linux/fs/btrfs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30
  31static struct kmem_cache *btrfs_inode_defrag_cachep;
  32/*
  33 * when auto defrag is enabled we
  34 * queue up these defrag structs to remember which
  35 * inodes need defragging passes
  36 */
  37struct inode_defrag {
  38        struct rb_node rb_node;
  39        /* objectid */
  40        u64 ino;
  41        /*
  42         * transid where the defrag was added, we search for
  43         * extents newer than this
  44         */
  45        u64 transid;
  46
  47        /* root objectid */
  48        u64 root;
  49
  50        /* last offset we were able to defrag */
  51        u64 last_offset;
  52
  53        /* if we've wrapped around back to zero once already */
  54        int cycled;
  55};
  56
  57static int __compare_inode_defrag(struct inode_defrag *defrag1,
  58                                  struct inode_defrag *defrag2)
  59{
  60        if (defrag1->root > defrag2->root)
  61                return 1;
  62        else if (defrag1->root < defrag2->root)
  63                return -1;
  64        else if (defrag1->ino > defrag2->ino)
  65                return 1;
  66        else if (defrag1->ino < defrag2->ino)
  67                return -1;
  68        else
  69                return 0;
  70}
  71
  72/* pop a record for an inode into the defrag tree.  The lock
  73 * must be held already
  74 *
  75 * If you're inserting a record for an older transid than an
  76 * existing record, the transid already in the tree is lowered
  77 *
  78 * If an existing record is found the defrag item you
  79 * pass in is freed
  80 */
  81static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  82                                    struct inode_defrag *defrag)
  83{
  84        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  85        struct inode_defrag *entry;
  86        struct rb_node **p;
  87        struct rb_node *parent = NULL;
  88        int ret;
  89
  90        p = &fs_info->defrag_inodes.rb_node;
  91        while (*p) {
  92                parent = *p;
  93                entry = rb_entry(parent, struct inode_defrag, rb_node);
  94
  95                ret = __compare_inode_defrag(defrag, entry);
  96                if (ret < 0)
  97                        p = &parent->rb_left;
  98                else if (ret > 0)
  99                        p = &parent->rb_right;
 100                else {
 101                        /* if we're reinserting an entry for
 102                         * an old defrag run, make sure to
 103                         * lower the transid of our existing record
 104                         */
 105                        if (defrag->transid < entry->transid)
 106                                entry->transid = defrag->transid;
 107                        if (defrag->last_offset > entry->last_offset)
 108                                entry->last_offset = defrag->last_offset;
 109                        return -EEXIST;
 110                }
 111        }
 112        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 113        rb_link_node(&defrag->rb_node, parent, p);
 114        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 115        return 0;
 116}
 117
 118static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 119{
 120        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 121                return 0;
 122
 123        if (btrfs_fs_closing(fs_info))
 124                return 0;
 125
 126        return 1;
 127}
 128
 129/*
 130 * insert a defrag record for this inode if auto defrag is
 131 * enabled
 132 */
 133int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 134                           struct btrfs_inode *inode)
 135{
 136        struct btrfs_root *root = inode->root;
 137        struct btrfs_fs_info *fs_info = root->fs_info;
 138        struct inode_defrag *defrag;
 139        u64 transid;
 140        int ret;
 141
 142        if (!__need_auto_defrag(fs_info))
 143                return 0;
 144
 145        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 146                return 0;
 147
 148        if (trans)
 149                transid = trans->transid;
 150        else
 151                transid = inode->root->last_trans;
 152
 153        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 154        if (!defrag)
 155                return -ENOMEM;
 156
 157        defrag->ino = btrfs_ino(inode);
 158        defrag->transid = transid;
 159        defrag->root = root->root_key.objectid;
 160
 161        spin_lock(&fs_info->defrag_inodes_lock);
 162        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 163                /*
 164                 * If we set IN_DEFRAG flag and evict the inode from memory,
 165                 * and then re-read this inode, this new inode doesn't have
 166                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 167                 */
 168                ret = __btrfs_add_inode_defrag(inode, defrag);
 169                if (ret)
 170                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 171        } else {
 172                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 173        }
 174        spin_unlock(&fs_info->defrag_inodes_lock);
 175        return 0;
 176}
 177
 178/*
 179 * Requeue the defrag object. If there is a defrag object that points to
 180 * the same inode in the tree, we will merge them together (by
 181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 182 */
 183static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 184                                       struct inode_defrag *defrag)
 185{
 186        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 187        int ret;
 188
 189        if (!__need_auto_defrag(fs_info))
 190                goto out;
 191
 192        /*
 193         * Here we don't check the IN_DEFRAG flag, because we need merge
 194         * them together.
 195         */
 196        spin_lock(&fs_info->defrag_inodes_lock);
 197        ret = __btrfs_add_inode_defrag(inode, defrag);
 198        spin_unlock(&fs_info->defrag_inodes_lock);
 199        if (ret)
 200                goto out;
 201        return;
 202out:
 203        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 204}
 205
 206/*
 207 * pick the defragable inode that we want, if it doesn't exist, we will get
 208 * the next one.
 209 */
 210static struct inode_defrag *
 211btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 212{
 213        struct inode_defrag *entry = NULL;
 214        struct inode_defrag tmp;
 215        struct rb_node *p;
 216        struct rb_node *parent = NULL;
 217        int ret;
 218
 219        tmp.ino = ino;
 220        tmp.root = root;
 221
 222        spin_lock(&fs_info->defrag_inodes_lock);
 223        p = fs_info->defrag_inodes.rb_node;
 224        while (p) {
 225                parent = p;
 226                entry = rb_entry(parent, struct inode_defrag, rb_node);
 227
 228                ret = __compare_inode_defrag(&tmp, entry);
 229                if (ret < 0)
 230                        p = parent->rb_left;
 231                else if (ret > 0)
 232                        p = parent->rb_right;
 233                else
 234                        goto out;
 235        }
 236
 237        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 238                parent = rb_next(parent);
 239                if (parent)
 240                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 241                else
 242                        entry = NULL;
 243        }
 244out:
 245        if (entry)
 246                rb_erase(parent, &fs_info->defrag_inodes);
 247        spin_unlock(&fs_info->defrag_inodes_lock);
 248        return entry;
 249}
 250
 251void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 252{
 253        struct inode_defrag *defrag;
 254        struct rb_node *node;
 255
 256        spin_lock(&fs_info->defrag_inodes_lock);
 257        node = rb_first(&fs_info->defrag_inodes);
 258        while (node) {
 259                rb_erase(node, &fs_info->defrag_inodes);
 260                defrag = rb_entry(node, struct inode_defrag, rb_node);
 261                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 262
 263                cond_resched_lock(&fs_info->defrag_inodes_lock);
 264
 265                node = rb_first(&fs_info->defrag_inodes);
 266        }
 267        spin_unlock(&fs_info->defrag_inodes_lock);
 268}
 269
 270#define BTRFS_DEFRAG_BATCH      1024
 271
 272static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 273                                    struct inode_defrag *defrag)
 274{
 275        struct btrfs_root *inode_root;
 276        struct inode *inode;
 277        struct btrfs_key key;
 278        struct btrfs_ioctl_defrag_range_args range;
 279        int num_defrag;
 280        int index;
 281        int ret;
 282
 283        /* get the inode */
 284        key.objectid = defrag->root;
 285        key.type = BTRFS_ROOT_ITEM_KEY;
 286        key.offset = (u64)-1;
 287
 288        index = srcu_read_lock(&fs_info->subvol_srcu);
 289
 290        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 291        if (IS_ERR(inode_root)) {
 292                ret = PTR_ERR(inode_root);
 293                goto cleanup;
 294        }
 295
 296        key.objectid = defrag->ino;
 297        key.type = BTRFS_INODE_ITEM_KEY;
 298        key.offset = 0;
 299        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 300        if (IS_ERR(inode)) {
 301                ret = PTR_ERR(inode);
 302                goto cleanup;
 303        }
 304        srcu_read_unlock(&fs_info->subvol_srcu, index);
 305
 306        /* do a chunk of defrag */
 307        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 308        memset(&range, 0, sizeof(range));
 309        range.len = (u64)-1;
 310        range.start = defrag->last_offset;
 311
 312        sb_start_write(fs_info->sb);
 313        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 314                                       BTRFS_DEFRAG_BATCH);
 315        sb_end_write(fs_info->sb);
 316        /*
 317         * if we filled the whole defrag batch, there
 318         * must be more work to do.  Queue this defrag
 319         * again
 320         */
 321        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 322                defrag->last_offset = range.start;
 323                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 324        } else if (defrag->last_offset && !defrag->cycled) {
 325                /*
 326                 * we didn't fill our defrag batch, but
 327                 * we didn't start at zero.  Make sure we loop
 328                 * around to the start of the file.
 329                 */
 330                defrag->last_offset = 0;
 331                defrag->cycled = 1;
 332                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 333        } else {
 334                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 335        }
 336
 337        iput(inode);
 338        return 0;
 339cleanup:
 340        srcu_read_unlock(&fs_info->subvol_srcu, index);
 341        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 342        return ret;
 343}
 344
 345/*
 346 * run through the list of inodes in the FS that need
 347 * defragging
 348 */
 349int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 350{
 351        struct inode_defrag *defrag;
 352        u64 first_ino = 0;
 353        u64 root_objectid = 0;
 354
 355        atomic_inc(&fs_info->defrag_running);
 356        while (1) {
 357                /* Pause the auto defragger. */
 358                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 359                             &fs_info->fs_state))
 360                        break;
 361
 362                if (!__need_auto_defrag(fs_info))
 363                        break;
 364
 365                /* find an inode to defrag */
 366                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 367                                                 first_ino);
 368                if (!defrag) {
 369                        if (root_objectid || first_ino) {
 370                                root_objectid = 0;
 371                                first_ino = 0;
 372                                continue;
 373                        } else {
 374                                break;
 375                        }
 376                }
 377
 378                first_ino = defrag->ino + 1;
 379                root_objectid = defrag->root;
 380
 381                __btrfs_run_defrag_inode(fs_info, defrag);
 382        }
 383        atomic_dec(&fs_info->defrag_running);
 384
 385        /*
 386         * during unmount, we use the transaction_wait queue to
 387         * wait for the defragger to stop
 388         */
 389        wake_up(&fs_info->transaction_wait);
 390        return 0;
 391}
 392
 393/* simple helper to fault in pages and copy.  This should go away
 394 * and be replaced with calls into generic code.
 395 */
 396static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 397                                         struct page **prepared_pages,
 398                                         struct iov_iter *i)
 399{
 400        size_t copied = 0;
 401        size_t total_copied = 0;
 402        int pg = 0;
 403        int offset = offset_in_page(pos);
 404
 405        while (write_bytes > 0) {
 406                size_t count = min_t(size_t,
 407                                     PAGE_SIZE - offset, write_bytes);
 408                struct page *page = prepared_pages[pg];
 409                /*
 410                 * Copy data from userspace to the current page
 411                 */
 412                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 413
 414                /* Flush processor's dcache for this page */
 415                flush_dcache_page(page);
 416
 417                /*
 418                 * if we get a partial write, we can end up with
 419                 * partially up to date pages.  These add
 420                 * a lot of complexity, so make sure they don't
 421                 * happen by forcing this copy to be retried.
 422                 *
 423                 * The rest of the btrfs_file_write code will fall
 424                 * back to page at a time copies after we return 0.
 425                 */
 426                if (!PageUptodate(page) && copied < count)
 427                        copied = 0;
 428
 429                iov_iter_advance(i, copied);
 430                write_bytes -= copied;
 431                total_copied += copied;
 432
 433                /* Return to btrfs_file_write_iter to fault page */
 434                if (unlikely(copied == 0))
 435                        break;
 436
 437                if (copied < PAGE_SIZE - offset) {
 438                        offset += copied;
 439                } else {
 440                        pg++;
 441                        offset = 0;
 442                }
 443        }
 444        return total_copied;
 445}
 446
 447/*
 448 * unlocks pages after btrfs_file_write is done with them
 449 */
 450static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 451{
 452        size_t i;
 453        for (i = 0; i < num_pages; i++) {
 454                /* page checked is some magic around finding pages that
 455                 * have been modified without going through btrfs_set_page_dirty
 456                 * clear it here. There should be no need to mark the pages
 457                 * accessed as prepare_pages should have marked them accessed
 458                 * in prepare_pages via find_or_create_page()
 459                 */
 460                ClearPageChecked(pages[i]);
 461                unlock_page(pages[i]);
 462                put_page(pages[i]);
 463        }
 464}
 465
 466static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 467                                         const u64 start,
 468                                         const u64 len,
 469                                         struct extent_state **cached_state)
 470{
 471        u64 search_start = start;
 472        const u64 end = start + len - 1;
 473
 474        while (search_start < end) {
 475                const u64 search_len = end - search_start + 1;
 476                struct extent_map *em;
 477                u64 em_len;
 478                int ret = 0;
 479
 480                em = btrfs_get_extent(inode, NULL, 0, search_start,
 481                                      search_len, 0);
 482                if (IS_ERR(em))
 483                        return PTR_ERR(em);
 484
 485                if (em->block_start != EXTENT_MAP_HOLE)
 486                        goto next;
 487
 488                em_len = em->len;
 489                if (em->start < search_start)
 490                        em_len -= search_start - em->start;
 491                if (em_len > search_len)
 492                        em_len = search_len;
 493
 494                ret = set_extent_bit(&inode->io_tree, search_start,
 495                                     search_start + em_len - 1,
 496                                     EXTENT_DELALLOC_NEW,
 497                                     NULL, cached_state, GFP_NOFS);
 498next:
 499                search_start = extent_map_end(em);
 500                free_extent_map(em);
 501                if (ret)
 502                        return ret;
 503        }
 504        return 0;
 505}
 506
 507/*
 508 * after copy_from_user, pages need to be dirtied and we need to make
 509 * sure holes are created between the current EOF and the start of
 510 * any next extents (if required).
 511 *
 512 * this also makes the decision about creating an inline extent vs
 513 * doing real data extents, marking pages dirty and delalloc as required.
 514 */
 515int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 516                      size_t num_pages, loff_t pos, size_t write_bytes,
 517                      struct extent_state **cached)
 518{
 519        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 520        int err = 0;
 521        int i;
 522        u64 num_bytes;
 523        u64 start_pos;
 524        u64 end_of_last_block;
 525        u64 end_pos = pos + write_bytes;
 526        loff_t isize = i_size_read(inode);
 527        unsigned int extra_bits = 0;
 528
 529        start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 530        num_bytes = round_up(write_bytes + pos - start_pos,
 531                             fs_info->sectorsize);
 532
 533        end_of_last_block = start_pos + num_bytes - 1;
 534
 535        /*
 536         * The pages may have already been dirty, clear out old accounting so
 537         * we can set things up properly
 538         */
 539        clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
 540                         EXTENT_DIRTY | EXTENT_DELALLOC |
 541                         EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
 542
 543        if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
 544                if (start_pos >= isize &&
 545                    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
 546                        /*
 547                         * There can't be any extents following eof in this case
 548                         * so just set the delalloc new bit for the range
 549                         * directly.
 550                         */
 551                        extra_bits |= EXTENT_DELALLOC_NEW;
 552                } else {
 553                        err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
 554                                                            start_pos,
 555                                                            num_bytes, cached);
 556                        if (err)
 557                                return err;
 558                }
 559        }
 560
 561        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 562                                        extra_bits, cached, 0);
 563        if (err)
 564                return err;
 565
 566        for (i = 0; i < num_pages; i++) {
 567                struct page *p = pages[i];
 568                SetPageUptodate(p);
 569                ClearPageChecked(p);
 570                set_page_dirty(p);
 571        }
 572
 573        /*
 574         * we've only changed i_size in ram, and we haven't updated
 575         * the disk i_size.  There is no need to log the inode
 576         * at this time.
 577         */
 578        if (end_pos > isize)
 579                i_size_write(inode, end_pos);
 580        return 0;
 581}
 582
 583/*
 584 * this drops all the extents in the cache that intersect the range
 585 * [start, end].  Existing extents are split as required.
 586 */
 587void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 588                             int skip_pinned)
 589{
 590        struct extent_map *em;
 591        struct extent_map *split = NULL;
 592        struct extent_map *split2 = NULL;
 593        struct extent_map_tree *em_tree = &inode->extent_tree;
 594        u64 len = end - start + 1;
 595        u64 gen;
 596        int ret;
 597        int testend = 1;
 598        unsigned long flags;
 599        int compressed = 0;
 600        bool modified;
 601
 602        WARN_ON(end < start);
 603        if (end == (u64)-1) {
 604                len = (u64)-1;
 605                testend = 0;
 606        }
 607        while (1) {
 608                int no_splits = 0;
 609
 610                modified = false;
 611                if (!split)
 612                        split = alloc_extent_map();
 613                if (!split2)
 614                        split2 = alloc_extent_map();
 615                if (!split || !split2)
 616                        no_splits = 1;
 617
 618                write_lock(&em_tree->lock);
 619                em = lookup_extent_mapping(em_tree, start, len);
 620                if (!em) {
 621                        write_unlock(&em_tree->lock);
 622                        break;
 623                }
 624                flags = em->flags;
 625                gen = em->generation;
 626                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 627                        if (testend && em->start + em->len >= start + len) {
 628                                free_extent_map(em);
 629                                write_unlock(&em_tree->lock);
 630                                break;
 631                        }
 632                        start = em->start + em->len;
 633                        if (testend)
 634                                len = start + len - (em->start + em->len);
 635                        free_extent_map(em);
 636                        write_unlock(&em_tree->lock);
 637                        continue;
 638                }
 639                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 640                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 641                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 642                modified = !list_empty(&em->list);
 643                if (no_splits)
 644                        goto next;
 645
 646                if (em->start < start) {
 647                        split->start = em->start;
 648                        split->len = start - em->start;
 649
 650                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 651                                split->orig_start = em->orig_start;
 652                                split->block_start = em->block_start;
 653
 654                                if (compressed)
 655                                        split->block_len = em->block_len;
 656                                else
 657                                        split->block_len = split->len;
 658                                split->orig_block_len = max(split->block_len,
 659                                                em->orig_block_len);
 660                                split->ram_bytes = em->ram_bytes;
 661                        } else {
 662                                split->orig_start = split->start;
 663                                split->block_len = 0;
 664                                split->block_start = em->block_start;
 665                                split->orig_block_len = 0;
 666                                split->ram_bytes = split->len;
 667                        }
 668
 669                        split->generation = gen;
 670                        split->bdev = em->bdev;
 671                        split->flags = flags;
 672                        split->compress_type = em->compress_type;
 673                        replace_extent_mapping(em_tree, em, split, modified);
 674                        free_extent_map(split);
 675                        split = split2;
 676                        split2 = NULL;
 677                }
 678                if (testend && em->start + em->len > start + len) {
 679                        u64 diff = start + len - em->start;
 680
 681                        split->start = start + len;
 682                        split->len = em->start + em->len - (start + len);
 683                        split->bdev = em->bdev;
 684                        split->flags = flags;
 685                        split->compress_type = em->compress_type;
 686                        split->generation = gen;
 687
 688                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 689                                split->orig_block_len = max(em->block_len,
 690                                                    em->orig_block_len);
 691
 692                                split->ram_bytes = em->ram_bytes;
 693                                if (compressed) {
 694                                        split->block_len = em->block_len;
 695                                        split->block_start = em->block_start;
 696                                        split->orig_start = em->orig_start;
 697                                } else {
 698                                        split->block_len = split->len;
 699                                        split->block_start = em->block_start
 700                                                + diff;
 701                                        split->orig_start = em->orig_start;
 702                                }
 703                        } else {
 704                                split->ram_bytes = split->len;
 705                                split->orig_start = split->start;
 706                                split->block_len = 0;
 707                                split->block_start = em->block_start;
 708                                split->orig_block_len = 0;
 709                        }
 710
 711                        if (extent_map_in_tree(em)) {
 712                                replace_extent_mapping(em_tree, em, split,
 713                                                       modified);
 714                        } else {
 715                                ret = add_extent_mapping(em_tree, split,
 716                                                         modified);
 717                                ASSERT(ret == 0); /* Logic error */
 718                        }
 719                        free_extent_map(split);
 720                        split = NULL;
 721                }
 722next:
 723                if (extent_map_in_tree(em))
 724                        remove_extent_mapping(em_tree, em);
 725                write_unlock(&em_tree->lock);
 726
 727                /* once for us */
 728                free_extent_map(em);
 729                /* once for the tree*/
 730                free_extent_map(em);
 731        }
 732        if (split)
 733                free_extent_map(split);
 734        if (split2)
 735                free_extent_map(split2);
 736}
 737
 738/*
 739 * this is very complex, but the basic idea is to drop all extents
 740 * in the range start - end.  hint_block is filled in with a block number
 741 * that would be a good hint to the block allocator for this file.
 742 *
 743 * If an extent intersects the range but is not entirely inside the range
 744 * it is either truncated or split.  Anything entirely inside the range
 745 * is deleted from the tree.
 746 */
 747int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 748                         struct btrfs_root *root, struct inode *inode,
 749                         struct btrfs_path *path, u64 start, u64 end,
 750                         u64 *drop_end, int drop_cache,
 751                         int replace_extent,
 752                         u32 extent_item_size,
 753                         int *key_inserted)
 754{
 755        struct btrfs_fs_info *fs_info = root->fs_info;
 756        struct extent_buffer *leaf;
 757        struct btrfs_file_extent_item *fi;
 758        struct btrfs_ref ref = { 0 };
 759        struct btrfs_key key;
 760        struct btrfs_key new_key;
 761        u64 ino = btrfs_ino(BTRFS_I(inode));
 762        u64 search_start = start;
 763        u64 disk_bytenr = 0;
 764        u64 num_bytes = 0;
 765        u64 extent_offset = 0;
 766        u64 extent_end = 0;
 767        u64 last_end = start;
 768        int del_nr = 0;
 769        int del_slot = 0;
 770        int extent_type;
 771        int recow;
 772        int ret;
 773        int modify_tree = -1;
 774        int update_refs;
 775        int found = 0;
 776        int leafs_visited = 0;
 777
 778        if (drop_cache)
 779                btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
 780
 781        if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 782                modify_tree = 0;
 783
 784        update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 785                       root == fs_info->tree_root);
 786        while (1) {
 787                recow = 0;
 788                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 789                                               search_start, modify_tree);
 790                if (ret < 0)
 791                        break;
 792                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 793                        leaf = path->nodes[0];
 794                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 795                        if (key.objectid == ino &&
 796                            key.type == BTRFS_EXTENT_DATA_KEY)
 797                                path->slots[0]--;
 798                }
 799                ret = 0;
 800                leafs_visited++;
 801next_slot:
 802                leaf = path->nodes[0];
 803                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 804                        BUG_ON(del_nr > 0);
 805                        ret = btrfs_next_leaf(root, path);
 806                        if (ret < 0)
 807                                break;
 808                        if (ret > 0) {
 809                                ret = 0;
 810                                break;
 811                        }
 812                        leafs_visited++;
 813                        leaf = path->nodes[0];
 814                        recow = 1;
 815                }
 816
 817                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 818
 819                if (key.objectid > ino)
 820                        break;
 821                if (WARN_ON_ONCE(key.objectid < ino) ||
 822                    key.type < BTRFS_EXTENT_DATA_KEY) {
 823                        ASSERT(del_nr == 0);
 824                        path->slots[0]++;
 825                        goto next_slot;
 826                }
 827                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 828                        break;
 829
 830                fi = btrfs_item_ptr(leaf, path->slots[0],
 831                                    struct btrfs_file_extent_item);
 832                extent_type = btrfs_file_extent_type(leaf, fi);
 833
 834                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 835                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 836                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 837                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 838                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 839                        extent_end = key.offset +
 840                                btrfs_file_extent_num_bytes(leaf, fi);
 841                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 842                        extent_end = key.offset +
 843                                btrfs_file_extent_ram_bytes(leaf, fi);
 844                } else {
 845                        /* can't happen */
 846                        BUG();
 847                }
 848
 849                /*
 850                 * Don't skip extent items representing 0 byte lengths. They
 851                 * used to be created (bug) if while punching holes we hit
 852                 * -ENOSPC condition. So if we find one here, just ensure we
 853                 * delete it, otherwise we would insert a new file extent item
 854                 * with the same key (offset) as that 0 bytes length file
 855                 * extent item in the call to setup_items_for_insert() later
 856                 * in this function.
 857                 */
 858                if (extent_end == key.offset && extent_end >= search_start) {
 859                        last_end = extent_end;
 860                        goto delete_extent_item;
 861                }
 862
 863                if (extent_end <= search_start) {
 864                        path->slots[0]++;
 865                        goto next_slot;
 866                }
 867
 868                found = 1;
 869                search_start = max(key.offset, start);
 870                if (recow || !modify_tree) {
 871                        modify_tree = -1;
 872                        btrfs_release_path(path);
 873                        continue;
 874                }
 875
 876                /*
 877                 *     | - range to drop - |
 878                 *  | -------- extent -------- |
 879                 */
 880                if (start > key.offset && end < extent_end) {
 881                        BUG_ON(del_nr > 0);
 882                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 883                                ret = -EOPNOTSUPP;
 884                                break;
 885                        }
 886
 887                        memcpy(&new_key, &key, sizeof(new_key));
 888                        new_key.offset = start;
 889                        ret = btrfs_duplicate_item(trans, root, path,
 890                                                   &new_key);
 891                        if (ret == -EAGAIN) {
 892                                btrfs_release_path(path);
 893                                continue;
 894                        }
 895                        if (ret < 0)
 896                                break;
 897
 898                        leaf = path->nodes[0];
 899                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 900                                            struct btrfs_file_extent_item);
 901                        btrfs_set_file_extent_num_bytes(leaf, fi,
 902                                                        start - key.offset);
 903
 904                        fi = btrfs_item_ptr(leaf, path->slots[0],
 905                                            struct btrfs_file_extent_item);
 906
 907                        extent_offset += start - key.offset;
 908                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 909                        btrfs_set_file_extent_num_bytes(leaf, fi,
 910                                                        extent_end - start);
 911                        btrfs_mark_buffer_dirty(leaf);
 912
 913                        if (update_refs && disk_bytenr > 0) {
 914                                btrfs_init_generic_ref(&ref,
 915                                                BTRFS_ADD_DELAYED_REF,
 916                                                disk_bytenr, num_bytes, 0);
 917                                btrfs_init_data_ref(&ref,
 918                                                root->root_key.objectid,
 919                                                new_key.objectid,
 920                                                start - extent_offset);
 921                                ret = btrfs_inc_extent_ref(trans, &ref);
 922                                BUG_ON(ret); /* -ENOMEM */
 923                        }
 924                        key.offset = start;
 925                }
 926                /*
 927                 * From here on out we will have actually dropped something, so
 928                 * last_end can be updated.
 929                 */
 930                last_end = extent_end;
 931
 932                /*
 933                 *  | ---- range to drop ----- |
 934                 *      | -------- extent -------- |
 935                 */
 936                if (start <= key.offset && end < extent_end) {
 937                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 938                                ret = -EOPNOTSUPP;
 939                                break;
 940                        }
 941
 942                        memcpy(&new_key, &key, sizeof(new_key));
 943                        new_key.offset = end;
 944                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 945
 946                        extent_offset += end - key.offset;
 947                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 948                        btrfs_set_file_extent_num_bytes(leaf, fi,
 949                                                        extent_end - end);
 950                        btrfs_mark_buffer_dirty(leaf);
 951                        if (update_refs && disk_bytenr > 0)
 952                                inode_sub_bytes(inode, end - key.offset);
 953                        break;
 954                }
 955
 956                search_start = extent_end;
 957                /*
 958                 *       | ---- range to drop ----- |
 959                 *  | -------- extent -------- |
 960                 */
 961                if (start > key.offset && end >= extent_end) {
 962                        BUG_ON(del_nr > 0);
 963                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 964                                ret = -EOPNOTSUPP;
 965                                break;
 966                        }
 967
 968                        btrfs_set_file_extent_num_bytes(leaf, fi,
 969                                                        start - key.offset);
 970                        btrfs_mark_buffer_dirty(leaf);
 971                        if (update_refs && disk_bytenr > 0)
 972                                inode_sub_bytes(inode, extent_end - start);
 973                        if (end == extent_end)
 974                                break;
 975
 976                        path->slots[0]++;
 977                        goto next_slot;
 978                }
 979
 980                /*
 981                 *  | ---- range to drop ----- |
 982                 *    | ------ extent ------ |
 983                 */
 984                if (start <= key.offset && end >= extent_end) {
 985delete_extent_item:
 986                        if (del_nr == 0) {
 987                                del_slot = path->slots[0];
 988                                del_nr = 1;
 989                        } else {
 990                                BUG_ON(del_slot + del_nr != path->slots[0]);
 991                                del_nr++;
 992                        }
 993
 994                        if (update_refs &&
 995                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 996                                inode_sub_bytes(inode,
 997                                                extent_end - key.offset);
 998                                extent_end = ALIGN(extent_end,
 999                                                   fs_info->sectorsize);
1000                        } else if (update_refs && disk_bytenr > 0) {
1001                                btrfs_init_generic_ref(&ref,
1002                                                BTRFS_DROP_DELAYED_REF,
1003                                                disk_bytenr, num_bytes, 0);
1004                                btrfs_init_data_ref(&ref,
1005                                                root->root_key.objectid,
1006                                                key.objectid,
1007                                                key.offset - extent_offset);
1008                                ret = btrfs_free_extent(trans, &ref);
1009                                BUG_ON(ret); /* -ENOMEM */
1010                                inode_sub_bytes(inode,
1011                                                extent_end - key.offset);
1012                        }
1013
1014                        if (end == extent_end)
1015                                break;
1016
1017                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018                                path->slots[0]++;
1019                                goto next_slot;
1020                        }
1021
1022                        ret = btrfs_del_items(trans, root, path, del_slot,
1023                                              del_nr);
1024                        if (ret) {
1025                                btrfs_abort_transaction(trans, ret);
1026                                break;
1027                        }
1028
1029                        del_nr = 0;
1030                        del_slot = 0;
1031
1032                        btrfs_release_path(path);
1033                        continue;
1034                }
1035
1036                BUG();
1037        }
1038
1039        if (!ret && del_nr > 0) {
1040                /*
1041                 * Set path->slots[0] to first slot, so that after the delete
1042                 * if items are move off from our leaf to its immediate left or
1043                 * right neighbor leafs, we end up with a correct and adjusted
1044                 * path->slots[0] for our insertion (if replace_extent != 0).
1045                 */
1046                path->slots[0] = del_slot;
1047                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048                if (ret)
1049                        btrfs_abort_transaction(trans, ret);
1050        }
1051
1052        leaf = path->nodes[0];
1053        /*
1054         * If btrfs_del_items() was called, it might have deleted a leaf, in
1055         * which case it unlocked our path, so check path->locks[0] matches a
1056         * write lock.
1057         */
1058        if (!ret && replace_extent && leafs_visited == 1 &&
1059            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060             path->locks[0] == BTRFS_WRITE_LOCK) &&
1061            btrfs_leaf_free_space(leaf) >=
1062            sizeof(struct btrfs_item) + extent_item_size) {
1063
1064                key.objectid = ino;
1065                key.type = BTRFS_EXTENT_DATA_KEY;
1066                key.offset = start;
1067                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068                        struct btrfs_key slot_key;
1069
1070                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072                                path->slots[0]++;
1073                }
1074                setup_items_for_insert(root, path, &key,
1075                                       &extent_item_size,
1076                                       extent_item_size,
1077                                       sizeof(struct btrfs_item) +
1078                                       extent_item_size, 1);
1079                *key_inserted = 1;
1080        }
1081
1082        if (!replace_extent || !(*key_inserted))
1083                btrfs_release_path(path);
1084        if (drop_end)
1085                *drop_end = found ? min(end, last_end) : end;
1086        return ret;
1087}
1088
1089int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090                       struct btrfs_root *root, struct inode *inode, u64 start,
1091                       u64 end, int drop_cache)
1092{
1093        struct btrfs_path *path;
1094        int ret;
1095
1096        path = btrfs_alloc_path();
1097        if (!path)
1098                return -ENOMEM;
1099        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100                                   drop_cache, 0, 0, NULL);
1101        btrfs_free_path(path);
1102        return ret;
1103}
1104
1105static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106                            u64 objectid, u64 bytenr, u64 orig_offset,
1107                            u64 *start, u64 *end)
1108{
1109        struct btrfs_file_extent_item *fi;
1110        struct btrfs_key key;
1111        u64 extent_end;
1112
1113        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114                return 0;
1115
1116        btrfs_item_key_to_cpu(leaf, &key, slot);
1117        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118                return 0;
1119
1120        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124            btrfs_file_extent_compression(leaf, fi) ||
1125            btrfs_file_extent_encryption(leaf, fi) ||
1126            btrfs_file_extent_other_encoding(leaf, fi))
1127                return 0;
1128
1129        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131                return 0;
1132
1133        *start = key.offset;
1134        *end = extent_end;
1135        return 1;
1136}
1137
1138/*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146                              struct btrfs_inode *inode, u64 start, u64 end)
1147{
1148        struct btrfs_fs_info *fs_info = trans->fs_info;
1149        struct btrfs_root *root = inode->root;
1150        struct extent_buffer *leaf;
1151        struct btrfs_path *path;
1152        struct btrfs_file_extent_item *fi;
1153        struct btrfs_ref ref = { 0 };
1154        struct btrfs_key key;
1155        struct btrfs_key new_key;
1156        u64 bytenr;
1157        u64 num_bytes;
1158        u64 extent_end;
1159        u64 orig_offset;
1160        u64 other_start;
1161        u64 other_end;
1162        u64 split;
1163        int del_nr = 0;
1164        int del_slot = 0;
1165        int recow;
1166        int ret;
1167        u64 ino = btrfs_ino(inode);
1168
1169        path = btrfs_alloc_path();
1170        if (!path)
1171                return -ENOMEM;
1172again:
1173        recow = 0;
1174        split = start;
1175        key.objectid = ino;
1176        key.type = BTRFS_EXTENT_DATA_KEY;
1177        key.offset = split;
1178
1179        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180        if (ret < 0)
1181                goto out;
1182        if (ret > 0 && path->slots[0] > 0)
1183                path->slots[0]--;
1184
1185        leaf = path->nodes[0];
1186        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187        if (key.objectid != ino ||
1188            key.type != BTRFS_EXTENT_DATA_KEY) {
1189                ret = -EINVAL;
1190                btrfs_abort_transaction(trans, ret);
1191                goto out;
1192        }
1193        fi = btrfs_item_ptr(leaf, path->slots[0],
1194                            struct btrfs_file_extent_item);
1195        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196                ret = -EINVAL;
1197                btrfs_abort_transaction(trans, ret);
1198                goto out;
1199        }
1200        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201        if (key.offset > start || extent_end < end) {
1202                ret = -EINVAL;
1203                btrfs_abort_transaction(trans, ret);
1204                goto out;
1205        }
1206
1207        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210        memcpy(&new_key, &key, sizeof(new_key));
1211
1212        if (start == key.offset && end < extent_end) {
1213                other_start = 0;
1214                other_end = start;
1215                if (extent_mergeable(leaf, path->slots[0] - 1,
1216                                     ino, bytenr, orig_offset,
1217                                     &other_start, &other_end)) {
1218                        new_key.offset = end;
1219                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1220                        fi = btrfs_item_ptr(leaf, path->slots[0],
1221                                            struct btrfs_file_extent_item);
1222                        btrfs_set_file_extent_generation(leaf, fi,
1223                                                         trans->transid);
1224                        btrfs_set_file_extent_num_bytes(leaf, fi,
1225                                                        extent_end - end);
1226                        btrfs_set_file_extent_offset(leaf, fi,
1227                                                     end - orig_offset);
1228                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229                                            struct btrfs_file_extent_item);
1230                        btrfs_set_file_extent_generation(leaf, fi,
1231                                                         trans->transid);
1232                        btrfs_set_file_extent_num_bytes(leaf, fi,
1233                                                        end - other_start);
1234                        btrfs_mark_buffer_dirty(leaf);
1235                        goto out;
1236                }
1237        }
1238
1239        if (start > key.offset && end == extent_end) {
1240                other_start = end;
1241                other_end = 0;
1242                if (extent_mergeable(leaf, path->slots[0] + 1,
1243                                     ino, bytenr, orig_offset,
1244                                     &other_start, &other_end)) {
1245                        fi = btrfs_item_ptr(leaf, path->slots[0],
1246                                            struct btrfs_file_extent_item);
1247                        btrfs_set_file_extent_num_bytes(leaf, fi,
1248                                                        start - key.offset);
1249                        btrfs_set_file_extent_generation(leaf, fi,
1250                                                         trans->transid);
1251                        path->slots[0]++;
1252                        new_key.offset = start;
1253                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1254
1255                        fi = btrfs_item_ptr(leaf, path->slots[0],
1256                                            struct btrfs_file_extent_item);
1257                        btrfs_set_file_extent_generation(leaf, fi,
1258                                                         trans->transid);
1259                        btrfs_set_file_extent_num_bytes(leaf, fi,
1260                                                        other_end - start);
1261                        btrfs_set_file_extent_offset(leaf, fi,
1262                                                     start - orig_offset);
1263                        btrfs_mark_buffer_dirty(leaf);
1264                        goto out;
1265                }
1266        }
1267
1268        while (start > key.offset || end < extent_end) {
1269                if (key.offset == start)
1270                        split = end;
1271
1272                new_key.offset = split;
1273                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274                if (ret == -EAGAIN) {
1275                        btrfs_release_path(path);
1276                        goto again;
1277                }
1278                if (ret < 0) {
1279                        btrfs_abort_transaction(trans, ret);
1280                        goto out;
1281                }
1282
1283                leaf = path->nodes[0];
1284                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285                                    struct btrfs_file_extent_item);
1286                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287                btrfs_set_file_extent_num_bytes(leaf, fi,
1288                                                split - key.offset);
1289
1290                fi = btrfs_item_ptr(leaf, path->slots[0],
1291                                    struct btrfs_file_extent_item);
1292
1293                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295                btrfs_set_file_extent_num_bytes(leaf, fi,
1296                                                extent_end - split);
1297                btrfs_mark_buffer_dirty(leaf);
1298
1299                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300                                       num_bytes, 0);
1301                btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302                                    orig_offset);
1303                ret = btrfs_inc_extent_ref(trans, &ref);
1304                if (ret) {
1305                        btrfs_abort_transaction(trans, ret);
1306                        goto out;
1307                }
1308
1309                if (split == start) {
1310                        key.offset = start;
1311                } else {
1312                        if (start != key.offset) {
1313                                ret = -EINVAL;
1314                                btrfs_abort_transaction(trans, ret);
1315                                goto out;
1316                        }
1317                        path->slots[0]--;
1318                        extent_end = end;
1319                }
1320                recow = 1;
1321        }
1322
1323        other_start = end;
1324        other_end = 0;
1325        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326                               num_bytes, 0);
1327        btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1328        if (extent_mergeable(leaf, path->slots[0] + 1,
1329                             ino, bytenr, orig_offset,
1330                             &other_start, &other_end)) {
1331                if (recow) {
1332                        btrfs_release_path(path);
1333                        goto again;
1334                }
1335                extent_end = other_end;
1336                del_slot = path->slots[0] + 1;
1337                del_nr++;
1338                ret = btrfs_free_extent(trans, &ref);
1339                if (ret) {
1340                        btrfs_abort_transaction(trans, ret);
1341                        goto out;
1342                }
1343        }
1344        other_start = 0;
1345        other_end = start;
1346        if (extent_mergeable(leaf, path->slots[0] - 1,
1347                             ino, bytenr, orig_offset,
1348                             &other_start, &other_end)) {
1349                if (recow) {
1350                        btrfs_release_path(path);
1351                        goto again;
1352                }
1353                key.offset = other_start;
1354                del_slot = path->slots[0];
1355                del_nr++;
1356                ret = btrfs_free_extent(trans, &ref);
1357                if (ret) {
1358                        btrfs_abort_transaction(trans, ret);
1359                        goto out;
1360                }
1361        }
1362        if (del_nr == 0) {
1363                fi = btrfs_item_ptr(leaf, path->slots[0],
1364                           struct btrfs_file_extent_item);
1365                btrfs_set_file_extent_type(leaf, fi,
1366                                           BTRFS_FILE_EXTENT_REG);
1367                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1368                btrfs_mark_buffer_dirty(leaf);
1369        } else {
1370                fi = btrfs_item_ptr(leaf, del_slot - 1,
1371                           struct btrfs_file_extent_item);
1372                btrfs_set_file_extent_type(leaf, fi,
1373                                           BTRFS_FILE_EXTENT_REG);
1374                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1375                btrfs_set_file_extent_num_bytes(leaf, fi,
1376                                                extent_end - key.offset);
1377                btrfs_mark_buffer_dirty(leaf);
1378
1379                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1380                if (ret < 0) {
1381                        btrfs_abort_transaction(trans, ret);
1382                        goto out;
1383                }
1384        }
1385out:
1386        btrfs_free_path(path);
1387        return 0;
1388}
1389
1390/*
1391 * on error we return an unlocked page and the error value
1392 * on success we return a locked page and 0
1393 */
1394static int prepare_uptodate_page(struct inode *inode,
1395                                 struct page *page, u64 pos,
1396                                 bool force_uptodate)
1397{
1398        int ret = 0;
1399
1400        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1401            !PageUptodate(page)) {
1402                ret = btrfs_readpage(NULL, page);
1403                if (ret)
1404                        return ret;
1405                lock_page(page);
1406                if (!PageUptodate(page)) {
1407                        unlock_page(page);
1408                        return -EIO;
1409                }
1410                if (page->mapping != inode->i_mapping) {
1411                        unlock_page(page);
1412                        return -EAGAIN;
1413                }
1414        }
1415        return 0;
1416}
1417
1418/*
1419 * this just gets pages into the page cache and locks them down.
1420 */
1421static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422                                  size_t num_pages, loff_t pos,
1423                                  size_t write_bytes, bool force_uptodate)
1424{
1425        int i;
1426        unsigned long index = pos >> PAGE_SHIFT;
1427        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1428        int err = 0;
1429        int faili;
1430
1431        for (i = 0; i < num_pages; i++) {
1432again:
1433                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1434                                               mask | __GFP_WRITE);
1435                if (!pages[i]) {
1436                        faili = i - 1;
1437                        err = -ENOMEM;
1438                        goto fail;
1439                }
1440
1441                if (i == 0)
1442                        err = prepare_uptodate_page(inode, pages[i], pos,
1443                                                    force_uptodate);
1444                if (!err && i == num_pages - 1)
1445                        err = prepare_uptodate_page(inode, pages[i],
1446                                                    pos + write_bytes, false);
1447                if (err) {
1448                        put_page(pages[i]);
1449                        if (err == -EAGAIN) {
1450                                err = 0;
1451                                goto again;
1452                        }
1453                        faili = i - 1;
1454                        goto fail;
1455                }
1456                wait_on_page_writeback(pages[i]);
1457        }
1458
1459        return 0;
1460fail:
1461        while (faili >= 0) {
1462                unlock_page(pages[faili]);
1463                put_page(pages[faili]);
1464                faili--;
1465        }
1466        return err;
1467
1468}
1469
1470/*
1471 * This function locks the extent and properly waits for data=ordered extents
1472 * to finish before allowing the pages to be modified if need.
1473 *
1474 * The return value:
1475 * 1 - the extent is locked
1476 * 0 - the extent is not locked, and everything is OK
1477 * -EAGAIN - need re-prepare the pages
1478 * the other < 0 number - Something wrong happens
1479 */
1480static noinline int
1481lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1482                                size_t num_pages, loff_t pos,
1483                                size_t write_bytes,
1484                                u64 *lockstart, u64 *lockend,
1485                                struct extent_state **cached_state)
1486{
1487        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488        u64 start_pos;
1489        u64 last_pos;
1490        int i;
1491        int ret = 0;
1492
1493        start_pos = round_down(pos, fs_info->sectorsize);
1494        last_pos = start_pos
1495                + round_up(pos + write_bytes - start_pos,
1496                           fs_info->sectorsize) - 1;
1497
1498        if (start_pos < inode->vfs_inode.i_size) {
1499                struct btrfs_ordered_extent *ordered;
1500
1501                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502                                cached_state);
1503                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504                                                     last_pos - start_pos + 1);
1505                if (ordered &&
1506                    ordered->file_offset + ordered->len > start_pos &&
1507                    ordered->file_offset <= last_pos) {
1508                        unlock_extent_cached(&inode->io_tree, start_pos,
1509                                        last_pos, cached_state);
1510                        for (i = 0; i < num_pages; i++) {
1511                                unlock_page(pages[i]);
1512                                put_page(pages[i]);
1513                        }
1514                        btrfs_start_ordered_extent(&inode->vfs_inode,
1515                                        ordered, 1);
1516                        btrfs_put_ordered_extent(ordered);
1517                        return -EAGAIN;
1518                }
1519                if (ordered)
1520                        btrfs_put_ordered_extent(ordered);
1521
1522                *lockstart = start_pos;
1523                *lockend = last_pos;
1524                ret = 1;
1525        }
1526
1527        /*
1528         * It's possible the pages are dirty right now, but we don't want
1529         * to clean them yet because copy_from_user may catch a page fault
1530         * and we might have to fall back to one page at a time.  If that
1531         * happens, we'll unlock these pages and we'd have a window where
1532         * reclaim could sneak in and drop the once-dirty page on the floor
1533         * without writing it.
1534         *
1535         * We have the pages locked and the extent range locked, so there's
1536         * no way someone can start IO on any dirty pages in this range.
1537         *
1538         * We'll call btrfs_dirty_pages() later on, and that will flip around
1539         * delalloc bits and dirty the pages as required.
1540         */
1541        for (i = 0; i < num_pages; i++) {
1542                set_page_extent_mapped(pages[i]);
1543                WARN_ON(!PageLocked(pages[i]));
1544        }
1545
1546        return ret;
1547}
1548
1549static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1550                                    size_t *write_bytes)
1551{
1552        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1553        struct btrfs_root *root = inode->root;
1554        u64 lockstart, lockend;
1555        u64 num_bytes;
1556        int ret;
1557
1558        ret = btrfs_start_write_no_snapshotting(root);
1559        if (!ret)
1560                return -EAGAIN;
1561
1562        lockstart = round_down(pos, fs_info->sectorsize);
1563        lockend = round_up(pos + *write_bytes,
1564                           fs_info->sectorsize) - 1;
1565
1566        btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567                                           lockend, NULL);
1568
1569        num_bytes = lockend - lockstart + 1;
1570        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571                        NULL, NULL, NULL);
1572        if (ret <= 0) {
1573                ret = 0;
1574                btrfs_end_write_no_snapshotting(root);
1575        } else {
1576                *write_bytes = min_t(size_t, *write_bytes ,
1577                                     num_bytes - pos + lockstart);
1578        }
1579
1580        unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582        return ret;
1583}
1584
1585static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586                                               struct iov_iter *i)
1587{
1588        struct file *file = iocb->ki_filp;
1589        loff_t pos = iocb->ki_pos;
1590        struct inode *inode = file_inode(file);
1591        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592        struct btrfs_root *root = BTRFS_I(inode)->root;
1593        struct page **pages = NULL;
1594        struct extent_state *cached_state = NULL;
1595        struct extent_changeset *data_reserved = NULL;
1596        u64 release_bytes = 0;
1597        u64 lockstart;
1598        u64 lockend;
1599        size_t num_written = 0;
1600        int nrptrs;
1601        int ret = 0;
1602        bool only_release_metadata = false;
1603        bool force_page_uptodate = false;
1604
1605        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606                        PAGE_SIZE / (sizeof(struct page *)));
1607        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608        nrptrs = max(nrptrs, 8);
1609        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1610        if (!pages)
1611                return -ENOMEM;
1612
1613        while (iov_iter_count(i) > 0) {
1614                size_t offset = offset_in_page(pos);
1615                size_t sector_offset;
1616                size_t write_bytes = min(iov_iter_count(i),
1617                                         nrptrs * (size_t)PAGE_SIZE -
1618                                         offset);
1619                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1620                                                PAGE_SIZE);
1621                size_t reserve_bytes;
1622                size_t dirty_pages;
1623                size_t copied;
1624                size_t dirty_sectors;
1625                size_t num_sectors;
1626                int extents_locked;
1627
1628                WARN_ON(num_pages > nrptrs);
1629
1630                /*
1631                 * Fault pages before locking them in prepare_pages
1632                 * to avoid recursive lock
1633                 */
1634                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1635                        ret = -EFAULT;
1636                        break;
1637                }
1638
1639                sector_offset = pos & (fs_info->sectorsize - 1);
1640                reserve_bytes = round_up(write_bytes + sector_offset,
1641                                fs_info->sectorsize);
1642
1643                extent_changeset_release(data_reserved);
1644                ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645                                                  write_bytes);
1646                if (ret < 0) {
1647                        if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648                                                      BTRFS_INODE_PREALLOC)) &&
1649                            check_can_nocow(BTRFS_I(inode), pos,
1650                                        &write_bytes) > 0) {
1651                                /*
1652                                 * For nodata cow case, no need to reserve
1653                                 * data space.
1654                                 */
1655                                only_release_metadata = true;
1656                                /*
1657                                 * our prealloc extent may be smaller than
1658                                 * write_bytes, so scale down.
1659                                 */
1660                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1661                                                         PAGE_SIZE);
1662                                reserve_bytes = round_up(write_bytes +
1663                                                         sector_offset,
1664                                                         fs_info->sectorsize);
1665                        } else {
1666                                break;
1667                        }
1668                }
1669
1670                WARN_ON(reserve_bytes == 0);
1671                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672                                reserve_bytes);
1673                if (ret) {
1674                        if (!only_release_metadata)
1675                                btrfs_free_reserved_data_space(inode,
1676                                                data_reserved, pos,
1677                                                write_bytes);
1678                        else
1679                                btrfs_end_write_no_snapshotting(root);
1680                        break;
1681                }
1682
1683                release_bytes = reserve_bytes;
1684again:
1685                /*
1686                 * This is going to setup the pages array with the number of
1687                 * pages we want, so we don't really need to worry about the
1688                 * contents of pages from loop to loop
1689                 */
1690                ret = prepare_pages(inode, pages, num_pages,
1691                                    pos, write_bytes,
1692                                    force_page_uptodate);
1693                if (ret) {
1694                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1695                                                       reserve_bytes, true);
1696                        break;
1697                }
1698
1699                extents_locked = lock_and_cleanup_extent_if_need(
1700                                BTRFS_I(inode), pages,
1701                                num_pages, pos, write_bytes, &lockstart,
1702                                &lockend, &cached_state);
1703                if (extents_locked < 0) {
1704                        if (extents_locked == -EAGAIN)
1705                                goto again;
1706                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1707                                                       reserve_bytes, true);
1708                        ret = extents_locked;
1709                        break;
1710                }
1711
1712                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1713
1714                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1715                dirty_sectors = round_up(copied + sector_offset,
1716                                        fs_info->sectorsize);
1717                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1718
1719                /*
1720                 * if we have trouble faulting in the pages, fall
1721                 * back to one page at a time
1722                 */
1723                if (copied < write_bytes)
1724                        nrptrs = 1;
1725
1726                if (copied == 0) {
1727                        force_page_uptodate = true;
1728                        dirty_sectors = 0;
1729                        dirty_pages = 0;
1730                } else {
1731                        force_page_uptodate = false;
1732                        dirty_pages = DIV_ROUND_UP(copied + offset,
1733                                                   PAGE_SIZE);
1734                }
1735
1736                if (num_sectors > dirty_sectors) {
1737                        /* release everything except the sectors we dirtied */
1738                        release_bytes -= dirty_sectors <<
1739                                                fs_info->sb->s_blocksize_bits;
1740                        if (only_release_metadata) {
1741                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1742                                                        release_bytes, true);
1743                        } else {
1744                                u64 __pos;
1745
1746                                __pos = round_down(pos,
1747                                                   fs_info->sectorsize) +
1748                                        (dirty_pages << PAGE_SHIFT);
1749                                btrfs_delalloc_release_space(inode,
1750                                                data_reserved, __pos,
1751                                                release_bytes, true);
1752                        }
1753                }
1754
1755                release_bytes = round_up(copied + sector_offset,
1756                                        fs_info->sectorsize);
1757
1758                if (copied > 0)
1759                        ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1760                                                pos, copied, &cached_state);
1761                if (extents_locked)
1762                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1763                                             lockstart, lockend, &cached_state);
1764                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1765                                               true);
1766                if (ret) {
1767                        btrfs_drop_pages(pages, num_pages);
1768                        break;
1769                }
1770
1771                release_bytes = 0;
1772                if (only_release_metadata)
1773                        btrfs_end_write_no_snapshotting(root);
1774
1775                if (only_release_metadata && copied > 0) {
1776                        lockstart = round_down(pos,
1777                                               fs_info->sectorsize);
1778                        lockend = round_up(pos + copied,
1779                                           fs_info->sectorsize) - 1;
1780
1781                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782                                       lockend, EXTENT_NORESERVE, NULL,
1783                                       NULL, GFP_NOFS);
1784                        only_release_metadata = false;
1785                }
1786
1787                btrfs_drop_pages(pages, num_pages);
1788
1789                cond_resched();
1790
1791                balance_dirty_pages_ratelimited(inode->i_mapping);
1792                if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1793                        btrfs_btree_balance_dirty(fs_info);
1794
1795                pos += copied;
1796                num_written += copied;
1797        }
1798
1799        kfree(pages);
1800
1801        if (release_bytes) {
1802                if (only_release_metadata) {
1803                        btrfs_end_write_no_snapshotting(root);
1804                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805                                        release_bytes, true);
1806                } else {
1807                        btrfs_delalloc_release_space(inode, data_reserved,
1808                                        round_down(pos, fs_info->sectorsize),
1809                                        release_bytes, true);
1810                }
1811        }
1812
1813        extent_changeset_free(data_reserved);
1814        return num_written ? num_written : ret;
1815}
1816
1817static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1818{
1819        struct file *file = iocb->ki_filp;
1820        struct inode *inode = file_inode(file);
1821        loff_t pos;
1822        ssize_t written;
1823        ssize_t written_buffered;
1824        loff_t endbyte;
1825        int err;
1826
1827        written = generic_file_direct_write(iocb, from);
1828
1829        if (written < 0 || !iov_iter_count(from))
1830                return written;
1831
1832        pos = iocb->ki_pos;
1833        written_buffered = btrfs_buffered_write(iocb, from);
1834        if (written_buffered < 0) {
1835                err = written_buffered;
1836                goto out;
1837        }
1838        /*
1839         * Ensure all data is persisted. We want the next direct IO read to be
1840         * able to read what was just written.
1841         */
1842        endbyte = pos + written_buffered - 1;
1843        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1844        if (err)
1845                goto out;
1846        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1847        if (err)
1848                goto out;
1849        written += written_buffered;
1850        iocb->ki_pos = pos + written_buffered;
1851        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852                                 endbyte >> PAGE_SHIFT);
1853out:
1854        return written ? written : err;
1855}
1856
1857static void update_time_for_write(struct inode *inode)
1858{
1859        struct timespec64 now;
1860
1861        if (IS_NOCMTIME(inode))
1862                return;
1863
1864        now = current_time(inode);
1865        if (!timespec64_equal(&inode->i_mtime, &now))
1866                inode->i_mtime = now;
1867
1868        if (!timespec64_equal(&inode->i_ctime, &now))
1869                inode->i_ctime = now;
1870
1871        if (IS_I_VERSION(inode))
1872                inode_inc_iversion(inode);
1873}
1874
1875static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876                                    struct iov_iter *from)
1877{
1878        struct file *file = iocb->ki_filp;
1879        struct inode *inode = file_inode(file);
1880        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881        struct btrfs_root *root = BTRFS_I(inode)->root;
1882        u64 start_pos;
1883        u64 end_pos;
1884        ssize_t num_written = 0;
1885        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1886        ssize_t err;
1887        loff_t pos;
1888        size_t count = iov_iter_count(from);
1889        loff_t oldsize;
1890        int clean_page = 0;
1891
1892        if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893            (iocb->ki_flags & IOCB_NOWAIT))
1894                return -EOPNOTSUPP;
1895
1896        if (!inode_trylock(inode)) {
1897                if (iocb->ki_flags & IOCB_NOWAIT)
1898                        return -EAGAIN;
1899                inode_lock(inode);
1900        }
1901
1902        err = generic_write_checks(iocb, from);
1903        if (err <= 0) {
1904                inode_unlock(inode);
1905                return err;
1906        }
1907
1908        pos = iocb->ki_pos;
1909        if (iocb->ki_flags & IOCB_NOWAIT) {
1910                /*
1911                 * We will allocate space in case nodatacow is not set,
1912                 * so bail
1913                 */
1914                if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1915                                              BTRFS_INODE_PREALLOC)) ||
1916                    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1917                        inode_unlock(inode);
1918                        return -EAGAIN;
1919                }
1920        }
1921
1922        current->backing_dev_info = inode_to_bdi(inode);
1923        err = file_remove_privs(file);
1924        if (err) {
1925                inode_unlock(inode);
1926                goto out;
1927        }
1928
1929        /*
1930         * If BTRFS flips readonly due to some impossible error
1931         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932         * although we have opened a file as writable, we have
1933         * to stop this write operation to ensure FS consistency.
1934         */
1935        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1936                inode_unlock(inode);
1937                err = -EROFS;
1938                goto out;
1939        }
1940
1941        /*
1942         * We reserve space for updating the inode when we reserve space for the
1943         * extent we are going to write, so we will enospc out there.  We don't
1944         * need to start yet another transaction to update the inode as we will
1945         * update the inode when we finish writing whatever data we write.
1946         */
1947        update_time_for_write(inode);
1948
1949        start_pos = round_down(pos, fs_info->sectorsize);
1950        oldsize = i_size_read(inode);
1951        if (start_pos > oldsize) {
1952                /* Expand hole size to cover write data, preventing empty gap */
1953                end_pos = round_up(pos + count,
1954                                   fs_info->sectorsize);
1955                err = btrfs_cont_expand(inode, oldsize, end_pos);
1956                if (err) {
1957                        inode_unlock(inode);
1958                        goto out;
1959                }
1960                if (start_pos > round_up(oldsize, fs_info->sectorsize))
1961                        clean_page = 1;
1962        }
1963
1964        if (sync)
1965                atomic_inc(&BTRFS_I(inode)->sync_writers);
1966
1967        if (iocb->ki_flags & IOCB_DIRECT) {
1968                num_written = __btrfs_direct_write(iocb, from);
1969        } else {
1970                num_written = btrfs_buffered_write(iocb, from);
1971                if (num_written > 0)
1972                        iocb->ki_pos = pos + num_written;
1973                if (clean_page)
1974                        pagecache_isize_extended(inode, oldsize,
1975                                                i_size_read(inode));
1976        }
1977
1978        inode_unlock(inode);
1979
1980        /*
1981         * We also have to set last_sub_trans to the current log transid,
1982         * otherwise subsequent syncs to a file that's been synced in this
1983         * transaction will appear to have already occurred.
1984         */
1985        spin_lock(&BTRFS_I(inode)->lock);
1986        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1987        spin_unlock(&BTRFS_I(inode)->lock);
1988        if (num_written > 0)
1989                num_written = generic_write_sync(iocb, num_written);
1990
1991        if (sync)
1992                atomic_dec(&BTRFS_I(inode)->sync_writers);
1993out:
1994        current->backing_dev_info = NULL;
1995        return num_written ? num_written : err;
1996}
1997
1998int btrfs_release_file(struct inode *inode, struct file *filp)
1999{
2000        struct btrfs_file_private *private = filp->private_data;
2001
2002        if (private && private->filldir_buf)
2003                kfree(private->filldir_buf);
2004        kfree(private);
2005        filp->private_data = NULL;
2006
2007        /*
2008         * ordered_data_close is set by setattr when we are about to truncate
2009         * a file from a non-zero size to a zero size.  This tries to
2010         * flush down new bytes that may have been written if the
2011         * application were using truncate to replace a file in place.
2012         */
2013        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014                               &BTRFS_I(inode)->runtime_flags))
2015                        filemap_flush(inode->i_mapping);
2016        return 0;
2017}
2018
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021        int ret;
2022        struct blk_plug plug;
2023
2024        /*
2025         * This is only called in fsync, which would do synchronous writes, so
2026         * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2027         * multiple disks using raid profile, a large IO can be split to
2028         * several segments of stripe length (currently 64K).
2029         */
2030        blk_start_plug(&plug);
2031        atomic_inc(&BTRFS_I(inode)->sync_writers);
2032        ret = btrfs_fdatawrite_range(inode, start, end);
2033        atomic_dec(&BTRFS_I(inode)->sync_writers);
2034        blk_finish_plug(&plug);
2035
2036        return ret;
2037}
2038
2039/*
2040 * fsync call for both files and directories.  This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit.  This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
2050int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051{
2052        struct dentry *dentry = file_dentry(file);
2053        struct inode *inode = d_inode(dentry);
2054        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055        struct btrfs_root *root = BTRFS_I(inode)->root;
2056        struct btrfs_trans_handle *trans;
2057        struct btrfs_log_ctx ctx;
2058        int ret = 0, err;
2059        u64 len;
2060
2061        /*
2062         * If the inode needs a full sync, make sure we use a full range to
2063         * avoid log tree corruption, due to hole detection racing with ordered
2064         * extent completion for adjacent ranges, and assertion failures during
2065         * hole detection.
2066         */
2067        if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2068                     &BTRFS_I(inode)->runtime_flags)) {
2069                start = 0;
2070                end = LLONG_MAX;
2071        }
2072
2073        /*
2074         * The range length can be represented by u64, we have to do the typecasts
2075         * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2076         */
2077        len = (u64)end - (u64)start + 1;
2078        trace_btrfs_sync_file(file, datasync);
2079
2080        btrfs_init_log_ctx(&ctx, inode);
2081
2082        /*
2083         * We write the dirty pages in the range and wait until they complete
2084         * out of the ->i_mutex. If so, we can flush the dirty pages by
2085         * multi-task, and make the performance up.  See
2086         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2087         */
2088        ret = start_ordered_ops(inode, start, end);
2089        if (ret)
2090                goto out;
2091
2092        inode_lock(inode);
2093
2094        /*
2095         * We take the dio_sem here because the tree log stuff can race with
2096         * lockless dio writes and get an extent map logged for an extent we
2097         * never waited on.  We need it this high up for lockdep reasons.
2098         */
2099        down_write(&BTRFS_I(inode)->dio_sem);
2100
2101        atomic_inc(&root->log_batch);
2102
2103        /*
2104         * Before we acquired the inode's lock, someone may have dirtied more
2105         * pages in the target range. We need to make sure that writeback for
2106         * any such pages does not start while we are logging the inode, because
2107         * if it does, any of the following might happen when we are not doing a
2108         * full inode sync:
2109         *
2110         * 1) We log an extent after its writeback finishes but before its
2111         *    checksums are added to the csum tree, leading to -EIO errors
2112         *    when attempting to read the extent after a log replay.
2113         *
2114         * 2) We can end up logging an extent before its writeback finishes.
2115         *    Therefore after the log replay we will have a file extent item
2116         *    pointing to an unwritten extent (and no data checksums as well).
2117         *
2118         * So trigger writeback for any eventual new dirty pages and then we
2119         * wait for all ordered extents to complete below.
2120         */
2121        ret = start_ordered_ops(inode, start, end);
2122        if (ret) {
2123                inode_unlock(inode);
2124                goto out;
2125        }
2126
2127        /*
2128         * We have to do this here to avoid the priority inversion of waiting on
2129         * IO of a lower priority task while holding a transaction open.
2130         */
2131        ret = btrfs_wait_ordered_range(inode, start, len);
2132        if (ret) {
2133                up_write(&BTRFS_I(inode)->dio_sem);
2134                inode_unlock(inode);
2135                goto out;
2136        }
2137        atomic_inc(&root->log_batch);
2138
2139        smp_mb();
2140        if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2141            BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2142                /*
2143                 * We've had everything committed since the last time we were
2144                 * modified so clear this flag in case it was set for whatever
2145                 * reason, it's no longer relevant.
2146                 */
2147                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2148                          &BTRFS_I(inode)->runtime_flags);
2149                /*
2150                 * An ordered extent might have started before and completed
2151                 * already with io errors, in which case the inode was not
2152                 * updated and we end up here. So check the inode's mapping
2153                 * for any errors that might have happened since we last
2154                 * checked called fsync.
2155                 */
2156                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2157                up_write(&BTRFS_I(inode)->dio_sem);
2158                inode_unlock(inode);
2159                goto out;
2160        }
2161
2162        /*
2163         * We use start here because we will need to wait on the IO to complete
2164         * in btrfs_sync_log, which could require joining a transaction (for
2165         * example checking cross references in the nocow path).  If we use join
2166         * here we could get into a situation where we're waiting on IO to
2167         * happen that is blocked on a transaction trying to commit.  With start
2168         * we inc the extwriter counter, so we wait for all extwriters to exit
2169         * before we start blocking joiners.  This comment is to keep somebody
2170         * from thinking they are super smart and changing this to
2171         * btrfs_join_transaction *cough*Josef*cough*.
2172         */
2173        trans = btrfs_start_transaction(root, 0);
2174        if (IS_ERR(trans)) {
2175                ret = PTR_ERR(trans);
2176                up_write(&BTRFS_I(inode)->dio_sem);
2177                inode_unlock(inode);
2178                goto out;
2179        }
2180
2181        ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2182        if (ret < 0) {
2183                /* Fallthrough and commit/free transaction. */
2184                ret = 1;
2185        }
2186
2187        /* we've logged all the items and now have a consistent
2188         * version of the file in the log.  It is possible that
2189         * someone will come in and modify the file, but that's
2190         * fine because the log is consistent on disk, and we
2191         * have references to all of the file's extents
2192         *
2193         * It is possible that someone will come in and log the
2194         * file again, but that will end up using the synchronization
2195         * inside btrfs_sync_log to keep things safe.
2196         */
2197        up_write(&BTRFS_I(inode)->dio_sem);
2198        inode_unlock(inode);
2199
2200        if (ret != BTRFS_NO_LOG_SYNC) {
2201                if (!ret) {
2202                        ret = btrfs_sync_log(trans, root, &ctx);
2203                        if (!ret) {
2204                                ret = btrfs_end_transaction(trans);
2205                                goto out;
2206                        }
2207                }
2208                ret = btrfs_commit_transaction(trans);
2209        } else {
2210                ret = btrfs_end_transaction(trans);
2211        }
2212out:
2213        ASSERT(list_empty(&ctx.list));
2214        err = file_check_and_advance_wb_err(file);
2215        if (!ret)
2216                ret = err;
2217        return ret > 0 ? -EIO : ret;
2218}
2219
2220static const struct vm_operations_struct btrfs_file_vm_ops = {
2221        .fault          = filemap_fault,
2222        .map_pages      = filemap_map_pages,
2223        .page_mkwrite   = btrfs_page_mkwrite,
2224};
2225
2226static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2227{
2228        struct address_space *mapping = filp->f_mapping;
2229
2230        if (!mapping->a_ops->readpage)
2231                return -ENOEXEC;
2232
2233        file_accessed(filp);
2234        vma->vm_ops = &btrfs_file_vm_ops;
2235
2236        return 0;
2237}
2238
2239static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2240                          int slot, u64 start, u64 end)
2241{
2242        struct btrfs_file_extent_item *fi;
2243        struct btrfs_key key;
2244
2245        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2246                return 0;
2247
2248        btrfs_item_key_to_cpu(leaf, &key, slot);
2249        if (key.objectid != btrfs_ino(inode) ||
2250            key.type != BTRFS_EXTENT_DATA_KEY)
2251                return 0;
2252
2253        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2254
2255        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2256                return 0;
2257
2258        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2259                return 0;
2260
2261        if (key.offset == end)
2262                return 1;
2263        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2264                return 1;
2265        return 0;
2266}
2267
2268static int fill_holes(struct btrfs_trans_handle *trans,
2269                struct btrfs_inode *inode,
2270                struct btrfs_path *path, u64 offset, u64 end)
2271{
2272        struct btrfs_fs_info *fs_info = trans->fs_info;
2273        struct btrfs_root *root = inode->root;
2274        struct extent_buffer *leaf;
2275        struct btrfs_file_extent_item *fi;
2276        struct extent_map *hole_em;
2277        struct extent_map_tree *em_tree = &inode->extent_tree;
2278        struct btrfs_key key;
2279        int ret;
2280
2281        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2282                goto out;
2283
2284        key.objectid = btrfs_ino(inode);
2285        key.type = BTRFS_EXTENT_DATA_KEY;
2286        key.offset = offset;
2287
2288        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2289        if (ret <= 0) {
2290                /*
2291                 * We should have dropped this offset, so if we find it then
2292                 * something has gone horribly wrong.
2293                 */
2294                if (ret == 0)
2295                        ret = -EINVAL;
2296                return ret;
2297        }
2298
2299        leaf = path->nodes[0];
2300        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2301                u64 num_bytes;
2302
2303                path->slots[0]--;
2304                fi = btrfs_item_ptr(leaf, path->slots[0],
2305                                    struct btrfs_file_extent_item);
2306                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2307                        end - offset;
2308                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2309                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2310                btrfs_set_file_extent_offset(leaf, fi, 0);
2311                btrfs_mark_buffer_dirty(leaf);
2312                goto out;
2313        }
2314
2315        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2316                u64 num_bytes;
2317
2318                key.offset = offset;
2319                btrfs_set_item_key_safe(fs_info, path, &key);
2320                fi = btrfs_item_ptr(leaf, path->slots[0],
2321                                    struct btrfs_file_extent_item);
2322                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2323                        offset;
2324                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2326                btrfs_set_file_extent_offset(leaf, fi, 0);
2327                btrfs_mark_buffer_dirty(leaf);
2328                goto out;
2329        }
2330        btrfs_release_path(path);
2331
2332        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2333                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2334        if (ret)
2335                return ret;
2336
2337out:
2338        btrfs_release_path(path);
2339
2340        hole_em = alloc_extent_map();
2341        if (!hole_em) {
2342                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2343                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2344        } else {
2345                hole_em->start = offset;
2346                hole_em->len = end - offset;
2347                hole_em->ram_bytes = hole_em->len;
2348                hole_em->orig_start = offset;
2349
2350                hole_em->block_start = EXTENT_MAP_HOLE;
2351                hole_em->block_len = 0;
2352                hole_em->orig_block_len = 0;
2353                hole_em->bdev = fs_info->fs_devices->latest_bdev;
2354                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2355                hole_em->generation = trans->transid;
2356
2357                do {
2358                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2359                        write_lock(&em_tree->lock);
2360                        ret = add_extent_mapping(em_tree, hole_em, 1);
2361                        write_unlock(&em_tree->lock);
2362                } while (ret == -EEXIST);
2363                free_extent_map(hole_em);
2364                if (ret)
2365                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2366                                        &inode->runtime_flags);
2367        }
2368
2369        return 0;
2370}
2371
2372/*
2373 * Find a hole extent on given inode and change start/len to the end of hole
2374 * extent.(hole/vacuum extent whose em->start <= start &&
2375 *         em->start + em->len > start)
2376 * When a hole extent is found, return 1 and modify start/len.
2377 */
2378static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2379{
2380        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2381        struct extent_map *em;
2382        int ret = 0;
2383
2384        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2385                              round_down(*start, fs_info->sectorsize),
2386                              round_up(*len, fs_info->sectorsize), 0);
2387        if (IS_ERR(em))
2388                return PTR_ERR(em);
2389
2390        /* Hole or vacuum extent(only exists in no-hole mode) */
2391        if (em->block_start == EXTENT_MAP_HOLE) {
2392                ret = 1;
2393                *len = em->start + em->len > *start + *len ?
2394                       0 : *start + *len - em->start - em->len;
2395                *start = em->start + em->len;
2396        }
2397        free_extent_map(em);
2398        return ret;
2399}
2400
2401static int btrfs_punch_hole_lock_range(struct inode *inode,
2402                                       const u64 lockstart,
2403                                       const u64 lockend,
2404                                       struct extent_state **cached_state)
2405{
2406        while (1) {
2407                struct btrfs_ordered_extent *ordered;
2408                int ret;
2409
2410                truncate_pagecache_range(inode, lockstart, lockend);
2411
2412                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2413                                 cached_state);
2414                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2415
2416                /*
2417                 * We need to make sure we have no ordered extents in this range
2418                 * and nobody raced in and read a page in this range, if we did
2419                 * we need to try again.
2420                 */
2421                if ((!ordered ||
2422                    (ordered->file_offset + ordered->len <= lockstart ||
2423                     ordered->file_offset > lockend)) &&
2424                     !filemap_range_has_page(inode->i_mapping,
2425                                             lockstart, lockend)) {
2426                        if (ordered)
2427                                btrfs_put_ordered_extent(ordered);
2428                        break;
2429                }
2430                if (ordered)
2431                        btrfs_put_ordered_extent(ordered);
2432                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2433                                     lockend, cached_state);
2434                ret = btrfs_wait_ordered_range(inode, lockstart,
2435                                               lockend - lockstart + 1);
2436                if (ret)
2437                        return ret;
2438        }
2439        return 0;
2440}
2441
2442static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2443{
2444        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2445        struct btrfs_root *root = BTRFS_I(inode)->root;
2446        struct extent_state *cached_state = NULL;
2447        struct btrfs_path *path;
2448        struct btrfs_block_rsv *rsv;
2449        struct btrfs_trans_handle *trans;
2450        u64 lockstart;
2451        u64 lockend;
2452        u64 tail_start;
2453        u64 tail_len;
2454        u64 orig_start = offset;
2455        u64 cur_offset;
2456        u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2457        u64 drop_end;
2458        int ret = 0;
2459        int err = 0;
2460        unsigned int rsv_count;
2461        bool same_block;
2462        bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2463        u64 ino_size;
2464        bool truncated_block = false;
2465        bool updated_inode = false;
2466
2467        ret = btrfs_wait_ordered_range(inode, offset, len);
2468        if (ret)
2469                return ret;
2470
2471        inode_lock(inode);
2472        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2473        ret = find_first_non_hole(inode, &offset, &len);
2474        if (ret < 0)
2475                goto out_only_mutex;
2476        if (ret && !len) {
2477                /* Already in a large hole */
2478                ret = 0;
2479                goto out_only_mutex;
2480        }
2481
2482        lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2483        lockend = round_down(offset + len,
2484                             btrfs_inode_sectorsize(inode)) - 1;
2485        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2486                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2487        /*
2488         * We needn't truncate any block which is beyond the end of the file
2489         * because we are sure there is no data there.
2490         */
2491        /*
2492         * Only do this if we are in the same block and we aren't doing the
2493         * entire block.
2494         */
2495        if (same_block && len < fs_info->sectorsize) {
2496                if (offset < ino_size) {
2497                        truncated_block = true;
2498                        ret = btrfs_truncate_block(inode, offset, len, 0);
2499                } else {
2500                        ret = 0;
2501                }
2502                goto out_only_mutex;
2503        }
2504
2505        /* zero back part of the first block */
2506        if (offset < ino_size) {
2507                truncated_block = true;
2508                ret = btrfs_truncate_block(inode, offset, 0, 0);
2509                if (ret) {
2510                        inode_unlock(inode);
2511                        return ret;
2512                }
2513        }
2514
2515        /* Check the aligned pages after the first unaligned page,
2516         * if offset != orig_start, which means the first unaligned page
2517         * including several following pages are already in holes,
2518         * the extra check can be skipped */
2519        if (offset == orig_start) {
2520                /* after truncate page, check hole again */
2521                len = offset + len - lockstart;
2522                offset = lockstart;
2523                ret = find_first_non_hole(inode, &offset, &len);
2524                if (ret < 0)
2525                        goto out_only_mutex;
2526                if (ret && !len) {
2527                        ret = 0;
2528                        goto out_only_mutex;
2529                }
2530                lockstart = offset;
2531        }
2532
2533        /* Check the tail unaligned part is in a hole */
2534        tail_start = lockend + 1;
2535        tail_len = offset + len - tail_start;
2536        if (tail_len) {
2537                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2538                if (unlikely(ret < 0))
2539                        goto out_only_mutex;
2540                if (!ret) {
2541                        /* zero the front end of the last page */
2542                        if (tail_start + tail_len < ino_size) {
2543                                truncated_block = true;
2544                                ret = btrfs_truncate_block(inode,
2545                                                        tail_start + tail_len,
2546                                                        0, 1);
2547                                if (ret)
2548                                        goto out_only_mutex;
2549                        }
2550                }
2551        }
2552
2553        if (lockend < lockstart) {
2554                ret = 0;
2555                goto out_only_mutex;
2556        }
2557
2558        ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2559                                          &cached_state);
2560        if (ret)
2561                goto out_only_mutex;
2562
2563        path = btrfs_alloc_path();
2564        if (!path) {
2565                ret = -ENOMEM;
2566                goto out;
2567        }
2568
2569        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2570        if (!rsv) {
2571                ret = -ENOMEM;
2572                goto out_free;
2573        }
2574        rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2575        rsv->failfast = 1;
2576
2577        /*
2578         * 1 - update the inode
2579         * 1 - removing the extents in the range
2580         * 1 - adding the hole extent if no_holes isn't set
2581         */
2582        rsv_count = no_holes ? 2 : 3;
2583        trans = btrfs_start_transaction(root, rsv_count);
2584        if (IS_ERR(trans)) {
2585                err = PTR_ERR(trans);
2586                goto out_free;
2587        }
2588
2589        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2590                                      min_size, false);
2591        BUG_ON(ret);
2592        trans->block_rsv = rsv;
2593
2594        cur_offset = lockstart;
2595        len = lockend - cur_offset;
2596        while (cur_offset < lockend) {
2597                ret = __btrfs_drop_extents(trans, root, inode, path,
2598                                           cur_offset, lockend + 1,
2599                                           &drop_end, 1, 0, 0, NULL);
2600                if (ret != -ENOSPC)
2601                        break;
2602
2603                trans->block_rsv = &fs_info->trans_block_rsv;
2604
2605                if (cur_offset < drop_end && cur_offset < ino_size) {
2606                        ret = fill_holes(trans, BTRFS_I(inode), path,
2607                                        cur_offset, drop_end);
2608                        if (ret) {
2609                                /*
2610                                 * If we failed then we didn't insert our hole
2611                                 * entries for the area we dropped, so now the
2612                                 * fs is corrupted, so we must abort the
2613                                 * transaction.
2614                                 */
2615                                btrfs_abort_transaction(trans, ret);
2616                                err = ret;
2617                                break;
2618                        }
2619                }
2620
2621                cur_offset = drop_end;
2622
2623                ret = btrfs_update_inode(trans, root, inode);
2624                if (ret) {
2625                        err = ret;
2626                        break;
2627                }
2628
2629                btrfs_end_transaction(trans);
2630                btrfs_btree_balance_dirty(fs_info);
2631
2632                trans = btrfs_start_transaction(root, rsv_count);
2633                if (IS_ERR(trans)) {
2634                        ret = PTR_ERR(trans);
2635                        trans = NULL;
2636                        break;
2637                }
2638
2639                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2640                                              rsv, min_size, false);
2641                BUG_ON(ret);    /* shouldn't happen */
2642                trans->block_rsv = rsv;
2643
2644                ret = find_first_non_hole(inode, &cur_offset, &len);
2645                if (unlikely(ret < 0))
2646                        break;
2647                if (ret && !len) {
2648                        ret = 0;
2649                        break;
2650                }
2651        }
2652
2653        if (ret) {
2654                err = ret;
2655                goto out_trans;
2656        }
2657
2658        trans->block_rsv = &fs_info->trans_block_rsv;
2659        /*
2660         * If we are using the NO_HOLES feature we might have had already an
2661         * hole that overlaps a part of the region [lockstart, lockend] and
2662         * ends at (or beyond) lockend. Since we have no file extent items to
2663         * represent holes, drop_end can be less than lockend and so we must
2664         * make sure we have an extent map representing the existing hole (the
2665         * call to __btrfs_drop_extents() might have dropped the existing extent
2666         * map representing the existing hole), otherwise the fast fsync path
2667         * will not record the existence of the hole region
2668         * [existing_hole_start, lockend].
2669         */
2670        if (drop_end <= lockend)
2671                drop_end = lockend + 1;
2672        /*
2673         * Don't insert file hole extent item if it's for a range beyond eof
2674         * (because it's useless) or if it represents a 0 bytes range (when
2675         * cur_offset == drop_end).
2676         */
2677        if (cur_offset < ino_size && cur_offset < drop_end) {
2678                ret = fill_holes(trans, BTRFS_I(inode), path,
2679                                cur_offset, drop_end);
2680                if (ret) {
2681                        /* Same comment as above. */
2682                        btrfs_abort_transaction(trans, ret);
2683                        err = ret;
2684                        goto out_trans;
2685                }
2686        }
2687
2688out_trans:
2689        if (!trans)
2690                goto out_free;
2691
2692        inode_inc_iversion(inode);
2693        inode->i_mtime = inode->i_ctime = current_time(inode);
2694
2695        trans->block_rsv = &fs_info->trans_block_rsv;
2696        ret = btrfs_update_inode(trans, root, inode);
2697        updated_inode = true;
2698        btrfs_end_transaction(trans);
2699        btrfs_btree_balance_dirty(fs_info);
2700out_free:
2701        btrfs_free_path(path);
2702        btrfs_free_block_rsv(fs_info, rsv);
2703out:
2704        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2705                             &cached_state);
2706out_only_mutex:
2707        if (!updated_inode && truncated_block && !ret && !err) {
2708                /*
2709                 * If we only end up zeroing part of a page, we still need to
2710                 * update the inode item, so that all the time fields are
2711                 * updated as well as the necessary btrfs inode in memory fields
2712                 * for detecting, at fsync time, if the inode isn't yet in the
2713                 * log tree or it's there but not up to date.
2714                 */
2715                struct timespec64 now = current_time(inode);
2716
2717                inode_inc_iversion(inode);
2718                inode->i_mtime = now;
2719                inode->i_ctime = now;
2720                trans = btrfs_start_transaction(root, 1);
2721                if (IS_ERR(trans)) {
2722                        err = PTR_ERR(trans);
2723                } else {
2724                        err = btrfs_update_inode(trans, root, inode);
2725                        ret = btrfs_end_transaction(trans);
2726                }
2727        }
2728        inode_unlock(inode);
2729        if (ret && !err)
2730                err = ret;
2731        return err;
2732}
2733
2734/* Helper structure to record which range is already reserved */
2735struct falloc_range {
2736        struct list_head list;
2737        u64 start;
2738        u64 len;
2739};
2740
2741/*
2742 * Helper function to add falloc range
2743 *
2744 * Caller should have locked the larger range of extent containing
2745 * [start, len)
2746 */
2747static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2748{
2749        struct falloc_range *prev = NULL;
2750        struct falloc_range *range = NULL;
2751
2752        if (list_empty(head))
2753                goto insert;
2754
2755        /*
2756         * As fallocate iterate by bytenr order, we only need to check
2757         * the last range.
2758         */
2759        prev = list_entry(head->prev, struct falloc_range, list);
2760        if (prev->start + prev->len == start) {
2761                prev->len += len;
2762                return 0;
2763        }
2764insert:
2765        range = kmalloc(sizeof(*range), GFP_KERNEL);
2766        if (!range)
2767                return -ENOMEM;
2768        range->start = start;
2769        range->len = len;
2770        list_add_tail(&range->list, head);
2771        return 0;
2772}
2773
2774static int btrfs_fallocate_update_isize(struct inode *inode,
2775                                        const u64 end,
2776                                        const int mode)
2777{
2778        struct btrfs_trans_handle *trans;
2779        struct btrfs_root *root = BTRFS_I(inode)->root;
2780        int ret;
2781        int ret2;
2782
2783        if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2784                return 0;
2785
2786        trans = btrfs_start_transaction(root, 1);
2787        if (IS_ERR(trans))
2788                return PTR_ERR(trans);
2789
2790        inode->i_ctime = current_time(inode);
2791        i_size_write(inode, end);
2792        btrfs_ordered_update_i_size(inode, end, NULL);
2793        ret = btrfs_update_inode(trans, root, inode);
2794        ret2 = btrfs_end_transaction(trans);
2795
2796        return ret ? ret : ret2;
2797}
2798
2799enum {
2800        RANGE_BOUNDARY_WRITTEN_EXTENT,
2801        RANGE_BOUNDARY_PREALLOC_EXTENT,
2802        RANGE_BOUNDARY_HOLE,
2803};
2804
2805static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2806                                                 u64 offset)
2807{
2808        const u64 sectorsize = btrfs_inode_sectorsize(inode);
2809        struct extent_map *em;
2810        int ret;
2811
2812        offset = round_down(offset, sectorsize);
2813        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2814        if (IS_ERR(em))
2815                return PTR_ERR(em);
2816
2817        if (em->block_start == EXTENT_MAP_HOLE)
2818                ret = RANGE_BOUNDARY_HOLE;
2819        else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2820                ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2821        else
2822                ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2823
2824        free_extent_map(em);
2825        return ret;
2826}
2827
2828static int btrfs_zero_range(struct inode *inode,
2829                            loff_t offset,
2830                            loff_t len,
2831                            const int mode)
2832{
2833        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2834        struct extent_map *em;
2835        struct extent_changeset *data_reserved = NULL;
2836        int ret;
2837        u64 alloc_hint = 0;
2838        const u64 sectorsize = btrfs_inode_sectorsize(inode);
2839        u64 alloc_start = round_down(offset, sectorsize);
2840        u64 alloc_end = round_up(offset + len, sectorsize);
2841        u64 bytes_to_reserve = 0;
2842        bool space_reserved = false;
2843
2844        inode_dio_wait(inode);
2845
2846        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2847                              alloc_start, alloc_end - alloc_start, 0);
2848        if (IS_ERR(em)) {
2849                ret = PTR_ERR(em);
2850                goto out;
2851        }
2852
2853        /*
2854         * Avoid hole punching and extent allocation for some cases. More cases
2855         * could be considered, but these are unlikely common and we keep things
2856         * as simple as possible for now. Also, intentionally, if the target
2857         * range contains one or more prealloc extents together with regular
2858         * extents and holes, we drop all the existing extents and allocate a
2859         * new prealloc extent, so that we get a larger contiguous disk extent.
2860         */
2861        if (em->start <= alloc_start &&
2862            test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2863                const u64 em_end = em->start + em->len;
2864
2865                if (em_end >= offset + len) {
2866                        /*
2867                         * The whole range is already a prealloc extent,
2868                         * do nothing except updating the inode's i_size if
2869                         * needed.
2870                         */
2871                        free_extent_map(em);
2872                        ret = btrfs_fallocate_update_isize(inode, offset + len,
2873                                                           mode);
2874                        goto out;
2875                }
2876                /*
2877                 * Part of the range is already a prealloc extent, so operate
2878                 * only on the remaining part of the range.
2879                 */
2880                alloc_start = em_end;
2881                ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2882                len = offset + len - alloc_start;
2883                offset = alloc_start;
2884                alloc_hint = em->block_start + em->len;
2885        }
2886        free_extent_map(em);
2887
2888        if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2889            BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2890                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2891                                      alloc_start, sectorsize, 0);
2892                if (IS_ERR(em)) {
2893                        ret = PTR_ERR(em);
2894                        goto out;
2895                }
2896
2897                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2898                        free_extent_map(em);
2899                        ret = btrfs_fallocate_update_isize(inode, offset + len,
2900                                                           mode);
2901                        goto out;
2902                }
2903                if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2904                        free_extent_map(em);
2905                        ret = btrfs_truncate_block(inode, offset, len, 0);
2906                        if (!ret)
2907                                ret = btrfs_fallocate_update_isize(inode,
2908                                                                   offset + len,
2909                                                                   mode);
2910                        return ret;
2911                }
2912                free_extent_map(em);
2913                alloc_start = round_down(offset, sectorsize);
2914                alloc_end = alloc_start + sectorsize;
2915                goto reserve_space;
2916        }
2917
2918        alloc_start = round_up(offset, sectorsize);
2919        alloc_end = round_down(offset + len, sectorsize);
2920
2921        /*
2922         * For unaligned ranges, check the pages at the boundaries, they might
2923         * map to an extent, in which case we need to partially zero them, or
2924         * they might map to a hole, in which case we need our allocation range
2925         * to cover them.
2926         */
2927        if (!IS_ALIGNED(offset, sectorsize)) {
2928                ret = btrfs_zero_range_check_range_boundary(inode, offset);
2929                if (ret < 0)
2930                        goto out;
2931                if (ret == RANGE_BOUNDARY_HOLE) {
2932                        alloc_start = round_down(offset, sectorsize);
2933                        ret = 0;
2934                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2935                        ret = btrfs_truncate_block(inode, offset, 0, 0);
2936                        if (ret)
2937                                goto out;
2938                } else {
2939                        ret = 0;
2940                }
2941        }
2942
2943        if (!IS_ALIGNED(offset + len, sectorsize)) {
2944                ret = btrfs_zero_range_check_range_boundary(inode,
2945                                                            offset + len);
2946                if (ret < 0)
2947                        goto out;
2948                if (ret == RANGE_BOUNDARY_HOLE) {
2949                        alloc_end = round_up(offset + len, sectorsize);
2950                        ret = 0;
2951                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2952                        ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2953                        if (ret)
2954                                goto out;
2955                } else {
2956                        ret = 0;
2957                }
2958        }
2959
2960reserve_space:
2961        if (alloc_start < alloc_end) {
2962                struct extent_state *cached_state = NULL;
2963                const u64 lockstart = alloc_start;
2964                const u64 lockend = alloc_end - 1;
2965
2966                bytes_to_reserve = alloc_end - alloc_start;
2967                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2968                                                      bytes_to_reserve);
2969                if (ret < 0)
2970                        goto out;
2971                space_reserved = true;
2972                ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2973                                                alloc_start, bytes_to_reserve);
2974                if (ret)
2975                        goto out;
2976                ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2977                                                  &cached_state);
2978                if (ret)
2979                        goto out;
2980                ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2981                                                alloc_end - alloc_start,
2982                                                i_blocksize(inode),
2983                                                offset + len, &alloc_hint);
2984                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2985                                     lockend, &cached_state);
2986                /* btrfs_prealloc_file_range releases reserved space on error */
2987                if (ret) {
2988                        space_reserved = false;
2989                        goto out;
2990                }
2991        }
2992        ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2993 out:
2994        if (ret && space_reserved)
2995                btrfs_free_reserved_data_space(inode, data_reserved,
2996                                               alloc_start, bytes_to_reserve);
2997        extent_changeset_free(data_reserved);
2998
2999        return ret;
3000}
3001
3002static long btrfs_fallocate(struct file *file, int mode,
3003                            loff_t offset, loff_t len)
3004{
3005        struct inode *inode = file_inode(file);
3006        struct extent_state *cached_state = NULL;
3007        struct extent_changeset *data_reserved = NULL;
3008        struct falloc_range *range;
3009        struct falloc_range *tmp;
3010        struct list_head reserve_list;
3011        u64 cur_offset;
3012        u64 last_byte;
3013        u64 alloc_start;
3014        u64 alloc_end;
3015        u64 alloc_hint = 0;
3016        u64 locked_end;
3017        u64 actual_end = 0;
3018        struct extent_map *em;
3019        int blocksize = btrfs_inode_sectorsize(inode);
3020        int ret;
3021
3022        alloc_start = round_down(offset, blocksize);
3023        alloc_end = round_up(offset + len, blocksize);
3024        cur_offset = alloc_start;
3025
3026        /* Make sure we aren't being give some crap mode */
3027        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3028                     FALLOC_FL_ZERO_RANGE))
3029                return -EOPNOTSUPP;
3030
3031        if (mode & FALLOC_FL_PUNCH_HOLE)
3032                return btrfs_punch_hole(inode, offset, len);
3033
3034        /*
3035         * Only trigger disk allocation, don't trigger qgroup reserve
3036         *
3037         * For qgroup space, it will be checked later.
3038         */
3039        if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3040                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3041                                                      alloc_end - alloc_start);
3042                if (ret < 0)
3043                        return ret;
3044        }
3045
3046        inode_lock(inode);
3047
3048        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3049                ret = inode_newsize_ok(inode, offset + len);
3050                if (ret)
3051                        goto out;
3052        }
3053
3054        /*
3055         * TODO: Move these two operations after we have checked
3056         * accurate reserved space, or fallocate can still fail but
3057         * with page truncated or size expanded.
3058         *
3059         * But that's a minor problem and won't do much harm BTW.
3060         */
3061        if (alloc_start > inode->i_size) {
3062                ret = btrfs_cont_expand(inode, i_size_read(inode),
3063                                        alloc_start);
3064                if (ret)
3065                        goto out;
3066        } else if (offset + len > inode->i_size) {
3067                /*
3068                 * If we are fallocating from the end of the file onward we
3069                 * need to zero out the end of the block if i_size lands in the
3070                 * middle of a block.
3071                 */
3072                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3073                if (ret)
3074                        goto out;
3075        }
3076
3077        /*
3078         * wait for ordered IO before we have any locks.  We'll loop again
3079         * below with the locks held.
3080         */
3081        ret = btrfs_wait_ordered_range(inode, alloc_start,
3082                                       alloc_end - alloc_start);
3083        if (ret)
3084                goto out;
3085
3086        if (mode & FALLOC_FL_ZERO_RANGE) {
3087                ret = btrfs_zero_range(inode, offset, len, mode);
3088                inode_unlock(inode);
3089                return ret;
3090        }
3091
3092        locked_end = alloc_end - 1;
3093        while (1) {
3094                struct btrfs_ordered_extent *ordered;
3095
3096                /* the extent lock is ordered inside the running
3097                 * transaction
3098                 */
3099                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3100                                 locked_end, &cached_state);
3101                ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3102
3103                if (ordered &&
3104                    ordered->file_offset + ordered->len > alloc_start &&
3105                    ordered->file_offset < alloc_end) {
3106                        btrfs_put_ordered_extent(ordered);
3107                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3108                                             alloc_start, locked_end,
3109                                             &cached_state);
3110                        /*
3111                         * we can't wait on the range with the transaction
3112                         * running or with the extent lock held
3113                         */
3114                        ret = btrfs_wait_ordered_range(inode, alloc_start,
3115                                                       alloc_end - alloc_start);
3116                        if (ret)
3117                                goto out;
3118                } else {
3119                        if (ordered)
3120                                btrfs_put_ordered_extent(ordered);
3121                        break;
3122                }
3123        }
3124
3125        /* First, check if we exceed the qgroup limit */
3126        INIT_LIST_HEAD(&reserve_list);
3127        while (cur_offset < alloc_end) {
3128                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3129                                      alloc_end - cur_offset, 0);
3130                if (IS_ERR(em)) {
3131                        ret = PTR_ERR(em);
3132                        break;
3133                }
3134                last_byte = min(extent_map_end(em), alloc_end);
3135                actual_end = min_t(u64, extent_map_end(em), offset + len);
3136                last_byte = ALIGN(last_byte, blocksize);
3137                if (em->block_start == EXTENT_MAP_HOLE ||
3138                    (cur_offset >= inode->i_size &&
3139                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3140                        ret = add_falloc_range(&reserve_list, cur_offset,
3141                                               last_byte - cur_offset);
3142                        if (ret < 0) {
3143                                free_extent_map(em);
3144                                break;
3145                        }
3146                        ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3147                                        cur_offset, last_byte - cur_offset);
3148                        if (ret < 0) {
3149                                cur_offset = last_byte;
3150                                free_extent_map(em);
3151                                break;
3152                        }
3153                } else {
3154                        /*
3155                         * Do not need to reserve unwritten extent for this
3156                         * range, free reserved data space first, otherwise
3157                         * it'll result in false ENOSPC error.
3158                         */
3159                        btrfs_free_reserved_data_space(inode, data_reserved,
3160                                        cur_offset, last_byte - cur_offset);
3161                }
3162                free_extent_map(em);
3163                cur_offset = last_byte;
3164        }
3165
3166        /*
3167         * If ret is still 0, means we're OK to fallocate.
3168         * Or just cleanup the list and exit.
3169         */
3170        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3171                if (!ret)
3172                        ret = btrfs_prealloc_file_range(inode, mode,
3173                                        range->start,
3174                                        range->len, i_blocksize(inode),
3175                                        offset + len, &alloc_hint);
3176                else
3177                        btrfs_free_reserved_data_space(inode,
3178                                        data_reserved, range->start,
3179                                        range->len);
3180                list_del(&range->list);
3181                kfree(range);
3182        }
3183        if (ret < 0)
3184                goto out_unlock;
3185
3186        /*
3187         * We didn't need to allocate any more space, but we still extended the
3188         * size of the file so we need to update i_size and the inode item.
3189         */
3190        ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3191out_unlock:
3192        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3193                             &cached_state);
3194out:
3195        inode_unlock(inode);
3196        /* Let go of our reservation. */
3197        if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3198                btrfs_free_reserved_data_space(inode, data_reserved,
3199                                cur_offset, alloc_end - cur_offset);
3200        extent_changeset_free(data_reserved);
3201        return ret;
3202}
3203
3204static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3205{
3206        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207        struct extent_map *em = NULL;
3208        struct extent_state *cached_state = NULL;
3209        u64 lockstart;
3210        u64 lockend;
3211        u64 start;
3212        u64 len;
3213        int ret = 0;
3214
3215        if (inode->i_size == 0)
3216                return -ENXIO;
3217
3218        /*
3219         * *offset can be negative, in this case we start finding DATA/HOLE from
3220         * the very start of the file.
3221         */
3222        start = max_t(loff_t, 0, *offset);
3223
3224        lockstart = round_down(start, fs_info->sectorsize);
3225        lockend = round_up(i_size_read(inode),
3226                           fs_info->sectorsize);
3227        if (lockend <= lockstart)
3228                lockend = lockstart + fs_info->sectorsize;
3229        lockend--;
3230        len = lockend - lockstart + 1;
3231
3232        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3233                         &cached_state);
3234
3235        while (start < inode->i_size) {
3236                em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3237                if (IS_ERR(em)) {
3238                        ret = PTR_ERR(em);
3239                        em = NULL;
3240                        break;
3241                }
3242
3243                if (whence == SEEK_HOLE &&
3244                    (em->block_start == EXTENT_MAP_HOLE ||
3245                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3246                        break;
3247                else if (whence == SEEK_DATA &&
3248                           (em->block_start != EXTENT_MAP_HOLE &&
3249                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3250                        break;
3251
3252                start = em->start + em->len;
3253                free_extent_map(em);
3254                em = NULL;
3255                cond_resched();
3256        }
3257        free_extent_map(em);
3258        if (!ret) {
3259                if (whence == SEEK_DATA && start >= inode->i_size)
3260                        ret = -ENXIO;
3261                else
3262                        *offset = min_t(loff_t, start, inode->i_size);
3263        }
3264        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3265                             &cached_state);
3266        return ret;
3267}
3268
3269static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3270{
3271        struct inode *inode = file->f_mapping->host;
3272        int ret;
3273
3274        inode_lock(inode);
3275        switch (whence) {
3276        case SEEK_END:
3277        case SEEK_CUR:
3278                offset = generic_file_llseek(file, offset, whence);
3279                goto out;
3280        case SEEK_DATA:
3281        case SEEK_HOLE:
3282                if (offset >= i_size_read(inode)) {
3283                        inode_unlock(inode);
3284                        return -ENXIO;
3285                }
3286
3287                ret = find_desired_extent(inode, &offset, whence);
3288                if (ret) {
3289                        inode_unlock(inode);
3290                        return ret;
3291                }
3292        }
3293
3294        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3295out:
3296        inode_unlock(inode);
3297        return offset;
3298}
3299
3300static int btrfs_file_open(struct inode *inode, struct file *filp)
3301{
3302        filp->f_mode |= FMODE_NOWAIT;
3303        return generic_file_open(inode, filp);
3304}
3305
3306const struct file_operations btrfs_file_operations = {
3307        .llseek         = btrfs_file_llseek,
3308        .read_iter      = generic_file_read_iter,
3309        .splice_read    = generic_file_splice_read,
3310        .write_iter     = btrfs_file_write_iter,
3311        .mmap           = btrfs_file_mmap,
3312        .open           = btrfs_file_open,
3313        .release        = btrfs_release_file,
3314        .fsync          = btrfs_sync_file,
3315        .fallocate      = btrfs_fallocate,
3316        .unlocked_ioctl = btrfs_ioctl,
3317#ifdef CONFIG_COMPAT
3318        .compat_ioctl   = btrfs_compat_ioctl,
3319#endif
3320        .remap_file_range = btrfs_remap_file_range,
3321};
3322
3323void __cold btrfs_auto_defrag_exit(void)
3324{
3325        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3326}
3327
3328int __init btrfs_auto_defrag_init(void)
3329{
3330        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3331                                        sizeof(struct inode_defrag), 0,
3332                                        SLAB_MEM_SPREAD,
3333                                        NULL);
3334        if (!btrfs_inode_defrag_cachep)
3335                return -ENOMEM;
3336
3337        return 0;
3338}
3339
3340int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3341{
3342        int ret;
3343
3344        /*
3345         * So with compression we will find and lock a dirty page and clear the
3346         * first one as dirty, setup an async extent, and immediately return
3347         * with the entire range locked but with nobody actually marked with
3348         * writeback.  So we can't just filemap_write_and_wait_range() and
3349         * expect it to work since it will just kick off a thread to do the
3350         * actual work.  So we need to call filemap_fdatawrite_range _again_
3351         * since it will wait on the page lock, which won't be unlocked until
3352         * after the pages have been marked as writeback and so we're good to go
3353         * from there.  We have to do this otherwise we'll miss the ordered
3354         * extents and that results in badness.  Please Josef, do not think you
3355         * know better and pull this out at some point in the future, it is
3356         * right and you are wrong.
3357         */
3358        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3359        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3360                             &BTRFS_I(inode)->runtime_flags))
3361                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3362
3363        return ret;
3364}
3365