ref->add_list))
2533                        list_del(&ref->add_list);
2534                /*
2535                 * When we play the delayed ref, also correct the ref_mod on
2536                 * head
2537                 */
2538                switch (ref->action) {
2539                case BTRFS_ADD_DELAYED_REF:
2540                case BTRFS_ADD_DELAYED_EXTENT:
2541                        locked_ref->ref_mod -= ref->ref_mod;
2542                        break;
2543                case BTRFS_DROP_DELAYED_REF:
2544                        locked_ref->ref_mod += ref->ref_mod;
2545                        break;
2546                default:
2547                        WARN_ON(1);
2548                }
2549                atomic_dec(&delayed_refs->num_entries);
2550
2551                /*
2552                 * Record the must_insert_reserved flag before we drop the
2553                 * spin lock.
2554                 */
2555                must_insert_reserved = locked_ref->must_insert_reserved;
2556                locked_ref->must_insert_reserved = 0;
2557
2558                extent_op = locked_ref->extent_op;
2559                locked_ref->extent_op = NULL;
2560                spin_unlock(&locked_ref->lock);
2561
2562                ret = run_one_delayed_ref(trans, ref, extent_op,
2563                                          must_insert_reserved);
2564
2565                btrfs_free_delayed_extent_op(extent_op);
2566                if (ret) {
2567                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2568                        btrfs_put_delayed_ref(ref);
2569                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2570                                    ret);
2571                        return ret;
2572                }
2573
2574                btrfs_put_delayed_ref(ref);
2575                cond_resched();
2576
2577                spin_lock(&locked_ref->lock);
2578                btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2579        }
2580
2581        return 0;
2582}
2583
2584/*
2585 * Returns 0 on success or if called with an already aborted transaction.
2586 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2587 */
2588static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2589                                             unsigned long nr)
2590{
2591        struct btrfs_fs_info *fs_info = trans->fs_info;
2592        struct btrfs_delayed_ref_root *delayed_refs;
2593        struct btrfs_delayed_ref_head *locked_ref = NULL;
2594        ktime_t start = ktime_get();
2595        int ret;
2596        unsigned long count = 0;
2597        unsigned long actual_count = 0;
2598
2599        delayed_refs = &trans->transaction->delayed_refs;
2600        do {
2601                if (!locked_ref) {
2602                        locked_ref = btrfs_obtain_ref_head(trans);
2603                        if (IS_ERR_OR_NULL(locked_ref)) {
2604                                if (PTR_ERR(locked_ref) == -EAGAIN) {
2605                                        continue;
2606                                } else {
2607                                        break;
2608                                }
2609                        }
2610                        count++;
2611                }
2612                /*
2613                 * We need to try and merge add/drops of the same ref since we
2614                 * can run into issues with relocate dropping the implicit ref
2615                 * and then it being added back again before the drop can
2616                 * finish.  If we merged anything we need to re-loop so we can
2617                 * get a good ref.
2618                 * Or we can get node references of the same type that weren't
2619                 * merged when created due to bumps in the tree mod seq, and
2620                 * we need to merge them to prevent adding an inline extent
2621                 * backref before dropping it (triggering a BUG_ON at
2622                 * insert_inline_extent_backref()).
2623                 */
2624                spin_lock(&locked_ref->lock);
2625                btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2626
2627                ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2628                                                      &actual_count);
2629                if (ret < 0 && ret != -EAGAIN) {
2630                        /*
2631                         * Error, btrfs_run_delayed_refs_for_head already
2632                         * unlocked everything so just bail out
2633                         */
2634                        return ret;
2635                } else if (!ret) {
2636                        /*
2637                         * Success, perform the usual cleanup of a processed
2638                         * head
2639                         */
2640                        ret = cleanup_ref_head(trans, locked_ref);
2641                        if (ret > 0 ) {
2642                                /* We dropped our lock, we need to loop. */
2643                                ret = 0;
2644                                continue;
2645                        } else if (ret) {
2646                                return ret;
2647                        }
2648                }
2649
2650                /*
2651                 * Either success case or btrfs_run_delayed_refs_for_head
2652                 * returned -EAGAIN, meaning we need to select another head
2653                 */
2654
2655                locked_ref = NULL;
2656                cond_resched();
2657        } while ((nr != -1 && count < nr) || locked_ref);
2658
2659        /*
2660         * We don't want to include ref heads since we can have empty ref heads
2661         * and those will drastically skew our runtime down since we just do
2662         * accounting, no actual extent tree updates.
2663         */
2664        if (actual_count > 0) {
2665                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666                u64 avg;
2667
2668                /*
2669                 * We weigh the current average higher than our current runtime
2670                 * to avoid large swings in the average.
2671                 */
2672                spin_lock(&delayed_refs->lock);
2673                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2675                spin_unlock(&delayed_refs->lock);
2676        }
2677        return 0;
2678}
2679
2680#ifdef SCRAMBLE_DELAYED_REFS
2681/*
2682 * Normally delayed refs get processed in ascending bytenr order. This
2683 * correlates in most cases to the order added. To expose dependencies on this
2684 * order, we start to process the tree in the middle instead of the beginning
2685 */
2686static u64 find_middle(struct rb_root *root)
2687{
2688        struct rb_node *n = root->rb_node;
2689        struct btrfs_delayed_ref_node *entry;
2690        int alt = 1;
2691        u64 middle;
2692        u64 first = 0, last = 0;
2693
2694        n = rb_first(root);
2695        if (n) {
2696                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697                first = entry->bytenr;
2698        }
2699        n = rb_last(root);
2700        if (n) {
2701                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702                last = entry->bytenr;
2703        }
2704        n = root->rb_node;
2705
2706        while (n) {
2707                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708                WARN_ON(!entry->in_tree);
2709
2710                middle = entry->bytenr;
2711
2712                if (alt)
2713                        n = n->rb_left;
2714                else
2715                        n = n->rb_right;
2716
2717                alt = 1 - alt;
2718        }
2719        return middle;
2720}
2721#endif
2722
2723static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2724{
2725        u64 num_bytes;
2726
2727        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728                             sizeof(struct btrfs_extent_inline_ref));
2729        if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2730                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731
2732        /*
2733         * We don't ever fill up leaves all the way so multiply by 2 just to be
2734         * closer to what we're really going to want to use.
2735         */
2736        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2737}
2738
2739/*
2740 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741 * would require to store the csums for that many bytes.
2742 */
2743u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2744{
2745        u64 csum_size;
2746        u64 num_csums_per_leaf;
2747        u64 num_csums;
2748
2749        csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2750        num_csums_per_leaf = div64_u64(csum_size,
2751                        (u64)btrfs_super_csum_size(fs_info->super_copy));
2752        num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2753        num_csums += num_csums_per_leaf - 1;
2754        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755        return num_csums;
2756}
2757
2758/*
2759 * this starts processing the delayed reference count updates and
2760 * extent insertions we have queued up so far.  count can be
2761 * 0, which means to process everything in the tree at the start
2762 * of the run (but not newly added entries), or it can be some target
2763 * number you'd like to process.
2764 *
2765 * Returns 0 on success or if called with an aborted transaction
2766 * Returns <0 on error and aborts the transaction
2767 */
2768int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2769                           unsigned long count)
2770{
2771        struct btrfs_fs_info *fs_info = trans->fs_info;
2772        struct rb_node *node;
2773        struct btrfs_delayed_ref_root *delayed_refs;
2774        struct btrfs_delayed_ref_head *head;
2775        int ret;
2776        int run_all = count == (unsigned long)-1;
2777
2778        /* We'll clean this up in btrfs_cleanup_transaction */
2779        if (trans->aborted)
2780                return 0;
2781
2782        if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2783                return 0;
2784
2785        delayed_refs = &trans->transaction->delayed_refs;
2786        if (count == 0)
2787                count = atomic_read(&delayed_refs->num_entries) * 2;
2788
2789again:
2790#ifdef SCRAMBLE_DELAYED_REFS
2791        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2792#endif
2793        ret = __btrfs_run_delayed_refs(trans, count);
2794        if (ret < 0) {
2795                btrfs_abort_transaction(trans, ret);
2796                return ret;
2797        }
2798
2799        if (run_all) {
2800                btrfs_create_pending_block_groups(trans);
2801
2802                spin_lock(&delayed_refs->lock);
2803                node = rb_first_cached(&delayed_refs->href_root);
2804                if (!node) {
2805                        spin_unlock(&delayed_refs->lock);
2806                        goto out;
2807                }
2808                head = rb_entry(node, struct btrfs_delayed_ref_head,
2809                                href_node);
2810                refcount_inc(&head->refs);
2811                spin_unlock(&delayed_refs->lock);
2812
2813                /* Mutex was contended, block until it's released and retry. */
2814                mutex_lock(&head->mutex);
2815                mutex_unlock(&head->mutex);
2816
2817                btrfs_put_delayed_ref_head(head);
2818                cond_resched();
2819                goto again;
2820        }
2821out:
2822        return 0;
2823}
2824
2825int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2826                                u64 bytenr, u64 num_bytes, u64 flags,
2827                                int level, int is_data)
2828{
2829        struct btrfs_delayed_extent_op *extent_op;
2830        int ret;
2831
2832        extent_op = btrfs_alloc_delayed_extent_op();
2833        if (!extent_op)
2834                return -ENOMEM;
2835
2836        extent_op->flags_to_set = flags;
2837        extent_op->update_flags = true;
2838        extent_op->update_key = false;
2839        extent_op->is_data = is_data ? true : false;
2840        extent_op->level = level;
2841
2842        ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2843        if (ret)
2844                btrfs_free_delayed_extent_op(extent_op);
2845        return ret;
2846}
2847
2848static noinline int check_delayed_ref(struct btrfs_root *root,
2849                                      struct btrfs_path *path,
2850                                      u64 objectid, u64 offset, u64 bytenr)
2851{
2852        struct btrfs_delayed_ref_head *head;
2853        struct btrfs_delayed_ref_node *ref;
2854        struct btrfs_delayed_data_ref *data_ref;
2855        struct btrfs_delayed_ref_root *delayed_refs;
2856        struct btrfs_transaction *cur_trans;
2857        struct rb_node *node;
2858        int ret = 0;
2859
2860        spin_lock(&root->fs_info->trans_lock);
2861        cur_trans = root->fs_info->running_transaction;
2862        if (cur_trans)
2863                refcount_inc(&cur_trans->use_count);
2864        spin_unlock(&root->fs_info->trans_lock);
2865        if (!cur_trans)
2866                return 0;
2867
2868        delayed_refs = &cur_trans->delayed_refs;
2869        spin_lock(&delayed_refs->lock);
2870        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2871        if (!head) {
2872                spin_unlock(&delayed_refs->lock);
2873                btrfs_put_transaction(cur_trans);
2874                return 0;
2875        }
2876
2877        if (!mutex_trylock(&head->mutex)) {
2878                refcount_inc(&head->refs);
2879                spin_unlock(&delayed_refs->lock);
2880
2881                btrfs_release_path(path);
2882
2883                /*
2884                 * Mutex was contended, block until it's released and let
2885                 * caller try again
2886                 */
2887                mutex_lock(&head->mutex);
2888                mutex_unlock(&head->mutex);
2889                btrfs_put_delayed_ref_head(head);
2890                btrfs_put_transaction(cur_trans);
2891                return -EAGAIN;
2892        }
2893        spin_unlock(&delayed_refs->lock);
2894
2895        spin_lock(&head->lock);
2896        /*
2897         * XXX: We should replace this with a proper search function in the
2898         * future.
2899         */
2900        for (node = rb_first_cached(&head->ref_tree); node;
2901             node = rb_next(node)) {
2902                ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2903                /* If it's a shared ref we know a cross reference exists */
2904                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2905                        ret = 1;
2906                        break;
2907                }
2908
2909                data_ref = btrfs_delayed_node_to_data_ref(ref);
2910
2911                /*
2912                 * If our ref doesn't match the one we're currently looking at
2913                 * then we have a cross reference.
2914                 */
2915                if (data_ref->root != root->root_key.objectid ||
2916                    data_ref->objectid != objectid ||
2917                    data_ref->offset != offset) {
2918                        ret = 1;
2919                        break;
2920                }
2921        }
2922        spin_unlock(&head->lock);
2923        mutex_unlock(&head->mutex);
2924        btrfs_put_transaction(cur_trans);
2925        return ret;
2926}
2927
2928static noinline int check_committed_ref(struct btrfs_root *root,
2929                                        struct btrfs_path *path,
2930                                        u64 objectid, u64 offset, u64 bytenr)
2931{
2932        struct btrfs_fs_info *fs_info = root->fs_info;
2933        struct btrfs_root *extent_root = fs_info->extent_root;
2934        struct extent_buffer *leaf;
2935        struct btrfs_extent_data_ref *ref;
2936        struct btrfs_extent_inline_ref *iref;
2937        struct btrfs_extent_item *ei;
2938        struct btrfs_key key;
2939        u32 item_size;
2940        int type;
2941        int ret;
2942
2943        key.objectid = bytenr;
2944        key.offset = (u64)-1;
2945        key.type = BTRFS_EXTENT_ITEM_KEY;
2946
2947        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2948        if (ret < 0)
2949                goto out;
2950        BUG_ON(ret == 0); /* Corruption */
2951
2952        ret = -ENOENT;
2953        if (path->slots[0] == 0)
2954                goto out;
2955
2956        path->slots[0]--;
2957        leaf = path->nodes[0];
2958        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2959
2960        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2961                goto out;
2962
2963        ret = 1;
2964        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2965        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2966
2967        if (item_size != sizeof(*ei) +
2968            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2969                goto out;
2970
2971        if (btrfs_extent_generation(leaf, ei) <=
2972            btrfs_root_last_snapshot(&root->root_item))
2973                goto out;
2974
2975        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2976
2977        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2978        if (type != BTRFS_EXTENT_DATA_REF_KEY)
2979                goto out;
2980
2981        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2982        if (btrfs_extent_refs(leaf, ei) !=
2983            btrfs_extent_data_ref_count(leaf, ref) ||
2984            btrfs_extent_data_ref_root(leaf, ref) !=
2985            root->root_key.objectid ||
2986            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2987            btrfs_extent_data_ref_offset(leaf, ref) != offset)
2988                goto out;
2989
2990        ret = 0;
2991out:
2992        return ret;
2993}
2994
2995int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2996                          u64 bytenr)
2997{
2998        struct btrfs_path *path;
2999        int ret;
3000
3001        path = btrfs_alloc_path();
3002        if (!path)
3003                return -ENOMEM;
3004
3005        do {
3006                ret = check_committed_ref(root, path, objectid,
3007                                          offset, bytenr);
3008                if (ret && ret != -ENOENT)
3009                        goto out;
3010
3011                ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3012        } while (ret == -EAGAIN);
3013
3014out:
3015        btrfs_free_path(path);
3016        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3017                WARN_ON(ret > 0);
3018        return ret;
3019}
3020
3021static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3022                           struct btrfs_root *root,
3023                           struct extent_buffer *buf,
3024                           int full_backref, int inc)
3025{
3026        struct btrfs_fs_info *fs_info = root->fs_info;
3027        u64 bytenr;
3028        u64 num_bytes;
3029        u64 parent;
3030        u64 ref_root;
3031        u32 nritems;
3032        struct btrfs_key key;
3033        struct btrfs_file_extent_item *fi;
3034        struct btrfs_ref generic_ref = { 0 };
3035        bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
3036        int i;
3037        int action;
3038        int level;
3039        int ret = 0;
3040
3041        if (btrfs_is_testing(fs_info))
3042                return 0;
3043
3044        ref_root = btrfs_header_owner(buf);
3045        nritems = btrfs_header_nritems(buf);
3046        level = btrfs_header_level(buf);
3047
3048        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3049                return 0;
3050
3051        if (full_backref)
3052                parent = buf->start;
3053        else
3054                parent = 0;
3055        if (inc)
3056                action = BTRFS_ADD_DELAYED_REF;
3057        else
3058                action = BTRFS_DROP_DELAYED_REF;
3059
3060        for (i = 0; i < nritems; i++) {
3061                if (level == 0) {
3062                        btrfs_item_key_to_cpu(buf, &key, i);
3063                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3064                                continue;
3065                        fi = btrfs_item_ptr(buf, i,
3066                                            struct btrfs_file_extent_item);
3067                        if (btrfs_file_extent_type(buf, fi) ==
3068                            BTRFS_FILE_EXTENT_INLINE)
3069                                continue;
3070                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3071                        if (bytenr == 0)
3072                                continue;
3073
3074                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3075                        key.offset -= btrfs_file_extent_offset(buf, fi);
3076                        btrfs_init_generic_ref(&generic_ref, action, bytenr,
3077                                               num_bytes, parent);
3078                        generic_ref.real_root = root->root_key.objectid;
3079                        btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3080                                            key.offset);
3081                        generic_ref.skip_qgroup = for_reloc;
3082                        if (inc)
3083                                ret = btrfs_inc_extent_ref(trans, &generic_ref);
3084                        else
3085                                ret = btrfs_free_extent(trans, &generic_ref);
3086                        if (ret)
3087                                goto fail;
3088                } else {
3089                        bytenr = btrfs_node_blockptr(buf, i);
3090                        num_bytes = fs_info->nodesize;
3091                        btrfs_init_generic_ref(&generic_ref, action, bytenr,
3092                                               num_bytes, parent);
3093                        generic_ref.real_root = root->root_key.objectid;
3094                        btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3095                        generic_ref.skip_qgroup = for_reloc;
3096                        if (inc)
3097                                ret = btrfs_inc_extent_ref(trans, &generic_ref);
3098                        else
3099                                ret = btrfs_free_extent(trans, &generic_ref);
3100                        if (ret)
3101                                goto fail;
3102                }
3103        }
3104        return 0;
3105fail:
3106        return ret;
3107}
3108
3109int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3110                  struct extent_buffer *buf, int full_backref)
3111{
3112        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3113}
3114
3115int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3116                  struct extent_buffer *buf, int full_backref)
3117{
3118        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3119}
3120
3121static int write_one_cache_group(struct btrfs_trans_handle *trans,
3122                                 struct btrfs_path *path,
3123                                 struct btrfs_block_group_cache *cache)
3124{
3125        struct btrfs_fs_info *fs_info = trans->fs_info;
3126        int ret;
3127        struct btrfs_root *extent_root = fs_info->extent_root;
3128        unsigned long bi;
3129        struct extent_buffer *leaf;
3130
3131        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3132        if (ret) {
3133                if (ret > 0)
3134                        ret = -ENOENT;
3135                goto fail;
3136        }
3137
3138        leaf = path->nodes[0];
3139        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3140        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3141        btrfs_mark_buffer_dirty(leaf);
3142fail:
3143        btrfs_release_path(path);
3144        return ret;
3145
3146}
3147
3148static struct btrfs_block_group_cache *next_block_group(
3149                struct btrfs_block_group_cache *cache)
3150{
3151        struct btrfs_fs_info *fs_info = cache->fs_info;
3152        struct rb_node *node;
3153
3154        spin_lock(&fs_info->block_group_cache_lock);
3155
3156        /* If our block group was removed, we need a full search. */
3157        if (RB_EMPTY_NODE(&cache->cache_node)) {
3158                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3159
3160                spin_unlock(&fs_info->block_group_cache_lock);
3161                btrfs_put_block_group(cache);
3162                cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3163        }
3164        node = rb_next(&cache->cache_node);
3165        btrfs_put_block_group(cache);
3166        if (node) {
3167                cache = rb_entry(node, struct btrfs_block_group_cache,
3168                                 cache_node);
3169                btrfs_get_block_group(cache);
3170        } else
3171                cache = NULL;
3172        spin_unlock(&fs_info->block_group_cache_lock);
3173        return cache;
3174}
3175
3176static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3177                            struct btrfs_trans_handle *trans,
3178                            struct btrfs_path *path)
3179{
3180        struct btrfs_fs_info *fs_info = block_group->fs_info;
3181        struct btrfs_root *root = fs_info->tree_root;
3182        struct inode *inode = NULL;
3183        struct extent_changeset *data_reserved = NULL;
3184        u64 alloc_hint = 0;
3185        int dcs = BTRFS_DC_ERROR;
3186        u64 num_pages = 0;
3187        int retries = 0;
3188        int ret = 0;
3189
3190        /*
3191         * If this block group is smaller than 100 megs don't bother caching the
3192         * block group.
3193         */
3194        if (block_group->key.offset < (100 * SZ_1M)) {
3195                spin_lock(&block_group->lock);
3196                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3197                spin_unlock(&block_group->lock);
3198                return 0;
3199        }
3200
3201        if (trans->aborted)
3202                return 0;
3203again:
3204        inode = lookup_free_space_inode(block_group, path);
3205        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3206                ret = PTR_ERR(inode);
3207                btrfs_release_path(path);
3208                goto out;
3209        }
3210
3211        if (IS_ERR(inode)) {
3212                BUG_ON(retries);
3213                retries++;
3214
3215                if (block_group->ro)
3216                        goto out_free;
3217
3218                ret = create_free_space_inode(trans, block_group, path);
3219                if (ret)
3220                        goto out_free;
3221                goto again;
3222        }
3223
3224        /*
3225         * We want to set the generation to 0, that way if anything goes wrong
3226         * from here on out we know not to trust this cache when we load up next
3227         * time.
3228         */
3229        BTRFS_I(inode)->generation = 0;
3230        ret = btrfs_update_inode(trans, root, inode);
3231        if (ret) {
3232                /*
3233                 * So theoretically we could recover from this, simply set the
3234                 * super cache generation to 0 so we know to invalidate the
3235                 * cache, but then we'd have to keep track of the block groups
3236                 * that fail this way so we know we _have_ to reset this cache
3237                 * before the next commit or risk reading stale cache.  So to
3238                 * limit our exposure to horrible edge cases lets just abort the
3239                 * transaction, this only happens in really bad situations
3240                 * anyway.
3241                 */
3242                btrfs_abort_transaction(trans, ret);
3243                goto out_put;
3244        }
3245        WARN_ON(ret);
3246
3247        /* We've already setup this transaction, go ahead and exit */
3248        if (block_group->cache_generation == trans->transid &&
3249            i_size_read(inode)) {
3250                dcs = BTRFS_DC_SETUP;
3251                goto out_put;
3252        }
3253
3254        if (i_size_read(inode) > 0) {
3255                ret = btrfs_check_trunc_cache_free_space(fs_info,
3256                                        &fs_info->global_block_rsv);
3257                if (ret)
3258                        goto out_put;
3259
3260                ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3261                if (ret)
3262                        goto out_put;
3263        }
3264
3265        spin_lock(&block_group->lock);
3266        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3267            !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3268                /*
3269                 * don't bother trying to write stuff out _if_
3270                 * a) we're not cached,
3271                 * b) we're with nospace_cache mount option,
3272                 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3273                 */
3274                dcs = BTRFS_DC_WRITTEN;
3275                spin_unlock(&block_group->lock);
3276                goto out_put;
3277        }
3278        spin_unlock(&block_group->lock);
3279
3280        /*
3281         * We hit an ENOSPC when setting up the cache in this transaction, just
3282         * skip doing the setup, we've already cleared the cache so we're safe.
3283         */
3284        if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3285                ret = -ENOSPC;
3286                goto out_put;
3287        }
3288
3289        /*
3290         * Try to preallocate enough space based on how big the block group is.
3291         * Keep in mind this has to include any pinned space which could end up
3292         * taking up quite a bit since it's not folded into the other space
3293         * cache.
3294         */
3295        num_pages = div_u64(block_group->key.offset, SZ_256M);
3296        if (!num_pages)
3297                num_pages = 1;
3298
3299        num_pages *= 16;
3300        num_pages *= PAGE_SIZE;
3301
3302        ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3303        if (ret)
3304                goto out_put;
3305
3306        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3307                                              num_pages, num_pages,
3308                                              &alloc_hint);
3309        /*
3310         * Our cache requires contiguous chunks so that we don't modify a bunch
3311         * of metadata or split extents when writing the cache out, which means
3312         * we can enospc if we are heavily fragmented in addition to just normal
3313         * out of space conditions.  So if we hit this just skip setting up any
3314         * other block groups for this transaction, maybe we'll unpin enough
3315         * space the next time around.
3316         */
3317        if (!ret)
3318                dcs = BTRFS_DC_SETUP;
3319        else if (ret == -ENOSPC)
3320                set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3321
3322out_put:
3323        iput(inode);
3324out_free:
3325        btrfs_release_path(path);
3326out:
3327        spin_lock(&block_group->lock);
3328        if (!ret && dcs == BTRFS_DC_SETUP)
3329                block_group->cache_generation = trans->transid;
3330        block_group->disk_cache_state = dcs;
3331        spin_unlock(&block_group->lock);
3332
3333        extent_changeset_free(data_reserved);
3334        return ret;
3335}
3336
3337int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3338{
3339        struct btrfs_fs_info *fs_info = trans->fs_info;
3340        struct btrfs_block_group_cache *cache, *tmp;
3341        struct btrfs_transaction *cur_trans = trans->transaction;
3342        struct btrfs_path *path;
3343
3344        if (list_empty(&cur_trans->dirty_bgs) ||
3345            !btrfs_test_opt(fs_info, SPACE_CACHE))
3346                return 0;
3347
3348        path = btrfs_alloc_path();
3349        if (!path)
3350                return -ENOMEM;
3351
3352        /* Could add new block groups, use _safe just in case */
3353        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3354                                 dirty_list) {
3355                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3356                        cache_save_setup(cache, trans, path);
3357        }
3358
3359        btrfs_free_path(path);
3360        return 0;
3361}
3362
3363/*
3364 * transaction commit does final block group cache writeback during a
3365 * critical section where nothing is allowed to change the FS.  This is
3366 * required in order for the cache to actually match the block group,
3367 * but can introduce a lot of latency into the commit.
3368 *
3369 * So, btrfs_start_dirty_block_groups is here to kick off block group
3370 * cache IO.  There's a chance we'll have to redo some of it if the
3371 * block group changes again during the commit, but it greatly reduces
3372 * the commit latency by getting rid of the easy block groups while
3373 * we're still allowing others to join the commit.
3374 */
3375int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3376{
3377        struct btrfs_fs_info *fs_info = trans->fs_info;
3378        struct btrfs_block_group_cache *cache;
3379        struct btrfs_transaction *cur_trans = trans->transaction;
3380        int ret = 0;
3381        int should_put;
3382        struct btrfs_path *path = NULL;
3383        LIST_HEAD(dirty);
3384        struct list_head *io = &cur_trans->io_bgs;
3385        int num_started = 0;
3386        int loops = 0;
3387
3388        spin_lock(&cur_trans->dirty_bgs_lock);
3389        if (list_empty(&cur_trans->dirty_bgs)) {
3390                spin_unlock(&cur_trans->dirty_bgs_lock);
3391                return 0;
3392        }
3393        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3394        spin_unlock(&cur_trans->dirty_bgs_lock);
3395
3396again:
3397        /*
3398         * make sure all the block groups on our dirty list actually
3399         * exist
3400         */
3401        btrfs_create_pending_block_groups(trans);
3402
3403        if (!path) {
3404                path = btrfs_alloc_path();
3405                if (!path)
3406                        return -ENOMEM;
3407        }
3408
3409        /*
3410         * cache_write_mutex is here only to save us from balance or automatic
3411         * removal of empty block groups deleting this block group while we are
3412         * writing out the cache
3413         */
3414        mutex_lock(&trans->transaction->cache_write_mutex);
3415        while (!list_empty(&dirty)) {
3416                bool drop_reserve = true;
3417
3418                cache = list_first_entry(&dirty,
3419                                         struct btrfs_block_group_cache,
3420                                         dirty_list);
3421                /*
3422                 * this can happen if something re-dirties a block
3423                 * group that is already under IO.  Just wait for it to
3424                 * finish and then do it all again
3425                 */
3426                if (!list_empty(&cache->io_list)) {
3427                        list_del_init(&cache->io_list);
3428                        btrfs_wait_cache_io(trans, cache, path);
3429                        btrfs_put_block_group(cache);
3430                }
3431
3432
3433                /*
3434                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3435                 * if it should update the cache_state.  Don't delete
3436                 * until after we wait.
3437                 *
3438                 * Since we're not running in the commit critical section
3439                 * we need the dirty_bgs_lock to protect from update_block_group
3440                 */
3441                spin_lock(&cur_trans->dirty_bgs_lock);
3442                list_del_init(&cache->dirty_list);
3443                spin_unlock(&cur_trans->dirty_bgs_lock);
3444
3445                should_put = 1;
3446
3447                cache_save_setup(cache, trans, path);
3448
3449                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3450                        cache->io_ctl.inode = NULL;
3451                        ret = btrfs_write_out_cache(trans, cache, path);
3452                        if (ret == 0 && cache->io_ctl.inode) {
3453                                num_started++;
3454                                should_put = 0;
3455
3456                                /*
3457                                 * The cache_write_mutex is protecting the
3458                                 * io_list, also refer to the definition of
3459                                 * btrfs_transaction::io_bgs for more details
3460                                 */
3461                                list_add_tail(&cache->io_list, io);
3462                        } else {
3463                                /*
3464                                 * if we failed to write the cache, the
3465                                 * generation will be bad and life goes on
3466                                 */
3467                                ret = 0;
3468                        }
3469                }
3470                if (!ret) {
3471                        ret = write_one_cache_group(trans, path, cache);
3472                        /*
3473                         * Our block group might still be attached to the list
3474                         * of new block groups in the transaction handle of some
3475                         * other task (struct btrfs_trans_handle->new_bgs). This
3476                         * means its block group item isn't yet in the extent
3477                         * tree. If this happens ignore the error, as we will
3478                         * try again later in the critical section of the
3479                         * transaction commit.
3480                         */
3481                        if (ret == -ENOENT) {
3482                                ret = 0;
3483                                spin_lock(&cur_trans->dirty_bgs_lock);
3484                                if (list_empty(&cache->dirty_list)) {
3485                                        list_add_tail(&cache->dirty_list,
3486                                                      &cur_trans->dirty_bgs);
3487                                        btrfs_get_block_group(cache);
3488                                        drop_reserve = false;
3489                                }
3490                                spin_unlock(&cur_trans->dirty_bgs_lock);
3491                        } else if (ret) {
3492                                btrfs_abort_transaction(trans, ret);
3493                        }
3494                }
3495
3496                /* if it's not on the io list, we need to put the block group */
3497                if (should_put)
3498                        btrfs_put_block_group(cache);
3499                if (drop_reserve)
3500                        btrfs_delayed_refs_rsv_release(fs_info, 1);
3501
3502                if (ret)
3503                        break;
3504
3505                /*
3506                 * Avoid blocking other tasks for too long. It might even save
3507                 * us from writing caches for block groups that are going to be
3508                 * removed.
3509                 */
3510                mutex_unlock(&trans->transaction->cache_write_mutex);
3511                mutex_lock(&trans->transaction->cache_write_mutex);
3512        }
3513        mutex_unlock(&trans->transaction->cache_write_mutex);
3514
3515        /*
3516         * go through delayed refs for all the stuff we've just kicked off
3517         * and then loop back (just once)
3518         */
3519        ret = btrfs_run_delayed_refs(trans, 0);
3520        if (!ret && loops == 0) {
3521                loops++;
3522                spin_lock(&cur_trans->dirty_bgs_lock);
3523                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3524                /*
3525                 * dirty_bgs_lock protects us from concurrent block group
3526                 * deletes too (not just cache_write_mutex).
3527                 */
3528                if (!list_empty(&dirty)) {
3529                        spin_unlock(&cur_trans->dirty_bgs_lock);
3530                        goto again;
3531                }
3532                spin_unlock(&cur_trans->dirty_bgs_lock);
3533        } else if (ret < 0) {
3534                btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3535        }
3536
3537        btrfs_free_path(path);
3538        return ret;
3539}
3540
3541int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3542{
3543        struct btrfs_fs_info *fs_info = trans->fs_info;
3544        struct btrfs_block_group_cache *cache;
3545        struct btrfs_transaction *cur_trans = trans->transaction;
3546        int ret = 0;
3547        int should_put;
3548        struct btrfs_path *path;
3549        struct list_head *io = &cur_trans->io_bgs;
3550        int num_started = 0;
3551
3552        path = btrfs_alloc_path();
3553        if (!path)
3554                return -ENOMEM;
3555
3556        /*
3557         * Even though we are in the critical section of the transaction commit,
3558         * we can still have concurrent tasks adding elements to this
3559         * transaction's list of dirty block groups. These tasks correspond to
3560         * endio free space workers started when writeback finishes for a
3561         * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3562         * allocate new block groups as a result of COWing nodes of the root
3563         * tree when updating the free space inode. The writeback for the space
3564         * caches is triggered by an earlier call to
3565         * btrfs_start_dirty_block_groups() and iterations of the following
3566         * loop.
3567         * Also we want to do the cache_save_setup first and then run the
3568         * delayed refs to make sure we have the best chance at doing this all
3569         * in one shot.
3570         */
3571        spin_lock(&cur_trans->dirty_bgs_lock);
3572        while (!list_empty(&cur_trans->dirty_bgs)) {
3573                cache = list_first_entry(&cur_trans->dirty_bgs,
3574                                         struct btrfs_block_group_cache,
3575                                         dirty_list);
3576
3577                /*
3578                 * this can happen if cache_save_setup re-dirties a block
3579                 * group that is already under IO.  Just wait for it to
3580                 * finish and then do it all again
3581                 */
3582                if (!list_empty(&cache->io_list)) {
3583                        spin_unlock(&cur_trans->dirty_bgs_lock);
3584                        list_del_init(&cache->io_list);
3585                        btrfs_wait_cache_io(trans, cache, path);
3586                        btrfs_put_block_group(cache);
3587                        spin_lock(&cur_trans->dirty_bgs_lock);
3588                }
3589
3590                /*
3591                 * don't remove from the dirty list until after we've waited
3592                 * on any pending IO
3593                 */
3594                list_del_init(&cache->dirty_list);
3595                spin_unlock(&cur_trans->dirty_bgs_lock);
3596                should_put = 1;
3597
3598                cache_save_setup(cache, trans, path);
3599
3600                if (!ret)
3601                        ret = btrfs_run_delayed_refs(trans,
3602                                                     (unsigned long) -1);
3603
3604                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3605                        cache->io_ctl.inode = NULL;
3606                        ret = btrfs_write_out_cache(trans, cache, path);
3607                        if (ret == 0 && cache->io_ctl.inode) {
3608                                num_started++;
3609                                should_put = 0;
3610                                list_add_tail(&cache->io_list, io);
3611                        } else {
3612                                /*
3613                                 * if we failed to write the cache, the
3614                                 * generation will be bad and life goes on
3615                                 */
3616                                ret = 0;
3617                        }
3618                }
3619                if (!ret) {
3620                        ret = write_one_cache_group(trans, path, cache);
3621                        /*
3622                         * One of the free space endio workers might have
3623                         * created a new block group while updating a free space
3624                         * cache's inode (at inode.c:btrfs_finish_ordered_io())
3625                         * and hasn't released its transaction handle yet, in
3626                         * which case the new block group is still attached to
3627                         * its transaction handle and its creation has not
3628                         * finished yet (no block group item in the extent tree
3629                         * yet, etc). If this is the case, wait for all free
3630                         * space endio workers to finish and retry. This is a
3631                         * a very rare case so no need for a more efficient and
3632                         * complex approach.
3633                         */
3634                        if (ret == -ENOENT) {
3635                                wait_event(cur_trans->writer_wait,
3636                                   atomic_read(&cur_trans->num_writers) == 1);
3637                                ret = write_one_cache_group(trans, path, cache);
3638                        }
3639                        if (ret)
3640                                btrfs_abort_transaction(trans, ret);
3641                }
3642
3643                /* if its not on the io list, we need to put the block group */
3644                if (should_put)
3645                        btrfs_put_block_group(cache);
3646                btrfs_delayed_refs_rsv_release(fs_info, 1);
3647                spin_lock(&cur_trans->dirty_bgs_lock);
3648        }
3649        spin_unlock(&cur_trans->dirty_bgs_lock);
3650
3651        /*
3652         * Refer to the definition of io_bgs member for details why it's safe
3653         * to use it without any locking
3654         */
3655        while (!list_empty(io)) {
3656                cache = list_first_entry(io, struct btrfs_block_group_cache,
3657                                         io_list);
3658                list_del_init(&cache->io_list);
3659                btrfs_wait_cache_io(trans, cache, path);
3660                btrfs_put_block_group(cache);
3661        }
3662
3663        btrfs_free_path(path);
3664        return ret;
3665}
3666
3667int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3668{
3669        struct btrfs_block_group_cache *block_group;
3670        int readonly = 0;
3671
3672        block_group = btrfs_lookup_block_group(fs_info, bytenr);
3673        if (!block_group || block_group->ro)
3674                readonly = 1;
3675        if (block_group)
3676                btrfs_put_block_group(block_group);
3677        return readonly;
3678}
3679
3680bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3681{
3682        struct btrfs_block_group_cache *bg;
3683        bool ret = true;
3684
3685        bg = btrfs_lookup_block_group(fs_info, bytenr);
3686        if (!bg)
3687                return false;
3688
3689        spin_lock(&bg->lock);
3690        if (bg->ro)
3691                ret = false;
3692        else
3693                atomic_inc(&bg->nocow_writers);
3694        spin_unlock(&bg->lock);
3695
3696        /* no put on block group, done by btrfs_dec_nocow_writers */
3697        if (!ret)
3698                btrfs_put_block_group(bg);
3699
3700        return ret;
3701
3702}
3703
3704void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3705{
3706        struct btrfs_block_group_cache *bg;
3707
3708        bg = btrfs_lookup_block_group(fs_info, bytenr);
3709        ASSERT(bg);
3710        if (atomic_dec_and_test(&bg->nocow_writers))
3711                wake_up_var(&bg->nocow_writers);
3712        /*
3713         * Once for our lookup and once for the lookup done by a previous call
3714         * to btrfs_inc_nocow_writers()
3715         */
3716        btrfs_put_block_group(bg);
3717        btrfs_put_block_group(bg);
3718}
3719
3720void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3721{
3722        wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3723}
3724
3725static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3726{
3727        u64 extra_flags = chunk_to_extended(flags) &
3728                                BTRFS_EXTENDED_PROFILE_MASK;
3729
3730        write_seqlock(&fs_info->profiles_lock);
3731        if (flags & BTRFS_BLOCK_GROUP_DATA)
3732                fs_info->avail_data_alloc_bits |= extra_flags;
3733        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3734                fs_info->avail_metadata_alloc_bits |= extra_flags;
3735        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3736                fs_info->avail_system_alloc_bits |= extra_flags;
3737        write_sequnlock(&fs_info->profiles_lock);
3738}
3739
3740/*
3741 * returns target flags in extended format or 0 if restripe for this
3742 * chunk_type is not in progress
3743 *
3744 * should be called with balance_lock held
3745 */
3746static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3747{
3748        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3749        u64 target = 0;
3750
3751        if (!bctl)
3752                return 0;
3753
3754        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3755            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3756                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3757        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3758                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3759                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3760        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3761                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3762                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3763        }
3764
3765        return target;
3766}
3767
3768/*
3769 * @flags: available profiles in extended format (see ctree.h)
3770 *
3771 * Returns reduced profile in chunk format.  If profile changing is in
3772 * progress (either running or paused) picks the target profile (if it's
3773 * already available), otherwise falls back to plain reducing.
3774 */
3775static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3776{
3777        u64 num_devices = fs_info->fs_devices->rw_devices;
3778        u64 target;
3779        u64 raid_type;
3780        u64 allowed = 0;
3781
3782        /*
3783         * see if restripe for this chunk_type is in progress, if so
3784         * try to reduce to the target profile
3785         */
3786        spin_lock(&fs_info->balance_lock);
3787        target = get_restripe_target(fs_info, flags);
3788        if (target) {
3789                /* pick target profile only if it's already available */
3790                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3791                        spin_unlock(&fs_info->balance_lock);
3792                        return extended_to_chunk(target);
3793                }
3794        }
3795        spin_unlock(&fs_info->balance_lock);
3796
3797        /* First, mask out the RAID levels which aren't possible */
3798        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3799                if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3800                        allowed |= btrfs_raid_array[raid_type].bg_flag;
3801        }
3802        allowed &= flags;
3803
3804        if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3805                allowed = BTRFS_BLOCK_GROUP_RAID6;
3806        else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3807                allowed = BTRFS_BLOCK_GROUP_RAID5;
3808        else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3809                allowed = BTRFS_BLOCK_GROUP_RAID10;
3810        else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3811                allowed = BTRFS_BLOCK_GROUP_RAID1;
3812        else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3813                allowed = BTRFS_BLOCK_GROUP_RAID0;
3814
3815        flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3816
3817        return extended_to_chunk(flags | allowed);
3818}
3819
3820static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
3821{
3822        unsigned seq;
3823        u64 flags;
3824
3825        do {
3826                flags = orig_flags;
3827                seq = read_seqbegin(&fs_info->profiles_lock);
3828
3829                if (flags & BTRFS_BLOCK_GROUP_DATA)
3830                        flags |= fs_info->avail_data_alloc_bits;
3831                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3832                        flags |= fs_info->avail_system_alloc_bits;
3833                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3834                        flags |= fs_info->avail_metadata_alloc_bits;
3835        } while (read_seqretry(&fs_info->profiles_lock, seq));
3836
3837        return btrfs_reduce_alloc_profile(fs_info, flags);
3838}
3839
3840static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
3841{
3842        struct btrfs_fs_info *fs_info = root->fs_info;
3843        u64 flags;
3844        u64 ret;
3845
3846        if (data)
3847                flags = BTRFS_BLOCK_GROUP_DATA;
3848        else if (root == fs_info->chunk_root)
3849                flags = BTRFS_BLOCK_GROUP_SYSTEM;
3850        else
3851                flags = BTRFS_BLOCK_GROUP_METADATA;
3852
3853        ret = get_alloc_profile(fs_info, flags);
3854        return ret;
3855}
3856
3857u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
3858{
3859        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
3860}
3861
3862u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
3863{
3864        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3865}
3866
3867u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
3868{
3869        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3870}
3871
3872static void force_metadata_allocation(struct btrfs_fs_info *info)
3873{
3874        struct list_head *head = &info->space_info;
3875        struct btrfs_space_info *found;
3876
3877        rcu_read_lock();
3878        list_for_each_entry_rcu(found, head, list) {
3879                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3880                        found->force_alloc = CHUNK_ALLOC_FORCE;
3881        }
3882        rcu_read_unlock();
3883}
3884
3885static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3886                              struct btrfs_space_info *sinfo, int force)
3887{
3888        u64 bytes_used = btrfs_space_info_used(sinfo, false);
3889        u64 thresh;
3890
3891        if (force == CHUNK_ALLOC_FORCE)
3892                return 1;
3893
3894        /*
3895         * in limited mode, we want to have some free space up to
3896         * about 1% of the FS size.
3897         */
3898        if (force == CHUNK_ALLOC_LIMITED) {
3899                thresh = btrfs_super_total_bytes(fs_info->super_copy);
3900                thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3901
3902                if (sinfo->total_bytes - bytes_used < thresh)
3903                        return 1;
3904        }
3905
3906        if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3907                return 0;
3908        return 1;
3909}
3910
3911static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3912{
3913        u64 num_dev;
3914
3915        num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3916        if (!num_dev)
3917                num_dev = fs_info->fs_devices->rw_devices;
3918
3919        return num_dev;
3920}
3921
3922/*
3923 * If @is_allocation is true, reserve space in the system space info necessary
3924 * for allocating a chunk, otherwise if it's false, reserve space necessary for
3925 * removing a chunk.
3926 */
3927void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3928{
3929        struct btrfs_fs_info *fs_info = trans->fs_info;
3930        struct btrfs_space_info *info;
3931        u64 left;
3932        u64 thresh;
3933        int ret = 0;
3934        u64 num_devs;
3935
3936        /*
3937         * Needed because we can end up allocating a system chunk and for an
3938         * atomic and race free space reservation in the chunk block reserve.
3939         */
3940        lockdep_assert_held(&fs_info->chunk_mutex);
3941
3942        info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3943        spin_lock(&info->lock);
3944        left = info->total_bytes - btrfs_space_info_used(info, true);
3945        spin_unlock(&info->lock);
3946
3947        num_devs = get_profile_num_devs(fs_info, type);
3948
3949        /* num_devs device items to update and 1 chunk item to add or remove */
3950        thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
3951                btrfs_calc_trans_metadata_size(fs_info, 1);
3952
3953        if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3954                btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3955                           left, thresh, type);
3956                btrfs_dump_space_info(fs_info, info, 0, 0);
3957        }
3958
3959        if (left < thresh) {
3960                u64 flags = btrfs_system_alloc_profile(fs_info);
3961
3962                /*
3963                 * Ignore failure to create system chunk. We might end up not
3964                 * needing it, as we might not need to COW all nodes/leafs from
3965                 * the paths we visit in the chunk tree (they were already COWed
3966                 * or created in the current transaction for example).
3967                 */
3968                ret = btrfs_alloc_chunk(trans, flags);
3969        }
3970
3971        if (!ret) {
3972                ret = btrfs_block_rsv_add(fs_info->chunk_root,
3973                                          &fs_info->chunk_block_rsv,
3974                                          thresh, BTRFS_RESERVE_NO_FLUSH);
3975                if (!ret)
3976                        trans->chunk_bytes_reserved += thresh;
3977        }
3978}
3979
3980/*
3981 * If force is CHUNK_ALLOC_FORCE:
3982 *    - return 1 if it successfully allocates a chunk,
3983 *    - return errors including -ENOSPC otherwise.
3984 * If force is NOT CHUNK_ALLOC_FORCE:
3985 *    - return 0 if it doesn't need to allocate a new chunk,
3986 *    - return 1 if it successfully allocates a chunk,
3987 *    - return errors including -ENOSPC otherwise.
3988 */
3989int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3990                      enum btrfs_chunk_alloc_enum force)
3991{
3992        struct btrfs_fs_info *fs_info = trans->fs_info;
3993        struct btrfs_space_info *space_info;
3994        bool wait_for_alloc = false;
3995        bool should_alloc = false;
3996        int ret = 0;
3997
3998        /* Don't re-enter if we're already allocating a chunk */
3999        if (trans->allocating_chunk)
4000                return -ENOSPC;
4001
4002        space_info = btrfs_find_space_info(fs_info, flags);
4003        ASSERT(space_info);
4004
4005        do {
4006                spin_lock(&space_info->lock);
4007                if (force < space_info->force_alloc)
4008                        force = space_info->force_alloc;
4009                should_alloc = should_alloc_chunk(fs_info, space_info, force);
4010                if (space_info->full) {
4011                        /* No more free physical space */
4012                        if (should_alloc)
4013                                ret = -ENOSPC;
4014                        else
4015                                ret = 0;
4016                        spin_unlock(&space_info->lock);
4017                        return ret;
4018                } else if (!should_alloc) {
4019                        spin_unlock(&space_info->lock);
4020                        return 0;
4021                } else if (space_info->chunk_alloc) {
4022                        /*
4023                         * Someone is already allocating, so we need to block
4024                         * until this someone is finished and then loop to
4025                         * recheck if we should continue with our allocation
4026                         * attempt.
4027                         */
4028                        wait_for_alloc = true;
4029                        spin_unlock(&space_info->lock);
4030                        mutex_lock(&fs_info->chunk_mutex);
4031                        mutex_unlock(&fs_info->chunk_mutex);
4032                } else {
4033                        /* Proceed with allocation */
4034                        space_info->chunk_alloc = 1;
4035                        wait_for_alloc = false;
4036                        spin_unlock(&space_info->lock);
4037                }
4038
4039                cond_resched();
4040        } while (wait_for_alloc);
4041
4042        mutex_lock(&fs_info->chunk_mutex);
4043        trans->allocating_chunk = true;
4044
4045        /*
4046         * If we have mixed data/metadata chunks we want to make sure we keep
4047         * allocating mixed chunks instead of individual chunks.
4048         */
4049        if (btrfs_mixed_space_info(space_info))
4050                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4051
4052        /*
4053         * if we're doing a data chunk, go ahead and make sure that
4054         * we keep a reasonable number of metadata chunks allocated in the
4055         * FS as well.
4056         */
4057        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4058                fs_info->data_chunk_allocations++;
4059                if (!(fs_info->data_chunk_allocations %
4060                      fs_info->metadata_ratio))
4061                        force_metadata_allocation(fs_info);
4062        }
4063
4064        /*
4065         * Check if we have enough space in SYSTEM chunk because we may need
4066         * to update devices.
4067         */
4068        check_system_chunk(trans, flags);
4069
4070        ret = btrfs_alloc_chunk(trans, flags);
4071        trans->allocating_chunk = false;
4072
4073        spin_lock(&space_info->lock);
4074        if (ret < 0) {
4075                if (ret == -ENOSPC)
4076                        space_info->full = 1;
4077                else
4078                        goto out;
4079        } else {
4080                ret = 1;
4081                space_info->max_extent_size = 0;
4082        }
4083
4084        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4085out:
4086        space_info->chunk_alloc = 0;
4087        spin_unlock(&space_info->lock);
4088        mutex_unlock(&fs_info->chunk_mutex);
4089        /*
4090         * When we allocate a new chunk we reserve space in the chunk block
4091         * reserve to make sure we can COW nodes/leafs in the chunk tree or
4092         * add new nodes/leafs to it if we end up needing to do it when
4093         * inserting the chunk item and updating device items as part of the
4094         * second phase of chunk allocation, performed by
4095         * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4096         * large number of new block groups to create in our transaction
4097         * handle's new_bgs list to avoid exhausting the chunk block reserve
4098         * in extreme cases - like having a single transaction create many new
4099         * block groups when starting to write out the free space caches of all
4100         * the block groups that were made dirty during the lifetime of the
4101         * transaction.
4102         */
4103        if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4104                btrfs_create_pending_block_groups(trans);
4105
4106        return ret;
4107}
4108
4109static int update_block_group(struct btrfs_trans_handle *trans,
4110                              u64 bytenr, u64 num_bytes, int alloc)
4111{
4112        struct btrfs_fs_info *info = trans->fs_info;
4113        struct btrfs_block_group_cache *cache = NULL;
4114        u64 total = num_bytes;
4115        u64 old_val;
4116        u64 byte_in_group;
4117        int factor;
4118        int ret = 0;
4119
4120        /* block accounting for super block */
4121        spin_lock(&info->delalloc_root_lock);
4122        old_val = btrfs_super_bytes_used(info->super_copy);
4123        if (alloc)
4124                old_val += num_bytes;
4125        else
4126                old_val -= num_bytes;
4127        btrfs_set_super_bytes_used(info->super_copy, old_val);
4128        spin_unlock(&info->delalloc_root_lock);
4129
4130        while (total) {
4131                cache = btrfs_lookup_block_group(info, bytenr);
4132                if (!cache) {
4133                        ret = -ENOENT;
4134                        break;
4135                }
4136                factor = btrfs_bg_type_to_factor(cache->flags);
4137
4138                /*
4139                 * If this block group has free space cache written out, we
4140                 * need to make sure to load it if we are removing space.  This
4141                 * is because we need the unpinning stage to actually add the
4142                 * space back to the block group, otherwise we will leak space.
4143                 */
4144                if (!alloc && cache->cached == BTRFS_CACHE_NO)
4145                        cache_block_group(cache, 1);
4146
4147                byte_in_group = bytenr - cache->key.objectid;
4148                WARN_ON(byte_in_group > cache->key.offset);
4149
4150                spin_lock(&cache->space_info->lock);
4151                spin_lock(&cache->lock);
4152
4153                if (btrfs_test_opt(info, SPACE_CACHE) &&
4154                    cache->disk_cache_state < BTRFS_DC_CLEAR)
4155                        cache->disk_cache_state = BTRFS_DC_CLEAR;
4156
4157                old_val = btrfs_block_group_used(&cache->item);
4158                num_bytes = min(total, cache->key.offset - byte_in_group);
4159                if (alloc) {
4160                        old_val += num_bytes;
4161                        btrfs_set_block_group_used(&cache->item, old_val);
4162                        cache->reserved -= num_bytes;
4163                        cache->space_info->bytes_reserved -= num_bytes;
4164                        cache->space_info->bytes_used += num_bytes;
4165                        cache->space_info->disk_used += num_bytes * factor;
4166                        spin_unlock(&cache->lock);
4167                        spin_unlock(&cache->space_info->lock);
4168                } else {
4169                        old_val -= num_bytes;
4170                        btrfs_set_block_group_used(&cache->item, old_val);
4171                        cache->pinned += num_bytes;
4172                        btrfs_space_info_update_bytes_pinned(info,
4173                                        cache->space_info, num_bytes);
4174                        cache->space_info->bytes_used -= num_bytes;
4175                        cache->space_info->disk_used -= num_bytes * factor;
4176                        spin_unlock(&cache->lock);
4177                        spin_unlock(&cache->space_info->lock);
4178
4179                        trace_btrfs_space_reservation(info, "pinned",
4180                                                      cache->space_info->flags,
4181                                                      num_bytes, 1);
4182                        percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
4183                                           num_bytes,
4184                                           BTRFS_TOTAL_BYTES_PINNED_BATCH);
4185                        set_extent_dirty(info->pinned_extents,
4186                                         bytenr, bytenr + num_bytes - 1,
4187                                         GFP_NOFS | __GFP_NOFAIL);
4188                }
4189
4190                spin_lock(&trans->transaction->dirty_bgs_lock);
4191                if (list_empty(&cache->dirty_list)) {
4192                        list_add_tail(&cache->dirty_list,
4193                                      &trans->transaction->dirty_bgs);
4194                        trans->delayed_ref_updates++;
4195                        btrfs_get_block_group(cache);
4196                }
4197                spin_unlock(&trans->transaction->dirty_bgs_lock);
4198
4199                /*
4200                 * No longer have used bytes in this block group, queue it for
4201                 * deletion. We do this after adding the block group to the
4202                 * dirty list to avoid races between cleaner kthread and space
4203                 * cache writeout.
4204                 */
4205                if (!alloc && old_val == 0)
4206                        btrfs_mark_bg_unused(cache);
4207
4208                btrfs_put_block_group(cache);
4209                total -= num_bytes;
4210                bytenr += num_bytes;
4211        }
4212
4213        /* Modified block groups are accounted for in the delayed_refs_rsv. */
4214        btrfs_update_delayed_refs_rsv(trans);
4215        return ret;
4216}
4217
4218static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
4219{
4220        struct btrfs_block_group_cache *cache;
4221        u64 bytenr;
4222
4223        spin_lock(&fs_info->block_group_cache_lock);
4224        bytenr = fs_info->first_logical_byte;
4225        spin_unlock(&fs_info->block_group_cache_lock);
4226
4227        if (bytenr < (u64)-1)
4228                return bytenr;
4229
4230        cache = btrfs_lookup_first_block_group(fs_info, search_start);
4231        if (!cache)
4232                return 0;
4233
4234        bytenr = cache->key.objectid;
4235        btrfs_put_block_group(cache);
4236
4237        return bytenr;
4238}
4239
4240static int pin_down_extent(struct btrfs_block_group_cache *cache,
4241                           u64 bytenr, u64 num_bytes, int reserved)
4242{
4243        struct btrfs_fs_info *fs_info = cache->fs_info;
4244
4245        spin_lock(&cache->space_info->lock);
4246        spin_lock(&cache->lock);
4247        cache->pinned += num_bytes;
4248        btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
4249                                             num_bytes);
4250        if (reserved) {
4251                cache->reserved -= num_bytes;
4252                cache->space_info->bytes_reserved -= num_bytes;
4253        }
4254        spin_unlock(&cache->lock);
4255        spin_unlock(&cache->space_info->lock);
4256
4257        trace_btrfs_space_reservation(fs_info, "pinned",
4258                                      cache->space_info->flags, num_bytes, 1);
4259        percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
4260                    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4261        set_extent_dirty(fs_info->pinned_extents, bytenr,
4262                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4263        return 0;
4264}
4265
4266/*
4267 * this function must be called within transaction
4268 */
4269int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
4270                     u64 bytenr, u64 num_bytes, int reserved)
4271{
4272        struct btrfs_block_group_cache *cache;
4273
4274        cache = btrfs_lookup_block_group(fs_info, bytenr);
4275        BUG_ON(!cache); /* Logic error */
4276
4277        pin_down_extent(cache, bytenr, num_bytes, reserved);
4278
4279        btrfs_put_block_group(cache);
4280        return 0;
4281}
4282
4283/*
4284 * this function must be called within transaction
4285 */
4286int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
4287                                    u64 bytenr, u64 num_bytes)
4288{
4289        struct btrfs_block_group_cache *cache;
4290        int ret;
4291
4292        cache = btrfs_lookup_block_group(fs_info, bytenr);
4293        if (!cache)
4294                return -EINVAL;
4295
4296        /*
4297         * pull in the free space cache (if any) so that our pin
4298         * removes the free space from the cache.  We have load_only set
4299         * to one because the slow code to read in the free extents does check
4300         * the pinned extents.
4301         */
4302        cache_block_group(cache, 1);
4303
4304        pin_down_extent(cache, bytenr, num_bytes, 0);
4305
4306        /* remove us from the free space cache (if we're there at all) */
4307        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
4308        btrfs_put_block_group(cache);
4309        return ret;
4310}
4311
4312static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
4313                                   u64 start, u64 num_bytes)
4314{
4315        int ret;
4316        struct btrfs_block_group_cache *block_group;
4317        struct btrfs_caching_control *caching_ctl;
4318
4319        block_group = btrfs_lookup_block_group(fs_info, start);
4320        if (!block_group)
4321                return -EINVAL;
4322
4323        cache_block_group(block_group, 0);
4324        caching_ctl = get_caching_control(block_group);
4325
4326        if (!caching_ctl) {
4327                /* Logic error */
4328                BUG_ON(!block_group_cache_done(block_group));
4329                ret = btrfs_remove_free_space(block_group, start, num_bytes);
4330        } else {
4331                mutex_lock(&caching_ctl->mutex);
4332
4333                if (start >= caching_ctl->progress) {
4334                        ret = add_excluded_extent(fs_info, start, num_bytes);
4335                } else if (start + num_bytes <= caching_ctl->progress) {
4336                        ret = btrfs_remove_free_space(block_group,
4337                                                      start, num_bytes);
4338                } else {
4339                        num_bytes = caching_ctl->progress - start;
4340                        ret = btrfs_remove_free_space(block_group,
4341                                                      start, num_bytes);
4342                        if (ret)
4343                                goto out_lock;
4344
4345                        num_bytes = (start + num_bytes) -
4346                                caching_ctl->progress;
4347                        start = caching_ctl->progress;
4348                        ret = add_excluded_extent(fs_info, start, num_bytes);
4349                }
4350out_lock:
4351                mutex_unlock(&caching_ctl->mutex);
4352                put_caching_control(caching_ctl);
4353        }
4354        btrfs_put_block_group(block_group);
4355        return ret;
4356}
4357
4358int btrfs_exclude_logged_extents(struct extent_buffer *eb)
4359{
4360        struct btrfs_fs_info *fs_info = eb->fs_info;
4361        struct btrfs_file_extent_item *item;
4362        struct btrfs_key key;
4363        int found_type;
4364        int i;
4365        int ret = 0;
4366
4367        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
4368                return 0;
4369
4370        for (i = 0; i < btrfs_header_nritems(eb); i++) {
4371                btrfs_item_key_to_cpu(eb, &key, i);
4372                if (key.type != BTRFS_EXTENT_DATA_KEY)
4373                        continue;
4374                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
4375                found_type = btrfs_file_extent_type(eb, item);
4376                if (found_type == BTRFS_FILE_EXTENT_INLINE)
4377                        continue;
4378                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
4379                        continue;
4380                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
4381                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
4382                ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
4383                if (ret)
4384                        break;
4385        }
4386
4387        return ret;
4388}
4389
4390static void
4391btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
4392{
4393        atomic_inc(&bg->reservations);
4394}
4395
4396void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
4397                                        const u64 start)
4398{
4399        struct btrfs_block_group_cache *bg;
4400
4401        bg = btrfs_lookup_block_group(fs_info, start);
4402        ASSERT(bg);
4403        if (atomic_dec_and_test(&bg->reservations))
4404                wake_up_var(&bg->reservations);
4405        btrfs_put_block_group(bg);
4406}
4407
4408void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
4409{
4410        struct btrfs_space_info *space_info = bg->space_info;
4411
4412        ASSERT(bg->ro);
4413
4414        if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
4415                return;
4416
4417        /*
4418         * Our block group is read only but before we set it to read only,
4419         * some task might have had allocated an extent from it already, but it
4420         * has not yet created a respective ordered extent (and added it to a
4421         * root's list of ordered extents).
4422         * Therefore wait for any task currently allocating extents, since the
4423         * block group's reservations counter is incremented while a read lock
4424         * on the groups' semaphore is held and decremented after releasing
4425         * the read access on that semaphore and creating the ordered extent.
4426         */
4427        down_write(&space_info->groups_sem);
4428        up_write(&space_info->groups_sem);
4429
4430        wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
4431}
4432
4433/**
4434 * btrfs_add_reserved_bytes - update the block_group and space info counters
4435 * @cache:      The cache we are manipulating
4436 * @ram_bytes:  The number of bytes of file content, and will be same to
4437 *              @num_bytes except for the compress path.
4438 * @num_bytes:  The number of bytes in question
4439 * @delalloc:   The blocks are allocated for the delalloc write
4440 *
4441 * This is called by the allocator when it reserves space. If this is a
4442 * reservation and the block group has become read only we cannot make the
4443 * reservation and return -EAGAIN, otherwise this function always succeeds.
4444 */
4445static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
4446                                    u64 ram_bytes, u64 num_bytes, int delalloc)
4447{
4448        struct btrfs_space_info *space_info = cache->space_info;
4449        int ret = 0;
4450
4451        spin_lock(&space_info->lock);
4452        spin_lock(&cache->lock);
4453        if (cache->ro) {
4454                ret = -EAGAIN;
4455        } else {
4456                cache->reserved += num_bytes;
4457                space_info->bytes_reserved += num_bytes;
4458                btrfs_space_info_update_bytes_may_use(cache->fs_info,
4459                                                      space_info, -ram_bytes);
4460                if (delalloc)
4461                        cache->delalloc_bytes += num_bytes;
4462        }
4463        spin_unlock(&cache->lock);
4464        spin_unlock(&space_info->lock);
4465        return ret;
4466}
4467
4468/**
4469 * btrfs_free_reserved_bytes - update the block_group and space info counters
4470 * @cache:      The cache we are manipulating
4471 * @num_bytes:  The number of bytes in question
4472 * @delalloc:   The blocks are allocated for the delalloc write
4473 *
4474 * This is called by somebody who is freeing space that was never actually used
4475 * on disk.  For example if you reserve some space for a new leaf in transaction
4476 * A and before transaction A commits you free that leaf, you call this with
4477 * reserve set to 0 in order to clear the reservation.
4478 */
4479
4480static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
4481                                      u64 num_bytes, int delalloc)
4482{
4483        struct btrfs_space_info *space_info = cache->space_info;
4484
4485        spin_lock(&space_info->lock);
4486        spin_lock(&cache->lock);
4487        if (cache->ro)
4488                space_info->bytes_readonly += num_bytes;
4489        cache->reserved -= num_bytes;
4490        space_info->bytes_reserved -= num_bytes;
4491        space_info->max_extent_size = 0;
4492
4493        if (delalloc)
4494                cache->delalloc_bytes -= num_bytes;
4495        spin_unlock(&cache->lock);
4496        spin_unlock(&space_info->lock);
4497}
4498void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
4499{
4500        struct btrfs_caching_control *next;
4501        struct btrfs_caching_control *caching_ctl;
4502        struct btrfs_block_group_cache *cache;
4503
4504        down_write(&fs_info->commit_root_sem);
4505
4506        list_for_each_entry_safe(caching_ctl, next,
4507                                 &fs_info->caching_block_groups, list) {
4508                cache = caching_ctl->block_group;
4509                if (block_group_cache_done(cache)) {
4510                        cache->last_byte_to_unpin = (u64)-1;
4511                        list_del_init(&caching_ctl->list);
4512                        put_caching_control(caching_ctl);
4513                } else {
4514                        cache->last_byte_to_unpin = caching_ctl->progress;
4515                }
4516        }
4517
4518        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4519                fs_info->pinned_extents = &fs_info->freed_extents[1];
4520        else
4521                fs_info->pinned_extents = &fs_info->freed_extents[0];
4522
4523        up_write(&fs_info->commit_root_sem);
4524
4525        btrfs_update_global_block_rsv(fs_info);
4526}
4527
4528/*
4529 * Returns the free cluster for the given space info and sets empty_cluster to
4530 * what it should be based on the mount options.
4531 */
4532static struct btrfs_free_cluster *
4533fetch_cluster_info(struct btrfs_fs_info *fs_info,
4534                   struct btrfs_space_info *space_info, u64 *empty_cluster)
4535{
4536        struct btrfs_free_cluster *ret = NULL;
4537
4538        *empty_cluster = 0;
4539        if (btrfs_mixed_space_info(space_info))
4540                return ret;
4541
4542        if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4543                ret = &fs_info->meta_alloc_cluster;
4544                if (btrfs_test_opt(fs_info, SSD))
4545                        *empty_cluster = SZ_2M;
4546                else
4547                        *empty_cluster = SZ_64K;
4548        } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
4549                   btrfs_test_opt(fs_info, SSD_SPREAD)) {
4550                *empty_cluster = SZ_2M;
4551                ret = &fs_info->data_alloc_cluster;
4552        }
4553
4554        return ret;
4555}
4556
4557static int unpin_extent_range(struct btrfs_fs_info *fs_info,
4558                              u64 start, u64 end,
4559                              const bool return_free_space)
4560{
4561        struct btrfs_block_group_cache *cache = NULL;
4562        struct btrfs_space_info *space_info;
4563        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4564        struct btrfs_free_cluster *cluster = NULL;
4565        u64 len;
4566        u64 total_unpinned = 0;
4567        u64 empty_cluster = 0;
4568        bool readonly;
4569
4570        while (start <= end) {
4571                readonly = false;
4572                if (!cache ||
4573                    start >= cache->key.objectid + cache->key.offset) {
4574                        if (cache)
4575                                btrfs_put_block_group(cache);
4576                        total_unpinned = 0;
4577                        cache = btrfs_lookup_block_group(fs_info, start);
4578                        BUG_ON(!cache); /* Logic error */
4579
4580                        cluster = fetch_cluster_info(fs_info,
4581                                                     cache->space_info,
4582                                                     &empty_cluster);
4583                        empty_cluster <<= 1;
4584                }
4585
4586                len = cache->key.objectid + cache->key.offset - start;
4587                len = min(len, end + 1 - start);
4588
4589                if (start < cache->last_byte_to_unpin) {
4590                        len = min(len, cache->last_byte_to_unpin - start);
4591                        if (return_free_space)
4592                                btrfs_add_free_space(cache, start, len);
4593                }
4594
4595                start += len;
4596                total_unpinned += len;
4597                space_info = cache->space_info;
4598
4599                /*
4600                 * If this space cluster has been marked as fragmented and we've
4601                 * unpinned enough in this block group to potentially allow a
4602                 * cluster to be created inside of it go ahead and clear the
4603                 * fragmented check.
4604                 */
4605                if (cluster && cluster->fragmented &&
4606                    total_unpinned > empty_cluster) {
4607                        spin_lock(&cluster->lock);
4608                        cluster->fragmented = 0;
4609                        spin_unlock(&cluster->lock);
4610                }
4611
4612                spin_lock(&space_info->lock);
4613                spin_lock(&cache->lock);
4614                cache->pinned -= len;
4615                btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
4616
4617                trace_btrfs_space_reservation(fs_info, "pinned",
4618                                              space_info->flags, len, 0);
4619                space_info->max_extent_size = 0;
4620                percpu_counter_add_batch(&space_info->total_bytes_pinned,
4621                            -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4622                if (cache->ro) {
4623                        space_info->bytes_readonly += len;
4624                        readonly = true;
4625                }
4626                spin_unlock(&cache->lock);
4627                if (!readonly && return_free_space &&
4628                    global_rsv->space_info == space_info) {
4629                        u64 to_add = len;
4630
4631                        spin_lock(&global_rsv->lock);
4632                        if (!global_rsv->full) {
4633                                to_add = min(len, global_rsv->size -
4634                                             global_rsv->reserved);
4635                                global_rsv->reserved += to_add;
4636                                btrfs_space_info_update_bytes_may_use(fs_info,
4637                                                space_info, to_add);
4638                                if (global_rsv->reserved >= global_rsv->size)
4639                                        global_rsv->full = 1;
4640                                trace_btrfs_space_reservation(fs_info,
4641                                                              "space_info",
4642                                                              space_info->flags,
4643                                                              to_add, 1);
4644                                len -= to_add;
4645                        }
4646                        spin_unlock(&global_rsv->lock);
4647                        /* Add to any tickets we may have */
4648                        if (len)
4649                                btrfs_space_info_add_new_bytes(fs_info,
4650                                                space_info, len);
4651                }
4652                spin_unlock(&space_info->lock);
4653        }
4654
4655        if (cache)
4656                btrfs_put_block_group(cache);
4657        return 0;
4658}
4659
4660int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
4661{
4662        struct btrfs_fs_info *fs_info = trans->fs_info;
4663        struct btrfs_block_group_cache *block_group, *tmp;
4664        struct list_head *deleted_bgs;
4665        struct extent_io_tree *unpin;
4666        u64 start;
4667        u64 end;
4668        int ret;
4669
4670        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4671                unpin = &fs_info->freed_extents[1];
4672        else
4673                unpin = &fs_info->freed_extents[0];
4674
4675        while (!trans->aborted) {
4676                struct extent_state *cached_state = NULL;
4677
4678                mutex_lock(&fs_info->unused_bg_unpin_mutex);
4679                ret = find_first_extent_bit(unpin, 0, &start, &end,
4680                                            EXTENT_DIRTY, &cached_state);
4681                if (ret) {
4682                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4683                        break;
4684                }
4685
4686                if (btrfs_test_opt(fs_info, DISCARD))
4687                        ret = btrfs_discard_extent(fs_info, start,
4688                                                   end + 1 - start, NULL);
4689
4690                clear_extent_dirty(unpin, start, end, &cached_state);
4691                unpin_extent_range(fs_info, start, end, true);
4692                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4693                free_extent_state(cached_state);
4694                cond_resched();
4695        }
4696
4697        /*
4698         * Transaction is finished.  We don't need the lock anymore.  We
4699         * do need to clean up the block groups in case of a transaction
4700         * abort.
4701         */
4702        deleted_bgs = &trans->transaction->deleted_bgs;
4703        list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
4704                u64 trimmed = 0;
4705
4706                ret = -EROFS;
4707                if (!trans->aborted)
4708                        ret = btrfs_discard_extent(fs_info,
4709                                                   block_group->key.objectid,
4710                                                   block_group->key.offset,
4711                                                   &trimmed);
4712
4713                list_del_init(&block_group->bg_list);
4714                btrfs_put_block_group_trimming(block_group);
4715                btrfs_put_block_group(block_group);
4716
4717                if (ret) {
4718                        const char *errstr = btrfs_decode_error(ret);
4719                        btrfs_warn(fs_info,
4720                           "discard failed while removing blockgroup: errno=%d %s",
4721                                   ret, errstr);
4722                }
4723        }
4724
4725        return 0;
4726}
4727
4728static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4729                               struct btrfs_delayed_ref_node *node, u64 parent,
4730                               u64 root_objectid, u64 owner_objectid,
4731                               u64 owner_offset, int refs_to_drop,
4732                               struct btrfs_delayed_extent_op *extent_op)
4733{
4734        struct btrfs_fs_info *info = trans->fs_info;
4735        struct btrfs_key key;
4736        struct btrfs_path *path;
4737        struct btrfs_root *extent_root = info->extent_root;
4738        struct extent_buffer *leaf;
4739        struct btrfs_extent_item *ei;
4740        struct btrfs_extent_inline_ref *iref;
4741        int ret;
4742        int is_data;
4743        int extent_slot = 0;
4744        int found_extent = 0;
4745        int num_to_del = 1;
4746        u32 item_size;
4747        u64 refs;
4748        u64 bytenr = node->bytenr;
4749        u64 num_bytes = node->num_bytes;
4750        int last_ref = 0;
4751        bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
4752
4753        path = btrfs_alloc_path();
4754        if (!path)
4755                return -ENOMEM;
4756
4757        path->reada = READA_FORWARD;
4758        path->leave_spinning = 1;
4759
4760        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4761        BUG_ON(!is_data && refs_to_drop != 1);
4762
4763        if (is_data)
4764                skinny_metadata = false;
4765
4766        ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
4767                                    parent, root_objectid, owner_objectid,
4768                                    owner_offset);
4769        if (ret == 0) {
4770                extent_slot = path->slots[0];
4771                while (extent_slot >= 0) {
4772                        btrfs_item_key_to_cpu(path->nodes[0], &key,
4773                                              extent_slot);
4774                        if (key.objectid != bytenr)
4775                                break;
4776                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4777                            key.offset == num_bytes) {
4778                                found_extent = 1;
4779                                break;
4780                        }
4781                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
4782                            key.offset == owner_objectid) {
4783                                found_extent = 1;
4784                                break;
4785                        }
4786                        if (path->slots[0] - extent_slot > 5)
4787                                break;
4788                        extent_slot--;
4789                }
4790
4791                if (!found_extent) {
4792                        BUG_ON(iref);
4793                        ret = remove_extent_backref(trans, path, NULL,
4794                                                    refs_to_drop,
4795                                                    is_data, &last_ref);
4796                        if (ret) {
4797                                btrfs_abort_transaction(trans, ret);
4798                                goto out;
4799                        }
4800                        btrfs_release_path(path);
4801                        path->leave_spinning = 1;
4802
4803                        key.objectid = bytenr;
4804                        key.type = BTRFS_EXTENT_ITEM_KEY;
4805                        key.offset = num_bytes;
4806
4807                        if (!is_data && skinny_metadata) {
4808                                key.type = BTRFS_METADATA_ITEM_KEY;
4809                                key.offset = owner_objectid;
4810                        }
4811
4812                        ret = btrfs_search_slot(trans, extent_root,
4813                                                &key, path, -1, 1);
4814                        if (ret > 0 && skinny_metadata && path->slots[0]) {
4815                                /*
4816                                 * Couldn't find our skinny metadata item,
4817                                 * see if we have ye olde extent item.
4818                                 */
4819                                path->slots[0]--;
4820                                btrfs_item_key_to_cpu(path->nodes[0], &key,
4821                                                      path->slots[0]);
4822                                if (key.objectid == bytenr &&
4823                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
4824                                    key.offset == num_bytes)
4825                                        ret = 0;
4826                        }
4827
4828                        if (ret > 0 && skinny_metadata) {
4829                                skinny_metadata = false;
4830                                key.objectid = bytenr;
4831                                key.type = BTRFS_EXTENT_ITEM_KEY;
4832                                key.offset = num_bytes;
4833                                btrfs_release_path(path);
4834                                ret = btrfs_search_slot(trans, extent_root,
4835                                                        &key, path, -1, 1);
4836                        }
4837
4838                        if (ret) {
4839                                btrfs_err(info,
4840                                          "umm, got %d back from search, was looking for %llu",
4841                                          ret, bytenr);
4842                                if (ret > 0)
4843                                        btrfs_print_leaf(path->nodes[0]);
4844                        }
4845                        if (ret < 0) {
4846                                btrfs_abort_transaction(trans, ret);
4847                                goto out;
4848                        }
4849                        extent_slot = path->slots[0];
4850                }
4851        } else if (WARN_ON(ret == -ENOENT)) {
4852                btrfs_print_leaf(path->nodes[0]);
4853                btrfs_err(info,
4854                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
4855                        bytenr, parent, root_objectid, owner_objectid,
4856                        owner_offset);
4857                btrfs_abort_transaction(trans, ret);
4858                goto out;
4859        } else {
4860                btrfs_abort_transaction(trans, ret);
4861                goto out;
4862        }
4863
4864        leaf = path->nodes[0];
4865        item_size = btrfs_item_size_nr(leaf, extent_slot);
4866        if (unlikely(item_size < sizeof(*ei))) {
4867                ret = -EINVAL;
4868                btrfs_print_v0_err(info);
4869                btrfs_abort_transaction(trans, ret);
4870                goto out;
4871        }
4872        ei = btrfs_item_ptr(leaf, extent_slot,
4873                            struct btrfs_extent_item);
4874        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
4875            key.type == BTRFS_EXTENT_ITEM_KEY) {
4876                struct btrfs_tree_block_info *bi;
4877                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4878                bi = (struct btrfs_tree_block_info *)(ei + 1);
4879                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4880        }
4881
4882        refs = btrfs_extent_refs(leaf, ei);
4883        if (refs < refs_to_drop) {
4884                btrfs_err(info,
4885                          "trying to drop %d refs but we only have %Lu for bytenr %Lu",
4886                          refs_to_drop, refs, bytenr);
4887                ret = -EINVAL;
4888                btrfs_abort_transaction(trans, ret);
4889                goto out;
4890        }
4891        refs -= refs_to_drop;
4892
4893        if (refs > 0) {
4894                if (extent_op)
4895                        __run_delayed_extent_op(extent_op, leaf, ei);
4896                /*
4897                 * In the case of inline back ref, reference count will
4898                 * be updated by remove_extent_backref
4899                 */
4900                if (iref) {
4901                        BUG_ON(!found_extent);
4902                } else {
4903                        btrfs_set_extent_refs(leaf, ei, refs);
4904                        btrfs_mark_buffer_dirty(leaf);
4905                }
4906                if (found_extent) {
4907                        ret = remove_extent_backref(trans, path, iref,
4908                                                    refs_to_drop, is_data,
4909                                                    &last_ref);
4910                        if (ret) {
4911                                btrfs_abort_transaction(trans, ret);
4912                                goto out;
4913                        }
4914                }
4915        } else {
4916                if (found_extent) {
4917                        BUG_ON(is_data && refs_to_drop !=
4918                               extent_data_ref_count(path, iref));
4919                        if (iref) {
4920                                BUG_ON(path->slots[0] != extent_slot);
4921                        } else {
4922                                BUG_ON(path->slots[0] != extent_slot + 1);
4923                                path->slots[0] = extent_slot;
4924                                num_to_del = 2;
4925                        }
4926                }
4927
4928                last_ref = 1;
4929                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4930                                      num_to_del);
4931                if (ret) {
4932                        btrfs_abort_transaction(trans, ret);
4933                        goto out;
4934                }
4935                btrfs_release_path(path);
4936
4937                if (is_data) {
4938                        ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
4939                        if (ret) {
4940                                btrfs_abort_transaction(trans, ret);
4941                                goto out;
4942                        }
4943                }
4944
4945                ret = add_to_free_space_tree(trans, bytenr, num_bytes);
4946                if (ret) {
4947                        btrfs_abort_transaction(trans, ret);
4948                        goto out;
4949                }
4950
4951                ret = update_block_group(trans, bytenr, num_bytes, 0);
4952                if (ret) {
4953                        btrfs_abort_transaction(trans, ret);
4954                        goto out;
4955                }
4956        }
4957        btrfs_release_path(path);
4958
4959out:
4960        btrfs_free_path(path);
4961        return ret;
4962}
4963
4964/*
4965 * when we free an block, it is possible (and likely) that we free the last
4966 * delayed ref for that extent as well.  This searches the delayed ref tree for
4967 * a given extent, and if there are no other delayed refs to be processed, it
4968 * removes it from the tree.
4969 */
4970static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4971                                      u64 bytenr)
4972{
4973        struct btrfs_delayed_ref_head *head;
4974        struct btrfs_delayed_ref_root *delayed_refs;
4975        int ret = 0;
4976
4977        delayed_refs = &trans->transaction->delayed_refs;
4978        spin_lock(&delayed_refs->lock);
4979        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
4980        if (!head)
4981                goto out_delayed_unlock;
4982
4983        spin_lock(&head->lock);
4984        if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
4985                goto out;
4986
4987        if (cleanup_extent_op(head) != NULL)
4988                goto out;
4989
4990        /*
4991         * waiting for the lock here would deadlock.  If someone else has it
4992         * locked they are already in the process of dropping it anyway
4993         */
4994        if (!mutex_trylock(&head->mutex))
4995                goto out;
4996
4997        btrfs_delete_ref_head(delayed_refs, head);
4998        head->processing = 0;
4999
5000        spin_unlock(&head->lock);
5001        spin_unlock(&delayed_refs->lock);
5002
5003        BUG_ON(head->extent_op);
5004        if (head->must_insert_reserved)
5005                ret = 1;
5006
5007        btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
5008        mutex_unlock(&head->mutex);
5009        btrfs_put_delayed_ref_head(head);
5010        return ret;
5011out:
5012        spin_unlock(&head->lock);
5013
5014out_delayed_unlock:
5015        spin_unlock(&delayed_refs->lock);
5016        return 0;
5017}
5018
5019void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5020                           struct btrfs_root *root,
5021                           struct extent_buffer *buf,
5022                           u64 parent, int last_ref)
5023{
5024        struct btrfs_fs_info *fs_info = root->fs_info;
5025        struct btrfs_ref generic_ref = { 0 };
5026        int pin = 1;
5027        int ret;
5028
5029        btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
5030                               buf->start, buf->len, parent);
5031        btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
5032                            root->root_key.objectid);
5033
5034        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5035                int old_ref_mod, new_ref_mod;
5036
5037                btrfs_ref_tree_mod(fs_info, &generic_ref);
5038                ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
5039                                                 &old_ref_mod, &new_ref_mod);
5040                BUG_ON(ret); /* -ENOMEM */
5041                pin = old_ref_mod >= 0 && new_ref_mod < 0;
5042        }
5043
5044        if (last_ref && btrfs_header_generation(buf) == trans->transid) {
5045                struct btrfs_block_group_cache *cache;
5046
5047                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5048                        ret = check_ref_cleanup(trans, buf->start);
5049                        if (!ret)
5050                                goto out;
5051                }
5052
5053                pin = 0;
5054                cache = btrfs_lookup_block_group(fs_info, buf->start);
5055
5056                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5057                        pin_down_extent(cache, buf->start, buf->len, 1);
5058                        btrfs_put_block_group(cache);
5059                        goto out;
5060                }
5061
5062                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5063
5064                btrfs_add_free_space(cache, buf->start, buf->len);
5065                btrfs_free_reserved_bytes(cache, buf->len, 0);
5066                btrfs_put_block_group(cache);
5067                trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
5068        }
5069out:
5070        if (pin)
5071                add_pinned_bytes(fs_info, &generic_ref);
5072
5073        if (last_ref) {
5074                /*
5075                 * Deleting the buffer, clear the corrupt flag since it doesn't
5076                 * matter anymore.
5077                 */
5078                clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5079        }
5080}
5081
5082/* Can return -ENOMEM */
5083int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
5084{
5085        struct btrfs_fs_info *fs_info = trans->fs_info;
5086        int old_ref_mod, new_ref_mod;
5087        int ret;
5088
5089        if (btrfs_is_testing(fs_info))
5090                return 0;
5091
5092        /*
5093         * tree log blocks never actually go into the extent allocation
5094         * tree, just update pinning info and exit early.
5095         */
5096        if ((ref->type == BTRFS_REF_METADATA &&
5097             ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
5098            (ref->type == BTRFS_REF_DATA &&
5099             ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
5100                /* unlocks the pinned mutex */
5101                btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
5102                old_ref_mod = new_ref_mod = 0;
5103                ret = 0;
5104        } else if (ref->type == BTRFS_REF_METADATA) {
5105                ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
5106                                                 &old_ref_mod, &new_ref_mod);
5107        } else {
5108                ret = btrfs_add_delayed_data_ref(trans, ref, 0,
5109                                                 &old_ref_mod, &new_ref_mod);
5110        }
5111
5112        if (!((ref->type == BTRFS_REF_METADATA &&
5113               ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
5114              (ref->type == BTRFS_REF_DATA &&
5115               ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
5116                btrfs_ref_tree_mod(fs_info, ref);
5117
5118        if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
5119                add_pinned_bytes(fs_info, ref);
5120
5121        return ret;
5122}
5123
5124/*
5125 * when we wait for progress in the block group caching, its because
5126 * our allocation attempt failed at least once.  So, we must sleep
5127 * and let some progress happen before we try again.
5128 *
5129 * This function will sleep at least once waiting for new free space to
5130 * show up, and then it will check the block group free space numbers
5131 * for our min num_bytes.  Another option is to have it go ahead
5132 * and look in the rbtree for a free extent of a given size, but this
5133 * is a good start.
5134 *
5135 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
5136 * any of the information in this block group.
5137 */
5138static noinline void
5139wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5140                                u64 num_bytes)
5141{
5142        struct btrfs_caching_control *caching_ctl;
5143
5144        caching_ctl = get_caching_control(cache);
5145        if (!caching_ctl)
5146                return;
5147
5148        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5149                   (cache->free_space_ctl->free_space >= num_bytes));
5150
5151        put_caching_control(caching_ctl);
5152}
5153
5154static noinline int
5155wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5156{
5157        struct btrfs_caching_control *caching_ctl;
5158        int ret = 0;
5159
5160        caching_ctl = get_caching_control(cache);
5161        if (!caching_ctl)
5162                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
5163
5164        wait_event(caching_ctl->wait, block_group_cache_done(cache));
5165        if (cache->cached == BTRFS_CACHE_ERROR)
5166                ret = -EIO;
5167        put_caching_control(caching_ctl);
5168        return ret;
5169}
5170
5171enum btrfs_loop_type {
5172        LOOP_CACHING_NOWAIT,
5173        LOOP_CACHING_WAIT,
5174        LOOP_ALLOC_CHUNK,
5175        LOOP_NO_EMPTY_SIZE,
5176};
5177
5178static inline void
5179btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
5180                       int delalloc)
5181{
5182        if (delalloc)
5183                down_read(&cache->data_rwsem);
5184}
5185
5186static inline void
5187btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
5188                       int delalloc)
5189{
5190        btrfs_get_block_group(cache);
5191        if (delalloc)
5192                down_read(&cache->data_rwsem);
5193}
5194
5195static struct btrfs_block_group_cache *
5196btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
5197                   struct btrfs_free_cluster *cluster,
5198                   int delalloc)
5199{
5200        struct btrfs_block_group_cache *used_bg = NULL;
5201
5202        spin_lock(&cluster->refill_lock);
5203        while (1) {
5204                used_bg = cluster->block_group;
5205                if (!used_bg)
5206                        return NULL;
5207
5208                if (used_bg == block_group)
5209                        return used_bg;
5210
5211                btrfs_get_block_group(used_bg);
5212
5213                if (!delalloc)
5214                        return used_bg;
5215
5216                if (down_read_trylock(&used_bg->data_rwsem))
5217                        return used_bg;
5218
5219                spin_unlock(&cluster->refill_lock);
5220
5221                /* We should only have one-level nested. */
5222                down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
5223
5224                spin_lock(&cluster->refill_lock);
5225                if (used_bg == cluster->block_group)
5226                        return used_bg;
5227
5228                up_read(&used_bg->data_rwsem);
5229                btrfs_put_block_group(used_bg);
5230        }
5231}
5232
5233static inline void
5234btrfs_release_block_group(struct btrfs_block_group_cache *cache,
5235                         int delalloc)
5236{
5237        if (delalloc)
5238                up_read(&cache->data_rwsem);
5239        btrfs_put_block_group(cache);
5240}
5241
5242/*
5243 * Structure used internally for find_free_extent() function.  Wraps needed
5244 * parameters.
5245 */
5246struct find_free_extent_ctl {
5247        /* Basic allocation info */
5248        u64 ram_bytes;
5249        u64 num_bytes;
5250        u64 empty_size;
5251        u64 flags;
5252        int delalloc;
5253
5254        /* Where to start the search inside the bg */
5255        u64 search_start;
5256
5257        /* For clustered allocation */
5258        u64 empty_cluster;
5259
5260        bool have_caching_bg;
5261        bool orig_have_caching_bg;
5262
5263        /* RAID index, converted from flags */
5264        int index;
5265
5266        /*
5267         * Current loop number, check find_free_extent_update_loop() for details
5268         */
5269        int loop;
5270
5271        /*
5272         * Whether we're refilling a cluster, if true we need to re-search
5273         * current block group but don't try to refill the cluster again.
5274         */
5275        bool retry_clustered;
5276
5277        /*
5278         * Whether we're updating free space cache, if true we need to re-search
5279         * current block group but don't try updating free space cache again.
5280         */
5281        bool retry_unclustered;
5282
5283        /* If current block group is cached */
5284        int cached;
5285
5286        /* Max contiguous hole found */
5287        u64 max_extent_size;
5288
5289        /* Total free space from free space cache, not always contiguous */
5290        u64 total_free_space;
5291
5292        /* Found result */
5293        u64 found_offset;
5294};
5295
5296
5297/*
5298 * Helper function for find_free_extent().
5299 *
5300 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
5301 * Return -EAGAIN to inform caller that we need to re-search this block group
5302 * Return >0 to inform caller that we find nothing
5303 * Return 0 means we have found a location and set ffe_ctl->found_offset.
5304 */
5305static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
5306                struct btrfs_free_cluster *last_ptr,
5307                struct find_free_extent_ctl *ffe_ctl,
5308                struct btrfs_block_group_cache **cluster_bg_ret)
5309{
5310        struct btrfs_block_group_cache *cluster_bg;
5311        u64 aligned_cluster;
5312        u64 offset;
5313        int ret;
5314
5315        cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
5316        if (!cluster_bg)
5317                goto refill_cluster;
5318        if (cluster_bg != bg && (cluster_bg->ro ||
5319            !block_group_bits(cluster_bg, ffe_ctl->flags)))
5320                goto release_cluster;
5321
5322        offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
5323                        ffe_ctl->num_bytes, cluster_bg->key.objectid,
5324                        &ffe_ctl->max_extent_size);
5325        if (offset) {
5326                /* We have a block, we're done */
5327                spin_unlock(&last_ptr->refill_lock);
5328                trace_btrfs_reserve_extent_cluster(cluster_bg,
5329                                ffe_ctl->search_start, ffe_ctl->num_bytes);
5330                *cluster_bg_ret = cluster_bg;
5331                ffe_ctl->found_offset = offset;
5332                return 0;
5333        }
5334        WARN_ON(last_ptr->block_group != cluster_bg);
5335
5336release_cluster:
5337        /*
5338         * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
5339         * lets just skip it and let the allocator find whatever block it can
5340         * find. If we reach this point, we will have tried the cluster
5341         * allocator plenty of times and not have found anything, so we are
5342         * likely way too fragmented for the clustering stuff to find anything.
5343         *
5344         * However, if the cluster is taken from the current block group,
5345         * release the cluster first, so that we stand a better chance of
5346         * succeeding in the unclustered allocation.
5347         */
5348        if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
5349                spin_unlock(&last_ptr->refill_lock);
5350                btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
5351                return -ENOENT;
5352        }
5353
5354        /* This cluster didn't work out, free it and start over */
5355        btrfs_return_cluster_to_free_space(NULL, last_ptr);
5356
5357        if (cluster_bg != bg)
5358                btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
5359
5360refill_cluster:
5361        if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
5362                spin_unlock(&last_ptr->refill_lock);
5363                return -ENOENT;
5364        }
5365
5366        aligned_cluster = max_t(u64,
5367                        ffe_ctl->empty_cluster + ffe_ctl->empty_size,
5368                        bg->full_stripe_len);
5369        ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
5370                        ffe_ctl->num_bytes, aligned_cluster);
5371        if (ret == 0) {
5372                /* Now pull our allocation out of this cluster */
5373                offset = btrfs_alloc_from_cluster(bg, last_ptr,
5374                                ffe_ctl->num_bytes, ffe_ctl->search_start,
5375                                &ffe_ctl->max_extent_size);
5376                if (offset) {
5377                        /* We found one, proceed */
5378                        spin_unlock(&last_ptr->refill_lock);
5379                        trace_btrfs_reserve_extent_cluster(bg,
5380                                        ffe_ctl->search_start,
5381                                        ffe_ctl->num_bytes);
5382                        ffe_ctl->found_offset = offset;
5383                        return 0;
5384                }
5385        } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
5386                   !ffe_ctl->retry_clustered) {
5387                spin_unlock(&last_ptr->refill_lock);
5388
5389                ffe_ctl->retry_clustered = true;
5390                wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
5391                                ffe_ctl->empty_cluster + ffe_ctl->empty_size);
5392                return -EAGAIN;
5393        }
5394        /*
5395         * At this point we either didn't find a cluster or we weren't able to
5396         * allocate a block from our cluster.  Free the cluster we've been
5397         * trying to use, and go to the next block group.
5398         */
5399        btrfs_return_cluster_to_free_space(NULL, last_ptr);
5400        spin_unlock(&last_ptr->refill_lock);
5401        return 1;
5402}
5403
5404/*
5405 * Return >0 to inform caller that we find nothing
5406 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
5407 * Return -EAGAIN to inform caller that we need to re-search this block group
5408 */
5409static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
5410                struct btrfs_free_cluster *last_ptr,
5411                struct find_free_extent_ctl *ffe_ctl)
5412{
5413        u64 offset;
5414
5415        /*
5416         * We are doing an unclustered allocation, set the fragmented flag so
5417         * we don't bother trying to setup a cluster again until we get more
5418         * space.
5419         */
5420        if (unlikely(last_ptr)) {
5421                spin_lock(&last_ptr->lock);
5422                last_ptr->fragmented = 1;
5423                spin_unlock(&last_ptr->lock);
5424        }
5425        if (ffe_ctl->cached) {
5426                struct btrfs_free_space_ctl *free_space_ctl;
5427
5428                free_space_ctl = bg->free_space_ctl;
5429                spin_lock(&free_space_ctl->tree_lock);
5430                if (free_space_ctl->free_space <
5431                    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
5432                    ffe_ctl->empty_size) {
5433                        ffe_ctl->total_free_space = max_t(u64,
5434                                        ffe_ctl->total_free_space,
5435                                        free_space_ctl->free_space);
5436                        spin_unlock(&free_space_ctl->tree_lock);
5437                        return 1;
5438                }
5439                spin_unlock(&free_space_ctl->tree_lock);
5440        }
5441
5442        offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
5443                        ffe_ctl->num_bytes, ffe_ctl->empty_size,
5444                        &ffe_ctl->max_extent_size);
5445
5446        /*
5447         * If we didn't find a chunk, and we haven't failed on this block group
5448         * before, and this block group is in the middle of caching and we are
5449         * ok with waiting, then go ahead and wait for progress to be made, and
5450         * set @retry_unclustered to true.
5451         *
5452         * If @retry_unclustered is true then we've already waited on this
5453         * block group once and should move on to the next block group.
5454         */
5455        if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
5456            ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
5457                wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
5458                                                ffe_ctl->empty_size);
5459                ffe_ctl->retry_unclustered = true;
5460                return -EAGAIN;
5461        } else if (!offset) {
5462                return 1;
5463        }
5464        ffe_ctl->found_offset = offset;
5465        return 0;
5466}
5467
5468/*
5469 * Return >0 means caller needs to re-search for free extent
5470 * Return 0 means we have the needed free extent.
5471 * Return <0 means we failed to locate any free extent.
5472 */
5473static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
5474                                        struct btrfs_free_cluster *last_ptr,
5475                                        struct btrfs_key *ins,
5476                                        struct find_free_extent_ctl *ffe_ctl,
5477                                        int full_search, bool use_cluster)
5478{
5479        struct btrfs_root *root = fs_info->extent_root;
5480        int ret;
5481
5482        if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
5483            ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
5484                ffe_ctl->orig_have_caching_bg = true;
5485
5486        if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
5487            ffe_ctl->have_caching_bg)
5488                return 1;
5489
5490        if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
5491                return 1;
5492
5493        if (ins->objectid) {
5494                if (!use_cluster && last_ptr) {
5495                        spin_lock(&last_ptr->lock);
5496                        last_ptr->window_start = ins->objectid;
5497                        spin_unlock(&last_ptr->lock);
5498                }
5499                return 0;
5500        }
5501
5502        /*
5503         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5504         *                      caching kthreads as we move along
5505         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5506         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5507         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5508         *                     again
5509         */
5510        if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
5511                ffe_ctl->index = 0;
5512                if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
5513                        /*
5514                         * We want to skip the LOOP_CACHING_WAIT step if we
5515                         * don't have any uncached bgs and we've already done a
5516                         * full search through.
5517                         */
5518                        if (ffe_ctl->orig_have_caching_bg || !full_search)
5519                                ffe_ctl->loop = LOOP_CACHING_WAIT;
5520                        else
5521                                ffe_ctl->loop = LOOP_ALLOC_CHUNK;
5522                } else {
5523                        ffe_ctl->loop++;
5524                }
5525
5526                if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
5527                        struct btrfs_trans_handle *trans;
5528                        int exist = 0;
5529
5530                        trans = current->journal_info;
5531                        if (trans)
5532                                exist = 1;
5533                        else
5534                                trans = btrfs_join_transaction(root);
5535
5536                        if (IS_ERR(trans)) {
5537                                ret = PTR_ERR(trans);
5538                                return ret;
5539                        }
5540
5541                        ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
5542                                                CHUNK_ALLOC_FORCE);
5543
5544                        /*
5545                         * If we can't allocate a new chunk we've already looped
5546                         * through at least once, move on to the NO_EMPTY_SIZE
5547                         * case.
5548                         */
5549                        if (ret == -ENOSPC)
5550                                ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
5551
5552                        /* Do not bail out on ENOSPC since we can do more. */
5553                        if (ret < 0 && ret != -ENOSPC)
5554                                btrfs_abort_transaction(trans, ret);
5555                        else
5556                                ret = 0;
5557                        if (!exist)
5558                                btrfs_end_transaction(trans);
5559                        if (ret)
5560                                return ret;
5561                }
5562
5563                if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
5564                        /*
5565                         * Don't loop again if we already have no empty_size and
5566                         * no empty_cluster.
5567                         */
5568                        if (ffe_ctl->empty_size == 0 &&
5569                            ffe_ctl->empty_cluster == 0)
5570                                return -ENOSPC;
5571                        ffe_ctl->empty_size = 0;
5572                        ffe_ctl->empty_cluster = 0;
5573                }
5574                return 1;
5575        }
5576        return -ENOSPC;
5577}
5578
5579/*
5580 * walks the btree of allocated extents and find a hole of a given size.
5581 * The key ins is changed to record the hole:
5582 * ins->objectid == start position
5583 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5584 * ins->offset == the size of the hole.
5585 * Any available blocks before search_start are skipped.
5586 *
5587 * If there is no suitable free space, we will record the max size of
5588 * the free space extent currently.
5589 *
5590 * The overall logic and call chain:
5591 *
5592 * find_free_extent()
5593 * |- Iterate through all block groups
5594 * |  |- Get a valid block group
5595 * |  |- Try to do clustered allocation in that block group
5596 * |  |- Try to do unclustered allocation in that block group
5597 * |  |- Check if the result is valid
5598 * |  |  |- If valid, then exit
5599 * |  |- Jump to next block group
5600 * |
5601 * |- Push harder to find free extents
5602 *    |- If not found, re-iterate all block groups
5603 */
5604static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
5605                                u64 ram_bytes, u64 num_bytes, u64 empty_size,
5606                                u64 hint_byte, struct btrfs_key *ins,
5607                                u64 flags, int delalloc)
5608{
5609        int ret = 0;
5610        struct btrfs_free_cluster *last_ptr = NULL;
5611        struct btrfs_block_group_cache *block_group = NULL;
5612        struct find_free_extent_ctl ffe_ctl = {0};
5613        struct btrfs_space_info *space_info;
5614        bool use_cluster = true;
5615        bool full_search = false;
5616
5617        WARN_ON(num_bytes < fs_info->sectorsize);
5618
5619        ffe_ctl.ram_bytes = ram_bytes;
5620        ffe_ctl.num_bytes = num_bytes;
5621        ffe_ctl.empty_size = empty_size;
5622        ffe_ctl.flags = flags;
5623        ffe_ctl.search_start = 0;
5624        ffe_ctl.retry_clustered = false;
5625        ffe_ctl.retry_unclustered = false;
5626        ffe_ctl.delalloc = delalloc;
5627        ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
5628        ffe_ctl.have_caching_bg = false;
5629        ffe_ctl.orig_have_caching_bg = false;
5630        ffe_ctl.found_offset = 0;
5631
5632        ins->type = BTRFS_EXTENT_ITEM_KEY;
5633        ins->objectid = 0;
5634        ins->offset = 0;
5635
5636        trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
5637
5638        space_info = btrfs_find_space_info(fs_info, flags);
5639        if (!space_info) {
5640                btrfs_err(fs_info, "No space info for %llu", flags);
5641                return -ENOSPC;
5642        }
5643
5644        /*
5645         * If our free space is heavily fragmented we may not be able to make
5646         * big contiguous allocations, so instead of doing the expensive search
5647         * for free space, simply return ENOSPC with our max_extent_size so we
5648         * can go ahead and search for a more manageable chunk.
5649         *
5650         * If our max_extent_size is large enough for our allocation simply
5651         * disable clustering since we will likely not be able to find enough
5652         * space to create a cluster and induce latency trying.
5653         */
5654        if (unlikely(space_info->max_extent_size)) {
5655                spin_lock(&space_info->lock);
5656                if (space_info->max_extent_size &&
5657                    num_bytes > space_info->max_extent_size) {
5658                        ins->offset = space_info->max_extent_size;
5659                        spin_unlock(&space_info->lock);
5660                        return -ENOSPC;
5661                } else if (space_info->max_extent_size) {
5662                        use_cluster = false;
5663                }
5664                spin_unlock(&space_info->lock);
5665        }
5666
5667        last_ptr = fetch_cluster_info(fs_info, space_info,
5668                                      &ffe_ctl.empty_cluster);
5669        if (last_ptr) {
5670                spin_lock(&last_ptr->lock);
5671                if (last_ptr->block_group)
5672                        hint_byte = last_ptr->window_start;
5673                if (last_ptr->fragmented) {
5674                        /*
5675                         * We still set window_start so we can keep track of the
5676                         * last place we found an allocation to try and save
5677                         * some time.
5678                         */
5679                        hint_byte = last_ptr->window_start;
5680                        use_cluster = false;
5681                }
5682                spin_unlock(&last_ptr->lock);
5683        }
5684
5685        ffe_ctl.search_start = max(ffe_ctl.search_start,
5686                                   first_logical_byte(fs_info, 0));
5687        ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
5688        if (ffe_ctl.search_start == hint_byte) {
5689                block_group = btrfs_lookup_block_group(fs_info,
5690                                                       ffe_ctl.search_start);
5691                /*
5692                 * we don't want to use the block group if it doesn't match our
5693                 * allocation bits, or if its not cached.
5694                 *
5695                 * However if we are re-searching with an ideal block group
5696                 * picked out then we don't care that the block group is cached.
5697                 */
5698                if (block_group && block_group_bits(block_group, flags) &&
5699                    block_group->cached != BTRFS_CACHE_NO) {
5700                        down_read(&space_info->groups_sem);
5701                        if (list_empty(&block_group->list) ||
5702                            block_group->ro) {
5703                                /*
5704                                 * someone is removing this block group,
5705                                 * we can't jump into the have_block_group
5706                                 * target because our list pointers are not
5707                                 * valid
5708                                 */
5709                                btrfs_put_block_group(block_group);
5710                                up_read(&space_info->groups_sem);
5711                        } else {
5712                                ffe_ctl.index = btrfs_bg_flags_to_raid_index(
5713                                                block_group->flags);
5714                                btrfs_lock_block_group(block_group, delalloc);
5715                                goto have_block_group;
5716                        }
5717                } else if (block_group) {
5718                        btrfs_put_block_group(block_group);
5719                }
5720        }
5721search:
5722        ffe_ctl.have_caching_bg = false;
5723        if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
5724            ffe_ctl.index == 0)
5725                full_search = true;
5726        down_read(&space_info->groups_sem);
5727        list_for_each_entry(block_group,
5728                            &space_info->block_groups[ffe_ctl.index], list) {
5729                /* If the block group is read-only, we can skip it entirely. */
5730                if (unlikely(block_group->ro))
5731                        continue;
5732
5733                btrfs_grab_block_group(block_group, delalloc);
5734                ffe_ctl.search_start = block_group->key.objectid;
5735
5736                /*
5737                 * this can happen if we end up cycling through all the
5738                 * raid types, but we want to make sure we only allocate
5739                 * for the proper type.
5740                 */
5741                if (!block_group_bits(block_group, flags)) {
5742                        u64 extra = BTRFS_BLOCK_GROUP_DUP |
5743                                BTRFS_BLOCK_GROUP_RAID1_MASK |
5744                                BTRFS_BLOCK_GROUP_RAID56_MASK |
5745                                BTRFS_BLOCK_GROUP_RAID10;
5746
5747                        /*
5748                         * if they asked for extra copies and this block group
5749                         * doesn't provide them, bail.  This does allow us to
5750                         * fill raid0 from raid1.
5751                         */
5752                        if ((flags & extra) && !(block_group->flags & extra))
5753                                goto loop;
5754                }
5755
5756have_block_group:
5757                ffe_ctl.cached = block_group_cache_done(block_group);
5758                if (unlikely(!ffe_ctl.cached)) {
5759                        ffe_ctl.have_caching_bg = true;
5760                        ret = cache_block_group(block_group, 0);
5761                        BUG_ON(ret < 0);
5762                        ret = 0;
5763                }
5764
5765                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
5766                        goto loop;
5767
5768                /*
5769                 * Ok we want to try and use the cluster allocator, so
5770                 * lets look there
5771                 */
5772                if (last_ptr && use_cluster) {
5773                        struct btrfs_block_group_cache *cluster_bg = NULL;
5774
5775                        ret = find_free_extent_clustered(block_group, last_ptr,
5776                                                         &ffe_ctl, &cluster_bg);
5777
5778                        if (ret == 0) {
5779                                if (cluster_bg && cluster_bg != block_group) {
5780                                        btrfs_release_block_group(block_group,
5781                                                                  delalloc);
5782                                        block_group = cluster_bg;
5783                                }
5784                                goto checks;
5785                        } else if (ret == -EAGAIN) {
5786                                goto have_block_group;
5787                        } else if (ret > 0) {
5788                                goto loop;
5789                        }
5790                        /* ret == -ENOENT case falls through */
5791                }
5792
5793                ret = find_free_extent_unclustered(block_group, last_ptr,
5794                                                   &ffe_ctl);
5795                if (ret == -EAGAIN)
5796                        goto have_block_group;
5797                else if (ret > 0)
5798                        goto loop;
5799                /* ret == 0 case falls through */
5800checks:
5801                ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
5802                                             fs_info->stripesize);
5803
5804                /* move on to the next group */
5805                if (ffe_ctl.search_start + num_bytes >
5806                    block_group->key.objectid + block_group->key.offset) {
5807                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5808                                             num_bytes);
5809                        goto loop;
5810                }
5811
5812                if (ffe_ctl.found_offset < ffe_ctl.search_start)
5813                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5814                                ffe_ctl.search_start - ffe_ctl.found_offset);
5815
5816                ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
5817                                num_bytes, delalloc);
5818                if (ret == -EAGAIN) {
5819                        btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5820                                             num_bytes);
5821                        goto loop;
5822                }
5823                btrfs_inc_block_group_reservations(block_group);
5824
5825                /* we are all good, lets return */
5826                ins->objectid = ffe_ctl.search_start;
5827                ins->offset = num_bytes;
5828
5829                trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
5830                                           num_bytes);
5831                btrfs_release_block_group(block_group, delalloc);
5832                break;
5833loop:
5834                ffe_ctl.retry_clustered = false;
5835                ffe_ctl.retry_unclustered = false;
5836                BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
5837                       ffe_ctl.index);
5838                btrfs_release_block_group(block_group, delalloc);
5839                cond_resched();
5840        }
5841        up_read(&space_info->groups_sem);
5842
5843        ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
5844                                           full_search, use_cluster);
5845        if (ret > 0)
5846                goto search;
5847
5848        if (ret == -ENOSPC) {
5849                /*
5850                 * Use ffe_ctl->total_free_space as fallback if we can't find
5851                 * any contiguous hole.
5852                 */
5853                if (!ffe_ctl.max_extent_size)
5854                        ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
5855                spin_lock(&space_info->lock);
5856                space_info->max_extent_size = ffe_ctl.max_extent_size;
5857                spin_unlock(&space_info->lock);
5858                ins->offset = ffe_ctl.max_extent_size;
5859        }
5860        return ret;
5861}
5862
5863/*
5864 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
5865 *                        hole that is at least as big as @num_bytes.
5866 *
5867 * @root           -    The root that will contain this extent
5868 *
5869 * @ram_bytes      -    The amount of space in ram that @num_bytes take. This
5870 *                      is used for accounting purposes. This value differs
5871 *                      from @num_bytes only in the case of compressed extents.
5872 *
5873 * @num_bytes      -    Number of bytes to allocate on-disk.
5874 *
5875 * @min_alloc_size -    Indicates the minimum amount of space that the
5876 *                      allocator should try to satisfy. In some cases
5877 *                      @num_bytes may be larger than what is required and if
5878 *                      the filesystem is fragmented then allocation fails.
5879 *                      However, the presence of @min_alloc_size gives a
5880 *                      chance to try and satisfy the smaller allocation.
5881 *
5882 * @empty_size     -    A hint that you plan on doing more COW. This is the
5883 *                      size in bytes the allocator should try to find free
5884 *                      next to the block it returns.  This is just a hint and
5885 *                      may be ignored by the allocator.
5886 *
5887 * @hint_byte      -    Hint to the allocator to start searching above the byte
5888 *                      address passed. It might be ignored.
5889 *
5890 * @ins            -    This key is modified to record the found hole. It will
5891 *                      have the following values:
5892 *                      ins->objectid == start position
5893 *                      ins->flags = BTRFS_EXTENT_ITEM_KEY
5894 *                      ins->offset == the size of the hole.
5895 *
5896 * @is_data        -    Boolean flag indicating whether an extent is
5897 *                      allocated for data (true) or metadata (false)
5898 *
5899 * @delalloc       -    Boolean flag indicating whether this allocation is for
5900 *                      delalloc or not. If 'true' data_rwsem of block groups
5901 *                      is going to be acquired.
5902 *
5903 *
5904 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
5905 * case -ENOSPC is returned then @ins->offset will contain the size of the
5906 * largest available hole the allocator managed to find.
5907 */
5908int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
5909                         u64 num_bytes, u64 min_alloc_size,
5910                         u64 empty_size, u64 hint_byte,
5911                         struct btrfs_key *ins, int is_data, int delalloc)
5912{
5913        struct btrfs_fs_info *fs_info = root->fs_info;
5914        bool final_tried = num_bytes == min_alloc_size;
5915        u64 flags;
5916        int ret;
5917
5918        flags = get_alloc_profile_by_root(root, is_data);
5919again:
5920        WARN_ON(num_bytes < fs_info->sectorsize);
5921        ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
5922                               hint_byte, ins, flags, delalloc);
5923        if (!ret && !is_data) {
5924                btrfs_dec_block_group_reservations(fs_info, ins->objectid);
5925        } else if (ret == -ENOSPC) {
5926                if (!final_tried && ins->offset) {
5927                        num_bytes = min(num_bytes >> 1, ins->offset);
5928                        num_bytes = round_down(num_bytes,
5929                                               fs_info->sectorsize);
5930                        num_bytes = max(num_bytes, min_alloc_size);
5931                        ram_bytes = num_bytes;
5932                        if (num_bytes == min_alloc_size)
5933                                final_tried = true;
5934                        goto again;
5935                } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
5936                        struct btrfs_space_info *sinfo;
5937
5938                        sinfo = btrfs_find_space_info(fs_info, flags);
5939                        btrfs_err(fs_info,
5940                                  "allocation failed flags %llu, wanted %llu",
5941                                  flags, num_bytes);
5942                        if (sinfo)
5943                                btrfs_dump_space_info(fs_info, sinfo,
5944                                                      num_bytes, 1);
5945                }
5946        }
5947
5948        return ret;
5949}
5950
5951static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
5952                                        u64 start, u64 len,
5953                                        int pin, int delalloc)
5954{
5955        struct btrfs_block_group_cache *cache;
5956        int ret = 0;
5957
5958        cache = btrfs_lookup_block_group(fs_info, start);
5959        if (!cache) {
5960                btrfs_err(fs_info, "Unable to find block group for %llu",
5961                          start);
5962                return -ENOSPC;
5963        }
5964
5965        if (pin)
5966                pin_down_extent(cache, start, len, 1);
5967        else {
5968                if (btrfs_test_opt(fs_info, DISCARD))
5969                        ret = btrfs_discard_extent(fs_info, start, len, NULL);
5970                btrfs_add_free_space(cache, start, len);
5971                btrfs_free_reserved_bytes(cache, len, delalloc);
5972                trace_btrfs_reserved_extent_free(fs_info, start, len);
5973        }
5974
5975        btrfs_put_block_group(cache);
5976        return ret;
5977}
5978
5979int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
5980                               u64 start, u64 len, int delalloc)
5981{
5982        return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
5983}
5984
5985int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
5986                                       u64 start, u64 len)
5987{
5988        return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
5989}
5990
5991static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5992                                      u64 parent, u64 root_objectid,
5993                                      u64 flags, u64 owner, u64 offset,
5994                                      struct btrfs_key *ins, int ref_mod)
5995{
5996        struct btrfs_fs_info *fs_info = trans->fs_info;
5997        int ret;
5998        struct btrfs_extent_item *extent_item;
5999        struct btrfs_extent_inline_ref *iref;
6000        struct btrfs_path *path;
6001        struct extent_buffer *leaf;
6002        int type;
6003        u32 size;
6004
6005        if (parent > 0)
6006                type = BTRFS_SHARED_DATA_REF_KEY;
6007        else
6008                type = BTRFS_EXTENT_DATA_REF_KEY;
6009
6010        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6011
6012        path = btrfs_alloc_path();
6013        if (!path)
6014                return -ENOMEM;
6015
6016        path->leave_spinning = 1;
6017        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6018                                      ins, size);
6019        if (ret) {
6020                btrfs_free_path(path);
6021                return ret;
6022        }
6023
6024        leaf = path->nodes[0];
6025        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6026                                     struct btrfs_extent_item);
6027        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6028        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6029        btrfs_set_extent_flags(leaf, extent_item,
6030                               flags | BTRFS_EXTENT_FLAG_DATA);
6031
6032        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6033        btrfs_set_extent_inline_ref_type(leaf, iref, type);
6034        if (parent > 0) {
6035                struct btrfs_shared_data_ref *ref;
6036                ref = (struct btrfs_shared_data_ref *)(iref + 1);
6037                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6038                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6039        } else {
6040                struct btrfs_extent_data_ref *ref;
6041                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6042                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6043                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6044                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6045                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6046        }
6047
6048        btrfs_mark_buffer_dirty(path->nodes[0]);
6049        btrfs_free_path(path);
6050
6051        ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
6052        if (ret)
6053                return ret;
6054
6055        ret = update_block_group(trans, ins->objectid, ins->offset, 1);
6056        if (ret) { /* -ENOENT, logic error */
6057                btrfs_err(fs_info, "update block group failed for %llu %llu",
6058                        ins->objectid, ins->offset);
6059                BUG();
6060        }
6061        trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
6062        return ret;
6063}
6064
6065static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6066                                     struct btrfs_delayed_ref_node *node,
6067                                     struct btrfs_delayed_extent_op *extent_op)
6068{
6069        struct btrfs_fs_info *fs_info = trans->fs_info;
6070        int ret;
6071        struct btrfs_extent_item *extent_item;
6072        struct btrfs_key extent_key;
6073        struct btrfs_tree_block_info *block_info;
6074        struct btrfs_extent_inline_ref *iref;
6075        struct btrfs_path *path;
6076        struct extent_buffer *leaf;
6077        struct btrfs_delayed_tree_ref *ref;
6078        u32 size = sizeof(*extent_item) + sizeof(*iref);
6079        u64 num_bytes;
6080        u64 flags = extent_op->flags_to_set;
6081        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
6082
6083        ref = btrfs_delayed_node_to_tree_ref(node);
6084
6085        extent_key.objectid = node->bytenr;
6086        if (skinny_metadata) {
6087                extent_key.offset = ref->level;
6088                extent_key.type = BTRFS_METADATA_ITEM_KEY;
6089                num_bytes = fs_info->nodesize;
6090        } else {
6091                extent_key.offset = node->num_bytes;
6092                extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6093                size += sizeof(*block_info);
6094                num_bytes = node->num_bytes;
6095        }
6096
6097        path = btrfs_alloc_path();
6098        if (!path)
6099                return -ENOMEM;
6100
6101        path->leave_spinning = 1;
6102        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6103                                      &extent_key, size);
6104        if (ret) {
6105                btrfs_free_path(path);
6106                return ret;
6107        }
6108
6109        leaf = path->nodes[0];
6110        extent_item = btrfs_item_ptr(leaf, path->slots[0],
6111                                     struct btrfs_extent_item);
6112        btrfs_set_extent_refs(leaf, extent_item, 1);
6113        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6114        btrfs_set_extent_flags(leaf, extent_item,
6115                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6116
6117        if (skinny_metadata) {
6118                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6119        } else {
6120                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6121                btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
6122                btrfs_set_tree_block_level(leaf, block_info, ref->level);
6123                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6124        }
6125
6126        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
6127                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6128                btrfs_set_extent_inline_ref_type(leaf, iref,
6129                                                 BTRFS_SHARED_BLOCK_REF_KEY);
6130                btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
6131        } else {
6132                btrfs_set_extent_inline_ref_type(leaf, iref,
6133                                                 BTRFS_TREE_BLOCK_REF_KEY);
6134                btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
6135        }
6136
6137        btrfs_mark_buffer_dirty(leaf);
6138        btrfs_free_path(path);
6139
6140        ret = remove_from_free_space_tree(trans, extent_key.objectid,
6141                                          num_bytes);
6142        if (ret)
6143                return ret;
6144
6145        ret = update_block_group(trans, extent_key.objectid,
6146                                 fs_info->nodesize, 1);
6147        if (ret) { /* -ENOENT, logic error */
6148                btrfs_err(fs_info, "update block group failed for %llu %llu",
6149                        extent_key.objectid, extent_key.offset);
6150                BUG();
6151        }
6152
6153        trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
6154                                          fs_info->nodesize);
6155        return ret;
6156}
6157
6158int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6159                                     struct btrfs_root *root, u64 owner,
6160                                     u64 offset, u64 ram_bytes,
6161                                     struct btrfs_key *ins)
6162{
6163        struct btrfs_ref generic_ref = { 0 };
6164        int ret;
6165
6166        BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
6167
6168        btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
6169                               ins->objectid, ins->offset, 0);
6170        btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
6171        btrfs_ref_tree_mod(root->fs_info, &generic_ref);
6172        ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
6173                                         ram_bytes, NULL, NULL);
6174        return ret;
6175}
6176
6177/*
6178 * this is used by the tree logging recovery code.  It records that
6179 * an extent has been allocated and makes sure to clear the free
6180 * space cache bits as well
6181 */
6182int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6183                                   u64 root_objectid, u64 owner, u64 offset,
6184                                   struct btrfs_key *ins)
6185{
6186        struct btrfs_fs_info *fs_info = trans->fs_info;
6187        int ret;
6188        struct btrfs_block_group_cache *block_group;
6189        struct btrfs_space_info *space_info;
6190
6191        /*
6192         * Mixed block groups will exclude before processing the log so we only
6193         * need to do the exclude dance if this fs isn't mixed.
6194         */
6195        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
6196                ret = __exclude_logged_extent(fs_info, ins->objectid,
6197                                              ins->offset);
6198                if (ret)
6199                        return ret;
6200        }
6201
6202        block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
6203        if (!block_group)
6204                return -EINVAL;
6205
6206        space_info = block_group->space_info;
6207        spin_lock(&space_info->lock);
6208        spin_lock(&block_group->lock);
6209        space_info->bytes_reserved += ins->offset;
6210        block_group->reserved += ins->offset;
6211        spin_unlock(&block_group->lock);
6212        spin_unlock(&space_info->lock);
6213
6214        ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
6215                                         offset, ins, 1);
6216        btrfs_put_block_group(block_group);
6217        return ret;
6218}
6219
6220static struct extent_buffer *
6221btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6222                      u64 bytenr, int level, u64 owner)
6223{
6224        struct btrfs_fs_info *fs_info = root->fs_info;
6225        struct extent_buffer *buf;
6226
6227        buf = btrfs_find_create_tree_block(fs_info, bytenr);
6228        if (IS_ERR(buf))
6229                return buf;
6230
6231        /*
6232         * Extra safety check in case the extent tree is corrupted and extent
6233         * allocator chooses to use a tree block which is already used and
6234         * locked.
6235         */
6236        if (buf->lock_owner == current->pid) {
6237                btrfs_err_rl(fs_info,
6238"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
6239                        buf->start, btrfs_header_owner(buf), current->pid);
6240                free_extent_buffer(buf);
6241                return ERR_PTR(-EUCLEAN);
6242        }
6243
6244        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6245        btrfs_tree_lock(buf);
6246        btrfs_clean_tree_block(buf);
6247        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6248
6249        btrfs_set_lock_blocking_write(buf);
6250        set_extent_buffer_uptodate(buf);
6251
6252        memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
6253        btrfs_set_header_level(buf, level);
6254        btrfs_set_header_bytenr(buf, buf->start);
6255        btrfs_set_header_generation(buf, trans->transid);
6256        btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
6257        btrfs_set_header_owner(buf, owner);
6258        write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
6259        write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
6260        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6261                buf->log_index = root->log_transid % 2;
6262                /*
6263                 * we allow two log transactions at a time, use different
6264                 * EXTENT bit to differentiate dirty pages.
6265                 */
6266                if (buf->log_index == 0)
6267                        set_extent_dirty(&root->dirty_log_pages, buf->start,
6268                                        buf->start + buf->len - 1, GFP_NOFS);
6269                else
6270                        set_extent_new(&root->dirty_log_pages, buf->start,
6271                                        buf->start + buf->len - 1);
6272        } else {
6273                buf->log_index = -1;
6274                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6275                         buf->start + buf->len - 1, GFP_NOFS);
6276        }
6277        trans->dirty = true;
6278        /* this returns a buffer locked for blocking */
6279        return buf;
6280}
6281
6282/*
6283 * finds a free extent and does all the dirty work required for allocation
6284 * returns the tree buffer or an ERR_PTR on error.
6285 */
6286struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
6287                                             struct btrfs_root *root,
6288                                             u64 parent, u64 root_objectid,
6289                                             const struct btrfs_disk_key *key,
6290                                             int level, u64 hint,
6291                                             u64 empty_size)
6292{
6293        struct btrfs_fs_info *fs_info = root->fs_info;
6294        struct btrfs_key ins;
6295        struct btrfs_block_rsv *block_rsv;
6296        struct extent_buffer *buf;
6297        struct btrfs_delayed_extent_op *extent_op;
6298        struct btrfs_ref generic_ref = { 0 };
6299        u64 flags = 0;
6300        int ret;
6301        u32 blocksize = fs_info->nodesize;
6302        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
6303
6304#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6305        if (btrfs_is_testing(fs_info)) {
6306                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
6307                                            level, root_objectid);
6308                if (!IS_ERR(buf))
6309                        root->alloc_bytenr += blocksize;
6310                return buf;
6311        }
6312#endif
6313
6314        block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
6315        if (IS_ERR(block_rsv))
6316                return ERR_CAST(block_rsv);
6317
6318        ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
6319                                   empty_size, hint, &ins, 0, 0);
6320        if (ret)
6321                goto out_unuse;
6322
6323        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
6324                                    root_objectid);
6325        if (IS_ERR(buf)) {
6326                ret = PTR_ERR(buf);
6327                goto out_free_reserved;
6328        }
6329
6330        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6331                if (parent == 0)
6332                        parent = ins.objectid;
6333                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6334        } else
6335                BUG_ON(parent > 0);
6336
6337        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6338                extent_op = btrfs_alloc_delayed_extent_op();
6339                if (!extent_op) {
6340                        ret = -ENOMEM;
6341                        goto out_free_buf;
6342                }
6343                if (key)
6344                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
6345                else
6346                        memset(&extent_op->key, 0, sizeof(extent_op->key));
6347                extent_op->flags_to_set = flags;
6348                extent_op->update_key = skinny_metadata ? false : true;
6349                extent_op->update_flags = true;
6350                extent_op->is_data = false;
6351                extent_op->level = level;
6352
6353                btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
6354                                       ins.objectid, ins.offset, parent);
6355                generic_ref.real_root = root->root_key.objectid;
6356                btrfs_init_tree_ref(&generic_ref, level, root_objectid);
6357                btrfs_ref_tree_mod(fs_info, &generic_ref);
6358                ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
6359                                                 extent_op, NULL, NULL);
6360                if (ret)
6361                        goto out_free_delayed;
6362        }
6363        return buf;
6364
6365out_free_delayed:
6366        btrfs_free_delayed_extent_op(extent_op);
6367out_free_buf:
6368        free_extent_buffer(buf);
6369out_free_reserved:
6370        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
6371out_unuse:
6372        btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
6373        return ERR_PTR(ret);
6374}
6375
6376struct walk_control {
6377        u64 refs[BTRFS_MAX_LEVEL];
6378        u64 flags[BTRFS_MAX_LEVEL];
6379        struct btrfs_key update_progress;
6380        struct btrfs_key drop_progress;
6381        int drop_level;
6382        int stage;
6383        int level;
6384        int shared_level;
6385        int update_ref;
6386        int keep_locks;
6387        int reada_slot;
6388        int reada_count;
6389        int restarted;
6390};
6391
6392#define DROP_REFERENCE  1
6393#define UPDATE_BACKREF  2
6394
6395static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6396                                     struct btrfs_root *root,
6397                                     struct walk_control *wc,
6398                                     struct btrfs_path *path)
6399{
6400        struct btrfs_fs_info *fs_info = root->fs_info;
6401        u64 bytenr;
6402        u64 generation;
6403        u64 refs;
6404        u64 flags;
6405        u32 nritems;
6406        struct btrfs_key key;
6407        struct extent_buffer *eb;
6408        int ret;
6409        int slot;
6410        int nread = 0;
6411
6412        if (path->slots[wc->level] < wc->reada_slot) {
6413                wc->reada_count = wc->reada_count * 2 / 3;
6414                wc->reada_count = max(wc->reada_count, 2);
6415        } else {
6416                wc->reada_count = wc->reada_count * 3 / 2;
6417                wc->reada_count = min_t(int, wc->reada_count,
6418                                        BTRFS_NODEPTRS_PER_BLOCK(fs_info));
6419        }
6420
6421        eb = path->nodes[wc->level];
6422        nritems = btrfs_header_nritems(eb);
6423
6424        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6425                if (nread >= wc->reada_count)
6426                        break;
6427
6428                cond_resched();
6429                bytenr = btrfs_node_blockptr(eb, slot);
6430                generation = btrfs_node_ptr_generation(eb, slot);
6431
6432                if (slot == path->slots[wc->level])
6433                        goto reada;
6434
6435                if (wc->stage == UPDATE_BACKREF &&
6436                    generation <= root->root_key.offset)
6437                        continue;
6438
6439                /* We don't lock the tree block, it's OK to be racy here */
6440                ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
6441                                               wc->level - 1, 1, &refs,
6442                                               &flags);
6443                /* We don't care about errors in readahead. */
6444                if (ret < 0)
6445                        continue;
6446                BUG_ON(refs == 0);
6447
6448                if (wc->stage == DROP_REFERENCE) {
6449                        if (refs == 1)
6450                                goto reada;
6451
6452                        if (wc->level == 1 &&
6453                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6454                                continue;
6455                        if (!wc->update_ref ||
6456                            generation <= root->root_key.offset)
6457                                continue;
6458                        btrfs_node_key_to_cpu(eb, &key, slot);
6459                        ret = btrfs_comp_cpu_keys(&key,
6460                                                  &wc->update_progress);
6461                        if (ret < 0)
6462                                continue;
6463                } else {
6464                        if (wc->level == 1 &&
6465                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6466                                continue;
6467                }
6468reada:
6469                readahead_tree_block(fs_info, bytenr);
6470                nread++;
6471        }
6472        wc->reada_slot = slot;
6473}
6474
6475/*
6476 * helper to process tree block while walking down the tree.
6477 *
6478 * when wc->stage == UPDATE_BACKREF, this function updates
6479 * back refs for pointers in the block.
6480 *
6481 * NOTE: return value 1 means we should stop walking down.
6482 */
6483static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6484                                   struct btrfs_root *root,
6485                                   struct btrfs_path *path,
6486                                   struct walk_control *wc, int lookup_info)
6487{
6488        struct btrfs_fs_info *fs_info = root->fs_info;
6489        int level = wc->level;
6490        struct extent_buffer *eb = path->nodes[level];
6491        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6492        int ret;
6493
6494        if (wc->stage == UPDATE_BACKREF &&
6495            btrfs_header_owner(eb) != root->root_key.objectid)
6496                return 1;
6497
6498        /*
6499         * when reference count of tree block is 1, it won't increase
6500         * again. once full backref flag is set, we never clear it.
6501         */
6502        if (lookup_info &&
6503            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6504             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6505                BUG_ON(!path->locks[level]);
6506                ret = btrfs_lookup_extent_info(trans, fs_info,
6507                                               eb->start, level, 1,
6508                                               &wc->refs[level],
6509                                               &wc->flags[level]);
6510                BUG_ON(ret == -ENOMEM);
6511                if (ret)
6512                        return ret;
6513                BUG_ON(wc->refs[level] == 0);
6514        }
6515
6516        if (wc->stage == DROP_REFERENCE) {
6517                if (wc->refs[level] > 1)
6518                        return 1;
6519
6520                if (path->locks[level] && !wc->keep_locks) {
6521                        btrfs_tree_unlock_rw(eb, path->locks[level]);
6522                        path->locks[level] = 0;
6523                }
6524                return 0;
6525        }
6526
6527        /* wc->stage == UPDATE_BACKREF */
6528        if (!(wc->flags[level] & flag)) {
6529                BUG_ON(!path->locks[level]);
6530                ret = btrfs_inc_ref(trans, root, eb, 1);
6531                BUG_ON(ret); /* -ENOMEM */
6532                ret = btrfs_dec_ref(trans, root, eb, 0);
6533                BUG_ON(ret); /* -ENOMEM */
6534                ret = btrfs_set_disk_extent_flags(trans, eb->start,
6535                                                  eb->len, flag,
6536                                                  btrfs_header_level(eb), 0);
6537                BUG_ON(ret); /* -ENOMEM */
6538                wc->flags[level] |= flag;
6539        }
6540
6541        /*
6542         * the block is shared by multiple trees, so it's not good to
6543         * keep the tree lock
6544         */
6545        if (path->locks[level] && level > 0) {
6546                btrfs_tree_unlock_rw(eb, path->locks[level]);
6547                path->locks[level] = 0;
6548        }
6549        return 0;
6550}
6551
6552/*
6553 * This is used to verify a ref exists for this root to deal with a bug where we
6554 * would have a drop_progress key that hadn't been updated properly.
6555 */
6556static int check_ref_exists(struct btrfs_trans_handle *trans,
6557                            struct btrfs_root *root, u64 bytenr, u64 parent,
6558                            int level)
6559{
6560        struct btrfs_path *path;
6561        struct btrfs_extent_inline_ref *iref;
6562        int ret;
6563
6564        path = btrfs_alloc_path();
6565        if (!path)
6566                return -ENOMEM;
6567
6568        ret = lookup_extent_backref(trans, path, &iref, bytenr,
6569                                    root->fs_info->nodesize, parent,
6570                                    root->root_key.objectid, level, 0);
6571        btrfs_free_path(path);
6572        if (ret == -ENOENT)
6573                return 0;
6574        if (ret < 0)
6575                return ret;
6576        return 1;
6577}
6578
6579/*
6580 * helper to process tree block pointer.
6581 *
6582 * when wc->stage == DROP_REFERENCE, this function checks
6583 * reference count of the block pointed to. if the block
6584 * is shared and we need update back refs for the subtree
6585 * rooted at the block, this function changes wc->stage to
6586 * UPDATE_BACKREF. if the block is shared and there is no
6587 * need to update back, this function drops the reference
6588 * to the block.
6589 *
6590 * NOTE: return value 1 means we should stop walking down.
6591 */
6592static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6593                                 struct btrfs_root *root,
6594                                 struct btrfs_path *path,
6595                                 struct walk_control *wc, int *lookup_info)
6596{
6597        struct btrfs_fs_info *fs_info = root->fs_info;
6598        u64 bytenr;
6599        u64 generation;
6600        u64 parent;
6601        struct btrfs_key key;
6602        struct btrfs_key first_key;
6603        struct btrfs_ref ref = { 0 };
6604        struct extent_buffer *next;
6605        int level = wc->level;
6606        int reada = 0;
6607        int ret = 0;
6608        bool need_account = false;
6609
6610        generation = btrfs_node_ptr_generation(path->nodes[level],
6611                                               path->slots[level]);
6612        /*
6613         * if the lower level block was created before the snapshot
6614         * was created, we know there is no need to update back refs
6615         * for the subtree
6616         */
6617        if (wc->stage == UPDATE_BACKREF &&
6618            generation <= root->root_key.offset) {
6619                *lookup_info = 1;
6620                return 1;
6621        }
6622
6623        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6624        btrfs_node_key_to_cpu(path->nodes[level], &first_key,
6625                              path->slots[level]);
6626
6627        next = find_extent_buffer(fs_info, bytenr);
6628        if (!next) {
6629                next = btrfs_find_create_tree_block(fs_info, bytenr);
6630                if (IS_ERR(next))
6631                        return PTR_ERR(next);
6632
6633                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
6634                                               level - 1);
6635                reada = 1;
6636        }
6637        btrfs_tree_lock(next);
6638        btrfs_set_lock_blocking_write(next);
6639
6640        ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
6641                                       &wc->refs[level - 1],
6642                                       &wc->flags[level - 1]);
6643        if (ret < 0)
6644                goto out_unlock;
6645
6646        if (unlikely(wc->refs[level - 1] == 0)) {
6647                btrfs_err(fs_info, "Missing references.");
6648                ret = -EIO;
6649                goto out_unlock;
6650        }
6651        *lookup_info = 0;
6652
6653        if (wc->stage == DROP_REFERENCE) {
6654                if (wc->refs[level - 1] > 1) {
6655                        need_account = true;
6656                        if (level == 1 &&
6657                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6658                                goto skip;
6659
6660                        if (!wc->update_ref ||
6661                            generation <= root->root_key.offset)
6662                                goto skip;
6663
6664                        btrfs_node_key_to_cpu(path->nodes[level], &key,
6665                                              path->slots[level]);
6666                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6667                        if (ret < 0)
6668                                goto skip;
6669
6670                        wc->stage = UPDATE_BACKREF;
6671                        wc->shared_level = level - 1;
6672                }
6673        } else {
6674                if (level == 1 &&
6675                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6676                        goto skip;
6677        }
6678
6679        if (!btrfs_buffer_uptodate(next, generation, 0)) {
6680                btrfs_tree_unlock(next);
6681                free_extent_buffer(next);
6682                next = NULL;
6683                *lookup_info = 1;
6684        }
6685
6686        if (!next) {
6687                if (reada && level == 1)
6688                        reada_walk_down(trans, root, wc, path);
6689                next = read_tree_block(fs_info, bytenr, generation, level - 1,
6690                                       &first_key);
6691                if (IS_ERR(next)) {
6692                        return PTR_ERR(next);
6693                } else if (!extent_buffer_uptodate(next)) {
6694                        free_extent_buffer(next);
6695                        return -EIO;
6696                }
6697                btrfs_tree_lock(next);
6698                btrfs_set_lock_blocking_write(next);
6699        }
6700
6701        level--;
6702        ASSERT(level == btrfs_header_level(next));
6703        if (level != btrfs_header_level(next)) {
6704                btrfs_err(root->fs_info, "mismatched level");
6705                ret = -EIO;
6706                goto out_unlock;
6707        }
6708        path->nodes[level] = next;
6709        path->slots[level] = 0;
6710        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6711        wc->level = level;
6712        if (wc->level == 1)
6713                wc->reada_slot = 0;
6714        return 0;
6715skip:
6716        wc->refs[level - 1] = 0;
6717        wc->flags[level - 1] = 0;
6718        if (wc->stage == DROP_REFERENCE) {
6719                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6720                        parent = path->nodes[level]->start;
6721                } else {
6722                        ASSERT(root->root_key.objectid ==
6723                               btrfs_header_owner(path->nodes[level]));
6724                        if (root->root_key.objectid !=
6725                            btrfs_header_owner(path->nodes[level])) {
6726                                btrfs_err(root->fs_info,
6727                                                "mismatched block owner");
6728                                ret = -EIO;
6729                                goto out_unlock;
6730                        }
6731                        parent = 0;
6732                }
6733
6734                /*
6735                 * If we had a drop_progress we need to verify the refs are set
6736                 * as expected.  If we find our ref then we know that from here
6737                 * on out everything should be correct, and we can clear the
6738                 * ->restarted flag.
6739                 */
6740                if (wc->restarted) {
6741                        ret = check_ref_exists(trans, root, bytenr, parent,
6742                                               level - 1);
6743                        if (ret < 0)
6744                                goto out_unlock;
6745                        if (ret == 0)
6746                                goto no_delete;
6747                        ret = 0;
6748                        wc->restarted = 0;
6749                }
6750
6751                /*
6752                 * Reloc tree doesn't contribute to qgroup numbers, and we have
6753                 * already accounted them at merge time (replace_path),
6754                 * thus we could skip expensive subtree trace here.
6755                 */
6756                if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
6757                    need_account) {
6758                        ret = btrfs_qgroup_trace_subtree(trans, next,
6759                                                         generation, level - 1);
6760                        if (ret) {
6761                                btrfs_err_rl(fs_info,
6762                                             "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
6763                                             ret);
6764                        }
6765                }
6766
6767                /*
6768                 * We need to update the next key in our walk control so we can
6769                 * update the drop_progress key accordingly.  We don't care if
6770                 * find_next_key doesn't find a key because that means we're at
6771                 * the end and are going to clean up now.
6772                 */
6773                wc->drop_level = level;
6774                find_next_key(path, level, &wc->drop_progress);
6775
6776                btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
6777                                       fs_info->nodesize, parent);
6778                btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
6779                ret = btrfs_free_extent(trans, &ref);
6780                if (ret)
6781                        goto out_unlock;
6782        }
6783no_delete:
6784        *lookup_info = 1;
6785        ret = 1;
6786
6787out_unlock:
6788        btrfs_tree_unlock(next);
6789        free_extent_buffer(next);
6790
6791        return ret;
6792}
6793
6794/*
6795 * helper to process tree block while walking up the tree.
6796 *
6797 * when wc->stage == DROP_REFERENCE, this function drops
6798 * reference count on the block.
6799 *
6800 * when wc->stage == UPDATE_BACKREF, this function changes
6801 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6802 * to UPDATE_BACKREF previously while processing the block.
6803 *
6804 * NOTE: return value 1 means we should stop walking up.
6805 */
6806static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6807                                 struct btrfs_root *root,
6808                                 struct btrfs_path *path,
6809                                 struct walk_control *wc)
6810{
6811        struct btrfs_fs_info *fs_info = root->fs_info;
6812        int ret;
6813        int level = wc->level;
6814        struct extent_buffer *eb = path->nodes[level];
6815        u64 parent = 0;
6816
6817        if (wc->stage == UPDATE_BACKREF) {
6818                BUG_ON(wc->shared_level < level);
6819                if (level < wc->shared_level)
6820                        goto out;
6821
6822                ret = find_next_key(path, level + 1, &wc->update_progress);
6823                if (ret > 0)
6824                        wc->update_ref = 0;
6825
6826                wc->stage = DROP_REFERENCE;
6827                wc->shared_level = -1;
6828                path->slots[level] = 0;
6829
6830                /*
6831                 * check reference count again if the block isn't locked.
6832                 * we should start walking down the tree again if reference
6833                 * count is one.
6834                 */
6835                if (!path->locks[level]) {
6836                        BUG_ON(level == 0);
6837                        btrfs_tree_lock(eb);
6838                        btrfs_set_lock_blocking_write(eb);
6839                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6840
6841                        ret = btrfs_lookup_extent_info(trans, fs_info,
6842                                                       eb->start, level, 1,
6843                                                       &wc->refs[level],
6844                                                       &wc->flags[level]);
6845                        if (ret < 0) {
6846                                btrfs_tree_unlock_rw(eb, path->locks[level]);
6847                                path->locks[level] = 0;
6848                                return ret;
6849                        }
6850                        BUG_ON(wc->refs[level] == 0);
6851                        if (wc->refs[level] == 1) {
6852                                btrfs_tree_unlock_rw(eb, path->locks[level]);
6853                                path->locks[level] = 0;
6854                                return 1;
6855                        }
6856                }
6857        }
6858
6859        /* wc->stage == DROP_REFERENCE */
6860        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6861
6862        if (wc->refs[level] == 1) {
6863                if (level == 0) {
6864                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6865                                ret = btrfs_dec_ref(trans, root, eb, 1);
6866                        else
6867                                ret = btrfs_dec_ref(trans, root, eb, 0);
6868                        BUG_ON(ret); /* -ENOMEM */
6869                        if (is_fstree(root->root_key.objectid)) {
6870                                ret = btrfs_qgroup_trace_leaf_items(trans, eb);
6871                                if (ret) {
6872                                        btrfs_err_rl(fs_info,
6873        "error %d accounting leaf items, quota is out of sync, rescan required",
6874                                             ret);
6875                                }
6876                        }
6877                }
6878                /* make block locked assertion in btrfs_clean_tree_block happy */
6879                if (!path->locks[level] &&
6880                    btrfs_header_generation(eb) == trans->transid) {
6881                        btrfs_tree_lock(eb);
6882                        btrfs_set_lock_blocking_write(eb);
6883                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6884                }
6885                btrfs_clean_tree_block(eb);
6886        }
6887
6888        if (eb == root->node) {
6889                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6890                        parent = eb->start;
6891                else if (root->root_key.objectid != btrfs_header_owner(eb))
6892                        goto owner_mismatch;
6893        } else {
6894                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6895                        parent = path->nodes[level + 1]->start;
6896                else if (root->root_key.objectid !=
6897                         btrfs_header_owner(path->nodes[level + 1]))
6898                        goto owner_mismatch;
6899        }
6900
6901        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6902out:
6903        wc->refs[level] = 0;
6904        wc->flags[level] = 0;
6905        return 0;
6906
6907owner_mismatch:
6908        btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
6909                     btrfs_header_owner(eb), root->root_key.objectid);
6910        return -EUCLEAN;
6911}
6912
6913static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6914                                   struct btrfs_root *root,
6915                                   struct btrfs_path *path,
6916                                   struct walk_control *wc)
6917{
6918        int level = wc->level;
6919        int lookup_info = 1;
6920        int ret;
6921
6922        while (level >= 0) {
6923                ret = walk_down_proc(trans, root, path, wc, lookup_info);
6924                if (ret > 0)
6925                        break;
6926
6927                if (level == 0)
6928                        break;
6929
6930                if (path->slots[level] >=
6931                    btrfs_header_nritems(path->nodes[level]))
6932                        break;
6933
6934                ret = do_walk_down(trans, root, path, wc, &lookup_info);
6935                if (ret > 0) {
6936                        path->slots[level]++;
6937                        continue;
6938                } else if (ret < 0)
6939                        return ret;
6940                level = wc->level;
6941        }
6942        return 0;
6943}
6944
6945static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6946                                 struct btrfs_root *root,
6947                                 struct btrfs_path *path,
6948                                 struct walk_control *wc, int max_level)
6949{
6950        int level = wc->level;
6951        int ret;
6952
6953        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6954        while (level < max_level && path->nodes[level]) {
6955                wc->level = level;
6956                if (path->slots[level] + 1 <
6957                    btrfs_header_nritems(path->nodes[level])) {
6958                        path->slots[level]++;
6959                        return 0;
6960                } else {
6961                        ret = walk_up_proc(trans, root, path, wc);
6962                        if (ret > 0)
6963                                return 0;
6964                        if (ret < 0)
6965                                return ret;
6966
6967                        if (path->locks[level]) {
6968                                btrfs_tree_unlock_rw(path->nodes[level],
6969                                                     path->locks[level]);
6970                                path->locks[level] = 0;
6971                        }
6972                        free_extent_buffer(path->nodes[level]);
6973                        path->nodes[level] = NULL;
6974                        level++;
6975                }
6976        }
6977        return 1;
6978}
6979
6980/*
6981 * drop a subvolume tree.
6982 *
6983 * this function traverses the tree freeing any blocks that only
6984 * referenced by the tree.
6985 *
6986 * when a shared tree block is found. this function decreases its
6987 * reference count by one. if update_ref is true, this function
6988 * also make sure backrefs for the shared block and all lower level
6989 * blocks are properly updated.
6990 *
6991 * If called with for_reloc == 0, may exit early with -EAGAIN
6992 */
6993int btrfs_drop_snapshot(struct btrfs_root *root,
6994                         struct btrfs_block_rsv *block_rsv, int update_ref,
6995                         int for_reloc)
6996{
6997        struct btrfs_fs_info *fs_info = root->fs_info;
6998        struct btrfs_path *path;
6999        struct btrfs_trans_handle *trans;
7000        struct btrfs_root *tree_root = fs_info->tree_root;
7001        struct btrfs_root_item *root_item = &root->root_item;
7002        struct walk_control *wc;
7003        struct btrfs_key key;
7004        int err = 0;
7005        int ret;
7006        int level;
7007        bool root_dropped = false;
7008
7009        btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
7010
7011        path = btrfs_alloc_path();
7012        if (!path) {
7013                err = -ENOMEM;
7014                goto out;
7015        }
7016
7017        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7018        if (!wc) {
7019                btrfs_free_path(path);
7020                err = -ENOMEM;
7021                goto out;
7022        }
7023
7024        trans = btrfs_start_transaction(tree_root, 0);
7025        if (IS_ERR(trans)) {
7026                err = PTR_ERR(trans);
7027                goto out_free;
7028        }
7029
7030        err = btrfs_run_delayed_items(trans);
7031        if (err)
7032                goto out_end_trans;
7033
7034        if (block_rsv)
7035                trans->block_rsv = block_rsv;
7036
7037        /*
7038         * This will help us catch people modifying the fs tree while we're
7039         * dropping it.  It is unsafe to mess with the fs tree while it's being
7040         * dropped as we unlock the root node and parent nodes as we walk down
7041         * the tree, assuming nothing will change.  If something does change
7042         * then we'll have stale information and drop references to blocks we've
7043         * already dropped.
7044         */
7045        set_bit(BTRFS_ROOT_DELETING, &root->state);
7046        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7047                level = btrfs_header_level(root->node);
7048                path->nodes[level] = btrfs_lock_root_node(root);
7049                btrfs_set_lock_blocking_write(path->nodes[level]);
7050                path->slots[level] = 0;
7051                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7052                memset(&wc->update_progress, 0,
7053                       sizeof(wc->update_progress));
7054        } else {
7055                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7056                memcpy(&wc->update_progress, &key,
7057                       sizeof(wc->update_progress));
7058
7059                level = root_item->drop_level;
7060                BUG_ON(level == 0);
7061                path->lowest_level = level;
7062                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7063                path->lowest_level = 0;
7064                if (ret < 0) {
7065                        err = ret;
7066                        goto out_end_trans;
7067                }
7068                WARN_ON(ret > 0);
7069
7070                /*
7071                 * unlock our path, this is safe because only this
7072                 * function is allowed to delete this snapshot
7073                 */
7074                btrfs_unlock_up_safe(path, 0);
7075
7076                level = btrfs_header_level(root->node);
7077                while (1) {
7078                        btrfs_tree_lock(path->nodes[level]);
7079                        btrfs_set_lock_blocking_write(path->nodes[level]);
7080                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7081
7082                        ret = btrfs_lookup_extent_info(trans, fs_info,
7083                                                path->nodes[level]->start,
7084                                                level, 1, &wc->refs[level],
7085                                                &wc->flags[level]);
7086                        if (ret < 0) {
7087                                err = ret;
7088                                goto out_end_trans;
7089                        }
7090                        BUG_ON(wc->refs[level] == 0);
7091
7092                        if (level == root_item->drop_level)
7093                                break;
7094
7095                        btrfs_tree_unlock(path->nodes[level]);
7096                        path->locks[level] = 0;
7097                        WARN_ON(wc->refs[level] != 1);
7098                        level--;
7099                }
7100        }
7101
7102        wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
7103        wc->level = level;
7104        wc->shared_level = -1;
7105        wc->stage = DROP_REFERENCE;
7106        wc->update_ref = update_ref;
7107        wc->keep_locks = 0;
7108        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
7109
7110        while (1) {
7111
7112                ret = walk_down_tree(trans, root, path, wc);
7113                if (ret < 0) {
7114                        err = ret;
7115                        break;
7116                }
7117
7118                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7119                if (ret < 0) {
7120                        err = ret;
7121                        break;
7122                }
7123
7124                if (ret > 0) {
7125                        BUG_ON(wc->stage != DROP_REFERENCE);
7126                        break;
7127                }
7128
7129                if (wc->stage == DROP_REFERENCE) {
7130                        wc->drop_level = wc->level;
7131                        btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
7132                                              &wc->drop_progress,
7133                                              path->slots[wc->drop_level]);
7134                }
7135                btrfs_cpu_key_to_disk(&root_item->drop_progress,
7136                                      &wc->drop_progress);
7137                root_item->drop_level = wc->drop_level;
7138
7139                BUG_ON(wc->level == 0);
7140                if (btrfs_should_end_transaction(trans) ||
7141                    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
7142                        ret = btrfs_update_root(trans, tree_root,
7143                                                &root->root_key,
7144                                                root_item);
7145                        if (ret) {
7146                                btrfs_abort_transaction(trans, ret);
7147                                err = ret;
7148                                goto out_end_trans;
7149                        }
7150
7151                        btrfs_end_transaction_throttle(trans);
7152                        if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
7153                                btrfs_debug(fs_info,
7154                                            "drop snapshot early exit");
7155                                err = -EAGAIN;
7156                                goto out_free;
7157                        }
7158
7159                        trans = btrfs_start_transaction(tree_root, 0);
7160                        if (IS_ERR(trans)) {
7161                                err = PTR_ERR(trans);
7162                                goto out_free;
7163                        }
7164                        if (block_rsv)
7165                                trans->block_rsv = block_rsv;
7166                }
7167        }
7168        btrfs_release_path(path);
7169        if (err)
7170                goto out_end_trans;
7171
7172        ret = btrfs_del_root(trans, &root->root_key);
7173        if (ret) {
7174                btrfs_abort_transaction(trans, ret);
7175                err = ret;
7176                goto out_end_trans;
7177        }
7178
7179        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7180                ret = btrfs_find_root(tree_root, &root->root_key, path,
7181                                      NULL, NULL);
7182                if (ret < 0) {
7183                        btrfs_abort_transaction(trans, ret);
7184                        err = ret;
7185                        goto out_end_trans;
7186                } else if (ret > 0) {
7187                        /* if we fail to delete the orphan item this time
7188                         * around, it'll get picked up the next time.
7189                         *
7190                         * The most common failure here is just -ENOENT.
7191                         */
7192                        btrfs_del_orphan_item(trans, tree_root,
7193                                              root->root_key.objectid);
7194                }
7195        }
7196
7197        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
7198                btrfs_add_dropped_root(trans, root);
7199        } else {
7200                free_extent_buffer(root->node);
7201                free_extent_buffer(root->commit_root);
7202                btrfs_put_fs_root(root);
7203        }
7204        root_dropped = true;
7205out_end_trans:
7206        btrfs_end_transaction_throttle(trans);
7207out_free:
7208        kfree(wc);
7209        btrfs_free_path(path);
7210out:
7211        /*
7212         * So if we need to stop dropping the snapshot for whatever reason we
7213         * need to make sure to add it back to the dead root list so that we
7214         * keep trying to do the work later.  This also cleans up roots if we
7215         * don't have it in the radix (like when we recover after a power fail
7216         * or unmount) so we don't leak memory.
7217         */
7218        if (!for_reloc && !root_dropped)
7219                btrfs_add_dead_root(root);
7220        if (err && err != -EAGAIN)
7221                btrfs_handle_fs_error(fs_info, err, NULL);
7222        return err;
7223}
7224
7225/*
7226 * drop subtree rooted at tree block 'node'.
7227 *
7228 * NOTE: this function will unlock and release tree block 'node'
7229 * only used by relocation code
7230 */
7231int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7232                        struct btrfs_root *root,
7233                        struct extent_buffer *node,
7234                        struct extent_buffer *parent)
7235{
7236        struct btrfs_fs_info *fs_info = root->fs_info;
7237        struct btrfs_path *path;
7238        struct walk_control *wc;
7239        int level;
7240        int parent_level;
7241        int ret = 0;
7242        int wret;
7243
7244        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7245
7246        path = btrfs_alloc_path();
7247        if (!path)
7248                return -ENOMEM;
7249
7250        wc = kzalloc(sizeof(*wc), GFP_NOFS);
7251        if (!wc) {
7252                btrfs_free_path(path);
7253                return -ENOMEM;
7254        }
7255
7256        btrfs_assert_tree_locked(parent);
7257        parent_level = btrfs_header_level(parent);
7258        extent_buffer_get(parent);
7259        path->nodes[parent_level] = parent;
7260        path->slots[parent_level] = btrfs_header_nritems(parent);
7261
7262        btrfs_assert_tree_locked(node);
7263        level = btrfs_header_level(node);
7264        path->nodes[level] = node;
7265        path->slots[level] = 0;
7266        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7267
7268        wc->refs[parent_level] = 1;
7269        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7270        wc->level = level;
7271        wc->shared_level = -1;
7272        wc->stage = DROP_REFERENCE;
7273        wc->update_ref = 0;
7274        wc->keep_locks = 1;
7275        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
7276
7277        while (1) {
7278                wret = walk_down_tree(trans, root, path, wc);
7279                if (wret < 0) {
7280                        ret = wret;
7281                        break;
7282                }
7283
7284                wret = walk_up_tree(trans, root, path, wc, parent_level);
7285                if (wret < 0)
7286                        ret = wret;
7287                if (wret != 0)
7288                        break;
7289        }
7290
7291        kfree(wc);
7292        btrfs_free_path(path);
7293        return ret;
7294}
7295
7296static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
7297{
7298        u64 num_devices;
7299        u64 stripped;
7300
7301        /*
7302         * if restripe for this chunk_type is on pick target profile and
7303         * return, otherwise do the usual balance
7304         */
7305        stripped = get_restripe_target(fs_info, flags);
7306        if (stripped)
7307                return extended_to_chunk(stripped);
7308
7309        num_devices = fs_info->fs_devices->rw_devices;
7310
7311        stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
7312                BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
7313
7314        if (num_devices == 1) {
7315                stripped |= BTRFS_BLOCK_GROUP_DUP;
7316                stripped = flags & ~stripped;
7317
7318                /* turn raid0 into single device chunks */
7319                if (flags & BTRFS_BLOCK_GROUP_RAID0)
7320                        return stripped;
7321
7322                /* turn mirroring into duplication */
7323                if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
7324                             BTRFS_BLOCK_GROUP_RAID10))
7325                        return stripped | BTRFS_BLOCK_GROUP_DUP;
7326        } else {
7327                /* they already had raid on here, just return */
7328                if (flags & stripped)
7329                        return flags;
7330
7331                stripped |= BTRFS_BLOCK_GROUP_DUP;
7332                stripped = flags & ~stripped;
7333
7334                /* switch duplicated blocks with raid1 */
7335                if (flags & BTRFS_BLOCK_GROUP_DUP)
7336                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
7337
7338                /* this is drive concat, leave it alone */
7339        }
7340
7341        return flags;
7342}
7343
7344static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7345{
7346        struct btrfs_space_info *sinfo = cache->space_info;
7347        u64 num_bytes;
7348        u64 sinfo_used;
7349        u64 min_allocable_bytes;
7350        int ret = -ENOSPC;
7351
7352        /*
7353         * We need some metadata space and system metadata space for
7354         * allocating chunks in some corner cases until we force to set
7355         * it to be readonly.
7356         */
7357        if ((sinfo->flags &
7358             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7359            !force)
7360                min_allocable_bytes = SZ_1M;
7361        else
7362                min_allocable_bytes = 0;
7363
7364        spin_lock(&sinfo->lock);
7365        spin_lock(&cache->lock);
7366
7367        if (cache->ro) {
7368                cache->ro++;
7369                ret = 0;
7370                goto out;
7371        }
7372
7373        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7374                    cache->bytes_super - btrfs_block_group_used(&cache->item);
7375        sinfo_used = btrfs_space_info_used(sinfo, true);
7376
7377        if (sinfo_used + num_bytes + min_allocable_bytes <=
7378            sinfo->total_bytes) {
7379                sinfo->bytes_readonly += num_bytes;
7380                cache->ro++;
7381                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
7382                ret = 0;
7383        }
7384out:
7385        spin_unlock(&cache->lock);
7386        spin_unlock(&sinfo->lock);
7387        if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
7388                btrfs_info(cache->fs_info,
7389                        "unable to make block group %llu ro",
7390                        cache->key.objectid);
7391                btrfs_info(cache->fs_info,
7392                        "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
7393                        sinfo_used, num_bytes, min_allocable_bytes);
7394                btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
7395        }
7396        return ret;
7397}
7398
7399int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
7400
7401{
7402        struct btrfs_fs_info *fs_info = cache->fs_info;
7403        struct btrfs_trans_handle *trans;
7404        u64 alloc_flags;
7405        int ret;
7406
7407again:
7408        trans = btrfs_join_transaction(fs_info->extent_root);
7409        if (IS_ERR(trans))
7410                return PTR_ERR(trans);
7411
7412        /*
7413         * we're not allowed to set block groups readonly after the dirty
7414         * block groups cache has started writing.  If it already started,
7415         * back off and let this transaction commit
7416         */
7417        mutex_lock(&fs_info->ro_block_group_mutex);
7418        if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
7419                u64 transid = trans->transid;
7420
7421                mutex_unlock(&fs_info->ro_block_group_mutex);
7422                btrfs_end_transaction(trans);
7423
7424                ret = btrfs_wait_for_commit(fs_info, transid);
7425                if (ret)
7426                        return ret;
7427                goto again;
7428        }
7429
7430        /*
7431         * if we are changing raid levels, try to allocate a corresponding
7432         * block group with the new raid level.
7433         */
7434        alloc_flags = update_block_group_flags(fs_info, cache->flags);
7435        if (alloc_flags != cache->flags) {
7436                ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7437                /*
7438                 * ENOSPC is allowed here, we may have enough space
7439                 * already allocated at the new raid level to
7440                 * carry on
7441                 */
7442                if (ret == -ENOSPC)
7443                        ret = 0;
7444                if (ret < 0)
7445                        goto out;
7446        }
7447
7448        ret = inc_block_group_ro(cache, 0);
7449        if (!ret)
7450                goto out;
7451        alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
7452        ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7453        if (ret < 0)
7454                goto out;
7455        ret = inc_block_group_ro(cache, 0);
7456out:
7457        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
7458                alloc_flags = update_block_group_flags(fs_info, cache->flags);
7459                mutex_lock(&fs_info->chunk_mutex);
7460                check_system_chunk(trans, alloc_flags);
7461                mutex_unlock(&fs_info->chunk_mutex);
7462        }
7463        mutex_unlock(&fs_info->ro_block_group_mutex);
7464
7465        btrfs_end_transaction(trans);
7466        return ret;
7467}
7468
7469int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
7470{
7471        u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
7472
7473        return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7474}
7475
7476/*
7477 * helper to account the unused space of all the readonly block group in the
7478 * space_info. takes mirrors into account.
7479 */
7480u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7481{
7482        struct btrfs_block_group_cache *block_group;
7483        u64 free_bytes = 0;
7484        int factor;
7485
7486        /* It's df, we don't care if it's racy */
7487        if (list_empty(&sinfo->ro_bgs))
7488                return 0;
7489
7490        spin_lock(&sinfo->lock);
7491        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
7492                spin_lock(&block_group->lock);
7493
7494                if (!block_group->ro) {
7495                        spin_unlock(&block_group->lock);
7496                        continue;
7497                }
7498
7499                factor = btrfs_bg_type_to_factor(block_group->flags);
7500                free_bytes += (block_group->key.offset -
7501                               btrfs_block_group_used(&block_group->item)) *
7502                               factor;
7503
7504                spin_unlock(&block_group->lock);
7505        }
7506        spin_unlock(&sinfo->lock);
7507
7508        return free_bytes;
7509}
7510
7511void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
7512{
7513        struct btrfs_space_info *sinfo = cache->space_info;
7514        u64 num_bytes;
7515
7516        BUG_ON(!cache->ro);
7517
7518        spin_lock(&sinfo->lock);
7519        spin_lock(&cache->lock);
7520        if (!--cache->ro) {
7521                num_bytes = cache->key.offset - cache->reserved -
7522                            cache->pinned - cache->bytes_super -
7523                            btrfs_block_group_used(&cache->item);
7524                sinfo->bytes_readonly -= num_bytes;
7525                list_del_init(&cache->ro_list);
7526        }
7527        spin_unlock(&cache->lock);
7528        spin_unlock(&sinfo->lock);
7529}
7530
7531/*
7532 * Checks to see if it's even possible to relocate this block group.
7533 *
7534 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7535 * ok to go ahead and try.
7536 */
7537int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
7538{
7539        struct btrfs_block_group_cache *block_group;
7540        struct btrfs_space_info *space_info;
7541        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7542        struct btrfs_device *device;
7543        u64 min_free;
7544        u64 dev_min = 1;
7545        u64 dev_nr = 0;
7546        u64 target;
7547        int debug;
7548        int index;
7549        int full = 0;
7550        int ret = 0;
7551
7552        debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
7553
7554        block_group = btrfs_lookup_block_group(fs_info, bytenr);
7555
7556        /* odd, couldn't find the block group, leave it alone */
7557        if (!block_group) {
7558                if (debug)
7559                        btrfs_warn(fs_info,
7560                                   "can't find block group for bytenr %llu",
7561                                   bytenr);
7562                return -1;
7563        }
7564
7565        min_free = btrfs_block_group_used(&block_group->item);
7566
7567        /* no bytes used, we're good */
7568        if (!min_free)
7569                goto out;
7570
7571        space_info = block_group->space_info;
7572        spin_lock(&space_info->lock);
7573
7574        full = space_info->full;
7575
7576        /*
7577         * if this is the last block group we have in this space, we can't
7578         * relocate it unless we're able to allocate a new chunk below.
7579         *
7580         * Otherwise, we need to make sure we have room in the space to handle
7581         * all of the extents from this block group.  If we can, we're good
7582         */
7583        if ((space_info->total_bytes != block_group->key.offset) &&
7584            (btrfs_space_info_used(space_info, false) + min_free <
7585             space_info->total_bytes)) {
7586                spin_unlock(&space_info->lock);
7587                goto out;
7588        }
7589        spin_unlock(&space_info->lock);
7590
7591        /*
7592         * ok we don't have enough space, but maybe we have free space on our
7593         * devices to allocate new chunks for relocation, so loop through our
7594         * alloc devices and guess if we have enough space.  if this block
7595         * group is going to be restriped, run checks against the target
7596         * profile instead of the current one.
7597         */
7598        ret = -1;
7599
7600        /*
7601         * index:
7602         *      0: raid10
7603         *      1: raid1
7604         *      2: dup
7605         *      3: raid0
7606         *      4: single
7607         */
7608        target = get_restripe_target(fs_info, block_group->flags);
7609        if (target) {
7610                index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
7611        } else {
7612                /*
7613                 * this is just a balance, so if we were marked as full
7614                 * we know there is no space for a new chunk
7615                 */
7616                if (full) {
7617                        if (debug)
7618                                btrfs_warn(fs_info,
7619                                           "no space to alloc new chunk for block group %llu",
7620                                           block_group->key.objectid);
7621                        goto out;
7622                }
7623
7624                index = btrfs_bg_flags_to_raid_index(block_group->flags);
7625        }
7626
7627        if (index == BTRFS_RAID_RAID10) {
7628                dev_min = 4;
7629                /* Divide by 2 */
7630                min_free >>= 1;
7631        } else if (index == BTRFS_RAID_RAID1) {
7632                dev_min = 2;
7633        } else if (index == BTRFS_RAID_DUP) {
7634                /* Multiply by 2 */
7635                min_free <<= 1;
7636        } else if (index == BTRFS_RAID_RAID0) {
7637                dev_min = fs_devices->rw_devices;
7638                min_free = div64_u64(min_free, dev_min);
7639        }
7640
7641        mutex_lock(&fs_info->chunk_mutex);
7642        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7643                u64 dev_offset;
7644
7645                /*
7646                 * check to make sure we can actually find a chunk with enough
7647                 * space to fit our block group in.
7648                 */
7649                if (device->total_bytes > device->bytes_used + min_free &&
7650                    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7651                        ret = find_free_dev_extent(device, min_free,
7652                                                   &dev_offset, NULL);
7653                        if (!ret)
7654                                dev_nr++;
7655
7656                        if (dev_nr >= dev_min)
7657                                break;
7658
7659                        ret = -1;
7660                }
7661        }
7662        if (debug && ret == -1)
7663                btrfs_warn(fs_info,
7664                           "no space to allocate a new chunk for block group %llu",
7665                           block_group->key.objectid);
7666        mutex_unlock(&fs_info->chunk_mutex);
7667out:
7668        btrfs_put_block_group(block_group);
7669        return ret;
7670}
7671
7672static int find_first_block_group(struct btrfs_fs_info *fs_info,
7673                                  struct btrfs_path *path,
7674                                  struct btrfs_key *key)
7675{
7676        struct btrfs_root *root = fs_info->extent_root;
7677        int ret = 0;
7678        struct btrfs_key found_key;
7679        struct extent_buffer *leaf;
7680        struct btrfs_block_group_item bg;
7681        u64 flags;
7682        int slot;
7683
7684        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7685        if (ret < 0)
7686                goto out;
7687
7688        while (1) {
7689                slot = path->slots[0];
7690                leaf = path->nodes[0];
7691                if (slot >= btrfs_header_nritems(leaf)) {
7692                        ret = btrfs_next_leaf(root, path);
7693                        if (ret == 0)
7694                                continue;
7695                        if (ret < 0)
7696                                goto out;
7697                        break;
7698                }
7699                btrfs_item_key_to_cpu(leaf, &found_key, slot);
7700
7701                if (found_key.objectid >= key->objectid &&
7702                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7703                        struct extent_map_tree *em_tree;
7704                        struct extent_map *em;
7705
7706                        em_tree = &root->fs_info->mapping_tree;
7707                        read_lock(&em_tree->lock);
7708                        em = lookup_extent_mapping(em_tree, found_key.objectid,
7709                                                   found_key.offset);
7710                        read_unlock(&em_tree->lock);
7711                        if (!em) {
7712                                btrfs_err(fs_info,
7713                        "logical %llu len %llu found bg but no related chunk",
7714                                          found_key.objectid, found_key.offset);
7715                                ret = -ENOENT;
7716                        } else if (em->start != found_key.objectid ||
7717                                   em->len != found_key.offset) {
7718                                btrfs_err(fs_info,
7719                "block group %llu len %llu mismatch with chunk %llu len %llu",
7720                                          found_key.objectid, found_key.offset,
7721                                          em->start, em->len);
7722                                ret = -EUCLEAN;
7723                        } else {
7724                                read_extent_buffer(leaf, &bg,
7725                                        btrfs_item_ptr_offset(leaf, slot),
7726                                        sizeof(bg));
7727                                flags = btrfs_block_group_flags(&bg) &
7728                                        BTRFS_BLOCK_GROUP_TYPE_MASK;
7729
7730                                if (flags != (em->map_lookup->type &
7731                                              BTRFS_BLOCK_GROUP_TYPE_MASK)) {
7732                                        btrfs_err(fs_info,
7733"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
7734                                                found_key.objectid,
7735                                                found_key.offset, flags,
7736                                                (BTRFS_BLOCK_GROUP_TYPE_MASK &
7737                                                 em->map_lookup->type));
7738                                        ret = -EUCLEAN;
7739                                } else {
7740                                        ret = 0;
7741                                }
7742                        }
7743                        free_extent_map(em);
7744                        goto out;
7745                }
7746                path->slots[0]++;
7747        }
7748out:
7749        return ret;
7750}
7751
7752void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7753{
7754        struct btrfs_block_group_cache *block_group;
7755        u64 last = 0;
7756
7757        while (1) {
7758                struct inode *inode;
7759
7760                block_group = btrfs_lookup_first_block_group(info, last);
7761                while (block_group) {
7762                        wait_block_group_cache_done(block_group);
7763                        spin_lock(&block_group->lock);
7764                        if (block_group->iref)
7765                                break;
7766                        spin_unlock(&block_group->lock);
7767                        block_group = next_block_group(block_group);
7768                }
7769                if (!block_group) {
7770                        if (last == 0)
7771                                break;
7772                        last = 0;
7773                        continue;
7774                }
7775
7776                inode = block_group->inode;
7777                block_group->iref = 0;
7778                block_group->inode = NULL;
7779                spin_unlock(&block_group->lock);
7780                ASSERT(block_group->io_ctl.inode == NULL);
7781                iput(inode);
7782                last = block_group->key.objectid + block_group->key.offset;
7783                btrfs_put_block_group(block_group);
7784        }
7785}
7786
7787/*
7788 * Must be called only after stopping all workers, since we could have block
7789 * group caching kthreads running, and therefore they could race with us if we
7790 * freed the block groups before stopping them.
7791 */
7792int btrfs_free_block_groups(struct btrfs_fs_info *info)
7793{
7794        struct btrfs_block_group_cache *block_group;
7795        struct btrfs_space_info *space_info;
7796        struct btrfs_caching_control *caching_ctl;
7797        struct rb_node *n;
7798
7799        down_write(&info->commit_root_sem);
7800        while (!list_empty(&info->caching_block_groups)) {
7801                caching_ctl = list_entry(info->caching_block_groups.next,
7802                                         struct btrfs_caching_control, list);
7803                list_del(&caching_ctl->list);
7804                put_caching_control(caching_ctl);
7805        }
7806        up_write(&info->commit_root_sem);
7807
7808        spin_lock(&info->unused_bgs_lock);
7809        while (!list_empty(&info->unused_bgs)) {
7810                block_group = list_first_entry(&info->unused_bgs,
7811                                               struct btrfs_block_group_cache,
7812                                               bg_list);
7813                list_del_init(&block_group->bg_list);
7814                btrfs_put_block_group(block_group);
7815        }
7816        spin_unlock(&info->unused_bgs_lock);
7817
7818        spin_lock(&info->block_group_cache_lock);
7819        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7820                block_group = rb_entry(n, struct btrfs_block_group_cache,
7821                                       cache_node);
7822                rb_erase(&block_group->cache_node,
7823                         &info->block_group_cache_tree);
7824                RB_CLEAR_NODE(&block_group->cache_node);
7825                spin_unlock(&info->block_group_cache_lock);
7826
7827                down_write(&block_group->space_info->groups_sem);
7828                list_del(&block_group->list);
7829                up_write(&block_group->space_info->groups_sem);
7830
7831                /*
7832                 * We haven't cached this block group, which means we could
7833                 * possibly have excluded extents on this block group.
7834                 */
7835                if (block_group->cached == BTRFS_CACHE_NO ||
7836                    block_group->cached == BTRFS_CACHE_ERROR)
7837                        free_excluded_extents(block_group);
7838
7839                btrfs_remove_free_space_cache(block_group);
7840                ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
7841                ASSERT(list_empty(&block_group->dirty_list));
7842                ASSERT(list_empty(&block_group->io_list));
7843                ASSERT(list_empty(&block_group->bg_list));
7844                ASSERT(atomic_read(&block_group->count) == 1);
7845                btrfs_put_block_group(block_group);
7846
7847                spin_lock(&info->block_group_cache_lock);
7848        }
7849        spin_unlock(&info->block_group_cache_lock);
7850
7851        /* now that all the block groups are freed, go through and
7852         * free all the space_info structs.  This is only called during
7853         * the final stages of unmount, and so we know nobody is
7854         * using them.  We call synchronize_rcu() once before we start,
7855         * just to be on the safe side.
7856         */
7857        synchronize_rcu();
7858
7859        btrfs_release_global_block_rsv(info);
7860
7861        while (!list_empty(&info->space_info)) {
7862                int i;
7863
7864                space_info = list_entry(info->space_info.next,
7865                                        struct btrfs_space_info,
7866                                        list);
7867
7868                /*
7869                 * Do not hide this behind enospc_debug, this is actually
7870                 * important and indicates a real bug if this happens.
7871                 */
7872                if (WARN_ON(space_info->bytes_pinned > 0 ||
7873                            space_info->bytes_reserved > 0 ||
7874                            space_info->bytes_may_use > 0))
7875                        btrfs_dump_space_info(info, space_info, 0, 0);
7876                list_del(&space_info->list);
7877                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
7878                        struct kobject *kobj;
7879                        kobj = space_info->block_group_kobjs[i];
7880                        space_info->block_group_kobjs[i] = NULL;
7881                        if (kobj) {
7882                                kobject_del(kobj);
7883                                kobject_put(kobj);
7884                        }
7885                }
7886                kobject_del(&space_info->kobj);
7887                kobject_put(&space_info->kobj);
7888        }
7889        return 0;
7890}
7891
7892static void link_block_group(struct btrfs_block_group_cache *cache)
7893{
7894        struct btrfs_space_info *space_info = cache->space_info;
7895        struct btrfs_fs_info *fs_info = cache->fs_info;
7896        int index = btrfs_bg_flags_to_raid_index(cache->flags);
7897        bool first = false;
7898
7899        down_write(&space_info->groups_sem);
7900        if (list_empty(&space_info->block_groups[index]))
7901                first = true;
7902        list_add_tail(&cache->list, &space_info->block_groups[index]);
7903        up_write(&space_info->groups_sem);
7904
7905        if (first) {
7906                struct raid_kobject *rkobj;
7907                unsigned int nofs_flag;
7908                int ret;
7909
7910                /*
7911                 * Setup a NOFS context because kobject_add(), deep in its call
7912                 * chain, does GFP_KERNEL allocations, and we are often called
7913                 * in a context where if reclaim is triggered we can deadlock
7914                 * (we are either holding a transaction handle or some lock
7915                 * required for a transaction commit).
7916                 */
7917                nofs_flag = memalloc_nofs_save();
7918                rkobj = kzalloc(sizeof(*rkobj), GFP_KERNEL);
7919                if (!rkobj) {
7920                        memalloc_nofs_restore(nofs_flag);
7921                        btrfs_warn(cache->fs_info,
7922                                "couldn't alloc memory for raid level kobject");
7923                        return;
7924                }
7925                rkobj->flags = cache->flags;
7926                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
7927                ret = kobject_add(&rkobj->kobj, &space_info->kobj, "%s",
7928                                  btrfs_bg_type_to_raid_name(rkobj->flags));
7929                memalloc_nofs_restore(nofs_flag);
7930                if (ret) {
7931                        kobject_put(&rkobj->kobj);
7932                        btrfs_warn(fs_info,
7933                           "failed to add kobject for block cache, ignoring");
7934                        return;
7935                }
7936                space_info->block_group_kobjs[index] = &rkobj->kobj;
7937        }
7938}
7939
7940static struct btrfs_block_group_cache *
7941btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
7942                               u64 start, u64 size)
7943{
7944        struct btrfs_block_group_cache *cache;
7945
7946        cache = kzalloc(sizeof(*cache), GFP_NOFS);
7947        if (!cache)
7948                return NULL;
7949
7950        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7951                                        GFP_NOFS);
7952        if (!cache->free_space_ctl) {
7953                kfree(cache);
7954                return NULL;
7955        }
7956
7957        cache->key.objectid = start;
7958        cache->key.offset = size;
7959        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7960
7961        cache->fs_info = fs_info;
7962        cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
7963        set_free_space_tree_thresholds(cache);
7964
7965        atomic_set(&cache->count, 1);
7966        spin_lock_init(&cache->lock);
7967        init_rwsem(&cache->data_rwsem);
7968        INIT_LIST_HEAD(&cache->list);
7969        INIT_LIST_HEAD(&cache->cluster_list);
7970        INIT_LIST_HEAD(&cache->bg_list);
7971        INIT_LIST_HEAD(&cache->ro_list);
7972        INIT_LIST_HEAD(&cache->dirty_list);
7973        INIT_LIST_HEAD(&cache->io_list);
7974        btrfs_init_free_space_ctl(cache);
7975        atomic_set(&cache->trimming, 0);
7976        mutex_init(&cache->free_space_lock);
7977        btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
7978
7979        return cache;
7980}
7981
7982
7983/*
7984 * Iterate all chunks and verify that each of them has the corresponding block
7985 * group
7986 */
7987static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
7988{
7989        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7990        struct extent_map *em;
7991        struct btrfs_block_group_cache *bg;
7992        u64 start = 0;
7993        int ret = 0;
7994
7995        while (1) {
7996                read_lock(&map_tree->lock);
7997                /*
7998                 * lookup_extent_mapping will return the first extent map
7999                 * intersecting the range, so setting @len to 1 is enough to
8000                 * get the first chunk.
8001                 */
8002                em = lookup_extent_mapping(map_tree, start, 1);
8003                read_unlock(&map_tree->lock);
8004                if (!em)
8005                        break;
8006
8007                bg = btrfs_lookup_block_group(fs_info, em->start);
8008                if (!bg) {
8009                        btrfs_err(fs_info,
8010        "chunk start=%llu len=%llu doesn't have corresponding block group",
8011                                     em->start, em->len);
8012                        ret = -EUCLEAN;
8013                        free_extent_map(em);
8014                        break;
8015                }
8016                if (bg->key.objectid != em->start ||
8017                    bg->key.offset != em->len ||
8018                    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
8019                    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
8020                        btrfs_err(fs_info,
8021"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
8022                                em->start, em->len,
8023                                em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
8024                                bg->key.objectid, bg->key.offset,
8025                                bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
8026                        ret = -EUCLEAN;
8027                        free_extent_map(em);
8028                        btrfs_put_block_group(bg);
8029                        break;
8030                }
8031                start = em->start + em->len;
8032                free_extent_map(em);
8033                btrfs_put_block_group(bg);
8034        }
8035        return ret;
8036}
8037
8038int btrfs_read_block_groups(struct btrfs_fs_info *info)
8039{
8040        struct btrfs_path *path;
8041        int ret;
8042        struct btrfs_block_group_cache *cache;
8043        struct btrfs_space_info *space_info;
8044        struct btrfs_key key;
8045        struct btrfs_key found_key;
8046        struct extent_buffer *leaf;
8047        int need_clear = 0;
8048        u64 cache_gen;
8049        u64 feature;
8050        int mixed;
8051
8052        feature = btrfs_super_incompat_flags(info->super_copy);
8053        mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
8054
8055        key.objectid = 0;
8056        key.offset = 0;
8057        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8058        path = btrfs_alloc_path();
8059        if (!path)
8060                return -ENOMEM;
8061        path->reada = READA_FORWARD;
8062
8063        cache_gen = btrfs_super_cache_generation(info->super_copy);
8064        if (btrfs_test_opt(info, SPACE_CACHE) &&
8065            btrfs_super_generation(info->super_copy) != cache_gen)
8066                need_clear = 1;
8067        if (btrfs_test_opt(info, CLEAR_CACHE))
8068                need_clear = 1;
8069
8070        while (1) {
8071                ret = find_first_block_group(info, path, &key);
8072                if (ret > 0)
8073                        break;
8074                if (ret != 0)
8075                        goto error;
8076
8077                leaf = path->nodes[0];
8078                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8079
8080                cache = btrfs_create_block_group_cache(info, found_key.objectid,
8081                                                       found_key.offset);
8082                if (!cache) {
8083                        ret = -ENOMEM;
8084                        goto error;
8085                }
8086
8087                if (need_clear) {
8088                        /*
8089                         * When we mount with old space cache, we need to
8090                         * set BTRFS_DC_CLEAR and set dirty flag.
8091                         *
8092                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8093                         *    truncate the old free space cache inode and
8094                         *    setup a new one.
8095                         * b) Setting 'dirty flag' makes sure that we flush
8096                         *    the new space cache info onto disk.
8097                         */
8098                        if (btrfs_test_opt(info, SPACE_CACHE))
8099                                cache->disk_cache_state = BTRFS_DC_CLEAR;
8100                }
8101
8102                read_extent_buffer(leaf, &cache->item,
8103                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
8104                                   sizeof(cache->item));
8105                cache->flags = btrfs_block_group_flags(&cache->item);
8106                if (!mixed &&
8107                    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
8108                    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
8109                        btrfs_err(info,
8110"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
8111                                  cache->key.objectid);
8112                        ret = -EINVAL;
8113                        goto error;
8114                }
8115
8116                key.objectid = found_key.objectid + found_key.offset;
8117                btrfs_release_path(path);
8118
8119                /*
8120                 * We need to exclude the super stripes now so that the space
8121                 * info has super bytes accounted for, otherwise we'll think
8122                 * we have more space than we actually do.
8123                 */
8124                ret = exclude_super_stripes(cache);
8125                if (ret) {
8126                        /*
8127                         * We may have excluded something, so call this just in
8128                         * case.
8129                         */
8130                        free_excluded_extents(cache);
8131                        btrfs_put_block_group(cache);
8132                        goto error;
8133                }
8134
8135                /*
8136                 * check for two cases, either we are full, and therefore
8137                 * don't need to bother with the caching work since we won't
8138                 * find any space, or we are empty, and we can just add all
8139                 * the space in and be done with it.  This saves us _a_lot_ of
8140                 * time, particularly in the full case.
8141                 */
8142                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8143                        cache->last_byte_to_unpin = (u64)-1;
8144                        cache->cached = BTRFS_CACHE_FINISHED;
8145                        free_excluded_extents(cache);
8146                } else if (btrfs_block_group_used(&cache->item) == 0) {
8147                        cache->last_byte_to_unpin = (u64)-1;
8148                        cache->cached = BTRFS_CACHE_FINISHED;
8149                        add_new_free_space(cache, found_key.objectid,
8150                                           found_key.objectid +
8151                                           found_key.offset);
8152                        free_excluded_extents(cache);
8153                }
8154
8155                ret = btrfs_add_block_group_cache(info, cache);
8156                if (ret) {
8157                        btrfs_remove_free_space_cache(cache);
8158                        btrfs_put_block_group(cache);
8159                        goto error;
8160                }
8161
8162                trace_btrfs_add_block_group(info, cache, 0);
8163                btrfs_update_space_info(info, cache->flags, found_key.offset,
8164                                        btrfs_block_group_used(&cache->item),
8165                                        cache->bytes_super, &space_info);
8166
8167                cache->space_info = space_info;
8168
8169                link_block_group(cache);
8170
8171                set_avail_alloc_bits(info, cache->flags);
8172                if (btrfs_chunk_readonly(info, cache->key.objectid)) {
8173                        inc_block_group_ro(cache, 1);
8174                } else if (btrfs_block_group_used(&cache->item) == 0) {
8175                        ASSERT(list_empty(&cache->bg_list));
8176                        btrfs_mark_bg_unused(cache);
8177                }
8178        }
8179
8180        list_for_each_entry_rcu(space_info, &info->space_info, list) {
8181                if (!(get_alloc_profile(info, space_info->flags) &
8182                      (BTRFS_BLOCK_GROUP_RAID10 |
8183                       BTRFS_BLOCK_GROUP_RAID1_MASK |
8184                       BTRFS_BLOCK_GROUP_RAID56_MASK |
8185                       BTRFS_BLOCK_GROUP_DUP)))
8186                        continue;
8187                /*
8188                 * avoid allocating from un-mirrored block group if there are
8189                 * mirrored block groups.
8190                 */
8191                list_for_each_entry(cache,
8192                                &space_info->block_groups[BTRFS_RAID_RAID0],
8193                                list)
8194                        inc_block_group_ro(cache, 1);
8195                list_for_each_entry(cache,
8196                                &space_info->block_groups[BTRFS_RAID_SINGLE],
8197                                list)
8198                        inc_block_group_ro(cache, 1);
8199        }
8200
8201        btrfs_init_global_block_rsv(info);
8202        ret = check_chunk_block_group_mappings(info);
8203error:
8204        btrfs_free_path(path);
8205        return ret;
8206}
8207
8208void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
8209{
8210        struct btrfs_fs_info *fs_info = trans->fs_info;
8211        struct btrfs_block_group_cache *block_group;
8212        struct btrfs_root *extent_root = fs_info->extent_root;
8213        struct btrfs_block_group_item item;
8214        struct btrfs_key key;
8215        int ret = 0;
8216
8217        if (!trans->can_flush_pending_bgs)
8218                return;
8219
8220        while (!list_empty(&trans->new_bgs)) {
8221                block_group = list_first_entry(&trans->new_bgs,
8222                                               struct btrfs_block_group_cache,
8223                                               bg_list);
8224                if (ret)
8225                        goto next;
8226
8227                spin_lock(&block_group->lock);
8228                memcpy(&item, &block_group->item, sizeof(item));
8229                memcpy(&key, &block_group->key, sizeof(key));
8230                spin_unlock(&block_group->lock);
8231
8232                ret = btrfs_insert_item(trans, extent_root, &key, &item,
8233                                        sizeof(item));
8234                if (ret)
8235                        btrfs_abort_transaction(trans, ret);
8236                ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
8237                if (ret)
8238                        btrfs_abort_transaction(trans, ret);
8239                add_block_group_free_space(trans, block_group);
8240                /* already aborted the transaction if it failed. */
8241next:
8242                btrfs_delayed_refs_rsv_release(fs_info, 1);
8243                list_del_init(&block_group->bg_list);
8244        }
8245        btrfs_trans_release_chunk_metadata(trans);
8246}
8247
8248int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
8249                           u64 type, u64 chunk_offset, u64 size)
8250{
8251        struct btrfs_fs_info *fs_info = trans->fs_info;
8252        struct btrfs_block_group_cache *cache;
8253        int ret;
8254
8255        btrfs_set_log_full_commit(trans);
8256
8257        cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
8258        if (!cache)
8259                return -ENOMEM;
8260
8261        btrfs_set_block_group_used(&cache->item, bytes_used);
8262        btrfs_set_block_group_chunk_objectid(&cache->item,
8263                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
8264        btrfs_set_block_group_flags(&cache->item, type);
8265
8266        cache->flags = type;
8267        cache->last_byte_to_unpin = (u64)-1;
8268        cache->cached = BTRFS_CACHE_FINISHED;
8269        cache->needs_free_space = 1;
8270        ret = exclude_super_stripes(cache);
8271        if (ret) {
8272                /*
8273                 * We may have excluded something, so call this just in
8274                 * case.
8275                 */
8276                free_excluded_extents(cache);
8277                btrfs_put_block_group(cache);
8278                return ret;
8279        }
8280
8281        add_new_free_space(cache, chunk_offset, chunk_offset + size);
8282
8283        free_excluded_extents(cache);
8284
8285#ifdef CONFIG_BTRFS_DEBUG
8286        if (btrfs_should_fragment_free_space(cache)) {
8287                u64 new_bytes_used = size - bytes_used;
8288
8289                bytes_used += new_bytes_used >> 1;
8290                fragment_free_space(cache);
8291        }
8292#endif
8293        /*
8294         * Ensure the corresponding space_info object is created and
8295         * assigned to our block group. We want our bg to be added to the rbtree
8296         * with its ->space_info set.
8297         */
8298        cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
8299        ASSERT(cache->space_info);
8300
8301        ret = btrfs_add_block_group_cache(fs_info, cache);
8302        if (ret) {
8303                btrfs_remove_free_space_cache(cache);
8304                btrfs_put_block_group(cache);
8305                return ret;
8306        }
8307
8308        /*
8309         * Now that our block group has its ->space_info set and is inserted in
8310         * the rbtree, update the space info's counters.
8311         */
8312        trace_btrfs_add_block_group(fs_info, cache, 1);
8313        btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
8314                                cache->bytes_super, &cache->space_info);
8315        btrfs_update_global_block_rsv(fs_info);
8316
8317        link_block_group(cache);
8318
8319        list_add_tail(&cache->bg_list, &trans->new_bgs);
8320        trans->delayed_ref_updates++;
8321        btrfs_update_delayed_refs_rsv(trans);
8322
8323        set_avail_alloc_bits(fs_info, type);
8324        return 0;
8325}
8326
8327static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8328{
8329        u64 extra_flags = chunk_to_extended(flags) &
8330                                BTRFS_EXTENDED_PROFILE_MASK;
8331
8332        write_seqlock(&fs_info->profiles_lock);
8333        if (flags & BTRFS_BLOCK_GROUP_DATA)
8334                fs_info->avail_data_alloc_bits &= ~extra_flags;
8335        if (flags & BTRFS_BLOCK_GROUP_METADATA)
8336                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8337        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8338                fs_info->avail_system_alloc_bits &= ~extra_flags;
8339        write_sequnlock(&fs_info->profiles_lock);
8340}
8341
8342/*
8343 * Clear incompat bits for the following feature(s):
8344 *
8345 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
8346 *            in the whole filesystem
8347 */
8348static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
8349{
8350        if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8351                struct list_head *head = &fs_info->space_info;
8352                struct btrfs_space_info *sinfo;
8353
8354                list_for_each_entry_rcu(sinfo, head, list) {
8355                        bool found = false;
8356
8357                        down_read(&sinfo->groups_sem);
8358                        if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
8359                                found = true;
8360                        if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
8361                                found = true;
8362                        up_read(&sinfo->groups_sem);
8363
8364                        if (found)
8365                                return;
8366                }
8367                btrfs_clear_fs_incompat(fs_info, RAID56);
8368        }
8369}
8370
8371int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8372                             u64 group_start, struct extent_map *em)
8373{
8374        struct btrfs_fs_info *fs_info = trans->fs_info;
8375        struct btrfs_root *root = fs_info->extent_root;
8376        struct btrfs_path *path;
8377        struct btrfs_block_group_cache *block_group;
8378        struct btrfs_free_cluster *cluster;
8379        struct btrfs_root *tree_root = fs_info->tree_root;
8380        struct btrfs_key key;
8381        struct inode *inode;
8382        struct kobject *kobj = NULL;
8383        int ret;
8384        int index;
8385        int factor;
8386        struct btrfs_caching_control *caching_ctl = NULL;
8387        bool remove_em;
8388        bool remove_rsv = false;
8389
8390        block_group = btrfs_lookup_block_group(fs_info, group_start);
8391        BUG_ON(!block_group);
8392        BUG_ON(!block_group->ro);
8393
8394        trace_btrfs_remove_block_group(block_group);
8395        /*
8396         * Free the reserved super bytes from this block group before
8397         * remove it.
8398         */
8399        free_excluded_extents(block_group);
8400        btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
8401                                  block_group->key.offset);
8402
8403        memcpy(&key, &block_group->key, sizeof(key));
8404        index = btrfs_bg_flags_to_raid_index(block_group->flags);
8405        factor = btrfs_bg_type_to_factor(block_group->flags);
8406
8407        /* make sure this block group isn't part of an allocation cluster */
8408        cluster = &fs_info->data_alloc_cluster;
8409        spin_lock(&cluster->refill_lock);
8410        btrfs_return_cluster_to_free_space(block_group, cluster);
8411        spin_unlock(&cluster->refill_lock);
8412
8413        /*
8414         * make sure this block group isn't part of a metadata
8415         * allocation cluster
8416         */
8417        cluster = &fs_info->meta_alloc_cluster;
8418        spin_lock(&cluster->refill_lock);
8419        btrfs_return_cluster_to_free_space(block_group, cluster);
8420        spin_unlock(&cluster->refill_lock);
8421
8422        path = btrfs_alloc_path();
8423        if (!path) {
8424                ret = -ENOMEM;
8425                goto out;
8426        }
8427
8428        /*
8429         * get the inode first so any iput calls done for the io_list
8430         * aren't the final iput (no unlinks allowed now)
8431         */
8432        inode = lookup_free_space_inode(block_group, path);
8433
8434        mutex_lock(&trans->transaction->cache_write_mutex);
8435        /*
8436         * Make sure our free space cache IO is done before removing the
8437         * free space inode
8438         */
8439        spin_lock(&trans->transaction->dirty_bgs_lock);
8440        if (!list_empty(&block_group->io_list)) {
8441                list_del_init(&block_group->io_list);
8442
8443                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
8444
8445                spin_unlock(&trans->transaction->dirty_bgs_lock);
8446                btrfs_wait_cache_io(trans, block_group, path);
8447                btrfs_put_block_group(block_group);
8448                spin_lock(&trans->transaction->dirty_bgs_lock);
8449        }
8450
8451        if (!list_empty(&block_group->dirty_list)) {
8452                list_del_init(&block_group->dirty_list);
8453                remove_rsv = true;
8454                btrfs_put_block_group(block_group);
8455        }
8456        spin_unlock(&trans->transaction->dirty_bgs_lock);
8457        mutex_unlock(&trans->transaction->cache_write_mutex);
8458
8459        if (!IS_ERR(inode)) {
8460                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
8461                if (ret) {
8462                        btrfs_add_delayed_iput(inode);
8463                        goto out;
8464                }
8465                clear_nlink(inode);
8466                /* One for the block groups ref */
8467                spin_lock(&block_group->lock);
8468                if (block_group->iref) {
8469                        block_group->iref = 0;
8470                        block_group->inode = NULL;
8471                        spin_unlock(&block_group->lock);
8472                        iput(inode);
8473                } else {
8474                        spin_unlock(&block_group->lock);
8475                }
8476                /* One for our lookup ref */
8477                btrfs_add_delayed_iput(inode);
8478        }
8479
8480        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8481        key.offset = block_group->key.objectid;
8482        key.type = 0;
8483
8484        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8485        if (ret < 0)
8486                goto out;
8487        if (ret > 0)
8488                btrfs_release_path(path);
8489        if (ret == 0) {
8490                ret = btrfs_del_item(trans, tree_root, path);
8491                if (ret)
8492                        goto out;
8493                btrfs_release_path(path);
8494        }
8495
8496        spin_lock(&fs_info->block_group_cache_lock);
8497        rb_erase(&block_group->cache_node,
8498                 &fs_info->block_group_cache_tree);
8499        RB_CLEAR_NODE(&block_group->cache_node);
8500
8501        if (fs_info->first_logical_byte == block_group->key.objectid)
8502                fs_info->first_logical_byte = (u64)-1;
8503        spin_unlock(&fs_info->block_group_cache_lock);
8504
8505        down_write(&block_group->space_info->groups_sem);
8506        /*
8507         * we must use list_del_init so people can check to see if they
8508         * are still on the list after taking the semaphore
8509         */
8510        list_del_init(&block_group->list);
8511        if (list_empty(&block_group->space_info->block_groups[index])) {
8512                kobj = block_group->space_info->block_group_kobjs[index];
8513                block_group->space_info->block_group_kobjs[index] = NULL;
8514                clear_avail_alloc_bits(fs_info, block_group->flags);
8515        }
8516        up_write(&block_group->space_info->groups_sem);
8517        clear_incompat_bg_bits(fs_info, block_group->flags);
8518        if (kobj) {
8519                kobject_del(kobj);
8520                kobject_put(kobj);
8521        }
8522
8523        if (block_group->has_caching_ctl)
8524                caching_ctl = get_caching_control(block_group);
8525        if (block_group->cached == BTRFS_CACHE_STARTED)
8526                wait_block_group_cache_done(block_group);
8527        if (block_group->has_caching_ctl) {
8528                down_write(&fs_info->commit_root_sem);
8529                if (!caching_ctl) {
8530                        struct btrfs_caching_control *ctl;
8531
8532                        list_for_each_entry(ctl,
8533                                    &fs_info->caching_block_groups, list)
8534                                if (ctl->block_group == block_group) {
8535                                        caching_ctl = ctl;
8536                                        refcount_inc(&caching_ctl->count);
8537                                        break;
8538                                }
8539                }
8540                if (caching_ctl)
8541                        list_del_init(&caching_ctl->list);
8542                up_write(&fs_info->commit_root_sem);
8543                if (caching_ctl) {
8544                        /* Once for the caching bgs list and once for us. */
8545                        put_caching_control(caching_ctl);
8546                        put_caching_control(caching_ctl);
8547                }
8548        }
8549
8550        spin_lock(&trans->transaction->dirty_bgs_lock);
8551        WARN_ON(!list_empty(&block_group->dirty_list));
8552        WARN_ON(!list_empty(&block_group->io_list));
8553        spin_unlock(&trans->transaction->dirty_bgs_lock);
8554
8555        btrfs_remove_free_space_cache(block_group);
8556
8557        spin_lock(&block_group->space_info->lock);
8558        list_del_init(&block_group->ro_list);
8559
8560        if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8561                WARN_ON(block_group->space_info->total_bytes
8562                        < block_group->key.offset);
8563                WARN_ON(block_group->space_info->bytes_readonly
8564                        < block_group->key.offset);
8565                WARN_ON(block_group->space_info->disk_total
8566                        < block_group->key.offset * factor);
8567        }
8568        block_group->space_info->total_bytes -= block_group->key.offset;
8569        block_group->space_info->bytes_readonly -= block_group->key.offset;
8570        block_group->space_info->disk_total -= block_group->key.offset * factor;
8571
8572        spin_unlock(&block_group->space_info->lock);
8573
8574        memcpy(&key, &block_group->key, sizeof(key));
8575
8576        mutex_lock(&fs_info->chunk_mutex);
8577        spin_lock(&block_group->lock);
8578        block_group->removed = 1;
8579        /*
8580         * At this point trimming can't start on this block group, because we
8581         * removed the block group from the tree fs_info->block_group_cache_tree
8582         * so no one can't find it anymore and even if someone already got this
8583         * block group before we removed it from the rbtree, they have already
8584         * incremented block_group->trimming - if they didn't, they won't find
8585         * any free space entries because we already removed them all when we
8586         * called btrfs_remove_free_space_cache().
8587         *
8588         * And we must not remove the extent map from the fs_info->mapping_tree
8589         * to prevent the same logical address range and physical device space
8590         * ranges from being reused for a new block group. This is because our
8591         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
8592         * completely transactionless, so while it is trimming a range the
8593         * currently running transaction might finish and a new one start,
8594         * allowing for new block groups to be created that can reuse the same
8595         * physical device locations unless we take this special care.
8596         *
8597         * There may also be an implicit trim operation if the file system
8598         * is mounted with -odiscard. The same protections must remain
8599         * in place until the extents have been discarded completely when
8600         * the transaction commit has completed.
8601         */
8602        remove_em = (atomic_read(&block_group->trimming) == 0);
8603        spin_unlock(&block_group->lock);
8604
8605        mutex_unlock(&fs_info->chunk_mutex);
8606
8607        ret = remove_block_group_free_space(trans, block_group);
8608        if (ret)
8609                goto out;
8610
8611        btrfs_put_block_group(block_group);
8612        btrfs_put_block_group(block_group);
8613
8614        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8615        if (ret > 0)
8616                ret = -EIO;
8617        if (ret < 0)
8618                goto out;
8619
8620        ret = btrfs_del_item(trans, root, path);
8621        if (ret)
8622                goto out;
8623
8624        if (remove_em) {
8625                struct extent_map_tree *em_tree;
8626
8627                em_tree = &fs_info->mapping_tree;
8628                write_lock(&em_tree->lock);
8629                remove_extent_mapping(em_tree, em);
8630                write_unlock(&em_tree->lock);
8631                /* once for the tree */
8632                free_extent_map(em);
8633        }
8634out:
8635        if (remove_rsv)
8636                btrfs_delayed_refs_rsv_release(fs_info, 1);
8637        btrfs_free_path(path);
8638        return ret;
8639}
8640
8641struct btrfs_trans_handle *
8642btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
8643                                     const u64 chunk_offset)
8644{
8645        struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8646        struct extent_map *em;
8647        struct map_lookup *map;
8648        unsigned int num_items;
8649
8650        read_lock(&em_tree->lock);
8651        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8652        read_unlock(&em_tree->lock);
8653        ASSERT(em && em->start == chunk_offset);
8654
8655        /*
8656         * We need to reserve 3 + N units from the metadata space info in order
8657         * to remove a block group (done at btrfs_remove_chunk() and at
8658         * btrfs_remove_block_group()), which are used for:
8659         *
8660         * 1 unit for adding the free space inode's orphan (located in the tree
8661         * of tree roots).
8662         * 1 unit for deleting the block group item (located in the extent
8663         * tree).
8664         * 1 unit for deleting the free space item (located in tree of tree
8665         * roots).
8666         * N units for deleting N device extent items corresponding to each
8667         * stripe (located in the device tree).
8668         *
8669         * In order to remove a block group we also need to reserve units in the
8670         * system space info in order to update the chunk tree (update one or
8671         * more device items and remove one chunk item), but this is done at
8672         * btrfs_remove_chunk() through a call to check_system_chunk().
8673         */
8674        map = em->map_lookup;
8675        num_items = 3 + map->num_stripes;
8676        free_extent_map(em);
8677
8678        return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
8679                                                           num_items, 1);
8680}
8681
8682/*
8683 * Process the unused_bgs list and remove any that don't have any allocated
8684 * space inside of them.
8685 */
8686void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
8687{
8688        struct btrfs_block_group_cache *block_group;
8689        struct btrfs_space_info *space_info;
8690        struct btrfs_trans_handle *trans;
8691        int ret = 0;
8692
8693        if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
8694                return;
8695
8696        spin_lock(&fs_info->unused_bgs_lock);
8697        while (!list_empty(&fs_info->unused_bgs)) {
8698                u64 start, end;
8699                int trimming;
8700
8701                block_group = list_first_entry(&fs_info->unused_bgs,
8702                                               struct btrfs_block_group_cache,
8703                                               bg_list);
8704                list_del_init(&block_group->bg_list);
8705
8706                space_info = block_group->space_info;
8707
8708                if (ret || btrfs_mixed_space_info(space_info)) {
8709                        btrfs_put_block_group(block_group);
8710                        continue;
8711                }
8712                spin_unlock(&fs_info->unused_bgs_lock);
8713
8714                mutex_lock(&fs_info->delete_unused_bgs_mutex);
8715
8716                /* Don't want to race with allocators so take the groups_sem */
8717                down_write(&space_info->groups_sem);
8718                spin_lock(&block_group->lock);
8719                if (block_group->reserved || block_group->pinned ||
8720                    btrfs_block_group_used(&block_group->item) ||
8721                    block_group->ro ||
8722                    list_is_singular(&block_group->list)) {
8723                        /*
8724                         * We want to bail if we made new allocations or have
8725                         * outstanding allocations in this block group.  We do
8726                         * the ro check in case balance is currently acting on
8727                         * this block group.
8728                         */
8729                        trace_btrfs_skip_unused_block_group(block_group);
8730                        spin_unlock(&block_group->lock);
8731                        up_write(&space_info->groups_sem);
8732                        goto next;
8733                }
8734                spin_unlock(&block_group->lock);
8735
8736                /* We don't want to force the issue, only flip if it's ok. */
8737                ret = inc_block_group_ro(block_group, 0);
8738                up_write(&space_info->groups_sem);
8739                if (ret < 0) {
8740                        ret = 0;
8741                        goto next;
8742                }
8743
8744                /*
8745                 * Want to do this before we do anything else so we can recover
8746                 * properly if we fail to join the transaction.
8747                 */
8748                trans = btrfs_start_trans_remove_block_group(fs_info,
8749                                                     block_group->key.objectid);
8750                if (IS_ERR(trans)) {
8751                        btrfs_dec_block_group_ro(block_group);
8752                        ret = PTR_ERR(trans);
8753                        goto next;
8754                }
8755
8756                /*
8757                 * We could have pending pinned extents for this block group,
8758                 * just delete them, we don't care about them anymore.
8759                 */
8760                start = block_group->key.objectid;
8761                end = start + block_group->key.offset - 1;
8762                /*
8763                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
8764                 * btrfs_finish_extent_commit(). If we are at transaction N,
8765                 * another task might be running finish_extent_commit() for the
8766                 * previous transaction N - 1, and have seen a range belonging
8767                 * to the block group in freed_extents[] before we were able to
8768                 * clear the whole block group range from freed_extents[]. This
8769                 * means that task can lookup for the block group after we
8770                 * unpinned it from freed_extents[] and removed it, leading to
8771                 * a BUG_ON() at btrfs_unpin_extent_range().
8772                 */
8773                mutex_lock(&fs_info->unused_bg_unpin_mutex);
8774                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
8775                                  EXTENT_DIRTY);
8776                if (ret) {
8777                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8778                        btrfs_dec_block_group_ro(block_group);
8779                        goto end_trans;
8780                }
8781                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
8782                                  EXTENT_DIRTY);
8783                if (ret) {
8784                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8785                        btrfs_dec_block_group_ro(block_group);
8786                        goto end_trans;
8787                }
8788                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8789
8790                /* Reset pinned so btrfs_put_block_group doesn't complain */
8791                spin_lock(&space_info->lock);
8792                spin_lock(&block_group->lock);
8793
8794                btrfs_space_info_update_bytes_pinned(fs_info, space_info,
8795                                                     -block_group->pinned);
8796                space_info->bytes_readonly += block_group->pinned;
8797                percpu_counter_add_batch(&space_info->total_bytes_pinned,
8798                                   -block_group->pinned,
8799                                   BTRFS_TOTAL_BYTES_PINNED_BATCH);
8800                block_group->pinned = 0;
8801
8802                spin_unlock(&block_group->lock);
8803                spin_unlock(&space_info->lock);
8804
8805                /* DISCARD can flip during remount */
8806                trimming = btrfs_test_opt(fs_info, DISCARD);
8807
8808                /* Implicit trim during transaction commit. */
8809                if (trimming)
8810                        btrfs_get_block_group_trimming(block_group);
8811
8812                /*
8813                 * Btrfs_remove_chunk will abort the transaction if things go
8814                 * horribly wrong.
8815                 */
8816                ret = btrfs_remove_chunk(trans, block_group->key.objectid);
8817
8818                if (ret) {
8819                        if (trimming)
8820                                btrfs_put_block_group_trimming(block_group);
8821                        goto end_trans;
8822                }
8823
8824                /*
8825                 * If we're not mounted with -odiscard, we can just forget
8826                 * about this block group. Otherwise we'll need to wait
8827                 * until transaction commit to do the actual discard.
8828                 */
8829                if (trimming) {
8830                        spin_lock(&fs_info->unused_bgs_lock);
8831                        /*
8832                         * A concurrent scrub might have added us to the list
8833                         * fs_info->unused_bgs, so use a list_move operation
8834                         * to add the block group to the deleted_bgs list.
8835                         */
8836                        list_move(&block_group->bg_list,
8837                                  &trans->transaction->deleted_bgs);
8838                        spin_unlock(&fs_info->unused_bgs_lock);
8839                        btrfs_get_block_group(block_group);
8840                }
8841end_trans:
8842                btrfs_end_transaction(trans);
8843next:
8844                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8845                btrfs_put_block_group(block_group);
8846                spin_lock(&fs_info->unused_bgs_lock);
8847        }
8848        spin_unlock(&fs_info->unused_bgs_lock);
8849}
8850
8851int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
8852                                   u64 start, u64 end)
8853{
8854        return unpin_extent_range(fs_info, start, end, false);
8855}
8856
8857/*
8858 * It used to be that old block groups would be left around forever.
8859 * Iterating over them would be enough to trim unused space.  Since we
8860 * now automatically remove them, we also need to iterate over unallocated
8861 * space.
8862 *
8863 * We don't want a transaction for this since the discard may take a
8864 * substantial amount of time.  We don't require that a transaction be
8865 * running, but we do need to take a running transaction into account
8866 * to ensure that we're not discarding chunks that were released or
8867 * allocated in the current transaction.
8868 *
8869 * Holding the chunks lock will prevent other threads from allocating
8870 * or releasing chunks, but it won't prevent a running transaction
8871 * from committing and releasing the memory that the pending chunks
8872 * list head uses.  For that, we need to take a reference to the
8873 * transaction and hold the commit root sem.  We only need to hold
8874 * it while performing the free space search since we have already
8875 * held back allocations.
8876 */
8877static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
8878{
8879        u64 start = SZ_1M, len = 0, end = 0;
8880        int ret;
8881
8882        *trimmed = 0;
8883
8884        /* Discard not supported = nothing to do. */
8885        if (!blk_queue_discard(bdev_get_queue(device->bdev)))
8886                return 0;
8887
8888        /* Not writable = nothing to do. */
8889        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
8890                return 0;
8891
8892        /* No free space = nothing to do. */
8893        if (device->total_bytes <= device->bytes_used)
8894                return 0;
8895
8896        ret = 0;
8897
8898        while (1) {
8899                struct btrfs_fs_info *fs_info = device->fs_info;
8900                u64 bytes;
8901
8902                ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
8903                if (ret)
8904                        break;
8905
8906                find_first_clear_extent_bit(&device->alloc_state, start,
8907                                            &start, &end,
8908                                            CHUNK_TRIMMED | CHUNK_ALLOCATED);
8909
8910                /* Ensure we skip the reserved area in the first 1M */
8911                start = max_t(u64, start, SZ_1M);
8912
8913                /*
8914                 * If find_first_clear_extent_bit find a range that spans the
8915                 * end of the device it will set end to -1, in this case it's up
8916                 * to the caller to trim the value to the size of the device.
8917                 */
8918                end = min(end, device->total_bytes - 1);
8919
8920                len = end - start + 1;
8921
8922                /* We didn't find any extents */
8923                if (!len) {
8924                        mutex_unlock(&fs_info->chunk_mutex);
8925                        ret = 0;
8926                        break;
8927                }
8928
8929                ret = btrfs_issue_discard(device->bdev, start, len,
8930                                          &bytes);
8931                if (!ret)
8932                        set_extent_bits(&device->alloc_state, start,
8933                                        start + bytes - 1,
8934                                        CHUNK_TRIMMED);
8935                mutex_unlock(&fs_info->chunk_mutex);
8936
8937                if (ret)
8938                        break;
8939
8940                start += len;
8941                *trimmed += bytes;
8942
8943                if (fatal_signal_pending(current)) {
8944                        ret = -ERESTARTSYS;
8945                        break;
8946                }
8947
8948                cond_resched();
8949        }
8950
8951        return ret;
8952}
8953
8954/*
8955 * Trim the whole filesystem by:
8956 * 1) trimming the free space in each block group
8957 * 2) trimming the unallocated space on each device
8958 *
8959 * This will also continue trimming even if a block group or device encounters
8960 * an error.  The return value will be the last error, or 0 if nothing bad
8961 * happens.
8962 */
8963int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
8964{
8965        struct btrfs_block_group_cache *cache = NULL;
8966        struct btrfs_device *device;
8967        struct list_head *devices;
8968        u64 group_trimmed;
8969        u64 range_end = U64_MAX;
8970        u64 start;
8971        u64 end;
8972        u64 trimmed = 0;
8973        u64 bg_failed = 0;
8974        u64 dev_failed = 0;
8975        int bg_ret = 0;
8976        int dev_ret = 0;
8977        int ret = 0;
8978
8979        /*
8980         * Check range overflow if range->len is set.
8981         * The default range->len is U64_MAX.
8982         */
8983        if (range->len != U64_MAX &&
8984            check_add_overflow(range->start, range->len, &range_end))
8985                return -EINVAL;
8986
8987        cache = btrfs_lookup_first_block_group(fs_info, range->start);
8988        for (; cache; cache = next_block_group(cache)) {
8989                if (cache->key.objectid >= range_end) {
8990                        btrfs_put_block_group(cache);
8991                        break;
8992                }
8993
8994                start = max(range->start, cache->key.objectid);
8995                end = min(range_end, cache->key.objectid + cache->key.offset);
8996
8997                if (end - start >= range->minlen) {
8998                        if (!block_group_cache_done(cache)) {
8999                                ret = cache_block_group(cache, 0);
9000                                if (ret) {
9001                                        bg_failed++;
9002                                        bg_ret = ret;
9003                                        continue;
9004                                }
9005                                ret = wait_block_group_cache_done(cache);
9006                                if (ret) {
9007                                        bg_failed++;
9008                                        bg_ret = ret;
9009                                        continue;
9010                                }
9011                        }
9012                        ret = btrfs_trim_block_group(cache,
9013                                                     &group_trimmed,
9014                                                     start,
9015                                                     end,
9016                                                     range->minlen);
9017
9018                        trimmed += group_trimmed;
9019                        if (ret) {
9020                                bg_failed++;
9021                                bg_ret = ret;
9022                                continue;
9023                        }
9024                }
9025        }
9026
9027        if (bg_failed)
9028                btrfs_warn(fs_info,
9029                        "failed to trim %llu block group(s), last error %d",
9030                        bg_failed, bg_ret);
9031        mutex_lock(&fs_info->fs_devices->device_list_mutex);
9032        devices = &fs_info->fs_devices->devices;
9033        list_for_each_entry(device, devices, dev_list) {
9034                ret = btrfs_trim_free_extents(device, &group_trimmed);
9035                if (ret) {
9036                        dev_failed++;
9037                        dev_ret = ret;
9038                        break;
9039                }
9040
9041                trimmed += group_trimmed;
9042        }
9043        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
9044
9045        if (dev_failed)
9046                btrfs_warn(fs_info,
9047                        "failed to trim %llu device(s), last error %d",
9048                        dev_failed, dev_ret);
9049        range->len = trimmed;
9050        if (bg_ret)
9051                return bg_ret;
9052        return dev_ret;
9053}
9054
9055/*
9056 * btrfs_{start,end}_write_no_snapshotting() are similar to
9057 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9058 * data into the page cache through nocow before the subvolume is snapshoted,
9059 * but flush the data into disk after the snapshot creation, or to prevent
9060 * operations while snapshotting is ongoing and that cause the snapshot to be
9061 * inconsistent (writes followed by expanding truncates for example).
9062 */
9063void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
9064{
9065        percpu_counter_dec(&root->subv_writers->counter);
9066        cond_wake_up(&root->subv_writers->wait);
9067}
9068
9069int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
9070{
9071        if (atomic_read(&root->will_be_snapshotted))
9072                return 0;
9073
9074        percpu_counter_inc(&root->subv_writers->counter);
9075        /*
9076         * Make sure counter is updated before we check for snapshot creation.
9077         */
9078        smp_mb();
9079        if (atomic_read(&root->will_be_snapshotted)) {
9080                btrfs_end_write_no_snapshotting(root);
9081                return 0;
9082        }
9083        return 1;
9084}
9085
9086void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
9087{
9088        while (true) {
9089                int ret;
9090
9091                ret = btrfs_start_write_no_snapshotting(root);
9092                if (ret)
9093                        break;
9094                wait_var_event(&root->will_be_snapshotted,
9095                               !atomic_read(&root->will_be_snapshotted));
9096        }
9097}
9098
9099void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
9100{
9101        struct btrfs_fs_info *fs_info = bg->fs_info;
9102
9103        spin_lock(&fs_info->unused_bgs_lock);
9104        if (list_empty(&bg->bg_list)) {
9105                btrfs_get_block_group(bg);
9106                trace_btrfs_add_unused_block_group(bg);
9107                list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
9108        }
9109        spin_unlock(&fs_info->unused_bgs_lock);
9110}
9111