linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/buffer_head.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/writeback.h>
  18#include <linux/compat.h>
  19#include <linux/xattr.h>
  20#include <linux/posix_acl.h>
  21#include <linux/falloc.h>
  22#include <linux/slab.h>
  23#include <linux/ratelimit.h>
  24#include <linux/btrfs.h>
  25#include <linux/blkdev.h>
  26#include <linux/posix_acl_xattr.h>
  27#include <linux/uio.h>
  28#include <linux/magic.h>
  29#include <linux/iversion.h>
  30#include <linux/swap.h>
  31#include <linux/sched/mm.h>
  32#include <asm/unaligned.h>
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "print-tree.h"
  38#include "ordered-data.h"
  39#include "xattr.h"
  40#include "tree-log.h"
  41#include "volumes.h"
  42#include "compression.h"
  43#include "locking.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46#include "backref.h"
  47#include "props.h"
  48#include "qgroup.h"
  49#include "dedupe.h"
  50#include "delalloc-space.h"
  51
  52struct btrfs_iget_args {
  53        struct btrfs_key *location;
  54        struct btrfs_root *root;
  55};
  56
  57struct btrfs_dio_data {
  58        u64 reserve;
  59        u64 unsubmitted_oe_range_start;
  60        u64 unsubmitted_oe_range_end;
  61        int overwrite;
  62};
  63
  64static const struct inode_operations btrfs_dir_inode_operations;
  65static const struct inode_operations btrfs_symlink_inode_operations;
  66static const struct inode_operations btrfs_dir_ro_inode_operations;
  67static const struct inode_operations btrfs_special_inode_operations;
  68static const struct inode_operations btrfs_file_inode_operations;
  69static const struct address_space_operations btrfs_aops;
  70static const struct file_operations btrfs_dir_file_operations;
  71static const struct extent_io_ops btrfs_extent_io_ops;
  72
  73static struct kmem_cache *btrfs_inode_cachep;
  74struct kmem_cache *btrfs_trans_handle_cachep;
  75struct kmem_cache *btrfs_path_cachep;
  76struct kmem_cache *btrfs_free_space_cachep;
  77
  78static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  79static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  80static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  81static noinline int cow_file_range(struct inode *inode,
  82                                   struct page *locked_page,
  83                                   u64 start, u64 end, u64 delalloc_end,
  84                                   int *page_started, unsigned long *nr_written,
  85                                   int unlock, struct btrfs_dedupe_hash *hash);
  86static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
  87                                       u64 orig_start, u64 block_start,
  88                                       u64 block_len, u64 orig_block_len,
  89                                       u64 ram_bytes, int compress_type,
  90                                       int type);
  91
  92static void __endio_write_update_ordered(struct inode *inode,
  93                                         const u64 offset, const u64 bytes,
  94                                         const bool uptodate);
  95
  96/*
  97 * Cleanup all submitted ordered extents in specified range to handle errors
  98 * from the btrfs_run_delalloc_range() callback.
  99 *
 100 * NOTE: caller must ensure that when an error happens, it can not call
 101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 103 * to be released, which we want to happen only when finishing the ordered
 104 * extent (btrfs_finish_ordered_io()).
 105 */
 106static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
 107                                                 struct page *locked_page,
 108                                                 u64 offset, u64 bytes)
 109{
 110        unsigned long index = offset >> PAGE_SHIFT;
 111        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 112        u64 page_start = page_offset(locked_page);
 113        u64 page_end = page_start + PAGE_SIZE - 1;
 114
 115        struct page *page;
 116
 117        while (index <= end_index) {
 118                page = find_get_page(inode->i_mapping, index);
 119                index++;
 120                if (!page)
 121                        continue;
 122                ClearPagePrivate2(page);
 123                put_page(page);
 124        }
 125
 126        /*
 127         * In case this page belongs to the delalloc range being instantiated
 128         * then skip it, since the first page of a range is going to be
 129         * properly cleaned up by the caller of run_delalloc_range
 130         */
 131        if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 132                offset += PAGE_SIZE;
 133                bytes -= PAGE_SIZE;
 134        }
 135
 136        return __endio_write_update_ordered(inode, offset, bytes, false);
 137}
 138
 139static int btrfs_dirty_inode(struct inode *inode);
 140
 141#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 142void btrfs_test_inode_set_ops(struct inode *inode)
 143{
 144        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
 145}
 146#endif
 147
 148static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 149                                     struct inode *inode,  struct inode *dir,
 150                                     const struct qstr *qstr)
 151{
 152        int err;
 153
 154        err = btrfs_init_acl(trans, inode, dir);
 155        if (!err)
 156                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 157        return err;
 158}
 159
 160/*
 161 * this does all the hard work for inserting an inline extent into
 162 * the btree.  The caller should have done a btrfs_drop_extents so that
 163 * no overlapping inline items exist in the btree
 164 */
 165static int insert_inline_extent(struct btrfs_trans_handle *trans,
 166                                struct btrfs_path *path, int extent_inserted,
 167                                struct btrfs_root *root, struct inode *inode,
 168                                u64 start, size_t size, size_t compressed_size,
 169                                int compress_type,
 170                                struct page **compressed_pages)
 171{
 172        struct extent_buffer *leaf;
 173        struct page *page = NULL;
 174        char *kaddr;
 175        unsigned long ptr;
 176        struct btrfs_file_extent_item *ei;
 177        int ret;
 178        size_t cur_size = size;
 179        unsigned long offset;
 180
 181        if (compressed_size && compressed_pages)
 182                cur_size = compressed_size;
 183
 184        inode_add_bytes(inode, size);
 185
 186        if (!extent_inserted) {
 187                struct btrfs_key key;
 188                size_t datasize;
 189
 190                key.objectid = btrfs_ino(BTRFS_I(inode));
 191                key.offset = start;
 192                key.type = BTRFS_EXTENT_DATA_KEY;
 193
 194                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 195                path->leave_spinning = 1;
 196                ret = btrfs_insert_empty_item(trans, root, path, &key,
 197                                              datasize);
 198                if (ret)
 199                        goto fail;
 200        }
 201        leaf = path->nodes[0];
 202        ei = btrfs_item_ptr(leaf, path->slots[0],
 203                            struct btrfs_file_extent_item);
 204        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 205        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 206        btrfs_set_file_extent_encryption(leaf, ei, 0);
 207        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 208        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 209        ptr = btrfs_file_extent_inline_start(ei);
 210
 211        if (compress_type != BTRFS_COMPRESS_NONE) {
 212                struct page *cpage;
 213                int i = 0;
 214                while (compressed_size > 0) {
 215                        cpage = compressed_pages[i];
 216                        cur_size = min_t(unsigned long, compressed_size,
 217                                       PAGE_SIZE);
 218
 219                        kaddr = kmap_atomic(cpage);
 220                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 221                        kunmap_atomic(kaddr);
 222
 223                        i++;
 224                        ptr += cur_size;
 225                        compressed_size -= cur_size;
 226                }
 227                btrfs_set_file_extent_compression(leaf, ei,
 228                                                  compress_type);
 229        } else {
 230                page = find_get_page(inode->i_mapping,
 231                                     start >> PAGE_SHIFT);
 232                btrfs_set_file_extent_compression(leaf, ei, 0);
 233                kaddr = kmap_atomic(page);
 234                offset = offset_in_page(start);
 235                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 236                kunmap_atomic(kaddr);
 237                put_page(page);
 238        }
 239        btrfs_mark_buffer_dirty(leaf);
 240        btrfs_release_path(path);
 241
 242        /*
 243         * we're an inline extent, so nobody can
 244         * extend the file past i_size without locking
 245         * a page we already have locked.
 246         *
 247         * We must do any isize and inode updates
 248         * before we unlock the pages.  Otherwise we
 249         * could end up racing with unlink.
 250         */
 251        BTRFS_I(inode)->disk_i_size = inode->i_size;
 252        ret = btrfs_update_inode(trans, root, inode);
 253
 254fail:
 255        return ret;
 256}
 257
 258
 259/*
 260 * conditionally insert an inline extent into the file.  This
 261 * does the checks required to make sure the data is small enough
 262 * to fit as an inline extent.
 263 */
 264static noinline int cow_file_range_inline(struct inode *inode, u64 start,
 265                                          u64 end, size_t compressed_size,
 266                                          int compress_type,
 267                                          struct page **compressed_pages)
 268{
 269        struct btrfs_root *root = BTRFS_I(inode)->root;
 270        struct btrfs_fs_info *fs_info = root->fs_info;
 271        struct btrfs_trans_handle *trans;
 272        u64 isize = i_size_read(inode);
 273        u64 actual_end = min(end + 1, isize);
 274        u64 inline_len = actual_end - start;
 275        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 276        u64 data_len = inline_len;
 277        int ret;
 278        struct btrfs_path *path;
 279        int extent_inserted = 0;
 280        u32 extent_item_size;
 281
 282        if (compressed_size)
 283                data_len = compressed_size;
 284
 285        if (start > 0 ||
 286            actual_end > fs_info->sectorsize ||
 287            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 288            (!compressed_size &&
 289            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 290            end + 1 < isize ||
 291            data_len > fs_info->max_inline) {
 292                return 1;
 293        }
 294
 295        path = btrfs_alloc_path();
 296        if (!path)
 297                return -ENOMEM;
 298
 299        trans = btrfs_join_transaction(root);
 300        if (IS_ERR(trans)) {
 301                btrfs_free_path(path);
 302                return PTR_ERR(trans);
 303        }
 304        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
 305
 306        if (compressed_size && compressed_pages)
 307                extent_item_size = btrfs_file_extent_calc_inline_size(
 308                   compressed_size);
 309        else
 310                extent_item_size = btrfs_file_extent_calc_inline_size(
 311                    inline_len);
 312
 313        ret = __btrfs_drop_extents(trans, root, inode, path,
 314                                   start, aligned_end, NULL,
 315                                   1, 1, extent_item_size, &extent_inserted);
 316        if (ret) {
 317                btrfs_abort_transaction(trans, ret);
 318                goto out;
 319        }
 320
 321        if (isize > actual_end)
 322                inline_len = min_t(u64, isize, actual_end);
 323        ret = insert_inline_extent(trans, path, extent_inserted,
 324                                   root, inode, start,
 325                                   inline_len, compressed_size,
 326                                   compress_type, compressed_pages);
 327        if (ret && ret != -ENOSPC) {
 328                btrfs_abort_transaction(trans, ret);
 329                goto out;
 330        } else if (ret == -ENOSPC) {
 331                ret = 1;
 332                goto out;
 333        }
 334
 335        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 336        btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
 337out:
 338        /*
 339         * Don't forget to free the reserved space, as for inlined extent
 340         * it won't count as data extent, free them directly here.
 341         * And at reserve time, it's always aligned to page size, so
 342         * just free one page here.
 343         */
 344        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 345        btrfs_free_path(path);
 346        btrfs_end_transaction(trans);
 347        return ret;
 348}
 349
 350struct async_extent {
 351        u64 start;
 352        u64 ram_size;
 353        u64 compressed_size;
 354        struct page **pages;
 355        unsigned long nr_pages;
 356        int compress_type;
 357        struct list_head list;
 358};
 359
 360struct async_chunk {
 361        struct inode *inode;
 362        struct page *locked_page;
 363        u64 start;
 364        u64 end;
 365        unsigned int write_flags;
 366        struct list_head extents;
 367        struct btrfs_work work;
 368        atomic_t *pending;
 369};
 370
 371struct async_cow {
 372        /* Number of chunks in flight; must be first in the structure */
 373        atomic_t num_chunks;
 374        struct async_chunk chunks[];
 375};
 376
 377static noinline int add_async_extent(struct async_chunk *cow,
 378                                     u64 start, u64 ram_size,
 379                                     u64 compressed_size,
 380                                     struct page **pages,
 381                                     unsigned long nr_pages,
 382                                     int compress_type)
 383{
 384        struct async_extent *async_extent;
 385
 386        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 387        BUG_ON(!async_extent); /* -ENOMEM */
 388        async_extent->start = start;
 389        async_extent->ram_size = ram_size;
 390        async_extent->compressed_size = compressed_size;
 391        async_extent->pages = pages;
 392        async_extent->nr_pages = nr_pages;
 393        async_extent->compress_type = compress_type;
 394        list_add_tail(&async_extent->list, &cow->extents);
 395        return 0;
 396}
 397
 398/*
 399 * Check if the inode has flags compatible with compression
 400 */
 401static inline bool inode_can_compress(struct inode *inode)
 402{
 403        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
 404            BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 405                return false;
 406        return true;
 407}
 408
 409/*
 410 * Check if the inode needs to be submitted to compression, based on mount
 411 * options, defragmentation, properties or heuristics.
 412 */
 413static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
 414{
 415        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 416
 417        if (!inode_can_compress(inode)) {
 418                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 419                        KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
 420                        btrfs_ino(BTRFS_I(inode)));
 421                return 0;
 422        }
 423        /* force compress */
 424        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 425                return 1;
 426        /* defrag ioctl */
 427        if (BTRFS_I(inode)->defrag_compress)
 428                return 1;
 429        /* bad compression ratios */
 430        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
 431                return 0;
 432        if (btrfs_test_opt(fs_info, COMPRESS) ||
 433            BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
 434            BTRFS_I(inode)->prop_compress)
 435                return btrfs_compress_heuristic(inode, start, end);
 436        return 0;
 437}
 438
 439static inline void inode_should_defrag(struct btrfs_inode *inode,
 440                u64 start, u64 end, u64 num_bytes, u64 small_write)
 441{
 442        /* If this is a small write inside eof, kick off a defrag */
 443        if (num_bytes < small_write &&
 444            (start > 0 || end + 1 < inode->disk_i_size))
 445                btrfs_add_inode_defrag(NULL, inode);
 446}
 447
 448/*
 449 * we create compressed extents in two phases.  The first
 450 * phase compresses a range of pages that have already been
 451 * locked (both pages and state bits are locked).
 452 *
 453 * This is done inside an ordered work queue, and the compression
 454 * is spread across many cpus.  The actual IO submission is step
 455 * two, and the ordered work queue takes care of making sure that
 456 * happens in the same order things were put onto the queue by
 457 * writepages and friends.
 458 *
 459 * If this code finds it can't get good compression, it puts an
 460 * entry onto the work queue to write the uncompressed bytes.  This
 461 * makes sure that both compressed inodes and uncompressed inodes
 462 * are written in the same order that the flusher thread sent them
 463 * down.
 464 */
 465static noinline void compress_file_range(struct async_chunk *async_chunk,
 466                                         int *num_added)
 467{
 468        struct inode *inode = async_chunk->inode;
 469        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 470        u64 blocksize = fs_info->sectorsize;
 471        u64 start = async_chunk->start;
 472        u64 end = async_chunk->end;
 473        u64 actual_end;
 474        int ret = 0;
 475        struct page **pages = NULL;
 476        unsigned long nr_pages;
 477        unsigned long total_compressed = 0;
 478        unsigned long total_in = 0;
 479        int i;
 480        int will_compress;
 481        int compress_type = fs_info->compress_type;
 482        int redirty = 0;
 483
 484        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 485                        SZ_16K);
 486
 487        actual_end = min_t(u64, i_size_read(inode), end + 1);
 488again:
 489        will_compress = 0;
 490        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 491        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 492        nr_pages = min_t(unsigned long, nr_pages,
 493                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 494
 495        /*
 496         * we don't want to send crud past the end of i_size through
 497         * compression, that's just a waste of CPU time.  So, if the
 498         * end of the file is before the start of our current
 499         * requested range of bytes, we bail out to the uncompressed
 500         * cleanup code that can deal with all of this.
 501         *
 502         * It isn't really the fastest way to fix things, but this is a
 503         * very uncommon corner.
 504         */
 505        if (actual_end <= start)
 506                goto cleanup_and_bail_uncompressed;
 507
 508        total_compressed = actual_end - start;
 509
 510        /*
 511         * skip compression for a small file range(<=blocksize) that
 512         * isn't an inline extent, since it doesn't save disk space at all.
 513         */
 514        if (total_compressed <= blocksize &&
 515           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 516                goto cleanup_and_bail_uncompressed;
 517
 518        total_compressed = min_t(unsigned long, total_compressed,
 519                        BTRFS_MAX_UNCOMPRESSED);
 520        total_in = 0;
 521        ret = 0;
 522
 523        /*
 524         * we do compression for mount -o compress and when the
 525         * inode has not been flagged as nocompress.  This flag can
 526         * change at any time if we discover bad compression ratios.
 527         */
 528        if (inode_need_compress(inode, start, end)) {
 529                WARN_ON(pages);
 530                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 531                if (!pages) {
 532                        /* just bail out to the uncompressed code */
 533                        nr_pages = 0;
 534                        goto cont;
 535                }
 536
 537                if (BTRFS_I(inode)->defrag_compress)
 538                        compress_type = BTRFS_I(inode)->defrag_compress;
 539                else if (BTRFS_I(inode)->prop_compress)
 540                        compress_type = BTRFS_I(inode)->prop_compress;
 541
 542                /*
 543                 * we need to call clear_page_dirty_for_io on each
 544                 * page in the range.  Otherwise applications with the file
 545                 * mmap'd can wander in and change the page contents while
 546                 * we are compressing them.
 547                 *
 548                 * If the compression fails for any reason, we set the pages
 549                 * dirty again later on.
 550                 *
 551                 * Note that the remaining part is redirtied, the start pointer
 552                 * has moved, the end is the original one.
 553                 */
 554                if (!redirty) {
 555                        extent_range_clear_dirty_for_io(inode, start, end);
 556                        redirty = 1;
 557                }
 558
 559                /* Compression level is applied here and only here */
 560                ret = btrfs_compress_pages(
 561                        compress_type | (fs_info->compress_level << 4),
 562                                           inode->i_mapping, start,
 563                                           pages,
 564                                           &nr_pages,
 565                                           &total_in,
 566                                           &total_compressed);
 567
 568                if (!ret) {
 569                        unsigned long offset = offset_in_page(total_compressed);
 570                        struct page *page = pages[nr_pages - 1];
 571                        char *kaddr;
 572
 573                        /* zero the tail end of the last page, we might be
 574                         * sending it down to disk
 575                         */
 576                        if (offset) {
 577                                kaddr = kmap_atomic(page);
 578                                memset(kaddr + offset, 0,
 579                                       PAGE_SIZE - offset);
 580                                kunmap_atomic(kaddr);
 581                        }
 582                        will_compress = 1;
 583                }
 584        }
 585cont:
 586        if (start == 0) {
 587                /* lets try to make an inline extent */
 588                if (ret || total_in < actual_end) {
 589                        /* we didn't compress the entire range, try
 590                         * to make an uncompressed inline extent.
 591                         */
 592                        ret = cow_file_range_inline(inode, start, end, 0,
 593                                                    BTRFS_COMPRESS_NONE, NULL);
 594                } else {
 595                        /* try making a compressed inline extent */
 596                        ret = cow_file_range_inline(inode, start, end,
 597                                                    total_compressed,
 598                                                    compress_type, pages);
 599                }
 600                if (ret <= 0) {
 601                        unsigned long clear_flags = EXTENT_DELALLOC |
 602                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 603                                EXTENT_DO_ACCOUNTING;
 604                        unsigned long page_error_op;
 605
 606                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 607
 608                        /*
 609                         * inline extent creation worked or returned error,
 610                         * we don't need to create any more async work items.
 611                         * Unlock and free up our temp pages.
 612                         *
 613                         * We use DO_ACCOUNTING here because we need the
 614                         * delalloc_release_metadata to be done _after_ we drop
 615                         * our outstanding extent for clearing delalloc for this
 616                         * range.
 617                         */
 618                        extent_clear_unlock_delalloc(inode, start, end, end,
 619                                                     NULL, clear_flags,
 620                                                     PAGE_UNLOCK |
 621                                                     PAGE_CLEAR_DIRTY |
 622                                                     PAGE_SET_WRITEBACK |
 623                                                     page_error_op |
 624                                                     PAGE_END_WRITEBACK);
 625                        goto free_pages_out;
 626                }
 627        }
 628
 629        if (will_compress) {
 630                /*
 631                 * we aren't doing an inline extent round the compressed size
 632                 * up to a block size boundary so the allocator does sane
 633                 * things
 634                 */
 635                total_compressed = ALIGN(total_compressed, blocksize);
 636
 637                /*
 638                 * one last check to make sure the compression is really a
 639                 * win, compare the page count read with the blocks on disk,
 640                 * compression must free at least one sector size
 641                 */
 642                total_in = ALIGN(total_in, PAGE_SIZE);
 643                if (total_compressed + blocksize <= total_in) {
 644                        *num_added += 1;
 645
 646                        /*
 647                         * The async work queues will take care of doing actual
 648                         * allocation on disk for these compressed pages, and
 649                         * will submit them to the elevator.
 650                         */
 651                        add_async_extent(async_chunk, start, total_in,
 652                                        total_compressed, pages, nr_pages,
 653                                        compress_type);
 654
 655                        if (start + total_in < end) {
 656                                start += total_in;
 657                                pages = NULL;
 658                                cond_resched();
 659                                goto again;
 660                        }
 661                        return;
 662                }
 663        }
 664        if (pages) {
 665                /*
 666                 * the compression code ran but failed to make things smaller,
 667                 * free any pages it allocated and our page pointer array
 668                 */
 669                for (i = 0; i < nr_pages; i++) {
 670                        WARN_ON(pages[i]->mapping);
 671                        put_page(pages[i]);
 672                }
 673                kfree(pages);
 674                pages = NULL;
 675                total_compressed = 0;
 676                nr_pages = 0;
 677
 678                /* flag the file so we don't compress in the future */
 679                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 680                    !(BTRFS_I(inode)->prop_compress)) {
 681                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 682                }
 683        }
 684cleanup_and_bail_uncompressed:
 685        /*
 686         * No compression, but we still need to write the pages in the file
 687         * we've been given so far.  redirty the locked page if it corresponds
 688         * to our extent and set things up for the async work queue to run
 689         * cow_file_range to do the normal delalloc dance.
 690         */
 691        if (page_offset(async_chunk->locked_page) >= start &&
 692            page_offset(async_chunk->locked_page) <= end)
 693                __set_page_dirty_nobuffers(async_chunk->locked_page);
 694                /* unlocked later on in the async handlers */
 695
 696        if (redirty)
 697                extent_range_redirty_for_io(inode, start, end);
 698        add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
 699                         BTRFS_COMPRESS_NONE);
 700        *num_added += 1;
 701
 702        return;
 703
 704free_pages_out:
 705        for (i = 0; i < nr_pages; i++) {
 706                WARN_ON(pages[i]->mapping);
 707                put_page(pages[i]);
 708        }
 709        kfree(pages);
 710}
 711
 712static void free_async_extent_pages(struct async_extent *async_extent)
 713{
 714        int i;
 715
 716        if (!async_extent->pages)
 717                return;
 718
 719        for (i = 0; i < async_extent->nr_pages; i++) {
 720                WARN_ON(async_extent->pages[i]->mapping);
 721                put_page(async_extent->pages[i]);
 722        }
 723        kfree(async_extent->pages);
 724        async_extent->nr_pages = 0;
 725        async_extent->pages = NULL;
 726}
 727
 728/*
 729 * phase two of compressed writeback.  This is the ordered portion
 730 * of the code, which only gets called in the order the work was
 731 * queued.  We walk all the async extents created by compress_file_range
 732 * and send them down to the disk.
 733 */
 734static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
 735{
 736        struct inode *inode = async_chunk->inode;
 737        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 738        struct async_extent *async_extent;
 739        u64 alloc_hint = 0;
 740        struct btrfs_key ins;
 741        struct extent_map *em;
 742        struct btrfs_root *root = BTRFS_I(inode)->root;
 743        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 744        int ret = 0;
 745
 746again:
 747        while (!list_empty(&async_chunk->extents)) {
 748                async_extent = list_entry(async_chunk->extents.next,
 749                                          struct async_extent, list);
 750                list_del(&async_extent->list);
 751
 752retry:
 753                lock_extent(io_tree, async_extent->start,
 754                            async_extent->start + async_extent->ram_size - 1);
 755                /* did the compression code fall back to uncompressed IO? */
 756                if (!async_extent->pages) {
 757                        int page_started = 0;
 758                        unsigned long nr_written = 0;
 759
 760                        /* allocate blocks */
 761                        ret = cow_file_range(inode, async_chunk->locked_page,
 762                                             async_extent->start,
 763                                             async_extent->start +
 764                                             async_extent->ram_size - 1,
 765                                             async_extent->start +
 766                                             async_extent->ram_size - 1,
 767                                             &page_started, &nr_written, 0,
 768                                             NULL);
 769
 770                        /* JDM XXX */
 771
 772                        /*
 773                         * if page_started, cow_file_range inserted an
 774                         * inline extent and took care of all the unlocking
 775                         * and IO for us.  Otherwise, we need to submit
 776                         * all those pages down to the drive.
 777                         */
 778                        if (!page_started && !ret)
 779                                extent_write_locked_range(inode,
 780                                                  async_extent->start,
 781                                                  async_extent->start +
 782                                                  async_extent->ram_size - 1,
 783                                                  WB_SYNC_ALL);
 784                        else if (ret)
 785                                unlock_page(async_chunk->locked_page);
 786                        kfree(async_extent);
 787                        cond_resched();
 788                        continue;
 789                }
 790
 791                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 792                                           async_extent->compressed_size,
 793                                           async_extent->compressed_size,
 794                                           0, alloc_hint, &ins, 1, 1);
 795                if (ret) {
 796                        free_async_extent_pages(async_extent);
 797
 798                        if (ret == -ENOSPC) {
 799                                unlock_extent(io_tree, async_extent->start,
 800                                              async_extent->start +
 801                                              async_extent->ram_size - 1);
 802
 803                                /*
 804                                 * we need to redirty the pages if we decide to
 805                                 * fallback to uncompressed IO, otherwise we
 806                                 * will not submit these pages down to lower
 807                                 * layers.
 808                                 */
 809                                extent_range_redirty_for_io(inode,
 810                                                async_extent->start,
 811                                                async_extent->start +
 812                                                async_extent->ram_size - 1);
 813
 814                                goto retry;
 815                        }
 816                        goto out_free;
 817                }
 818                /*
 819                 * here we're doing allocation and writeback of the
 820                 * compressed pages
 821                 */
 822                em = create_io_em(inode, async_extent->start,
 823                                  async_extent->ram_size, /* len */
 824                                  async_extent->start, /* orig_start */
 825                                  ins.objectid, /* block_start */
 826                                  ins.offset, /* block_len */
 827                                  ins.offset, /* orig_block_len */
 828                                  async_extent->ram_size, /* ram_bytes */
 829                                  async_extent->compress_type,
 830                                  BTRFS_ORDERED_COMPRESSED);
 831                if (IS_ERR(em))
 832                        /* ret value is not necessary due to void function */
 833                        goto out_free_reserve;
 834                free_extent_map(em);
 835
 836                ret = btrfs_add_ordered_extent_compress(inode,
 837                                                async_extent->start,
 838                                                ins.objectid,
 839                                                async_extent->ram_size,
 840                                                ins.offset,
 841                                                BTRFS_ORDERED_COMPRESSED,
 842                                                async_extent->compress_type);
 843                if (ret) {
 844                        btrfs_drop_extent_cache(BTRFS_I(inode),
 845                                                async_extent->start,
 846                                                async_extent->start +
 847                                                async_extent->ram_size - 1, 0);
 848                        goto out_free_reserve;
 849                }
 850                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 851
 852                /*
 853                 * clear dirty, set writeback and unlock the pages.
 854                 */
 855                extent_clear_unlock_delalloc(inode, async_extent->start,
 856                                async_extent->start +
 857                                async_extent->ram_size - 1,
 858                                async_extent->start +
 859                                async_extent->ram_size - 1,
 860                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 861                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 862                                PAGE_SET_WRITEBACK);
 863                if (btrfs_submit_compressed_write(inode,
 864                                    async_extent->start,
 865                                    async_extent->ram_size,
 866                                    ins.objectid,
 867                                    ins.offset, async_extent->pages,
 868                                    async_extent->nr_pages,
 869                                    async_chunk->write_flags)) {
 870                        struct page *p = async_extent->pages[0];
 871                        const u64 start = async_extent->start;
 872                        const u64 end = start + async_extent->ram_size - 1;
 873
 874                        p->mapping = inode->i_mapping;
 875                        btrfs_writepage_endio_finish_ordered(p, start, end, 0);
 876
 877                        p->mapping = NULL;
 878                        extent_clear_unlock_delalloc(inode, start, end, end,
 879                                                     NULL, 0,
 880                                                     PAGE_END_WRITEBACK |
 881                                                     PAGE_SET_ERROR);
 882                        free_async_extent_pages(async_extent);
 883                }
 884                alloc_hint = ins.objectid + ins.offset;
 885                kfree(async_extent);
 886                cond_resched();
 887        }
 888        return;
 889out_free_reserve:
 890        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 891        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 892out_free:
 893        extent_clear_unlock_delalloc(inode, async_extent->start,
 894                                     async_extent->start +
 895                                     async_extent->ram_size - 1,
 896                                     async_extent->start +
 897                                     async_extent->ram_size - 1,
 898                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 899                                     EXTENT_DELALLOC_NEW |
 900                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 901                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 902                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
 903                                     PAGE_SET_ERROR);
 904        free_async_extent_pages(async_extent);
 905        kfree(async_extent);
 906        goto again;
 907}
 908
 909static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 910                                      u64 num_bytes)
 911{
 912        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 913        struct extent_map *em;
 914        u64 alloc_hint = 0;
 915
 916        read_lock(&em_tree->lock);
 917        em = search_extent_mapping(em_tree, start, num_bytes);
 918        if (em) {
 919                /*
 920                 * if block start isn't an actual block number then find the
 921                 * first block in this inode and use that as a hint.  If that
 922                 * block is also bogus then just don't worry about it.
 923                 */
 924                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 925                        free_extent_map(em);
 926                        em = search_extent_mapping(em_tree, 0, 0);
 927                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 928                                alloc_hint = em->block_start;
 929                        if (em)
 930                                free_extent_map(em);
 931                } else {
 932                        alloc_hint = em->block_start;
 933                        free_extent_map(em);
 934                }
 935        }
 936        read_unlock(&em_tree->lock);
 937
 938        return alloc_hint;
 939}
 940
 941/*
 942 * when extent_io.c finds a delayed allocation range in the file,
 943 * the call backs end up in this code.  The basic idea is to
 944 * allocate extents on disk for the range, and create ordered data structs
 945 * in ram to track those extents.
 946 *
 947 * locked_page is the page that writepage had locked already.  We use
 948 * it to make sure we don't do extra locks or unlocks.
 949 *
 950 * *page_started is set to one if we unlock locked_page and do everything
 951 * required to start IO on it.  It may be clean and already done with
 952 * IO when we return.
 953 */
 954static noinline int cow_file_range(struct inode *inode,
 955                                   struct page *locked_page,
 956                                   u64 start, u64 end, u64 delalloc_end,
 957                                   int *page_started, unsigned long *nr_written,
 958                                   int unlock, struct btrfs_dedupe_hash *hash)
 959{
 960        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 961        struct btrfs_root *root = BTRFS_I(inode)->root;
 962        u64 alloc_hint = 0;
 963        u64 num_bytes;
 964        unsigned long ram_size;
 965        u64 cur_alloc_size = 0;
 966        u64 blocksize = fs_info->sectorsize;
 967        struct btrfs_key ins;
 968        struct extent_map *em;
 969        unsigned clear_bits;
 970        unsigned long page_ops;
 971        bool extent_reserved = false;
 972        int ret = 0;
 973
 974        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 975                WARN_ON_ONCE(1);
 976                ret = -EINVAL;
 977                goto out_unlock;
 978        }
 979
 980        num_bytes = ALIGN(end - start + 1, blocksize);
 981        num_bytes = max(blocksize,  num_bytes);
 982        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
 983
 984        inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
 985
 986        if (start == 0) {
 987                /* lets try to make an inline extent */
 988                ret = cow_file_range_inline(inode, start, end, 0,
 989                                            BTRFS_COMPRESS_NONE, NULL);
 990                if (ret == 0) {
 991                        /*
 992                         * We use DO_ACCOUNTING here because we need the
 993                         * delalloc_release_metadata to be run _after_ we drop
 994                         * our outstanding extent for clearing delalloc for this
 995                         * range.
 996                         */
 997                        extent_clear_unlock_delalloc(inode, start, end,
 998                                     delalloc_end, NULL,
 999                                     EXTENT_LOCKED | EXTENT_DELALLOC |
1000                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1001                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1002                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1003                                     PAGE_END_WRITEBACK);
1004                        *nr_written = *nr_written +
1005                             (end - start + PAGE_SIZE) / PAGE_SIZE;
1006                        *page_started = 1;
1007                        goto out;
1008                } else if (ret < 0) {
1009                        goto out_unlock;
1010                }
1011        }
1012
1013        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1014        btrfs_drop_extent_cache(BTRFS_I(inode), start,
1015                        start + num_bytes - 1, 0);
1016
1017        while (num_bytes > 0) {
1018                cur_alloc_size = num_bytes;
1019                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1020                                           fs_info->sectorsize, 0, alloc_hint,
1021                                           &ins, 1, 1);
1022                if (ret < 0)
1023                        goto out_unlock;
1024                cur_alloc_size = ins.offset;
1025                extent_reserved = true;
1026
1027                ram_size = ins.offset;
1028                em = create_io_em(inode, start, ins.offset, /* len */
1029                                  start, /* orig_start */
1030                                  ins.objectid, /* block_start */
1031                                  ins.offset, /* block_len */
1032                                  ins.offset, /* orig_block_len */
1033                                  ram_size, /* ram_bytes */
1034                                  BTRFS_COMPRESS_NONE, /* compress_type */
1035                                  BTRFS_ORDERED_REGULAR /* type */);
1036                if (IS_ERR(em)) {
1037                        ret = PTR_ERR(em);
1038                        goto out_reserve;
1039                }
1040                free_extent_map(em);
1041
1042                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1043                                               ram_size, cur_alloc_size, 0);
1044                if (ret)
1045                        goto out_drop_extent_cache;
1046
1047                if (root->root_key.objectid ==
1048                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1049                        ret = btrfs_reloc_clone_csums(inode, start,
1050                                                      cur_alloc_size);
1051                        /*
1052                         * Only drop cache here, and process as normal.
1053                         *
1054                         * We must not allow extent_clear_unlock_delalloc()
1055                         * at out_unlock label to free meta of this ordered
1056                         * extent, as its meta should be freed by
1057                         * btrfs_finish_ordered_io().
1058                         *
1059                         * So we must continue until @start is increased to
1060                         * skip current ordered extent.
1061                         */
1062                        if (ret)
1063                                btrfs_drop_extent_cache(BTRFS_I(inode), start,
1064                                                start + ram_size - 1, 0);
1065                }
1066
1067                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1068
1069                /* we're not doing compressed IO, don't unlock the first
1070                 * page (which the caller expects to stay locked), don't
1071                 * clear any dirty bits and don't set any writeback bits
1072                 *
1073                 * Do set the Private2 bit so we know this page was properly
1074                 * setup for writepage
1075                 */
1076                page_ops = unlock ? PAGE_UNLOCK : 0;
1077                page_ops |= PAGE_SET_PRIVATE2;
1078
1079                extent_clear_unlock_delalloc(inode, start,
1080                                             start + ram_size - 1,
1081                                             delalloc_end, locked_page,
1082                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1083                                             page_ops);
1084                if (num_bytes < cur_alloc_size)
1085                        num_bytes = 0;
1086                else
1087                        num_bytes -= cur_alloc_size;
1088                alloc_hint = ins.objectid + ins.offset;
1089                start += cur_alloc_size;
1090                extent_reserved = false;
1091
1092                /*
1093                 * btrfs_reloc_clone_csums() error, since start is increased
1094                 * extent_clear_unlock_delalloc() at out_unlock label won't
1095                 * free metadata of current ordered extent, we're OK to exit.
1096                 */
1097                if (ret)
1098                        goto out_unlock;
1099        }
1100out:
1101        return ret;
1102
1103out_drop_extent_cache:
1104        btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1105out_reserve:
1106        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1107        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1108out_unlock:
1109        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1110                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1111        page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1112                PAGE_END_WRITEBACK;
1113        /*
1114         * If we reserved an extent for our delalloc range (or a subrange) and
1115         * failed to create the respective ordered extent, then it means that
1116         * when we reserved the extent we decremented the extent's size from
1117         * the data space_info's bytes_may_use counter and incremented the
1118         * space_info's bytes_reserved counter by the same amount. We must make
1119         * sure extent_clear_unlock_delalloc() does not try to decrement again
1120         * the data space_info's bytes_may_use counter, therefore we do not pass
1121         * it the flag EXTENT_CLEAR_DATA_RESV.
1122         */
1123        if (extent_reserved) {
1124                extent_clear_unlock_delalloc(inode, start,
1125                                             start + cur_alloc_size,
1126                                             start + cur_alloc_size,
1127                                             locked_page,
1128                                             clear_bits,
1129                                             page_ops);
1130                start += cur_alloc_size;
1131                if (start >= end)
1132                        goto out;
1133        }
1134        extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1135                                     locked_page,
1136                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1137                                     page_ops);
1138        goto out;
1139}
1140
1141/*
1142 * work queue call back to started compression on a file and pages
1143 */
1144static noinline void async_cow_start(struct btrfs_work *work)
1145{
1146        struct async_chunk *async_chunk;
1147        int num_added = 0;
1148
1149        async_chunk = container_of(work, struct async_chunk, work);
1150
1151        compress_file_range(async_chunk, &num_added);
1152        if (num_added == 0) {
1153                btrfs_add_delayed_iput(async_chunk->inode);
1154                async_chunk->inode = NULL;
1155        }
1156}
1157
1158/*
1159 * work queue call back to submit previously compressed pages
1160 */
1161static noinline void async_cow_submit(struct btrfs_work *work)
1162{
1163        struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1164                                                     work);
1165        struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1166        unsigned long nr_pages;
1167
1168        nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1169                PAGE_SHIFT;
1170
1171        /* atomic_sub_return implies a barrier */
1172        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1173            5 * SZ_1M)
1174                cond_wake_up_nomb(&fs_info->async_submit_wait);
1175
1176        /*
1177         * ->inode could be NULL if async_chunk_start has failed to compress,
1178         * in which case we don't have anything to submit, yet we need to
1179         * always adjust ->async_delalloc_pages as its paired with the init
1180         * happening in cow_file_range_async
1181         */
1182        if (async_chunk->inode)
1183                submit_compressed_extents(async_chunk);
1184}
1185
1186static noinline void async_cow_free(struct btrfs_work *work)
1187{
1188        struct async_chunk *async_chunk;
1189
1190        async_chunk = container_of(work, struct async_chunk, work);
1191        if (async_chunk->inode)
1192                btrfs_add_delayed_iput(async_chunk->inode);
1193        /*
1194         * Since the pointer to 'pending' is at the beginning of the array of
1195         * async_chunk's, freeing it ensures the whole array has been freed.
1196         */
1197        if (atomic_dec_and_test(async_chunk->pending))
1198                kvfree(async_chunk->pending);
1199}
1200
1201static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1202                                u64 start, u64 end, int *page_started,
1203                                unsigned long *nr_written,
1204                                unsigned int write_flags)
1205{
1206        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1207        struct async_cow *ctx;
1208        struct async_chunk *async_chunk;
1209        unsigned long nr_pages;
1210        u64 cur_end;
1211        u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1212        int i;
1213        bool should_compress;
1214        unsigned nofs_flag;
1215
1216        unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1217
1218        if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1219            !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1220                num_chunks = 1;
1221                should_compress = false;
1222        } else {
1223                should_compress = true;
1224        }
1225
1226        nofs_flag = memalloc_nofs_save();
1227        ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1228        memalloc_nofs_restore(nofs_flag);
1229
1230        if (!ctx) {
1231                unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1232                        EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1233                        EXTENT_DO_ACCOUNTING;
1234                unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1235                        PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1236                        PAGE_SET_ERROR;
1237
1238                extent_clear_unlock_delalloc(inode, start, end, 0, locked_page,
1239                                             clear_bits, page_ops);
1240                return -ENOMEM;
1241        }
1242
1243        async_chunk = ctx->chunks;
1244        atomic_set(&ctx->num_chunks, num_chunks);
1245
1246        for (i = 0; i < num_chunks; i++) {
1247                if (should_compress)
1248                        cur_end = min(end, start + SZ_512K - 1);
1249                else
1250                        cur_end = end;
1251
1252                /*
1253                 * igrab is called higher up in the call chain, take only the
1254                 * lightweight reference for the callback lifetime
1255                 */
1256                ihold(inode);
1257                async_chunk[i].pending = &ctx->num_chunks;
1258                async_chunk[i].inode = inode;
1259                async_chunk[i].start = start;
1260                async_chunk[i].end = cur_end;
1261                async_chunk[i].locked_page = locked_page;
1262                async_chunk[i].write_flags = write_flags;
1263                INIT_LIST_HEAD(&async_chunk[i].extents);
1264
1265                btrfs_init_work(&async_chunk[i].work,
1266                                btrfs_delalloc_helper,
1267                                async_cow_start, async_cow_submit,
1268                                async_cow_free);
1269
1270                nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1271                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1272
1273                btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1274
1275                *nr_written += nr_pages;
1276                start = cur_end + 1;
1277        }
1278        *page_started = 1;
1279        return 0;
1280}
1281
1282static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1283                                        u64 bytenr, u64 num_bytes)
1284{
1285        int ret;
1286        struct btrfs_ordered_sum *sums;
1287        LIST_HEAD(list);
1288
1289        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1290                                       bytenr + num_bytes - 1, &list, 0);
1291        if (ret == 0 && list_empty(&list))
1292                return 0;
1293
1294        while (!list_empty(&list)) {
1295                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1296                list_del(&sums->list);
1297                kfree(sums);
1298        }
1299        if (ret < 0)
1300                return ret;
1301        return 1;
1302}
1303
1304/*
1305 * when nowcow writeback call back.  This checks for snapshots or COW copies
1306 * of the extents that exist in the file, and COWs the file as required.
1307 *
1308 * If no cow copies or snapshots exist, we write directly to the existing
1309 * blocks on disk
1310 */
1311static noinline int run_delalloc_nocow(struct inode *inode,
1312                                       struct page *locked_page,
1313                              u64 start, u64 end, int *page_started, int force,
1314                              unsigned long *nr_written)
1315{
1316        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1317        struct btrfs_root *root = BTRFS_I(inode)->root;
1318        struct extent_buffer *leaf;
1319        struct btrfs_path *path;
1320        struct btrfs_file_extent_item *fi;
1321        struct btrfs_key found_key;
1322        struct extent_map *em;
1323        u64 cow_start;
1324        u64 cur_offset;
1325        u64 extent_end;
1326        u64 extent_offset;
1327        u64 disk_bytenr;
1328        u64 num_bytes;
1329        u64 disk_num_bytes;
1330        u64 ram_bytes;
1331        int extent_type;
1332        int ret;
1333        int type;
1334        int nocow;
1335        int check_prev = 1;
1336        bool nolock;
1337        u64 ino = btrfs_ino(BTRFS_I(inode));
1338
1339        path = btrfs_alloc_path();
1340        if (!path) {
1341                extent_clear_unlock_delalloc(inode, start, end, end,
1342                                             locked_page,
1343                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1344                                             EXTENT_DO_ACCOUNTING |
1345                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1346                                             PAGE_CLEAR_DIRTY |
1347                                             PAGE_SET_WRITEBACK |
1348                                             PAGE_END_WRITEBACK);
1349                return -ENOMEM;
1350        }
1351
1352        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1353
1354        cow_start = (u64)-1;
1355        cur_offset = start;
1356        while (1) {
1357                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1358                                               cur_offset, 0);
1359                if (ret < 0)
1360                        goto error;
1361                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1362                        leaf = path->nodes[0];
1363                        btrfs_item_key_to_cpu(leaf, &found_key,
1364                                              path->slots[0] - 1);
1365                        if (found_key.objectid == ino &&
1366                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1367                                path->slots[0]--;
1368                }
1369                check_prev = 0;
1370next_slot:
1371                leaf = path->nodes[0];
1372                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1373                        ret = btrfs_next_leaf(root, path);
1374                        if (ret < 0) {
1375                                if (cow_start != (u64)-1)
1376                                        cur_offset = cow_start;
1377                                goto error;
1378                        }
1379                        if (ret > 0)
1380                                break;
1381                        leaf = path->nodes[0];
1382                }
1383
1384                nocow = 0;
1385                disk_bytenr = 0;
1386                num_bytes = 0;
1387                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1388
1389                if (found_key.objectid > ino)
1390                        break;
1391                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1392                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1393                        path->slots[0]++;
1394                        goto next_slot;
1395                }
1396                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1397                    found_key.offset > end)
1398                        break;
1399
1400                if (found_key.offset > cur_offset) {
1401                        extent_end = found_key.offset;
1402                        extent_type = 0;
1403                        goto out_check;
1404                }
1405
1406                fi = btrfs_item_ptr(leaf, path->slots[0],
1407                                    struct btrfs_file_extent_item);
1408                extent_type = btrfs_file_extent_type(leaf, fi);
1409
1410                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1411                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1412                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1413                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1414                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1415                        extent_end = found_key.offset +
1416                                btrfs_file_extent_num_bytes(leaf, fi);
1417                        disk_num_bytes =
1418                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1419                        if (extent_end <= start) {
1420                                path->slots[0]++;
1421                                goto next_slot;
1422                        }
1423                        if (disk_bytenr == 0)
1424                                goto out_check;
1425                        if (btrfs_file_extent_compression(leaf, fi) ||
1426                            btrfs_file_extent_encryption(leaf, fi) ||
1427                            btrfs_file_extent_other_encoding(leaf, fi))
1428                                goto out_check;
1429                        /*
1430                         * Do the same check as in btrfs_cross_ref_exist but
1431                         * without the unnecessary search.
1432                         */
1433                        if (!nolock &&
1434                            btrfs_file_extent_generation(leaf, fi) <=
1435                            btrfs_root_last_snapshot(&root->root_item))
1436                                goto out_check;
1437                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1438                                goto out_check;
1439                        if (btrfs_extent_readonly(fs_info, disk_bytenr))
1440                                goto out_check;
1441                        ret = btrfs_cross_ref_exist(root, ino,
1442                                                    found_key.offset -
1443                                                    extent_offset, disk_bytenr);
1444                        if (ret) {
1445                                /*
1446                                 * ret could be -EIO if the above fails to read
1447                                 * metadata.
1448                                 */
1449                                if (ret < 0) {
1450                                        if (cow_start != (u64)-1)
1451                                                cur_offset = cow_start;
1452                                        goto error;
1453                                }
1454
1455                                WARN_ON_ONCE(nolock);
1456                                goto out_check;
1457                        }
1458                        disk_bytenr += extent_offset;
1459                        disk_bytenr += cur_offset - found_key.offset;
1460                        num_bytes = min(end + 1, extent_end) - cur_offset;
1461                        /*
1462                         * if there are pending snapshots for this root,
1463                         * we fall into common COW way.
1464                         */
1465                        if (!nolock && atomic_read(&root->snapshot_force_cow))
1466                                goto out_check;
1467                        /*
1468                         * force cow if csum exists in the range.
1469                         * this ensure that csum for a given extent are
1470                         * either valid or do not exist.
1471                         */
1472                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1473                                                  num_bytes);
1474                        if (ret) {
1475                                /*
1476                                 * ret could be -EIO if the above fails to read
1477                                 * metadata.
1478                                 */
1479                                if (ret < 0) {
1480                                        if (cow_start != (u64)-1)
1481                                                cur_offset = cow_start;
1482                                        goto error;
1483                                }
1484                                WARN_ON_ONCE(nolock);
1485                                goto out_check;
1486                        }
1487                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1488                                goto out_check;
1489                        nocow = 1;
1490                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1491                        extent_end = found_key.offset +
1492                                btrfs_file_extent_ram_bytes(leaf, fi);
1493                        extent_end = ALIGN(extent_end,
1494                                           fs_info->sectorsize);
1495                } else {
1496                        BUG();
1497                }
1498out_check:
1499                if (extent_end <= start) {
1500                        path->slots[0]++;
1501                        if (nocow)
1502                                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1503                        goto next_slot;
1504                }
1505                if (!nocow) {
1506                        if (cow_start == (u64)-1)
1507                                cow_start = cur_offset;
1508                        cur_offset = extent_end;
1509                        if (cur_offset > end)
1510                                break;
1511                        path->slots[0]++;
1512                        goto next_slot;
1513                }
1514
1515                btrfs_release_path(path);
1516                if (cow_start != (u64)-1) {
1517                        ret = cow_file_range(inode, locked_page,
1518                                             cow_start, found_key.offset - 1,
1519                                             end, page_started, nr_written, 1,
1520                                             NULL);
1521                        if (ret) {
1522                                if (nocow)
1523                                        btrfs_dec_nocow_writers(fs_info,
1524                                                                disk_bytenr);
1525                                goto error;
1526                        }
1527                        cow_start = (u64)-1;
1528                }
1529
1530                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1531                        u64 orig_start = found_key.offset - extent_offset;
1532
1533                        em = create_io_em(inode, cur_offset, num_bytes,
1534                                          orig_start,
1535                                          disk_bytenr, /* block_start */
1536                                          num_bytes, /* block_len */
1537                                          disk_num_bytes, /* orig_block_len */
1538                                          ram_bytes, BTRFS_COMPRESS_NONE,
1539                                          BTRFS_ORDERED_PREALLOC);
1540                        if (IS_ERR(em)) {
1541                                if (nocow)
1542                                        btrfs_dec_nocow_writers(fs_info,
1543                                                                disk_bytenr);
1544                                ret = PTR_ERR(em);
1545                                goto error;
1546                        }
1547                        free_extent_map(em);
1548                }
1549
1550                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1551                        type = BTRFS_ORDERED_PREALLOC;
1552                } else {
1553                        type = BTRFS_ORDERED_NOCOW;
1554                }
1555
1556                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1557                                               num_bytes, num_bytes, type);
1558                if (nocow)
1559                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1560                BUG_ON(ret); /* -ENOMEM */
1561
1562                if (root->root_key.objectid ==
1563                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1564                        /*
1565                         * Error handled later, as we must prevent
1566                         * extent_clear_unlock_delalloc() in error handler
1567                         * from freeing metadata of created ordered extent.
1568                         */
1569                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1570                                                      num_bytes);
1571
1572                extent_clear_unlock_delalloc(inode, cur_offset,
1573                                             cur_offset + num_bytes - 1, end,
1574                                             locked_page, EXTENT_LOCKED |
1575                                             EXTENT_DELALLOC |
1576                                             EXTENT_CLEAR_DATA_RESV,
1577                                             PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1578
1579                cur_offset = extent_end;
1580
1581                /*
1582                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1583                 * handler, as metadata for created ordered extent will only
1584                 * be freed by btrfs_finish_ordered_io().
1585                 */
1586                if (ret)
1587                        goto error;
1588                if (cur_offset > end)
1589                        break;
1590        }
1591        btrfs_release_path(path);
1592
1593        if (cur_offset <= end && cow_start == (u64)-1)
1594                cow_start = cur_offset;
1595
1596        if (cow_start != (u64)-1) {
1597                cur_offset = end;
1598                ret = cow_file_range(inode, locked_page, cow_start, end, end,
1599                                     page_started, nr_written, 1, NULL);
1600                if (ret)
1601                        goto error;
1602        }
1603
1604error:
1605        if (ret && cur_offset < end)
1606                extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1607                                             locked_page, EXTENT_LOCKED |
1608                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1609                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1610                                             PAGE_CLEAR_DIRTY |
1611                                             PAGE_SET_WRITEBACK |
1612                                             PAGE_END_WRITEBACK);
1613        btrfs_free_path(path);
1614        return ret;
1615}
1616
1617static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1618{
1619
1620        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1621            !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1622                return 0;
1623
1624        /*
1625         * @defrag_bytes is a hint value, no spinlock held here,
1626         * if is not zero, it means the file is defragging.
1627         * Force cow if given extent needs to be defragged.
1628         */
1629        if (BTRFS_I(inode)->defrag_bytes &&
1630            test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1631                           EXTENT_DEFRAG, 0, NULL))
1632                return 1;
1633
1634        return 0;
1635}
1636
1637/*
1638 * Function to process delayed allocation (create CoW) for ranges which are
1639 * being touched for the first time.
1640 */
1641int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1642                u64 start, u64 end, int *page_started, unsigned long *nr_written,
1643                struct writeback_control *wbc)
1644{
1645        int ret;
1646        int force_cow = need_force_cow(inode, start, end);
1647        unsigned int write_flags = wbc_to_write_flags(wbc);
1648
1649        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1650                ret = run_delalloc_nocow(inode, locked_page, start, end,
1651                                         page_started, 1, nr_written);
1652        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1653                ret = run_delalloc_nocow(inode, locked_page, start, end,
1654                                         page_started, 0, nr_written);
1655        } else if (!inode_can_compress(inode) ||
1656                   !inode_need_compress(inode, start, end)) {
1657                ret = cow_file_range(inode, locked_page, start, end, end,
1658                                      page_started, nr_written, 1, NULL);
1659        } else {
1660                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1661                        &BTRFS_I(inode)->runtime_flags);
1662                ret = cow_file_range_async(inode, locked_page, start, end,
1663                                           page_started, nr_written,
1664                                           write_flags);
1665        }
1666        if (ret)
1667                btrfs_cleanup_ordered_extents(inode, locked_page, start,
1668                                              end - start + 1);
1669        return ret;
1670}
1671
1672void btrfs_split_delalloc_extent(struct inode *inode,
1673                                 struct extent_state *orig, u64 split)
1674{
1675        u64 size;
1676
1677        /* not delalloc, ignore it */
1678        if (!(orig->state & EXTENT_DELALLOC))
1679                return;
1680
1681        size = orig->end - orig->start + 1;
1682        if (size > BTRFS_MAX_EXTENT_SIZE) {
1683                u32 num_extents;
1684                u64 new_size;
1685
1686                /*
1687                 * See the explanation in btrfs_merge_delalloc_extent, the same
1688                 * applies here, just in reverse.
1689                 */
1690                new_size = orig->end - split + 1;
1691                num_extents = count_max_extents(new_size);
1692                new_size = split - orig->start;
1693                num_extents += count_max_extents(new_size);
1694                if (count_max_extents(size) >= num_extents)
1695                        return;
1696        }
1697
1698        spin_lock(&BTRFS_I(inode)->lock);
1699        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1700        spin_unlock(&BTRFS_I(inode)->lock);
1701}
1702
1703/*
1704 * Handle merged delayed allocation extents so we can keep track of new extents
1705 * that are just merged onto old extents, such as when we are doing sequential
1706 * writes, so we can properly account for the metadata space we'll need.
1707 */
1708void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1709                                 struct extent_state *other)
1710{
1711        u64 new_size, old_size;
1712        u32 num_extents;
1713
1714        /* not delalloc, ignore it */
1715        if (!(other->state & EXTENT_DELALLOC))
1716                return;
1717
1718        if (new->start > other->start)
1719                new_size = new->end - other->start + 1;
1720        else
1721                new_size = other->end - new->start + 1;
1722
1723        /* we're not bigger than the max, unreserve the space and go */
1724        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1725                spin_lock(&BTRFS_I(inode)->lock);
1726                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1727                spin_unlock(&BTRFS_I(inode)->lock);
1728                return;
1729        }
1730
1731        /*
1732         * We have to add up either side to figure out how many extents were
1733         * accounted for before we merged into one big extent.  If the number of
1734         * extents we accounted for is <= the amount we need for the new range
1735         * then we can return, otherwise drop.  Think of it like this
1736         *
1737         * [ 4k][MAX_SIZE]
1738         *
1739         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1740         * need 2 outstanding extents, on one side we have 1 and the other side
1741         * we have 1 so they are == and we can return.  But in this case
1742         *
1743         * [MAX_SIZE+4k][MAX_SIZE+4k]
1744         *
1745         * Each range on their own accounts for 2 extents, but merged together
1746         * they are only 3 extents worth of accounting, so we need to drop in
1747         * this case.
1748         */
1749        old_size = other->end - other->start + 1;
1750        num_extents = count_max_extents(old_size);
1751        old_size = new->end - new->start + 1;
1752        num_extents += count_max_extents(old_size);
1753        if (count_max_extents(new_size) >= num_extents)
1754                return;
1755
1756        spin_lock(&BTRFS_I(inode)->lock);
1757        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1758        spin_unlock(&BTRFS_I(inode)->lock);
1759}
1760
1761static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1762                                      struct inode *inode)
1763{
1764        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1765
1766        spin_lock(&root->delalloc_lock);
1767        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1768                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1769                              &root->delalloc_inodes);
1770                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1771                        &BTRFS_I(inode)->runtime_flags);
1772                root->nr_delalloc_inodes++;
1773                if (root->nr_delalloc_inodes == 1) {
1774                        spin_lock(&fs_info->delalloc_root_lock);
1775                        BUG_ON(!list_empty(&root->delalloc_root));
1776                        list_add_tail(&root->delalloc_root,
1777                                      &fs_info->delalloc_roots);
1778                        spin_unlock(&fs_info->delalloc_root_lock);
1779                }
1780        }
1781        spin_unlock(&root->delalloc_lock);
1782}
1783
1784
1785void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1786                                struct btrfs_inode *inode)
1787{
1788        struct btrfs_fs_info *fs_info = root->fs_info;
1789
1790        if (!list_empty(&inode->delalloc_inodes)) {
1791                list_del_init(&inode->delalloc_inodes);
1792                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1793                          &inode->runtime_flags);
1794                root->nr_delalloc_inodes--;
1795                if (!root->nr_delalloc_inodes) {
1796                        ASSERT(list_empty(&root->delalloc_inodes));
1797                        spin_lock(&fs_info->delalloc_root_lock);
1798                        BUG_ON(list_empty(&root->delalloc_root));
1799                        list_del_init(&root->delalloc_root);
1800                        spin_unlock(&fs_info->delalloc_root_lock);
1801                }
1802        }
1803}
1804
1805static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1806                                     struct btrfs_inode *inode)
1807{
1808        spin_lock(&root->delalloc_lock);
1809        __btrfs_del_delalloc_inode(root, inode);
1810        spin_unlock(&root->delalloc_lock);
1811}
1812
1813/*
1814 * Properly track delayed allocation bytes in the inode and to maintain the
1815 * list of inodes that have pending delalloc work to be done.
1816 */
1817void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1818                               unsigned *bits)
1819{
1820        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1821
1822        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1823                WARN_ON(1);
1824        /*
1825         * set_bit and clear bit hooks normally require _irqsave/restore
1826         * but in this case, we are only testing for the DELALLOC
1827         * bit, which is only set or cleared with irqs on
1828         */
1829        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1830                struct btrfs_root *root = BTRFS_I(inode)->root;
1831                u64 len = state->end + 1 - state->start;
1832                u32 num_extents = count_max_extents(len);
1833                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1834
1835                spin_lock(&BTRFS_I(inode)->lock);
1836                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1837                spin_unlock(&BTRFS_I(inode)->lock);
1838
1839                /* For sanity tests */
1840                if (btrfs_is_testing(fs_info))
1841                        return;
1842
1843                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1844                                         fs_info->delalloc_batch);
1845                spin_lock(&BTRFS_I(inode)->lock);
1846                BTRFS_I(inode)->delalloc_bytes += len;
1847                if (*bits & EXTENT_DEFRAG)
1848                        BTRFS_I(inode)->defrag_bytes += len;
1849                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1850                                         &BTRFS_I(inode)->runtime_flags))
1851                        btrfs_add_delalloc_inodes(root, inode);
1852                spin_unlock(&BTRFS_I(inode)->lock);
1853        }
1854
1855        if (!(state->state & EXTENT_DELALLOC_NEW) &&
1856            (*bits & EXTENT_DELALLOC_NEW)) {
1857                spin_lock(&BTRFS_I(inode)->lock);
1858                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1859                        state->start;
1860                spin_unlock(&BTRFS_I(inode)->lock);
1861        }
1862}
1863
1864/*
1865 * Once a range is no longer delalloc this function ensures that proper
1866 * accounting happens.
1867 */
1868void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1869                                 struct extent_state *state, unsigned *bits)
1870{
1871        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1872        struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1873        u64 len = state->end + 1 - state->start;
1874        u32 num_extents = count_max_extents(len);
1875
1876        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1877                spin_lock(&inode->lock);
1878                inode->defrag_bytes -= len;
1879                spin_unlock(&inode->lock);
1880        }
1881
1882        /*
1883         * set_bit and clear bit hooks normally require _irqsave/restore
1884         * but in this case, we are only testing for the DELALLOC
1885         * bit, which is only set or cleared with irqs on
1886         */
1887        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1888                struct btrfs_root *root = inode->root;
1889                bool do_list = !btrfs_is_free_space_inode(inode);
1890
1891                spin_lock(&inode->lock);
1892                btrfs_mod_outstanding_extents(inode, -num_extents);
1893                spin_unlock(&inode->lock);
1894
1895                /*
1896                 * We don't reserve metadata space for space cache inodes so we
1897                 * don't need to call delalloc_release_metadata if there is an
1898                 * error.
1899                 */
1900                if (*bits & EXTENT_CLEAR_META_RESV &&
1901                    root != fs_info->tree_root)
1902                        btrfs_delalloc_release_metadata(inode, len, false);
1903
1904                /* For sanity tests. */
1905                if (btrfs_is_testing(fs_info))
1906                        return;
1907
1908                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1909                    do_list && !(state->state & EXTENT_NORESERVE) &&
1910                    (*bits & EXTENT_CLEAR_DATA_RESV))
1911                        btrfs_free_reserved_data_space_noquota(
1912                                        &inode->vfs_inode,
1913                                        state->start, len);
1914
1915                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1916                                         fs_info->delalloc_batch);
1917                spin_lock(&inode->lock);
1918                inode->delalloc_bytes -= len;
1919                if (do_list && inode->delalloc_bytes == 0 &&
1920                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1921                                        &inode->runtime_flags))
1922                        btrfs_del_delalloc_inode(root, inode);
1923                spin_unlock(&inode->lock);
1924        }
1925
1926        if ((state->state & EXTENT_DELALLOC_NEW) &&
1927            (*bits & EXTENT_DELALLOC_NEW)) {
1928                spin_lock(&inode->lock);
1929                ASSERT(inode->new_delalloc_bytes >= len);
1930                inode->new_delalloc_bytes -= len;
1931                spin_unlock(&inode->lock);
1932        }
1933}
1934
1935/*
1936 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1937 * in a chunk's stripe. This function ensures that bios do not span a
1938 * stripe/chunk
1939 *
1940 * @page - The page we are about to add to the bio
1941 * @size - size we want to add to the bio
1942 * @bio - bio we want to ensure is smaller than a stripe
1943 * @bio_flags - flags of the bio
1944 *
1945 * return 1 if page cannot be added to the bio
1946 * return 0 if page can be added to the bio
1947 * return error otherwise
1948 */
1949int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1950                             unsigned long bio_flags)
1951{
1952        struct inode *inode = page->mapping->host;
1953        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1954        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1955        u64 length = 0;
1956        u64 map_length;
1957        int ret;
1958        struct btrfs_io_geometry geom;
1959
1960        if (bio_flags & EXTENT_BIO_COMPRESSED)
1961                return 0;
1962
1963        length = bio->bi_iter.bi_size;
1964        map_length = length;
1965        ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
1966                                    &geom);
1967        if (ret < 0)
1968                return ret;
1969
1970        if (geom.len < length + size)
1971                return 1;
1972        return 0;
1973}
1974
1975/*
1976 * in order to insert checksums into the metadata in large chunks,
1977 * we wait until bio submission time.   All the pages in the bio are
1978 * checksummed and sums are attached onto the ordered extent record.
1979 *
1980 * At IO completion time the cums attached on the ordered extent record
1981 * are inserted into the btree
1982 */
1983static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1984                                    u64 bio_offset)
1985{
1986        struct inode *inode = private_data;
1987        blk_status_t ret = 0;
1988
1989        ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990        BUG_ON(ret); /* -ENOMEM */
1991        return 0;
1992}
1993
1994/*
1995 * extent_io.c submission hook. This does the right thing for csum calculation
1996 * on write, or reading the csums from the tree before a read.
1997 *
1998 * Rules about async/sync submit,
1999 * a) read:                             sync submit
2000 *
2001 * b) write without checksum:           sync submit
2002 *
2003 * c) write with checksum:
2004 *    c-1) if bio is issued by fsync:   sync submit
2005 *         (sync_writers != 0)
2006 *
2007 *    c-2) if root is reloc root:       sync submit
2008 *         (only in case of buffered IO)
2009 *
2010 *    c-3) otherwise:                   async submit
2011 */
2012static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2013                                          int mirror_num,
2014                                          unsigned long bio_flags)
2015
2016{
2017        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2018        struct btrfs_root *root = BTRFS_I(inode)->root;
2019        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2020        blk_status_t ret = 0;
2021        int skip_sum;
2022        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2023
2024        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2025
2026        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2027                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2028
2029        if (bio_op(bio) != REQ_OP_WRITE) {
2030                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2031                if (ret)
2032                        goto out;
2033
2034                if (bio_flags & EXTENT_BIO_COMPRESSED) {
2035                        ret = btrfs_submit_compressed_read(inode, bio,
2036                                                           mirror_num,
2037                                                           bio_flags);
2038                        goto out;
2039                } else if (!skip_sum) {
2040                        ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2041                        if (ret)
2042                                goto out;
2043                }
2044                goto mapit;
2045        } else if (async && !skip_sum) {
2046                /* csum items have already been cloned */
2047                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2048                        goto mapit;
2049                /* we're doing a write, do the async checksumming */
2050                ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2051                                          0, inode, btrfs_submit_bio_start);
2052                goto out;
2053        } else if (!skip_sum) {
2054                ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2055                if (ret)
2056                        goto out;
2057        }
2058
2059mapit:
2060        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2061
2062out:
2063        if (ret) {
2064                bio->bi_status = ret;
2065                bio_endio(bio);
2066        }
2067        return ret;
2068}
2069
2070/*
2071 * given a list of ordered sums record them in the inode.  This happens
2072 * at IO completion time based on sums calculated at bio submission time.
2073 */
2074static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2075                             struct inode *inode, struct list_head *list)
2076{
2077        struct btrfs_ordered_sum *sum;
2078        int ret;
2079
2080        list_for_each_entry(sum, list, list) {
2081                trans->adding_csums = true;
2082                ret = btrfs_csum_file_blocks(trans,
2083                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2084                trans->adding_csums = false;
2085                if (ret)
2086                        return ret;
2087        }
2088        return 0;
2089}
2090
2091int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2092                              unsigned int extra_bits,
2093                              struct extent_state **cached_state, int dedupe)
2094{
2095        WARN_ON(PAGE_ALIGNED(end));
2096        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2097                                   extra_bits, cached_state);
2098}
2099
2100/* see btrfs_writepage_start_hook for details on why this is required */
2101struct btrfs_writepage_fixup {
2102        struct page *page;
2103        struct btrfs_work work;
2104};
2105
2106static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2107{
2108        struct btrfs_writepage_fixup *fixup;
2109        struct btrfs_ordered_extent *ordered;
2110        struct extent_state *cached_state = NULL;
2111        struct extent_changeset *data_reserved = NULL;
2112        struct page *page;
2113        struct inode *inode;
2114        u64 page_start;
2115        u64 page_end;
2116        int ret;
2117
2118        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2119        page = fixup->page;
2120again:
2121        lock_page(page);
2122        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2123                ClearPageChecked(page);
2124                goto out_page;
2125        }
2126
2127        inode = page->mapping->host;
2128        page_start = page_offset(page);
2129        page_end = page_offset(page) + PAGE_SIZE - 1;
2130
2131        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2132                         &cached_state);
2133
2134        /* already ordered? We're done */
2135        if (PagePrivate2(page))
2136                goto out;
2137
2138        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2139                                        PAGE_SIZE);
2140        if (ordered) {
2141                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2142                                     page_end, &cached_state);
2143                unlock_page(page);
2144                btrfs_start_ordered_extent(inode, ordered, 1);
2145                btrfs_put_ordered_extent(ordered);
2146                goto again;
2147        }
2148
2149        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2150                                           PAGE_SIZE);
2151        if (ret) {
2152                mapping_set_error(page->mapping, ret);
2153                end_extent_writepage(page, ret, page_start, page_end);
2154                ClearPageChecked(page);
2155                goto out;
2156         }
2157
2158        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2159                                        &cached_state, 0);
2160        if (ret) {
2161                mapping_set_error(page->mapping, ret);
2162                end_extent_writepage(page, ret, page_start, page_end);
2163                ClearPageChecked(page);
2164                goto out;
2165        }
2166
2167        ClearPageChecked(page);
2168        set_page_dirty(page);
2169        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2170out:
2171        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2172                             &cached_state);
2173out_page:
2174        unlock_page(page);
2175        put_page(page);
2176        kfree(fixup);
2177        extent_changeset_free(data_reserved);
2178}
2179
2180/*
2181 * There are a few paths in the higher layers of the kernel that directly
2182 * set the page dirty bit without asking the filesystem if it is a
2183 * good idea.  This causes problems because we want to make sure COW
2184 * properly happens and the data=ordered rules are followed.
2185 *
2186 * In our case any range that doesn't have the ORDERED bit set
2187 * hasn't been properly setup for IO.  We kick off an async process
2188 * to fix it up.  The async helper will wait for ordered extents, set
2189 * the delalloc bit and make it safe to write the page.
2190 */
2191int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2192{
2193        struct inode *inode = page->mapping->host;
2194        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195        struct btrfs_writepage_fixup *fixup;
2196
2197        /* this page is properly in the ordered list */
2198        if (TestClearPagePrivate2(page))
2199                return 0;
2200
2201        if (PageChecked(page))
2202                return -EAGAIN;
2203
2204        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2205        if (!fixup)
2206                return -EAGAIN;
2207
2208        SetPageChecked(page);
2209        get_page(page);
2210        btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2211                        btrfs_writepage_fixup_worker, NULL, NULL);
2212        fixup->page = page;
2213        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2214        return -EBUSY;
2215}
2216
2217static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2218                                       struct inode *inode, u64 file_pos,
2219                                       u64 disk_bytenr, u64 disk_num_bytes,
2220                                       u64 num_bytes, u64 ram_bytes,
2221                                       u8 compression, u8 encryption,
2222                                       u16 other_encoding, int extent_type)
2223{
2224        struct btrfs_root *root = BTRFS_I(inode)->root;
2225        struct btrfs_file_extent_item *fi;
2226        struct btrfs_path *path;
2227        struct extent_buffer *leaf;
2228        struct btrfs_key ins;
2229        u64 qg_released;
2230        int extent_inserted = 0;
2231        int ret;
2232
2233        path = btrfs_alloc_path();
2234        if (!path)
2235                return -ENOMEM;
2236
2237        /*
2238         * we may be replacing one extent in the tree with another.
2239         * The new extent is pinned in the extent map, and we don't want
2240         * to drop it from the cache until it is completely in the btree.
2241         *
2242         * So, tell btrfs_drop_extents to leave this extent in the cache.
2243         * the caller is expected to unpin it and allow it to be merged
2244         * with the others.
2245         */
2246        ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2247                                   file_pos + num_bytes, NULL, 0,
2248                                   1, sizeof(*fi), &extent_inserted);
2249        if (ret)
2250                goto out;
2251
2252        if (!extent_inserted) {
2253                ins.objectid = btrfs_ino(BTRFS_I(inode));
2254                ins.offset = file_pos;
2255                ins.type = BTRFS_EXTENT_DATA_KEY;
2256
2257                path->leave_spinning = 1;
2258                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2259                                              sizeof(*fi));
2260                if (ret)
2261                        goto out;
2262        }
2263        leaf = path->nodes[0];
2264        fi = btrfs_item_ptr(leaf, path->slots[0],
2265                            struct btrfs_file_extent_item);
2266        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2267        btrfs_set_file_extent_type(leaf, fi, extent_type);
2268        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2269        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2270        btrfs_set_file_extent_offset(leaf, fi, 0);
2271        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2272        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2273        btrfs_set_file_extent_compression(leaf, fi, compression);
2274        btrfs_set_file_extent_encryption(leaf, fi, encryption);
2275        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2276
2277        btrfs_mark_buffer_dirty(leaf);
2278        btrfs_release_path(path);
2279
2280        inode_add_bytes(inode, num_bytes);
2281
2282        ins.objectid = disk_bytenr;
2283        ins.offset = disk_num_bytes;
2284        ins.type = BTRFS_EXTENT_ITEM_KEY;
2285
2286        /*
2287         * Release the reserved range from inode dirty range map, as it is
2288         * already moved into delayed_ref_head
2289         */
2290        ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2291        if (ret < 0)
2292                goto out;
2293        qg_released = ret;
2294        ret = btrfs_alloc_reserved_file_extent(trans, root,
2295                                               btrfs_ino(BTRFS_I(inode)),
2296                                               file_pos, qg_released, &ins);
2297out:
2298        btrfs_free_path(path);
2299
2300        return ret;
2301}
2302
2303/* snapshot-aware defrag */
2304struct sa_defrag_extent_backref {
2305        struct rb_node node;
2306        struct old_sa_defrag_extent *old;
2307        u64 root_id;
2308        u64 inum;
2309        u64 file_pos;
2310        u64 extent_offset;
2311        u64 num_bytes;
2312        u64 generation;
2313};
2314
2315struct old_sa_defrag_extent {
2316        struct list_head list;
2317        struct new_sa_defrag_extent *new;
2318
2319        u64 extent_offset;
2320        u64 bytenr;
2321        u64 offset;
2322        u64 len;
2323        int count;
2324};
2325
2326struct new_sa_defrag_extent {
2327        struct rb_root root;
2328        struct list_head head;
2329        struct btrfs_path *path;
2330        struct inode *inode;
2331        u64 file_pos;
2332        u64 len;
2333        u64 bytenr;
2334        u64 disk_len;
2335        u8 compress_type;
2336};
2337
2338static int backref_comp(struct sa_defrag_extent_backref *b1,
2339                        struct sa_defrag_extent_backref *b2)
2340{
2341        if (b1->root_id < b2->root_id)
2342                return -1;
2343        else if (b1->root_id > b2->root_id)
2344                return 1;
2345
2346        if (b1->inum < b2->inum)
2347                return -1;
2348        else if (b1->inum > b2->inum)
2349                return 1;
2350
2351        if (b1->file_pos < b2->file_pos)
2352                return -1;
2353        else if (b1->file_pos > b2->file_pos)
2354                return 1;
2355
2356        /*
2357         * [------------------------------] ===> (a range of space)
2358         *     |<--->|   |<---->| =============> (fs/file tree A)
2359         * |<---------------------------->| ===> (fs/file tree B)
2360         *
2361         * A range of space can refer to two file extents in one tree while
2362         * refer to only one file extent in another tree.
2363         *
2364         * So we may process a disk offset more than one time(two extents in A)
2365         * and locate at the same extent(one extent in B), then insert two same
2366         * backrefs(both refer to the extent in B).
2367         */
2368        return 0;
2369}
2370
2371static void backref_insert(struct rb_root *root,
2372                           struct sa_defrag_extent_backref *backref)
2373{
2374        struct rb_node **p = &root->rb_node;
2375        struct rb_node *parent = NULL;
2376        struct sa_defrag_extent_backref *entry;
2377        int ret;
2378
2379        while (*p) {
2380                parent = *p;
2381                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2382
2383                ret = backref_comp(backref, entry);
2384                if (ret < 0)
2385                        p = &(*p)->rb_left;
2386                else
2387                        p = &(*p)->rb_right;
2388        }
2389
2390        rb_link_node(&backref->node, parent, p);
2391        rb_insert_color(&backref->node, root);
2392}
2393
2394/*
2395 * Note the backref might has changed, and in this case we just return 0.
2396 */
2397static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2398                                       void *ctx)
2399{
2400        struct btrfs_file_extent_item *extent;
2401        struct old_sa_defrag_extent *old = ctx;
2402        struct new_sa_defrag_extent *new = old->new;
2403        struct btrfs_path *path = new->path;
2404        struct btrfs_key key;
2405        struct btrfs_root *root;
2406        struct sa_defrag_extent_backref *backref;
2407        struct extent_buffer *leaf;
2408        struct inode *inode = new->inode;
2409        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2410        int slot;
2411        int ret;
2412        u64 extent_offset;
2413        u64 num_bytes;
2414
2415        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2416            inum == btrfs_ino(BTRFS_I(inode)))
2417                return 0;
2418
2419        key.objectid = root_id;
2420        key.type = BTRFS_ROOT_ITEM_KEY;
2421        key.offset = (u64)-1;
2422
2423        root = btrfs_read_fs_root_no_name(fs_info, &key);
2424        if (IS_ERR(root)) {
2425                if (PTR_ERR(root) == -ENOENT)
2426                        return 0;
2427                WARN_ON(1);
2428                btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2429                         inum, offset, root_id);
2430                return PTR_ERR(root);
2431        }
2432
2433        key.objectid = inum;
2434        key.type = BTRFS_EXTENT_DATA_KEY;
2435        if (offset > (u64)-1 << 32)
2436                key.offset = 0;
2437        else
2438                key.offset = offset;
2439
2440        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2441        if (WARN_ON(ret < 0))
2442                return ret;
2443        ret = 0;
2444
2445        while (1) {
2446                cond_resched();
2447
2448                leaf = path->nodes[0];
2449                slot = path->slots[0];
2450
2451                if (slot >= btrfs_header_nritems(leaf)) {
2452                        ret = btrfs_next_leaf(root, path);
2453                        if (ret < 0) {
2454                                goto out;
2455                        } else if (ret > 0) {
2456                                ret = 0;
2457                                goto out;
2458                        }
2459                        continue;
2460                }
2461
2462                path->slots[0]++;
2463
2464                btrfs_item_key_to_cpu(leaf, &key, slot);
2465
2466                if (key.objectid > inum)
2467                        goto out;
2468
2469                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2470                        continue;
2471
2472                extent = btrfs_item_ptr(leaf, slot,
2473                                        struct btrfs_file_extent_item);
2474
2475                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2476                        continue;
2477
2478                /*
2479                 * 'offset' refers to the exact key.offset,
2480                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2481                 * (key.offset - extent_offset).
2482                 */
2483                if (key.offset != offset)
2484                        continue;
2485
2486                extent_offset = btrfs_file_extent_offset(leaf, extent);
2487                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2488
2489                if (extent_offset >= old->extent_offset + old->offset +
2490                    old->len || extent_offset + num_bytes <=
2491                    old->extent_offset + old->offset)
2492                        continue;
2493                break;
2494        }
2495
2496        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2497        if (!backref) {
2498                ret = -ENOENT;
2499                goto out;
2500        }
2501
2502        backref->root_id = root_id;
2503        backref->inum = inum;
2504        backref->file_pos = offset;
2505        backref->num_bytes = num_bytes;
2506        backref->extent_offset = extent_offset;
2507        backref->generation = btrfs_file_extent_generation(leaf, extent);
2508        backref->old = old;
2509        backref_insert(&new->root, backref);
2510        old->count++;
2511out:
2512        btrfs_release_path(path);
2513        WARN_ON(ret);
2514        return ret;
2515}
2516
2517static noinline bool record_extent_backrefs(struct btrfs_path *path,
2518                                   struct new_sa_defrag_extent *new)
2519{
2520        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2521        struct old_sa_defrag_extent *old, *tmp;
2522        int ret;
2523
2524        new->path = path;
2525
2526        list_for_each_entry_safe(old, tmp, &new->head, list) {
2527                ret = iterate_inodes_from_logical(old->bytenr +
2528                                                  old->extent_offset, fs_info,
2529                                                  path, record_one_backref,
2530                                                  old, false);
2531                if (ret < 0 && ret != -ENOENT)
2532                        return false;
2533
2534                /* no backref to be processed for this extent */
2535                if (!old->count) {
2536                        list_del(&old->list);
2537                        kfree(old);
2538                }
2539        }
2540
2541        if (list_empty(&new->head))
2542                return false;
2543
2544        return true;
2545}
2546
2547static int relink_is_mergable(struct extent_buffer *leaf,
2548                              struct btrfs_file_extent_item *fi,
2549                              struct new_sa_defrag_extent *new)
2550{
2551        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2552                return 0;
2553
2554        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2555                return 0;
2556
2557        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2558                return 0;
2559
2560        if (btrfs_file_extent_encryption(leaf, fi) ||
2561            btrfs_file_extent_other_encoding(leaf, fi))
2562                return 0;
2563
2564        return 1;
2565}
2566
2567/*
2568 * Note the backref might has changed, and in this case we just return 0.
2569 */
2570static noinline int relink_extent_backref(struct btrfs_path *path,
2571                                 struct sa_defrag_extent_backref *prev,
2572                                 struct sa_defrag_extent_backref *backref)
2573{
2574        struct btrfs_file_extent_item *extent;
2575        struct btrfs_file_extent_item *item;
2576        struct btrfs_ordered_extent *ordered;
2577        struct btrfs_trans_handle *trans;
2578        struct btrfs_ref ref = { 0 };
2579        struct btrfs_root *root;
2580        struct btrfs_key key;
2581        struct extent_buffer *leaf;
2582        struct old_sa_defrag_extent *old = backref->old;
2583        struct new_sa_defrag_extent *new = old->new;
2584        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2585        struct inode *inode;
2586        struct extent_state *cached = NULL;
2587        int ret = 0;
2588        u64 start;
2589        u64 len;
2590        u64 lock_start;
2591        u64 lock_end;
2592        bool merge = false;
2593        int index;
2594
2595        if (prev && prev->root_id == backref->root_id &&
2596            prev->inum == backref->inum &&
2597            prev->file_pos + prev->num_bytes == backref->file_pos)
2598                merge = true;
2599
2600        /* step 1: get root */
2601        key.objectid = backref->root_id;
2602        key.type = BTRFS_ROOT_ITEM_KEY;
2603        key.offset = (u64)-1;
2604
2605        index = srcu_read_lock(&fs_info->subvol_srcu);
2606
2607        root = btrfs_read_fs_root_no_name(fs_info, &key);
2608        if (IS_ERR(root)) {
2609                srcu_read_unlock(&fs_info->subvol_srcu, index);
2610                if (PTR_ERR(root) == -ENOENT)
2611                        return 0;
2612                return PTR_ERR(root);
2613        }
2614
2615        if (btrfs_root_readonly(root)) {
2616                srcu_read_unlock(&fs_info->subvol_srcu, index);
2617                return 0;
2618        }
2619
2620        /* step 2: get inode */
2621        key.objectid = backref->inum;
2622        key.type = BTRFS_INODE_ITEM_KEY;
2623        key.offset = 0;
2624
2625        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2626        if (IS_ERR(inode)) {
2627                srcu_read_unlock(&fs_info->subvol_srcu, index);
2628                return 0;
2629        }
2630
2631        srcu_read_unlock(&fs_info->subvol_srcu, index);
2632
2633        /* step 3: relink backref */
2634        lock_start = backref->file_pos;
2635        lock_end = backref->file_pos + backref->num_bytes - 1;
2636        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2637                         &cached);
2638
2639        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2640        if (ordered) {
2641                btrfs_put_ordered_extent(ordered);
2642                goto out_unlock;
2643        }
2644
2645        trans = btrfs_join_transaction(root);
2646        if (IS_ERR(trans)) {
2647                ret = PTR_ERR(trans);
2648                goto out_unlock;
2649        }
2650
2651        key.objectid = backref->inum;
2652        key.type = BTRFS_EXTENT_DATA_KEY;
2653        key.offset = backref->file_pos;
2654
2655        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2656        if (ret < 0) {
2657                goto out_free_path;
2658        } else if (ret > 0) {
2659                ret = 0;
2660                goto out_free_path;
2661        }
2662
2663        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2664                                struct btrfs_file_extent_item);
2665
2666        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2667            backref->generation)
2668                goto out_free_path;
2669
2670        btrfs_release_path(path);
2671
2672        start = backref->file_pos;
2673        if (backref->extent_offset < old->extent_offset + old->offset)
2674                start += old->extent_offset + old->offset -
2675                         backref->extent_offset;
2676
2677        len = min(backref->extent_offset + backref->num_bytes,
2678                  old->extent_offset + old->offset + old->len);
2679        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2680
2681        ret = btrfs_drop_extents(trans, root, inode, start,
2682                                 start + len, 1);
2683        if (ret)
2684                goto out_free_path;
2685again:
2686        key.objectid = btrfs_ino(BTRFS_I(inode));
2687        key.type = BTRFS_EXTENT_DATA_KEY;
2688        key.offset = start;
2689
2690        path->leave_spinning = 1;
2691        if (merge) {
2692                struct btrfs_file_extent_item *fi;
2693                u64 extent_len;
2694                struct btrfs_key found_key;
2695
2696                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2697                if (ret < 0)
2698                        goto out_free_path;
2699
2700                path->slots[0]--;
2701                leaf = path->nodes[0];
2702                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2703
2704                fi = btrfs_item_ptr(leaf, path->slots[0],
2705                                    struct btrfs_file_extent_item);
2706                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2707
2708                if (extent_len + found_key.offset == start &&
2709                    relink_is_mergable(leaf, fi, new)) {
2710                        btrfs_set_file_extent_num_bytes(leaf, fi,
2711                                                        extent_len + len);
2712                        btrfs_mark_buffer_dirty(leaf);
2713                        inode_add_bytes(inode, len);
2714
2715                        ret = 1;
2716                        goto out_free_path;
2717                } else {
2718                        merge = false;
2719                        btrfs_release_path(path);
2720                        goto again;
2721                }
2722        }
2723
2724        ret = btrfs_insert_empty_item(trans, root, path, &key,
2725                                        sizeof(*extent));
2726        if (ret) {
2727                btrfs_abort_transaction(trans, ret);
2728                goto out_free_path;
2729        }
2730
2731        leaf = path->nodes[0];
2732        item = btrfs_item_ptr(leaf, path->slots[0],
2733                                struct btrfs_file_extent_item);
2734        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2735        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2736        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2737        btrfs_set_file_extent_num_bytes(leaf, item, len);
2738        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2739        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2740        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2741        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2742        btrfs_set_file_extent_encryption(leaf, item, 0);
2743        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2744
2745        btrfs_mark_buffer_dirty(leaf);
2746        inode_add_bytes(inode, len);
2747        btrfs_release_path(path);
2748
2749        btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2750                               new->disk_len, 0);
2751        btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2752                            new->file_pos);  /* start - extent_offset */
2753        ret = btrfs_inc_extent_ref(trans, &ref);
2754        if (ret) {
2755                btrfs_abort_transaction(trans, ret);
2756                goto out_free_path;
2757        }
2758
2759        ret = 1;
2760out_free_path:
2761        btrfs_release_path(path);
2762        path->leave_spinning = 0;
2763        btrfs_end_transaction(trans);
2764out_unlock:
2765        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2766                             &cached);
2767        iput(inode);
2768        return ret;
2769}
2770
2771static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2772{
2773        struct old_sa_defrag_extent *old, *tmp;
2774
2775        if (!new)
2776                return;
2777
2778        list_for_each_entry_safe(old, tmp, &new->head, list) {
2779                kfree(old);
2780        }
2781        kfree(new);
2782}
2783
2784static void relink_file_extents(struct new_sa_defrag_extent *new)
2785{
2786        struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2787        struct btrfs_path *path;
2788        struct sa_defrag_extent_backref *backref;
2789        struct sa_defrag_extent_backref *prev = NULL;
2790        struct rb_node *node;
2791        int ret;
2792
2793        path = btrfs_alloc_path();
2794        if (!path)
2795                return;
2796
2797        if (!record_extent_backrefs(path, new)) {
2798                btrfs_free_path(path);
2799                goto out;
2800        }
2801        btrfs_release_path(path);
2802
2803        while (1) {
2804                node = rb_first(&new->root);
2805                if (!node)
2806                        break;
2807                rb_erase(node, &new->root);
2808
2809                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2810
2811                ret = relink_extent_backref(path, prev, backref);
2812                WARN_ON(ret < 0);
2813
2814                kfree(prev);
2815
2816                if (ret == 1)
2817                        prev = backref;
2818                else
2819                        prev = NULL;
2820                cond_resched();
2821        }
2822        kfree(prev);
2823
2824        btrfs_free_path(path);
2825out:
2826        free_sa_defrag_extent(new);
2827
2828        atomic_dec(&fs_info->defrag_running);
2829        wake_up(&fs_info->transaction_wait);
2830}
2831
2832static struct new_sa_defrag_extent *
2833record_old_file_extents(struct inode *inode,
2834                        struct btrfs_ordered_extent *ordered)
2835{
2836        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2837        struct btrfs_root *root = BTRFS_I(inode)->root;
2838        struct btrfs_path *path;
2839        struct btrfs_key key;
2840        struct old_sa_defrag_extent *old;
2841        struct new_sa_defrag_extent *new;
2842        int ret;
2843
2844        new = kmalloc(sizeof(*new), GFP_NOFS);
2845        if (!new)
2846                return NULL;
2847
2848        new->inode = inode;
2849        new->file_pos = ordered->file_offset;
2850        new->len = ordered->len;
2851        new->bytenr = ordered->start;
2852        new->disk_len = ordered->disk_len;
2853        new->compress_type = ordered->compress_type;
2854        new->root = RB_ROOT;
2855        INIT_LIST_HEAD(&new->head);
2856
2857        path = btrfs_alloc_path();
2858        if (!path)
2859                goto out_kfree;
2860
2861        key.objectid = btrfs_ino(BTRFS_I(inode));
2862        key.type = BTRFS_EXTENT_DATA_KEY;
2863        key.offset = new->file_pos;
2864
2865        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2866        if (ret < 0)
2867                goto out_free_path;
2868        if (ret > 0 && path->slots[0] > 0)
2869                path->slots[0]--;
2870
2871        /* find out all the old extents for the file range */
2872        while (1) {
2873                struct btrfs_file_extent_item *extent;
2874                struct extent_buffer *l;
2875                int slot;
2876                u64 num_bytes;
2877                u64 offset;
2878                u64 end;
2879                u64 disk_bytenr;
2880                u64 extent_offset;
2881
2882                l = path->nodes[0];
2883                slot = path->slots[0];
2884
2885                if (slot >= btrfs_header_nritems(l)) {
2886                        ret = btrfs_next_leaf(root, path);
2887                        if (ret < 0)
2888                                goto out_free_path;
2889                        else if (ret > 0)
2890                                break;
2891                        continue;
2892                }
2893
2894                btrfs_item_key_to_cpu(l, &key, slot);
2895
2896                if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2897                        break;
2898                if (key.type != BTRFS_EXTENT_DATA_KEY)
2899                        break;
2900                if (key.offset >= new->file_pos + new->len)
2901                        break;
2902
2903                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2904
2905                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2906                if (key.offset + num_bytes < new->file_pos)
2907                        goto next;
2908
2909                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2910                if (!disk_bytenr)
2911                        goto next;
2912
2913                extent_offset = btrfs_file_extent_offset(l, extent);
2914
2915                old = kmalloc(sizeof(*old), GFP_NOFS);
2916                if (!old)
2917                        goto out_free_path;
2918
2919                offset = max(new->file_pos, key.offset);
2920                end = min(new->file_pos + new->len, key.offset + num_bytes);
2921
2922                old->bytenr = disk_bytenr;
2923                old->extent_offset = extent_offset;
2924                old->offset = offset - key.offset;
2925                old->len = end - offset;
2926                old->new = new;
2927                old->count = 0;
2928                list_add_tail(&old->list, &new->head);
2929next:
2930                path->slots[0]++;
2931                cond_resched();
2932        }
2933
2934        btrfs_free_path(path);
2935        atomic_inc(&fs_info->defrag_running);
2936
2937        return new;
2938
2939out_free_path:
2940        btrfs_free_path(path);
2941out_kfree:
2942        free_sa_defrag_extent(new);
2943        return NULL;
2944}
2945
2946static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2947                                         u64 start, u64 len)
2948{
2949        struct btrfs_block_group_cache *cache;
2950
2951        cache = btrfs_lookup_block_group(fs_info, start);
2952        ASSERT(cache);
2953
2954        spin_lock(&cache->lock);
2955        cache->delalloc_bytes -= len;
2956        spin_unlock(&cache->lock);
2957
2958        btrfs_put_block_group(cache);
2959}
2960
2961/* as ordered data IO finishes, this gets called so we can finish
2962 * an ordered extent if the range of bytes in the file it covers are
2963 * fully written.
2964 */
2965static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2966{
2967        struct inode *inode = ordered_extent->inode;
2968        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2969        struct btrfs_root *root = BTRFS_I(inode)->root;
2970        struct btrfs_trans_handle *trans = NULL;
2971        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2972        struct extent_state *cached_state = NULL;
2973        struct new_sa_defrag_extent *new = NULL;
2974        int compress_type = 0;
2975        int ret = 0;
2976        u64 logical_len = ordered_extent->len;
2977        bool nolock;
2978        bool truncated = false;
2979        bool range_locked = false;
2980        bool clear_new_delalloc_bytes = false;
2981        bool clear_reserved_extent = true;
2982
2983        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2984            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2985            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2986                clear_new_delalloc_bytes = true;
2987
2988        nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2989
2990        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2991                ret = -EIO;
2992                goto out;
2993        }
2994
2995        btrfs_free_io_failure_record(BTRFS_I(inode),
2996                        ordered_extent->file_offset,
2997                        ordered_extent->file_offset +
2998                        ordered_extent->len - 1);
2999
3000        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3001                truncated = true;
3002                logical_len = ordered_extent->truncated_len;
3003                /* Truncated the entire extent, don't bother adding */
3004                if (!logical_len)
3005                        goto out;
3006        }
3007
3008        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3009                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3010
3011                /*
3012                 * For mwrite(mmap + memset to write) case, we still reserve
3013                 * space for NOCOW range.
3014                 * As NOCOW won't cause a new delayed ref, just free the space
3015                 */
3016                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3017                                       ordered_extent->len);
3018                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3019                if (nolock)
3020                        trans = btrfs_join_transaction_nolock(root);
3021                else
3022                        trans = btrfs_join_transaction(root);
3023                if (IS_ERR(trans)) {
3024                        ret = PTR_ERR(trans);
3025                        trans = NULL;
3026                        goto out;
3027                }
3028                trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3029                ret = btrfs_update_inode_fallback(trans, root, inode);
3030                if (ret) /* -ENOMEM or corruption */
3031                        btrfs_abort_transaction(trans, ret);
3032                goto out;
3033        }
3034
3035        range_locked = true;
3036        lock_extent_bits(io_tree, ordered_extent->file_offset,
3037                         ordered_extent->file_offset + ordered_extent->len - 1,
3038                         &cached_state);
3039
3040        ret = test_range_bit(io_tree, ordered_extent->file_offset,
3041                        ordered_extent->file_offset + ordered_extent->len - 1,
3042                        EXTENT_DEFRAG, 0, cached_state);
3043        if (ret) {
3044                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3045                if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3046                        /* the inode is shared */
3047                        new = record_old_file_extents(inode, ordered_extent);
3048
3049                clear_extent_bit(io_tree, ordered_extent->file_offset,
3050                        ordered_extent->file_offset + ordered_extent->len - 1,
3051                        EXTENT_DEFRAG, 0, 0, &cached_state);
3052        }
3053
3054        if (nolock)
3055                trans = btrfs_join_transaction_nolock(root);
3056        else
3057                trans = btrfs_join_transaction(root);
3058        if (IS_ERR(trans)) {
3059                ret = PTR_ERR(trans);
3060                trans = NULL;
3061                goto out;
3062        }
3063
3064        trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3065
3066        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3067                compress_type = ordered_extent->compress_type;
3068        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3069                BUG_ON(compress_type);
3070                btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3071                                       ordered_extent->len);
3072                ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3073                                                ordered_extent->file_offset,
3074                                                ordered_extent->file_offset +
3075                                                logical_len);
3076        } else {
3077                BUG_ON(root == fs_info->tree_root);
3078                ret = insert_reserved_file_extent(trans, inode,
3079                                                ordered_extent->file_offset,
3080                                                ordered_extent->start,
3081                                                ordered_extent->disk_len,
3082                                                logical_len, logical_len,
3083                                                compress_type, 0, 0,
3084                                                BTRFS_FILE_EXTENT_REG);
3085                if (!ret) {
3086                        clear_reserved_extent = false;
3087                        btrfs_release_delalloc_bytes(fs_info,
3088                                                     ordered_extent->start,
3089                                                     ordered_extent->disk_len);
3090                }
3091        }
3092        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3093                           ordered_extent->file_offset, ordered_extent->len,
3094                           trans->transid);
3095        if (ret < 0) {
3096                btrfs_abort_transaction(trans, ret);
3097                goto out;
3098        }
3099
3100        ret = add_pending_csums(trans, inode, &ordered_extent->list);
3101        if (ret) {
3102                btrfs_abort_transaction(trans, ret);
3103                goto out;
3104        }
3105
3106        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3107        ret = btrfs_update_inode_fallback(trans, root, inode);
3108        if (ret) { /* -ENOMEM or corruption */
3109                btrfs_abort_transaction(trans, ret);
3110                goto out;
3111        }
3112        ret = 0;
3113out:
3114        if (range_locked || clear_new_delalloc_bytes) {
3115                unsigned int clear_bits = 0;
3116
3117                if (range_locked)
3118                        clear_bits |= EXTENT_LOCKED;
3119                if (clear_new_delalloc_bytes)
3120                        clear_bits |= EXTENT_DELALLOC_NEW;
3121                clear_extent_bit(&BTRFS_I(inode)->io_tree,
3122                                 ordered_extent->file_offset,
3123                                 ordered_extent->file_offset +
3124                                 ordered_extent->len - 1,
3125                                 clear_bits,
3126                                 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3127                                 0, &cached_state);
3128        }
3129
3130        if (trans)
3131                btrfs_end_transaction(trans);
3132
3133        if (ret || truncated) {
3134                u64 start, end;
3135
3136                if (truncated)
3137                        start = ordered_extent->file_offset + logical_len;
3138                else
3139                        start = ordered_extent->file_offset;
3140                end = ordered_extent->file_offset + ordered_extent->len - 1;
3141                clear_extent_uptodate(io_tree, start, end, NULL);
3142
3143                /* Drop the cache for the part of the extent we didn't write. */
3144                btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3145
3146                /*
3147                 * If the ordered extent had an IOERR or something else went
3148                 * wrong we need to return the space for this ordered extent
3149                 * back to the allocator.  We only free the extent in the
3150                 * truncated case if we didn't write out the extent at all.
3151                 *
3152                 * If we made it past insert_reserved_file_extent before we
3153                 * errored out then we don't need to do this as the accounting
3154                 * has already been done.
3155                 */
3156                if ((ret || !logical_len) &&
3157                    clear_reserved_extent &&
3158                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3159                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3160                        btrfs_free_reserved_extent(fs_info,
3161                                                   ordered_extent->start,
3162                                                   ordered_extent->disk_len, 1);
3163        }
3164
3165
3166        /*
3167         * This needs to be done to make sure anybody waiting knows we are done
3168         * updating everything for this ordered extent.
3169         */
3170        btrfs_remove_ordered_extent(inode, ordered_extent);
3171
3172        /* for snapshot-aware defrag */
3173        if (new) {
3174                if (ret) {
3175                        free_sa_defrag_extent(new);
3176                        atomic_dec(&fs_info->defrag_running);
3177                } else {
3178                        relink_file_extents(new);
3179                }
3180        }
3181
3182        /* once for us */
3183        btrfs_put_ordered_extent(ordered_extent);
3184        /* once for the tree */
3185        btrfs_put_ordered_extent(ordered_extent);
3186
3187        return ret;
3188}
3189
3190static void finish_ordered_fn(struct btrfs_work *work)
3191{
3192        struct btrfs_ordered_extent *ordered_extent;
3193        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3194        btrfs_finish_ordered_io(ordered_extent);
3195}
3196
3197void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3198                                          u64 end, int uptodate)
3199{
3200        struct inode *inode = page->mapping->host;
3201        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3202        struct btrfs_ordered_extent *ordered_extent = NULL;
3203        struct btrfs_workqueue *wq;
3204        btrfs_work_func_t func;
3205
3206        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3207
3208        ClearPagePrivate2(page);
3209        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3210                                            end - start + 1, uptodate))
3211                return;
3212
3213        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3214                wq = fs_info->endio_freespace_worker;
3215                func = btrfs_freespace_write_helper;
3216        } else {
3217                wq = fs_info->endio_write_workers;
3218                func = btrfs_endio_write_helper;
3219        }
3220
3221        btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3222                        NULL);
3223        btrfs_queue_work(wq, &ordered_extent->work);
3224}
3225
3226static int __readpage_endio_check(struct inode *inode,
3227                                  struct btrfs_io_bio *io_bio,
3228                                  int icsum, struct page *page,
3229                                  int pgoff, u64 start, size_t len)
3230{
3231        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3232        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3233        char *kaddr;
3234        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3235        u8 *csum_expected;
3236        u8 csum[BTRFS_CSUM_SIZE];
3237
3238        csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3239
3240        kaddr = kmap_atomic(page);
3241        shash->tfm = fs_info->csum_shash;
3242
3243        crypto_shash_init(shash);
3244        crypto_shash_update(shash, kaddr + pgoff, len);
3245        crypto_shash_final(shash, csum);
3246
3247        if (memcmp(csum, csum_expected, csum_size))
3248                goto zeroit;
3249
3250        kunmap_atomic(kaddr);
3251        return 0;
3252zeroit:
3253        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3254                                    io_bio->mirror_num);
3255        memset(kaddr + pgoff, 1, len);
3256        flush_dcache_page(page);
3257        kunmap_atomic(kaddr);
3258        return -EIO;
3259}
3260
3261/*
3262 * when reads are done, we need to check csums to verify the data is correct
3263 * if there's a match, we allow the bio to finish.  If not, the code in
3264 * extent_io.c will try to find good copies for us.
3265 */
3266static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3267                                      u64 phy_offset, struct page *page,
3268                                      u64 start, u64 end, int mirror)
3269{
3270        size_t offset = start - page_offset(page);
3271        struct inode *inode = page->mapping->host;
3272        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3273        struct btrfs_root *root = BTRFS_I(inode)->root;
3274
3275        if (PageChecked(page)) {
3276                ClearPageChecked(page);
3277                return 0;
3278        }
3279
3280        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3281                return 0;
3282
3283        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3284            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3285                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3286                return 0;
3287        }
3288
3289        phy_offset >>= inode->i_sb->s_blocksize_bits;
3290        return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3291                                      start, (size_t)(end - start + 1));
3292}
3293
3294/*
3295 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3296 *
3297 * @inode: The inode we want to perform iput on
3298 *
3299 * This function uses the generic vfs_inode::i_count to track whether we should
3300 * just decrement it (in case it's > 1) or if this is the last iput then link
3301 * the inode to the delayed iput machinery. Delayed iputs are processed at
3302 * transaction commit time/superblock commit/cleaner kthread.
3303 */
3304void btrfs_add_delayed_iput(struct inode *inode)
3305{
3306        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3307        struct btrfs_inode *binode = BTRFS_I(inode);
3308
3309        if (atomic_add_unless(&inode->i_count, -1, 1))
3310                return;
3311
3312        atomic_inc(&fs_info->nr_delayed_iputs);
3313        spin_lock(&fs_info->delayed_iput_lock);
3314        ASSERT(list_empty(&binode->delayed_iput));
3315        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3316        spin_unlock(&fs_info->delayed_iput_lock);
3317        if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3318                wake_up_process(fs_info->cleaner_kthread);
3319}
3320
3321static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3322                                    struct btrfs_inode *inode)
3323{
3324        list_del_init(&inode->delayed_iput);
3325        spin_unlock(&fs_info->delayed_iput_lock);
3326        iput(&inode->vfs_inode);
3327        if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3328                wake_up(&fs_info->delayed_iputs_wait);
3329        spin_lock(&fs_info->delayed_iput_lock);
3330}
3331
3332static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3333                                   struct btrfs_inode *inode)
3334{
3335        if (!list_empty(&inode->delayed_iput)) {
3336                spin_lock(&fs_info->delayed_iput_lock);
3337                if (!list_empty(&inode->delayed_iput))
3338                        run_delayed_iput_locked(fs_info, inode);
3339                spin_unlock(&fs_info->delayed_iput_lock);
3340        }
3341}
3342
3343void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3344{
3345
3346        spin_lock(&fs_info->delayed_iput_lock);
3347        while (!list_empty(&fs_info->delayed_iputs)) {
3348                struct btrfs_inode *inode;
3349
3350                inode = list_first_entry(&fs_info->delayed_iputs,
3351                                struct btrfs_inode, delayed_iput);
3352                run_delayed_iput_locked(fs_info, inode);
3353        }
3354        spin_unlock(&fs_info->delayed_iput_lock);
3355}
3356
3357/**
3358 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3359 * @fs_info - the fs_info for this fs
3360 * @return - EINTR if we were killed, 0 if nothing's pending
3361 *
3362 * This will wait on any delayed iputs that are currently running with KILLABLE
3363 * set.  Once they are all done running we will return, unless we are killed in
3364 * which case we return EINTR. This helps in user operations like fallocate etc
3365 * that might get blocked on the iputs.
3366 */
3367int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3368{
3369        int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3370                        atomic_read(&fs_info->nr_delayed_iputs) == 0);
3371        if (ret)
3372                return -EINTR;
3373        return 0;
3374}
3375
3376/*
3377 * This creates an orphan entry for the given inode in case something goes wrong
3378 * in the middle of an unlink.
3379 */
3380int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3381                     struct btrfs_inode *inode)
3382{
3383        int ret;
3384
3385        ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3386        if (ret && ret != -EEXIST) {
3387                btrfs_abort_transaction(trans, ret);
3388                return ret;
3389        }
3390
3391        return 0;
3392}
3393
3394/*
3395 * We have done the delete so we can go ahead and remove the orphan item for
3396 * this particular inode.
3397 */
3398static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3399                            struct btrfs_inode *inode)
3400{
3401        return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3402}
3403
3404/*
3405 * this cleans up any orphans that may be left on the list from the last use
3406 * of this root.
3407 */
3408int btrfs_orphan_cleanup(struct btrfs_root *root)
3409{
3410        struct btrfs_fs_info *fs_info = root->fs_info;
3411        struct btrfs_path *path;
3412        struct extent_buffer *leaf;
3413        struct btrfs_key key, found_key;
3414        struct btrfs_trans_handle *trans;
3415        struct inode *inode;
3416        u64 last_objectid = 0;
3417        int ret = 0, nr_unlink = 0;
3418
3419        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3420                return 0;
3421
3422        path = btrfs_alloc_path();
3423        if (!path) {
3424                ret = -ENOMEM;
3425                goto out;
3426        }
3427        path->reada = READA_BACK;
3428
3429        key.objectid = BTRFS_ORPHAN_OBJECTID;
3430        key.type = BTRFS_ORPHAN_ITEM_KEY;
3431        key.offset = (u64)-1;
3432
3433        while (1) {
3434                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3435                if (ret < 0)
3436                        goto out;
3437
3438                /*
3439                 * if ret == 0 means we found what we were searching for, which
3440                 * is weird, but possible, so only screw with path if we didn't
3441                 * find the key and see if we have stuff that matches
3442                 */
3443                if (ret > 0) {
3444                        ret = 0;
3445                        if (path->slots[0] == 0)
3446                                break;
3447                        path->slots[0]--;
3448                }
3449
3450                /* pull out the item */
3451                leaf = path->nodes[0];
3452                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3453
3454                /* make sure the item matches what we want */
3455                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3456                        break;
3457                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3458                        break;
3459
3460                /* release the path since we're done with it */
3461                btrfs_release_path(path);
3462
3463                /*
3464                 * this is where we are basically btrfs_lookup, without the
3465                 * crossing root thing.  we store the inode number in the
3466                 * offset of the orphan item.
3467                 */
3468
3469                if (found_key.offset == last_objectid) {
3470                        btrfs_err(fs_info,
3471                                  "Error removing orphan entry, stopping orphan cleanup");
3472                        ret = -EINVAL;
3473                        goto out;
3474                }
3475
3476                last_objectid = found_key.offset;
3477
3478                found_key.objectid = found_key.offset;
3479                found_key.type = BTRFS_INODE_ITEM_KEY;
3480                found_key.offset = 0;
3481                inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3482                ret = PTR_ERR_OR_ZERO(inode);
3483                if (ret && ret != -ENOENT)
3484                        goto out;
3485
3486                if (ret == -ENOENT && root == fs_info->tree_root) {
3487                        struct btrfs_root *dead_root;
3488                        struct btrfs_fs_info *fs_info = root->fs_info;
3489                        int is_dead_root = 0;
3490
3491                        /*
3492                         * this is an orphan in the tree root. Currently these
3493                         * could come from 2 sources:
3494                         *  a) a snapshot deletion in progress
3495                         *  b) a free space cache inode
3496                         * We need to distinguish those two, as the snapshot
3497                         * orphan must not get deleted.
3498                         * find_dead_roots already ran before us, so if this
3499                         * is a snapshot deletion, we should find the root
3500                         * in the dead_roots list
3501                         */
3502                        spin_lock(&fs_info->trans_lock);
3503                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3504                                            root_list) {
3505                                if (dead_root->root_key.objectid ==
3506                                    found_key.objectid) {
3507                                        is_dead_root = 1;
3508                                        break;
3509                                }
3510                        }
3511                        spin_unlock(&fs_info->trans_lock);
3512                        if (is_dead_root) {
3513                                /* prevent this orphan from being found again */
3514                                key.offset = found_key.objectid - 1;
3515                                continue;
3516                        }
3517
3518                }
3519
3520                /*
3521                 * If we have an inode with links, there are a couple of
3522                 * possibilities. Old kernels (before v3.12) used to create an
3523                 * orphan item for truncate indicating that there were possibly
3524                 * extent items past i_size that needed to be deleted. In v3.12,
3525                 * truncate was changed to update i_size in sync with the extent
3526                 * items, but the (useless) orphan item was still created. Since
3527                 * v4.18, we don't create the orphan item for truncate at all.
3528                 *
3529                 * So, this item could mean that we need to do a truncate, but
3530                 * only if this filesystem was last used on a pre-v3.12 kernel
3531                 * and was not cleanly unmounted. The odds of that are quite
3532                 * slim, and it's a pain to do the truncate now, so just delete
3533                 * the orphan item.
3534                 *
3535                 * It's also possible that this orphan item was supposed to be
3536                 * deleted but wasn't. The inode number may have been reused,
3537                 * but either way, we can delete the orphan item.
3538                 */
3539                if (ret == -ENOENT || inode->i_nlink) {
3540                        if (!ret)
3541                                iput(inode);
3542                        trans = btrfs_start_transaction(root, 1);
3543                        if (IS_ERR(trans)) {
3544                                ret = PTR_ERR(trans);
3545                                goto out;
3546                        }
3547                        btrfs_debug(fs_info, "auto deleting %Lu",
3548                                    found_key.objectid);
3549                        ret = btrfs_del_orphan_item(trans, root,
3550                                                    found_key.objectid);
3551                        btrfs_end_transaction(trans);
3552                        if (ret)
3553                                goto out;
3554                        continue;
3555                }
3556
3557                nr_unlink++;
3558
3559                /* this will do delete_inode and everything for us */
3560                iput(inode);
3561        }
3562        /* release the path since we're done with it */
3563        btrfs_release_path(path);
3564
3565        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3566
3567        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3568                trans = btrfs_join_transaction(root);
3569                if (!IS_ERR(trans))
3570                        btrfs_end_transaction(trans);
3571        }
3572
3573        if (nr_unlink)
3574                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3575
3576out:
3577        if (ret)
3578                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3579        btrfs_free_path(path);
3580        return ret;
3581}
3582
3583/*
3584 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3585 * don't find any xattrs, we know there can't be any acls.
3586 *
3587 * slot is the slot the inode is in, objectid is the objectid of the inode
3588 */
3589static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3590                                          int slot, u64 objectid,
3591                                          int *first_xattr_slot)
3592{
3593        u32 nritems = btrfs_header_nritems(leaf);
3594        struct btrfs_key found_key;
3595        static u64 xattr_access = 0;
3596        static u64 xattr_default = 0;
3597        int scanned = 0;
3598
3599        if (!xattr_access) {
3600                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3604        }
3605
3606        slot++;
3607        *first_xattr_slot = -1;
3608        while (slot < nritems) {
3609                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3610
3611                /* we found a different objectid, there must not be acls */
3612                if (found_key.objectid != objectid)
3613                        return 0;
3614
3615                /* we found an xattr, assume we've got an acl */
3616                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3617                        if (*first_xattr_slot == -1)
3618                                *first_xattr_slot = slot;
3619                        if (found_key.offset == xattr_access ||
3620                            found_key.offset == xattr_default)
3621                                return 1;
3622                }
3623
3624                /*
3625                 * we found a key greater than an xattr key, there can't
3626                 * be any acls later on
3627                 */
3628                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3629                        return 0;
3630
3631                slot++;
3632                scanned++;
3633
3634                /*
3635                 * it goes inode, inode backrefs, xattrs, extents,
3636                 * so if there are a ton of hard links to an inode there can
3637                 * be a lot of backrefs.  Don't waste time searching too hard,
3638                 * this is just an optimization
3639                 */
3640                if (scanned >= 8)
3641                        break;
3642        }
3643        /* we hit the end of the leaf before we found an xattr or
3644         * something larger than an xattr.  We have to assume the inode
3645         * has acls
3646         */
3647        if (*first_xattr_slot == -1)
3648                *first_xattr_slot = slot;
3649        return 1;
3650}
3651
3652/*
3653 * read an inode from the btree into the in-memory inode
3654 */
3655static int btrfs_read_locked_inode(struct inode *inode,
3656                                   struct btrfs_path *in_path)
3657{
3658        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3659        struct btrfs_path *path = in_path;
3660        struct extent_buffer *leaf;
3661        struct btrfs_inode_item *inode_item;
3662        struct btrfs_root *root = BTRFS_I(inode)->root;
3663        struct btrfs_key location;
3664        unsigned long ptr;
3665        int maybe_acls;
3666        u32 rdev;
3667        int ret;
3668        bool filled = false;
3669        int first_xattr_slot;
3670
3671        ret = btrfs_fill_inode(inode, &rdev);
3672        if (!ret)
3673                filled = true;
3674
3675        if (!path) {
3676                path = btrfs_alloc_path();
3677                if (!path)
3678                        return -ENOMEM;
3679        }
3680
3681        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3682
3683        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3684        if (ret) {
3685                if (path != in_path)
3686                        btrfs_free_path(path);
3687                return ret;
3688        }
3689
3690        leaf = path->nodes[0];
3691
3692        if (filled)
3693                goto cache_index;
3694
3695        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3696                                    struct btrfs_inode_item);
3697        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3698        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3699        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3700        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3701        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3702
3703        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3704        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3705
3706        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3707        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3708
3709        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3710        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3711
3712        BTRFS_I(inode)->i_otime.tv_sec =
3713                btrfs_timespec_sec(leaf, &inode_item->otime);
3714        BTRFS_I(inode)->i_otime.tv_nsec =
3715                btrfs_timespec_nsec(leaf, &inode_item->otime);
3716
3717        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3718        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3719        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3720
3721        inode_set_iversion_queried(inode,
3722                                   btrfs_inode_sequence(leaf, inode_item));
3723        inode->i_generation = BTRFS_I(inode)->generation;
3724        inode->i_rdev = 0;
3725        rdev = btrfs_inode_rdev(leaf, inode_item);
3726
3727        BTRFS_I(inode)->index_cnt = (u64)-1;
3728        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3729
3730cache_index:
3731        /*
3732         * If we were modified in the current generation and evicted from memory
3733         * and then re-read we need to do a full sync since we don't have any
3734         * idea about which extents were modified before we were evicted from
3735         * cache.
3736         *
3737         * This is required for both inode re-read from disk and delayed inode
3738         * in delayed_nodes_tree.
3739         */
3740        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3741                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3742                        &BTRFS_I(inode)->runtime_flags);
3743
3744        /*
3745         * We don't persist the id of the transaction where an unlink operation
3746         * against the inode was last made. So here we assume the inode might
3747         * have been evicted, and therefore the exact value of last_unlink_trans
3748         * lost, and set it to last_trans to avoid metadata inconsistencies
3749         * between the inode and its parent if the inode is fsync'ed and the log
3750         * replayed. For example, in the scenario:
3751         *
3752         * touch mydir/foo
3753         * ln mydir/foo mydir/bar
3754         * sync
3755         * unlink mydir/bar
3756         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3757         * xfs_io -c fsync mydir/foo
3758         * <power failure>
3759         * mount fs, triggers fsync log replay
3760         *
3761         * We must make sure that when we fsync our inode foo we also log its
3762         * parent inode, otherwise after log replay the parent still has the
3763         * dentry with the "bar" name but our inode foo has a link count of 1
3764         * and doesn't have an inode ref with the name "bar" anymore.
3765         *
3766         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3767         * but it guarantees correctness at the expense of occasional full
3768         * transaction commits on fsync if our inode is a directory, or if our
3769         * inode is not a directory, logging its parent unnecessarily.
3770         */
3771        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3772
3773        path->slots[0]++;
3774        if (inode->i_nlink != 1 ||
3775            path->slots[0] >= btrfs_header_nritems(leaf))
3776                goto cache_acl;
3777
3778        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3779        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3780                goto cache_acl;
3781
3782        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3783        if (location.type == BTRFS_INODE_REF_KEY) {
3784                struct btrfs_inode_ref *ref;
3785
3786                ref = (struct btrfs_inode_ref *)ptr;
3787                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3788        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3789                struct btrfs_inode_extref *extref;
3790
3791                extref = (struct btrfs_inode_extref *)ptr;
3792                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3793                                                                     extref);
3794        }
3795cache_acl:
3796        /*
3797         * try to precache a NULL acl entry for files that don't have
3798         * any xattrs or acls
3799         */
3800        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3801                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3802        if (first_xattr_slot != -1) {
3803                path->slots[0] = first_xattr_slot;
3804                ret = btrfs_load_inode_props(inode, path);
3805                if (ret)
3806                        btrfs_err(fs_info,
3807                                  "error loading props for ino %llu (root %llu): %d",
3808                                  btrfs_ino(BTRFS_I(inode)),
3809                                  root->root_key.objectid, ret);
3810        }
3811        if (path != in_path)
3812                btrfs_free_path(path);
3813
3814        if (!maybe_acls)
3815                cache_no_acl(inode);
3816
3817        switch (inode->i_mode & S_IFMT) {
3818        case S_IFREG:
3819                inode->i_mapping->a_ops = &btrfs_aops;
3820                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3821                inode->i_fop = &btrfs_file_operations;
3822                inode->i_op = &btrfs_file_inode_operations;
3823                break;
3824        case S_IFDIR:
3825                inode->i_fop = &btrfs_dir_file_operations;
3826                inode->i_op = &btrfs_dir_inode_operations;
3827                break;
3828        case S_IFLNK:
3829                inode->i_op = &btrfs_symlink_inode_operations;
3830                inode_nohighmem(inode);
3831                inode->i_mapping->a_ops = &btrfs_aops;
3832                break;
3833        default:
3834                inode->i_op = &btrfs_special_inode_operations;
3835                init_special_inode(inode, inode->i_mode, rdev);
3836                break;
3837        }
3838
3839        btrfs_sync_inode_flags_to_i_flags(inode);
3840        return 0;
3841}
3842
3843/*
3844 * given a leaf and an inode, copy the inode fields into the leaf
3845 */
3846static void fill_inode_item(struct btrfs_trans_handle *trans,
3847                            struct extent_buffer *leaf,
3848                            struct btrfs_inode_item *item,
3849                            struct inode *inode)
3850{
3851        struct btrfs_map_token token;
3852
3853        btrfs_init_map_token(&token);
3854
3855        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3856        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3857        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3858                                   &token);
3859        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3860        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3861
3862        btrfs_set_token_timespec_sec(leaf, &item->atime,
3863                                     inode->i_atime.tv_sec, &token);
3864        btrfs_set_token_timespec_nsec(leaf, &item->atime,
3865                                      inode->i_atime.tv_nsec, &token);
3866
3867        btrfs_set_token_timespec_sec(leaf, &item->mtime,
3868                                     inode->i_mtime.tv_sec, &token);
3869        btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3870                                      inode->i_mtime.tv_nsec, &token);
3871
3872        btrfs_set_token_timespec_sec(leaf, &item->ctime,
3873                                     inode->i_ctime.tv_sec, &token);
3874        btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3875                                      inode->i_ctime.tv_nsec, &token);
3876
3877        btrfs_set_token_timespec_sec(leaf, &item->otime,
3878                                     BTRFS_I(inode)->i_otime.tv_sec, &token);
3879        btrfs_set_token_timespec_nsec(leaf, &item->otime,
3880                                      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3881
3882        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883                                     &token);
3884        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3885                                         &token);
3886        btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3887                                       &token);
3888        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3889        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3890        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3891        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3892}
3893
3894/*
3895 * copy everything in the in-memory inode into the btree.
3896 */
3897static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3898                                struct btrfs_root *root, struct inode *inode)
3899{
3900        struct btrfs_inode_item *inode_item;
3901        struct btrfs_path *path;
3902        struct extent_buffer *leaf;
3903        int ret;
3904
3905        path = btrfs_alloc_path();
3906        if (!path)
3907                return -ENOMEM;
3908
3909        path->leave_spinning = 1;
3910        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3911                                 1);
3912        if (ret) {
3913                if (ret > 0)
3914                        ret = -ENOENT;
3915                goto failed;
3916        }
3917
3918        leaf = path->nodes[0];
3919        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3920                                    struct btrfs_inode_item);
3921
3922        fill_inode_item(trans, leaf, inode_item, inode);
3923        btrfs_mark_buffer_dirty(leaf);
3924        btrfs_set_inode_last_trans(trans, inode);
3925        ret = 0;
3926failed:
3927        btrfs_free_path(path);
3928        return ret;
3929}
3930
3931/*
3932 * copy everything in the in-memory inode into the btree.
3933 */
3934noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3935                                struct btrfs_root *root, struct inode *inode)
3936{
3937        struct btrfs_fs_info *fs_info = root->fs_info;
3938        int ret;
3939
3940        /*
3941         * If the inode is a free space inode, we can deadlock during commit
3942         * if we put it into the delayed code.
3943         *
3944         * The data relocation inode should also be directly updated
3945         * without delay
3946         */
3947        if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3948            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3949            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3950                btrfs_update_root_times(trans, root);
3951
3952                ret = btrfs_delayed_update_inode(trans, root, inode);
3953                if (!ret)
3954                        btrfs_set_inode_last_trans(trans, inode);
3955                return ret;
3956        }
3957
3958        return btrfs_update_inode_item(trans, root, inode);
3959}
3960
3961noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3962                                         struct btrfs_root *root,
3963                                         struct inode *inode)
3964{
3965        int ret;
3966
3967        ret = btrfs_update_inode(trans, root, inode);
3968        if (ret == -ENOSPC)
3969                return btrfs_update_inode_item(trans, root, inode);
3970        return ret;
3971}
3972
3973/*
3974 * unlink helper that gets used here in inode.c and in the tree logging
3975 * recovery code.  It remove a link in a directory with a given name, and
3976 * also drops the back refs in the inode to the directory
3977 */
3978static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3979                                struct btrfs_root *root,
3980                                struct btrfs_inode *dir,
3981                                struct btrfs_inode *inode,
3982                                const char *name, int name_len)
3983{
3984        struct btrfs_fs_info *fs_info = root->fs_info;
3985        struct btrfs_path *path;
3986        int ret = 0;
3987        struct btrfs_dir_item *di;
3988        u64 index;
3989        u64 ino = btrfs_ino(inode);
3990        u64 dir_ino = btrfs_ino(dir);
3991
3992        path = btrfs_alloc_path();
3993        if (!path) {
3994                ret = -ENOMEM;
3995                goto out;
3996        }
3997
3998        path->leave_spinning = 1;
3999        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4000                                    name, name_len, -1);
4001        if (IS_ERR_OR_NULL(di)) {
4002                ret = di ? PTR_ERR(di) : -ENOENT;
4003                goto err;
4004        }
4005        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4006        if (ret)
4007                goto err;
4008        btrfs_release_path(path);
4009
4010        /*
4011         * If we don't have dir index, we have to get it by looking up
4012         * the inode ref, since we get the inode ref, remove it directly,
4013         * it is unnecessary to do delayed deletion.
4014         *
4015         * But if we have dir index, needn't search inode ref to get it.
4016         * Since the inode ref is close to the inode item, it is better
4017         * that we delay to delete it, and just do this deletion when
4018         * we update the inode item.
4019         */
4020        if (inode->dir_index) {
4021                ret = btrfs_delayed_delete_inode_ref(inode);
4022                if (!ret) {
4023                        index = inode->dir_index;
4024                        goto skip_backref;
4025                }
4026        }
4027
4028        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4029                                  dir_ino, &index);
4030        if (ret) {
4031                btrfs_info(fs_info,
4032                        "failed to delete reference to %.*s, inode %llu parent %llu",
4033                        name_len, name, ino, dir_ino);
4034                btrfs_abort_transaction(trans, ret);
4035                goto err;
4036        }
4037skip_backref:
4038        ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4039        if (ret) {
4040                btrfs_abort_transaction(trans, ret);
4041                goto err;
4042        }
4043
4044        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4045                        dir_ino);
4046        if (ret != 0 && ret != -ENOENT) {
4047                btrfs_abort_transaction(trans, ret);
4048                goto err;
4049        }
4050
4051        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4052                        index);
4053        if (ret == -ENOENT)
4054                ret = 0;
4055        else if (ret)
4056                btrfs_abort_transaction(trans, ret);
4057
4058        /*
4059         * If we have a pending delayed iput we could end up with the final iput
4060         * being run in btrfs-cleaner context.  If we have enough of these built
4061         * up we can end up burning a lot of time in btrfs-cleaner without any
4062         * way to throttle the unlinks.  Since we're currently holding a ref on
4063         * the inode we can run the delayed iput here without any issues as the
4064         * final iput won't be done until after we drop the ref we're currently
4065         * holding.
4066         */
4067        btrfs_run_delayed_iput(fs_info, inode);
4068err:
4069        btrfs_free_path(path);
4070        if (ret)
4071                goto out;
4072
4073        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4074        inode_inc_iversion(&inode->vfs_inode);
4075        inode_inc_iversion(&dir->vfs_inode);
4076        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4077                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4078        ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4079out:
4080        return ret;
4081}
4082
4083int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4084                       struct btrfs_root *root,
4085                       struct btrfs_inode *dir, struct btrfs_inode *inode,
4086                       const char *name, int name_len)
4087{
4088        int ret;
4089        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4090        if (!ret) {
4091                drop_nlink(&inode->vfs_inode);
4092                ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4093        }
4094        return ret;
4095}
4096
4097/*
4098 * helper to start transaction for unlink and rmdir.
4099 *
4100 * unlink and rmdir are special in btrfs, they do not always free space, so
4101 * if we cannot make our reservations the normal way try and see if there is
4102 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4103 * allow the unlink to occur.
4104 */
4105static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4106{
4107        struct btrfs_root *root = BTRFS_I(dir)->root;
4108
4109        /*
4110         * 1 for the possible orphan item
4111         * 1 for the dir item
4112         * 1 for the dir index
4113         * 1 for the inode ref
4114         * 1 for the inode
4115         */
4116        return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4117}
4118
4119static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4120{
4121        struct btrfs_root *root = BTRFS_I(dir)->root;
4122        struct btrfs_trans_handle *trans;
4123        struct inode *inode = d_inode(dentry);
4124        int ret;
4125
4126        trans = __unlink_start_trans(dir);
4127        if (IS_ERR(trans))
4128                return PTR_ERR(trans);
4129
4130        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4131                        0);
4132
4133        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4134                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4135                        dentry->d_name.len);
4136        if (ret)
4137                goto out;
4138
4139        if (inode->i_nlink == 0) {
4140                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4141                if (ret)
4142                        goto out;
4143        }
4144
4145out:
4146        btrfs_end_transaction(trans);
4147        btrfs_btree_balance_dirty(root->fs_info);
4148        return ret;
4149}
4150
4151static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4152                               struct inode *dir, u64 objectid,
4153                               const char *name, int name_len)
4154{
4155        struct btrfs_root *root = BTRFS_I(dir)->root;
4156        struct btrfs_path *path;
4157        struct extent_buffer *leaf;
4158        struct btrfs_dir_item *di;
4159        struct btrfs_key key;
4160        u64 index;
4161        int ret;
4162        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4163
4164        path = btrfs_alloc_path();
4165        if (!path)
4166                return -ENOMEM;
4167
4168        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4169                                   name, name_len, -1);
4170        if (IS_ERR_OR_NULL(di)) {
4171                ret = di ? PTR_ERR(di) : -ENOENT;
4172                goto out;
4173        }
4174
4175        leaf = path->nodes[0];
4176        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4177        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4178        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4179        if (ret) {
4180                btrfs_abort_transaction(trans, ret);
4181                goto out;
4182        }
4183        btrfs_release_path(path);
4184
4185        ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4186                                 dir_ino, &index, name, name_len);
4187        if (ret < 0) {
4188                if (ret != -ENOENT) {
4189                        btrfs_abort_transaction(trans, ret);
4190                        goto out;
4191                }
4192                di = btrfs_search_dir_index_item(root, path, dir_ino,
4193                                                 name, name_len);
4194                if (IS_ERR_OR_NULL(di)) {
4195                        if (!di)
4196                                ret = -ENOENT;
4197                        else
4198                                ret = PTR_ERR(di);
4199                        btrfs_abort_transaction(trans, ret);
4200                        goto out;
4201                }
4202
4203                leaf = path->nodes[0];
4204                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4205                index = key.offset;
4206        }
4207        btrfs_release_path(path);
4208
4209        ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4210        if (ret) {
4211                btrfs_abort_transaction(trans, ret);
4212                goto out;
4213        }
4214
4215        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4216        inode_inc_iversion(dir);
4217        dir->i_mtime = dir->i_ctime = current_time(dir);
4218        ret = btrfs_update_inode_fallback(trans, root, dir);
4219        if (ret)
4220                btrfs_abort_transaction(trans, ret);
4221out:
4222        btrfs_free_path(path);
4223        return ret;
4224}
4225
4226/*
4227 * Helper to check if the subvolume references other subvolumes or if it's
4228 * default.
4229 */
4230static noinline int may_destroy_subvol(struct btrfs_root *root)
4231{
4232        struct btrfs_fs_info *fs_info = root->fs_info;
4233        struct btrfs_path *path;
4234        struct btrfs_dir_item *di;
4235        struct btrfs_key key;
4236        u64 dir_id;
4237        int ret;
4238
4239        path = btrfs_alloc_path();
4240        if (!path)
4241                return -ENOMEM;
4242
4243        /* Make sure this root isn't set as the default subvol */
4244        dir_id = btrfs_super_root_dir(fs_info->super_copy);
4245        di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4246                                   dir_id, "default", 7, 0);
4247        if (di && !IS_ERR(di)) {
4248                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4249                if (key.objectid == root->root_key.objectid) {
4250                        ret = -EPERM;
4251                        btrfs_err(fs_info,
4252                                  "deleting default subvolume %llu is not allowed",
4253                                  key.objectid);
4254                        goto out;
4255                }
4256                btrfs_release_path(path);
4257        }
4258
4259        key.objectid = root->root_key.objectid;
4260        key.type = BTRFS_ROOT_REF_KEY;
4261        key.offset = (u64)-1;
4262
4263        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4264        if (ret < 0)
4265                goto out;
4266        BUG_ON(ret == 0);
4267
4268        ret = 0;
4269        if (path->slots[0] > 0) {
4270                path->slots[0]--;
4271                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4272                if (key.objectid == root->root_key.objectid &&
4273                    key.type == BTRFS_ROOT_REF_KEY)
4274                        ret = -ENOTEMPTY;
4275        }
4276out:
4277        btrfs_free_path(path);
4278        return ret;
4279}
4280
4281/* Delete all dentries for inodes belonging to the root */
4282static void btrfs_prune_dentries(struct btrfs_root *root)
4283{
4284        struct btrfs_fs_info *fs_info = root->fs_info;
4285        struct rb_node *node;
4286        struct rb_node *prev;
4287        struct btrfs_inode *entry;
4288        struct inode *inode;
4289        u64 objectid = 0;
4290
4291        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4292                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4293
4294        spin_lock(&root->inode_lock);
4295again:
4296        node = root->inode_tree.rb_node;
4297        prev = NULL;
4298        while (node) {
4299                prev = node;
4300                entry = rb_entry(node, struct btrfs_inode, rb_node);
4301
4302                if (objectid < btrfs_ino(entry))
4303                        node = node->rb_left;
4304                else if (objectid > btrfs_ino(entry))
4305                        node = node->rb_right;
4306                else
4307                        break;
4308        }
4309        if (!node) {
4310                while (prev) {
4311                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4312                        if (objectid <= btrfs_ino(entry)) {
4313                                node = prev;
4314                                break;
4315                        }
4316                        prev = rb_next(prev);
4317                }
4318        }
4319        while (node) {
4320                entry = rb_entry(node, struct btrfs_inode, rb_node);
4321                objectid = btrfs_ino(entry) + 1;
4322                inode = igrab(&entry->vfs_inode);
4323                if (inode) {
4324                        spin_unlock(&root->inode_lock);
4325                        if (atomic_read(&inode->i_count) > 1)
4326                                d_prune_aliases(inode);
4327                        /*
4328                         * btrfs_drop_inode will have it removed from the inode
4329                         * cache when its usage count hits zero.
4330                         */
4331                        iput(inode);
4332                        cond_resched();
4333                        spin_lock(&root->inode_lock);
4334                        goto again;
4335                }
4336
4337                if (cond_resched_lock(&root->inode_lock))
4338                        goto again;
4339
4340                node = rb_next(node);
4341        }
4342        spin_unlock(&root->inode_lock);
4343}
4344
4345int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4346{
4347        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4348        struct btrfs_root *root = BTRFS_I(dir)->root;
4349        struct inode *inode = d_inode(dentry);
4350        struct btrfs_root *dest = BTRFS_I(inode)->root;
4351        struct btrfs_trans_handle *trans;
4352        struct btrfs_block_rsv block_rsv;
4353        u64 root_flags;
4354        int ret;
4355        int err;
4356
4357        /*
4358         * Don't allow to delete a subvolume with send in progress. This is
4359         * inside the inode lock so the error handling that has to drop the bit
4360         * again is not run concurrently.
4361         */
4362        spin_lock(&dest->root_item_lock);
4363        if (dest->send_in_progress) {
4364                spin_unlock(&dest->root_item_lock);
4365                btrfs_warn(fs_info,
4366                           "attempt to delete subvolume %llu during send",
4367                           dest->root_key.objectid);
4368                return -EPERM;
4369        }
4370        root_flags = btrfs_root_flags(&dest->root_item);
4371        btrfs_set_root_flags(&dest->root_item,
4372                             root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4373        spin_unlock(&dest->root_item_lock);
4374
4375        down_write(&fs_info->subvol_sem);
4376
4377        err = may_destroy_subvol(dest);
4378        if (err)
4379                goto out_up_write;
4380
4381        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4382        /*
4383         * One for dir inode,
4384         * two for dir entries,
4385         * two for root ref/backref.
4386         */
4387        err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4388        if (err)
4389                goto out_up_write;
4390
4391        trans = btrfs_start_transaction(root, 0);
4392        if (IS_ERR(trans)) {
4393                err = PTR_ERR(trans);
4394                goto out_release;
4395        }
4396        trans->block_rsv = &block_rsv;
4397        trans->bytes_reserved = block_rsv.size;
4398
4399        btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4400
4401        ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4402                                  dentry->d_name.name, dentry->d_name.len);
4403        if (ret) {
4404                err = ret;
4405                btrfs_abort_transaction(trans, ret);
4406                goto out_end_trans;
4407        }
4408
4409        btrfs_record_root_in_trans(trans, dest);
4410
4411        memset(&dest->root_item.drop_progress, 0,
4412                sizeof(dest->root_item.drop_progress));
4413        dest->root_item.drop_level = 0;
4414        btrfs_set_root_refs(&dest->root_item, 0);
4415
4416        if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4417                ret = btrfs_insert_orphan_item(trans,
4418                                        fs_info->tree_root,
4419                                        dest->root_key.objectid);
4420                if (ret) {
4421                        btrfs_abort_transaction(trans, ret);
4422                        err = ret;
4423                        goto out_end_trans;
4424                }
4425        }
4426
4427        ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4428                                  BTRFS_UUID_KEY_SUBVOL,
4429                                  dest->root_key.objectid);
4430        if (ret && ret != -ENOENT) {
4431                btrfs_abort_transaction(trans, ret);
4432                err = ret;
4433                goto out_end_trans;
4434        }
4435        if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4436                ret = btrfs_uuid_tree_remove(trans,
4437                                          dest->root_item.received_uuid,
4438                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4439                                          dest->root_key.objectid);
4440                if (ret && ret != -ENOENT) {
4441                        btrfs_abort_transaction(trans, ret);
4442                        err = ret;
4443                        goto out_end_trans;
4444                }
4445        }
4446
4447out_end_trans:
4448        trans->block_rsv = NULL;
4449        trans->bytes_reserved = 0;
4450        ret = btrfs_end_transaction(trans);
4451        if (ret && !err)
4452                err = ret;
4453        inode->i_flags |= S_DEAD;
4454out_release:
4455        btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4456out_up_write:
4457        up_write(&fs_info->subvol_sem);
4458        if (err) {
4459                spin_lock(&dest->root_item_lock);
4460                root_flags = btrfs_root_flags(&dest->root_item);
4461                btrfs_set_root_flags(&dest->root_item,
4462                                root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4463                spin_unlock(&dest->root_item_lock);
4464        } else {
4465                d_invalidate(dentry);
4466                btrfs_prune_dentries(dest);
4467                ASSERT(dest->send_in_progress == 0);
4468
4469                /* the last ref */
4470                if (dest->ino_cache_inode) {
4471                        iput(dest->ino_cache_inode);
4472                        dest->ino_cache_inode = NULL;
4473                }
4474        }
4475
4476        return err;
4477}
4478
4479static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4480{
4481        struct inode *inode = d_inode(dentry);
4482        int err = 0;
4483        struct btrfs_root *root = BTRFS_I(dir)->root;
4484        struct btrfs_trans_handle *trans;
4485        u64 last_unlink_trans;
4486
4487        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4488                return -ENOTEMPTY;
4489        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4490                return btrfs_delete_subvolume(dir, dentry);
4491
4492        trans = __unlink_start_trans(dir);
4493        if (IS_ERR(trans))
4494                return PTR_ERR(trans);
4495
4496        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4497                err = btrfs_unlink_subvol(trans, dir,
4498                                          BTRFS_I(inode)->location.objectid,
4499                                          dentry->d_name.name,
4500                                          dentry->d_name.len);
4501                goto out;
4502        }
4503
4504        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4505        if (err)
4506                goto out;
4507
4508        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4509
4510        /* now the directory is empty */
4511        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4512                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4513                        dentry->d_name.len);
4514        if (!err) {
4515                btrfs_i_size_write(BTRFS_I(inode), 0);
4516                /*
4517                 * Propagate the last_unlink_trans value of the deleted dir to
4518                 * its parent directory. This is to prevent an unrecoverable
4519                 * log tree in the case we do something like this:
4520                 * 1) create dir foo
4521                 * 2) create snapshot under dir foo
4522                 * 3) delete the snapshot
4523                 * 4) rmdir foo
4524                 * 5) mkdir foo
4525                 * 6) fsync foo or some file inside foo
4526                 */
4527                if (last_unlink_trans >= trans->transid)
4528                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4529        }
4530out:
4531        btrfs_end_transaction(trans);
4532        btrfs_btree_balance_dirty(root->fs_info);
4533
4534        return err;
4535}
4536
4537/*
4538 * Return this if we need to call truncate_block for the last bit of the
4539 * truncate.
4540 */
4541#define NEED_TRUNCATE_BLOCK 1
4542
4543/*
4544 * this can truncate away extent items, csum items and directory items.
4545 * It starts at a high offset and removes keys until it can't find
4546 * any higher than new_size
4547 *
4548 * csum items that cross the new i_size are truncated to the new size
4549 * as well.
4550 *
4551 * min_type is the minimum key type to truncate down to.  If set to 0, this
4552 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4553 */
4554int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4555                               struct btrfs_root *root,
4556                               struct inode *inode,
4557                               u64 new_size, u32 min_type)
4558{
4559        struct btrfs_fs_info *fs_info = root->fs_info;
4560        struct btrfs_path *path;
4561        struct extent_buffer *leaf;
4562        struct btrfs_file_extent_item *fi;
4563        struct btrfs_key key;
4564        struct btrfs_key found_key;
4565        u64 extent_start = 0;
4566        u64 extent_num_bytes = 0;
4567        u64 extent_offset = 0;
4568        u64 item_end = 0;
4569        u64 last_size = new_size;
4570        u32 found_type = (u8)-1;
4571        int found_extent;
4572        int del_item;
4573        int pending_del_nr = 0;
4574        int pending_del_slot = 0;
4575        int extent_type = -1;
4576        int ret;
4577        u64 ino = btrfs_ino(BTRFS_I(inode));
4578        u64 bytes_deleted = 0;
4579        bool be_nice = false;
4580        bool should_throttle = false;
4581
4582        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4583
4584        /*
4585         * for non-free space inodes and ref cows, we want to back off from
4586         * time to time
4587         */
4588        if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4589            test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4590                be_nice = true;
4591
4592        path = btrfs_alloc_path();
4593        if (!path)
4594                return -ENOMEM;
4595        path->reada = READA_BACK;
4596
4597        /*
4598         * We want to drop from the next block forward in case this new size is
4599         * not block aligned since we will be keeping the last block of the
4600         * extent just the way it is.
4601         */
4602        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4603            root == fs_info->tree_root)
4604                btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4605                                        fs_info->sectorsize),
4606                                        (u64)-1, 0);
4607
4608        /*
4609         * This function is also used to drop the items in the log tree before
4610         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4611         * it is used to drop the logged items. So we shouldn't kill the delayed
4612         * items.
4613         */
4614        if (min_type == 0 && root == BTRFS_I(inode)->root)
4615                btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4616
4617        key.objectid = ino;
4618        key.offset = (u64)-1;
4619        key.type = (u8)-1;
4620
4621search_again:
4622        /*
4623         * with a 16K leaf size and 128MB extents, you can actually queue
4624         * up a huge file in a single leaf.  Most of the time that
4625         * bytes_deleted is > 0, it will be huge by the time we get here
4626         */
4627        if (be_nice && bytes_deleted > SZ_32M &&
4628            btrfs_should_end_transaction(trans)) {
4629                ret = -EAGAIN;
4630                goto out;
4631        }
4632
4633        path->leave_spinning = 1;
4634        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4635        if (ret < 0)
4636                goto out;
4637
4638        if (ret > 0) {
4639                ret = 0;
4640                /* there are no items in the tree for us to truncate, we're
4641                 * done
4642                 */
4643                if (path->slots[0] == 0)
4644                        goto out;
4645                path->slots[0]--;
4646        }
4647
4648        while (1) {
4649                fi = NULL;
4650                leaf = path->nodes[0];
4651                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4652                found_type = found_key.type;
4653
4654                if (found_key.objectid != ino)
4655                        break;
4656
4657                if (found_type < min_type)
4658                        break;
4659
4660                item_end = found_key.offset;
4661                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4662                        fi = btrfs_item_ptr(leaf, path->slots[0],
4663                                            struct btrfs_file_extent_item);
4664                        extent_type = btrfs_file_extent_type(leaf, fi);
4665                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4666                                item_end +=
4667                                    btrfs_file_extent_num_bytes(leaf, fi);
4668
4669                                trace_btrfs_truncate_show_fi_regular(
4670                                        BTRFS_I(inode), leaf, fi,
4671                                        found_key.offset);
4672                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4673                                item_end += btrfs_file_extent_ram_bytes(leaf,
4674                                                                        fi);
4675
4676                                trace_btrfs_truncate_show_fi_inline(
4677                                        BTRFS_I(inode), leaf, fi, path->slots[0],
4678                                        found_key.offset);
4679                        }
4680                        item_end--;
4681                }
4682                if (found_type > min_type) {
4683                        del_item = 1;
4684                } else {
4685                        if (item_end < new_size)
4686                                break;
4687                        if (found_key.offset >= new_size)
4688                                del_item = 1;
4689                        else
4690                                del_item = 0;
4691                }
4692                found_extent = 0;
4693                /* FIXME, shrink the extent if the ref count is only 1 */
4694                if (found_type != BTRFS_EXTENT_DATA_KEY)
4695                        goto delete;
4696
4697                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4698                        u64 num_dec;
4699                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4700                        if (!del_item) {
4701                                u64 orig_num_bytes =
4702                                        btrfs_file_extent_num_bytes(leaf, fi);
4703                                extent_num_bytes = ALIGN(new_size -
4704                                                found_key.offset,
4705                                                fs_info->sectorsize);
4706                                btrfs_set_file_extent_num_bytes(leaf, fi,
4707                                                         extent_num_bytes);
4708                                num_dec = (orig_num_bytes -
4709                                           extent_num_bytes);
4710                                if (test_bit(BTRFS_ROOT_REF_COWS,
4711                                             &root->state) &&
4712                                    extent_start != 0)
4713                                        inode_sub_bytes(inode, num_dec);
4714                                btrfs_mark_buffer_dirty(leaf);
4715                        } else {
4716                                extent_num_bytes =
4717                                        btrfs_file_extent_disk_num_bytes(leaf,
4718                                                                         fi);
4719                                extent_offset = found_key.offset -
4720                                        btrfs_file_extent_offset(leaf, fi);
4721
4722                                /* FIXME blocksize != 4096 */
4723                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4724                                if (extent_start != 0) {
4725                                        found_extent = 1;
4726                                        if (test_bit(BTRFS_ROOT_REF_COWS,
4727                                                     &root->state))
4728                                                inode_sub_bytes(inode, num_dec);
4729                                }
4730                        }
4731                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4732                        /*
4733                         * we can't truncate inline items that have had
4734                         * special encodings
4735                         */
4736                        if (!del_item &&
4737                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4738                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4739                            btrfs_file_extent_compression(leaf, fi) == 0) {
4740                                u32 size = (u32)(new_size - found_key.offset);
4741
4742                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4743                                size = btrfs_file_extent_calc_inline_size(size);
4744                                btrfs_truncate_item(path, size, 1);
4745                        } else if (!del_item) {
4746                                /*
4747                                 * We have to bail so the last_size is set to
4748                                 * just before this extent.
4749                                 */
4750                                ret = NEED_TRUNCATE_BLOCK;
4751                                break;
4752                        }
4753
4754                        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4755                                inode_sub_bytes(inode, item_end + 1 - new_size);
4756                }
4757delete:
4758                if (del_item)
4759                        last_size = found_key.offset;
4760                else
4761                        last_size = new_size;
4762                if (del_item) {
4763                        if (!pending_del_nr) {
4764                                /* no pending yet, add ourselves */
4765                                pending_del_slot = path->slots[0];
4766                                pending_del_nr = 1;
4767                        } else if (pending_del_nr &&
4768                                   path->slots[0] + 1 == pending_del_slot) {
4769                                /* hop on the pending chunk */
4770                                pending_del_nr++;
4771                                pending_del_slot = path->slots[0];
4772                        } else {
4773                                BUG();
4774                        }
4775                } else {
4776                        break;
4777                }
4778                should_throttle = false;
4779
4780                if (found_extent &&
4781                    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4782                     root == fs_info->tree_root)) {
4783                        struct btrfs_ref ref = { 0 };
4784
4785                        btrfs_set_path_blocking(path);
4786                        bytes_deleted += extent_num_bytes;
4787
4788                        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4789                                        extent_start, extent_num_bytes, 0);
4790                        ref.real_root = root->root_key.objectid;
4791                        btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4792                                        ino, extent_offset);
4793                        ret = btrfs_free_extent(trans, &ref);
4794                        if (ret) {
4795                                btrfs_abort_transaction(trans, ret);
4796                                break;
4797                        }
4798                        if (be_nice) {
4799                                if (btrfs_should_throttle_delayed_refs(trans))
4800                                        should_throttle = true;
4801                        }
4802                }
4803
4804                if (found_type == BTRFS_INODE_ITEM_KEY)
4805                        break;
4806
4807                if (path->slots[0] == 0 ||
4808                    path->slots[0] != pending_del_slot ||
4809                    should_throttle) {
4810                        if (pending_del_nr) {
4811                                ret = btrfs_del_items(trans, root, path,
4812                                                pending_del_slot,
4813                                                pending_del_nr);
4814                                if (ret) {
4815                                        btrfs_abort_transaction(trans, ret);
4816                                        break;
4817                                }
4818                                pending_del_nr = 0;
4819                        }
4820                        btrfs_release_path(path);
4821
4822                        /*
4823                         * We can generate a lot of delayed refs, so we need to
4824                         * throttle every once and a while and make sure we're
4825                         * adding enough space to keep up with the work we are
4826                         * generating.  Since we hold a transaction here we
4827                         * can't flush, and we don't want to FLUSH_LIMIT because
4828                         * we could have generated too many delayed refs to
4829                         * actually allocate, so just bail if we're short and
4830                         * let the normal reservation dance happen higher up.
4831                         */
4832                        if (should_throttle) {
4833                                ret = btrfs_delayed_refs_rsv_refill(fs_info,
4834                                                        BTRFS_RESERVE_NO_FLUSH);
4835                                if (ret) {
4836                                        ret = -EAGAIN;
4837                                        break;
4838                                }
4839                        }
4840                        goto search_again;
4841                } else {
4842                        path->slots[0]--;
4843                }
4844        }
4845out:
4846        if (ret >= 0 && pending_del_nr) {
4847                int err;
4848
4849                err = btrfs_del_items(trans, root, path, pending_del_slot,
4850                                      pending_del_nr);
4851                if (err) {
4852                        btrfs_abort_transaction(trans, err);
4853                        ret = err;
4854                }
4855        }
4856        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4857                ASSERT(last_size >= new_size);
4858                if (!ret && last_size > new_size)
4859                        last_size = new_size;
4860                btrfs_ordered_update_i_size(inode, last_size, NULL);
4861        }
4862
4863        btrfs_free_path(path);
4864        return ret;
4865}
4866
4867/*
4868 * btrfs_truncate_block - read, zero a chunk and write a block
4869 * @inode - inode that we're zeroing
4870 * @from - the offset to start zeroing
4871 * @len - the length to zero, 0 to zero the entire range respective to the
4872 *      offset
4873 * @front - zero up to the offset instead of from the offset on
4874 *
4875 * This will find the block for the "from" offset and cow the block and zero the
4876 * part we want to zero.  This is used with truncate and hole punching.
4877 */
4878int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4879                        int front)
4880{
4881        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4882        struct address_space *mapping = inode->i_mapping;
4883        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4884        struct btrfs_ordered_extent *ordered;
4885        struct extent_state *cached_state = NULL;
4886        struct extent_changeset *data_reserved = NULL;
4887        char *kaddr;
4888        u32 blocksize = fs_info->sectorsize;
4889        pgoff_t index = from >> PAGE_SHIFT;
4890        unsigned offset = from & (blocksize - 1);
4891        struct page *page;
4892        gfp_t mask = btrfs_alloc_write_mask(mapping);
4893        int ret = 0;
4894        u64 block_start;
4895        u64 block_end;
4896
4897        if (IS_ALIGNED(offset, blocksize) &&
4898            (!len || IS_ALIGNED(len, blocksize)))
4899                goto out;
4900
4901        block_start = round_down(from, blocksize);
4902        block_end = block_start + blocksize - 1;
4903
4904        ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4905                                           block_start, blocksize);
4906        if (ret)
4907                goto out;
4908
4909again:
4910        page = find_or_create_page(mapping, index, mask);
4911        if (!page) {
4912                btrfs_delalloc_release_space(inode, data_reserved,
4913                                             block_start, blocksize, true);
4914                btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4915                ret = -ENOMEM;
4916                goto out;
4917        }
4918
4919        if (!PageUptodate(page)) {
4920                ret = btrfs_readpage(NULL, page);
4921                lock_page(page);
4922                if (page->mapping != mapping) {
4923                        unlock_page(page);
4924                        put_page(page);
4925                        goto again;
4926                }
4927                if (!PageUptodate(page)) {
4928                        ret = -EIO;
4929                        goto out_unlock;
4930                }
4931        }
4932        wait_on_page_writeback(page);
4933
4934        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4935        set_page_extent_mapped(page);
4936
4937        ordered = btrfs_lookup_ordered_extent(inode, block_start);
4938        if (ordered) {
4939                unlock_extent_cached(io_tree, block_start, block_end,
4940                                     &cached_state);
4941                unlock_page(page);
4942                put_page(page);
4943                btrfs_start_ordered_extent(inode, ordered, 1);
4944                btrfs_put_ordered_extent(ordered);
4945                goto again;
4946        }
4947
4948        clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4949                          EXTENT_DIRTY | EXTENT_DELALLOC |
4950                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4951                          0, 0, &cached_state);
4952
4953        ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4954                                        &cached_state, 0);
4955        if (ret) {
4956                unlock_extent_cached(io_tree, block_start, block_end,
4957                                     &cached_state);
4958                goto out_unlock;
4959        }
4960
4961        if (offset != blocksize) {
4962                if (!len)
4963                        len = blocksize - offset;
4964                kaddr = kmap(page);
4965                if (front)
4966                        memset(kaddr + (block_start - page_offset(page)),
4967                                0, offset);
4968                else
4969                        memset(kaddr + (block_start - page_offset(page)) +  offset,
4970                                0, len);
4971                flush_dcache_page(page);
4972                kunmap(page);
4973        }
4974        ClearPageChecked(page);
4975        set_page_dirty(page);
4976        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4977
4978out_unlock:
4979        if (ret)
4980                btrfs_delalloc_release_space(inode, data_reserved, block_start,
4981                                             blocksize, true);
4982        btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4983        unlock_page(page);
4984        put_page(page);
4985out:
4986        extent_changeset_free(data_reserved);
4987        return ret;
4988}
4989
4990static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4991                             u64 offset, u64 len)
4992{
4993        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4994        struct btrfs_trans_handle *trans;
4995        int ret;
4996
4997        /*
4998         * Still need to make sure the inode looks like it's been updated so
4999         * that any holes get logged if we fsync.
5000         */
5001        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5002                BTRFS_I(inode)->last_trans = fs_info->generation;
5003                BTRFS_I(inode)->last_sub_trans = root->log_transid;
5004                BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5005                return 0;
5006        }
5007
5008        /*
5009         * 1 - for the one we're dropping
5010         * 1 - for the one we're adding
5011         * 1 - for updating the inode.
5012         */
5013        trans = btrfs_start_transaction(root, 3);
5014        if (IS_ERR(trans))
5015                return PTR_ERR(trans);
5016
5017        ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5018        if (ret) {
5019                btrfs_abort_transaction(trans, ret);
5020                btrfs_end_transaction(trans);
5021                return ret;
5022        }
5023
5024        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5025                        offset, 0, 0, len, 0, len, 0, 0, 0);
5026        if (ret)
5027                btrfs_abort_transaction(trans, ret);
5028        else
5029                btrfs_update_inode(trans, root, inode);
5030        btrfs_end_transaction(trans);
5031        return ret;
5032}
5033
5034/*
5035 * This function puts in dummy file extents for the area we're creating a hole
5036 * for.  So if we are truncating this file to a larger size we need to insert
5037 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5038 * the range between oldsize and size
5039 */
5040int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5041{
5042        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5043        struct btrfs_root *root = BTRFS_I(inode)->root;
5044        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5045        struct extent_map *em = NULL;
5046        struct extent_state *cached_state = NULL;
5047        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5048        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5049        u64 block_end = ALIGN(size, fs_info->sectorsize);
5050        u64 last_byte;
5051        u64 cur_offset;
5052        u64 hole_size;
5053        int err = 0;
5054
5055        /*
5056         * If our size started in the middle of a block we need to zero out the
5057         * rest of the block before we expand the i_size, otherwise we could
5058         * expose stale data.
5059         */
5060        err = btrfs_truncate_block(inode, oldsize, 0, 0);
5061        if (err)
5062                return err;
5063
5064        if (size <= hole_start)
5065                return 0;
5066
5067        btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5068                                           block_end - 1, &cached_state);
5069        cur_offset = hole_start;
5070        while (1) {
5071                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5072                                block_end - cur_offset, 0);
5073                if (IS_ERR(em)) {
5074                        err = PTR_ERR(em);
5075                        em = NULL;
5076                        break;
5077                }
5078                last_byte = min(extent_map_end(em), block_end);
5079                last_byte = ALIGN(last_byte, fs_info->sectorsize);
5080                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5081                        struct extent_map *hole_em;
5082                        hole_size = last_byte - cur_offset;
5083
5084                        err = maybe_insert_hole(root, inode, cur_offset,
5085                                                hole_size);
5086                        if (err)
5087                                break;
5088                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5089                                                cur_offset + hole_size - 1, 0);
5090                        hole_em = alloc_extent_map();
5091                        if (!hole_em) {
5092                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5093                                        &BTRFS_I(inode)->runtime_flags);
5094                                goto next;
5095                        }
5096                        hole_em->start = cur_offset;
5097                        hole_em->len = hole_size;
5098                        hole_em->orig_start = cur_offset;
5099
5100                        hole_em->block_start = EXTENT_MAP_HOLE;
5101                        hole_em->block_len = 0;
5102                        hole_em->orig_block_len = 0;
5103                        hole_em->ram_bytes = hole_size;
5104                        hole_em->bdev = fs_info->fs_devices->latest_bdev;
5105                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
5106                        hole_em->generation = fs_info->generation;
5107
5108                        while (1) {
5109                                write_lock(&em_tree->lock);
5110                                err = add_extent_mapping(em_tree, hole_em, 1);
5111                                write_unlock(&em_tree->lock);
5112                                if (err != -EEXIST)
5113                                        break;
5114                                btrfs_drop_extent_cache(BTRFS_I(inode),
5115                                                        cur_offset,
5116                                                        cur_offset +
5117                                                        hole_size - 1, 0);
5118                        }
5119                        free_extent_map(hole_em);
5120                }
5121next:
5122                free_extent_map(em);
5123                em = NULL;
5124                cur_offset = last_byte;
5125                if (cur_offset >= block_end)
5126                        break;
5127        }
5128        free_extent_map(em);
5129        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5130        return err;
5131}
5132
5133static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5134{
5135        struct btrfs_root *root = BTRFS_I(inode)->root;
5136        struct btrfs_trans_handle *trans;
5137        loff_t oldsize = i_size_read(inode);
5138        loff_t newsize = attr->ia_size;
5139        int mask = attr->ia_valid;
5140        int ret;
5141
5142        /*
5143         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5144         * special case where we need to update the times despite not having
5145         * these flags set.  For all other operations the VFS set these flags
5146         * explicitly if it wants a timestamp update.
5147         */
5148        if (newsize != oldsize) {
5149                inode_inc_iversion(inode);
5150                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5151                        inode->i_ctime = inode->i_mtime =
5152                                current_time(inode);
5153        }
5154
5155        if (newsize > oldsize) {
5156                /*
5157                 * Don't do an expanding truncate while snapshotting is ongoing.
5158                 * This is to ensure the snapshot captures a fully consistent
5159                 * state of this file - if the snapshot captures this expanding
5160                 * truncation, it must capture all writes that happened before
5161                 * this truncation.
5162                 */
5163                btrfs_wait_for_snapshot_creation(root);
5164                ret = btrfs_cont_expand(inode, oldsize, newsize);
5165                if (ret) {
5166                        btrfs_end_write_no_snapshotting(root);
5167                        return ret;
5168                }
5169
5170                trans = btrfs_start_transaction(root, 1);
5171                if (IS_ERR(trans)) {
5172                        btrfs_end_write_no_snapshotting(root);
5173                        return PTR_ERR(trans);
5174                }
5175
5176                i_size_write(inode, newsize);
5177                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5178                pagecache_isize_extended(inode, oldsize, newsize);
5179                ret = btrfs_update_inode(trans, root, inode);
5180                btrfs_end_write_no_snapshotting(root);
5181                btrfs_end_transaction(trans);
5182        } else {
5183
5184                /*
5185                 * We're truncating a file that used to have good data down to
5186                 * zero. Make sure it gets into the ordered flush list so that
5187                 * any new writes get down to disk quickly.
5188                 */
5189                if (newsize == 0)
5190                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5191                                &BTRFS_I(inode)->runtime_flags);
5192
5193                truncate_setsize(inode, newsize);
5194
5195                /* Disable nonlocked read DIO to avoid the endless truncate */
5196                btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5197                inode_dio_wait(inode);
5198                btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5199
5200                ret = btrfs_truncate(inode, newsize == oldsize);
5201                if (ret && inode->i_nlink) {
5202                        int err;
5203
5204                        /*
5205                         * Truncate failed, so fix up the in-memory size. We
5206                         * adjusted disk_i_size down as we removed extents, so
5207                         * wait for disk_i_size to be stable and then update the
5208                         * in-memory size to match.
5209                         */
5210                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5211                        if (err)
5212                                return err;
5213                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5214                }
5215        }
5216
5217        return ret;
5218}
5219
5220static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5221{
5222        struct inode *inode = d_inode(dentry);
5223        struct btrfs_root *root = BTRFS_I(inode)->root;
5224        int err;
5225
5226        if (btrfs_root_readonly(root))
5227                return -EROFS;
5228
5229        err = setattr_prepare(dentry, attr);
5230        if (err)
5231                return err;
5232
5233        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5234                err = btrfs_setsize(inode, attr);
5235                if (err)
5236                        return err;
5237        }
5238
5239        if (attr->ia_valid) {
5240                setattr_copy(inode, attr);
5241                inode_inc_iversion(inode);
5242                err = btrfs_dirty_inode(inode);
5243
5244                if (!err && attr->ia_valid & ATTR_MODE)
5245                        err = posix_acl_chmod(inode, inode->i_mode);
5246        }
5247
5248        return err;
5249}
5250
5251/*
5252 * While truncating the inode pages during eviction, we get the VFS calling
5253 * btrfs_invalidatepage() against each page of the inode. This is slow because
5254 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5255 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5256 * extent_state structures over and over, wasting lots of time.
5257 *
5258 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5259 * those expensive operations on a per page basis and do only the ordered io
5260 * finishing, while we release here the extent_map and extent_state structures,
5261 * without the excessive merging and splitting.
5262 */
5263static void evict_inode_truncate_pages(struct inode *inode)
5264{
5265        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5266        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5267        struct rb_node *node;
5268
5269        ASSERT(inode->i_state & I_FREEING);
5270        truncate_inode_pages_final(&inode->i_data);
5271
5272        write_lock(&map_tree->lock);
5273        while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5274                struct extent_map *em;
5275
5276                node = rb_first_cached(&map_tree->map);
5277                em = rb_entry(node, struct extent_map, rb_node);
5278                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5279                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5280                remove_extent_mapping(map_tree, em);
5281                free_extent_map(em);
5282                if (need_resched()) {
5283                        write_unlock(&map_tree->lock);
5284                        cond_resched();
5285                        write_lock(&map_tree->lock);
5286                }
5287        }
5288        write_unlock(&map_tree->lock);
5289
5290        /*
5291         * Keep looping until we have no more ranges in the io tree.
5292         * We can have ongoing bios started by readpages (called from readahead)
5293         * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5294         * still in progress (unlocked the pages in the bio but did not yet
5295         * unlocked the ranges in the io tree). Therefore this means some
5296         * ranges can still be locked and eviction started because before
5297         * submitting those bios, which are executed by a separate task (work
5298         * queue kthread), inode references (inode->i_count) were not taken
5299         * (which would be dropped in the end io callback of each bio).
5300         * Therefore here we effectively end up waiting for those bios and
5301         * anyone else holding locked ranges without having bumped the inode's
5302         * reference count - if we don't do it, when they access the inode's
5303         * io_tree to unlock a range it may be too late, leading to an
5304         * use-after-free issue.
5305         */
5306        spin_lock(&io_tree->lock);
5307        while (!RB_EMPTY_ROOT(&io_tree->state)) {
5308                struct extent_state *state;
5309                struct extent_state *cached_state = NULL;
5310                u64 start;
5311                u64 end;
5312                unsigned state_flags;
5313
5314                node = rb_first(&io_tree->state);
5315                state = rb_entry(node, struct extent_state, rb_node);
5316                start = state->start;
5317                end = state->end;
5318                state_flags = state->state;
5319                spin_unlock(&io_tree->lock);
5320
5321                lock_extent_bits(io_tree, start, end, &cached_state);
5322
5323                /*
5324                 * If still has DELALLOC flag, the extent didn't reach disk,
5325                 * and its reserved space won't be freed by delayed_ref.
5326                 * So we need to free its reserved space here.
5327                 * (Refer to comment in btrfs_invalidatepage, case 2)
5328                 *
5329                 * Note, end is the bytenr of last byte, so we need + 1 here.
5330                 */
5331                if (state_flags & EXTENT_DELALLOC)
5332                        btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5333
5334                clear_extent_bit(io_tree, start, end,
5335                                 EXTENT_LOCKED | EXTENT_DIRTY |
5336                                 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5337                                 EXTENT_DEFRAG, 1, 1, &cached_state);
5338
5339                cond_resched();
5340                spin_lock(&io_tree->lock);
5341        }
5342        spin_unlock(&io_tree->lock);
5343}
5344
5345static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5346                                                        struct btrfs_block_rsv *rsv)
5347{
5348        struct btrfs_fs_info *fs_info = root->fs_info;
5349        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5350        u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5351        int failures = 0;
5352
5353        for (;;) {
5354                struct btrfs_trans_handle *trans;
5355                int ret;
5356
5357                ret = btrfs_block_rsv_refill(root, rsv,
5358                                             rsv->size + delayed_refs_extra,
5359                                             BTRFS_RESERVE_FLUSH_LIMIT);
5360
5361                if (ret && ++failures > 2) {
5362                        btrfs_warn(fs_info,
5363                                   "could not allocate space for a delete; will truncate on mount");
5364                        return ERR_PTR(-ENOSPC);
5365                }
5366
5367                /*
5368                 * Evict can generate a large amount of delayed refs without
5369                 * having a way to add space back since we exhaust our temporary
5370                 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5371                 * because we could deadlock with so many things in the flushing
5372                 * code, so we have to try and hold some extra space to
5373                 * compensate for our delayed ref generation.  If we can't get
5374                 * that space then we need see if we can steal our minimum from
5375                 * the global reserve.  We will be ratelimited by the amount of
5376                 * space we have for the delayed refs rsv, so we'll end up
5377                 * committing and trying again.
5378                 */
5379                trans = btrfs_join_transaction(root);
5380                if (IS_ERR(trans) || !ret) {
5381                        if (!IS_ERR(trans)) {
5382                                trans->block_rsv = &fs_info->trans_block_rsv;
5383                                trans->bytes_reserved = delayed_refs_extra;
5384                                btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5385                                                        delayed_refs_extra, 1);
5386                        }
5387                        return trans;
5388                }
5389
5390                /*
5391                 * Try to steal from the global reserve if there is space for
5392                 * it.
5393                 */
5394                if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5395                    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5396                        return trans;
5397
5398                /* If not, commit and try again. */
5399                ret = btrfs_commit_transaction(trans);
5400                if (ret)
5401                        return ERR_PTR(ret);
5402        }
5403}
5404
5405void btrfs_evict_inode(struct inode *inode)
5406{
5407        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5408        struct btrfs_trans_handle *trans;
5409        struct btrfs_root *root = BTRFS_I(inode)->root;
5410        struct btrfs_block_rsv *rsv;
5411        int ret;
5412
5413        trace_btrfs_inode_evict(inode);
5414
5415        if (!root) {
5416                clear_inode(inode);
5417                return;
5418        }
5419
5420        evict_inode_truncate_pages(inode);
5421
5422        if (inode->i_nlink &&
5423            ((btrfs_root_refs(&root->root_item) != 0 &&
5424              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5425             btrfs_is_free_space_inode(BTRFS_I(inode))))
5426                goto no_delete;
5427
5428        if (is_bad_inode(inode))
5429                goto no_delete;
5430
5431        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5432
5433        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5434                goto no_delete;
5435
5436        if (inode->i_nlink > 0) {
5437                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5438                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5439                goto no_delete;
5440        }
5441
5442        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5443        if (ret)
5444                goto no_delete;
5445
5446        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5447        if (!rsv)
5448                goto no_delete;
5449        rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5450        rsv->failfast = 1;
5451
5452        btrfs_i_size_write(BTRFS_I(inode), 0);
5453
5454        while (1) {
5455                trans = evict_refill_and_join(root, rsv);
5456                if (IS_ERR(trans))
5457                        goto free_rsv;
5458
5459                trans->block_rsv = rsv;
5460
5461                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5462                trans->block_rsv = &fs_info->trans_block_rsv;
5463                btrfs_end_transaction(trans);
5464                btrfs_btree_balance_dirty(fs_info);
5465                if (ret && ret != -ENOSPC && ret != -EAGAIN)
5466                        goto free_rsv;
5467                else if (!ret)
5468                        break;
5469        }
5470
5471        /*
5472         * Errors here aren't a big deal, it just means we leave orphan items in
5473         * the tree. They will be cleaned up on the next mount. If the inode
5474         * number gets reused, cleanup deletes the orphan item without doing
5475         * anything, and unlink reuses the existing orphan item.
5476         *
5477         * If it turns out that we are dropping too many of these, we might want
5478         * to add a mechanism for retrying these after a commit.
5479         */
5480        trans = evict_refill_and_join(root, rsv);
5481        if (!IS_ERR(trans)) {
5482                trans->block_rsv = rsv;
5483                btrfs_orphan_del(trans, BTRFS_I(inode));
5484                trans->block_rsv = &fs_info->trans_block_rsv;
5485                btrfs_end_transaction(trans);
5486        }
5487
5488        if (!(root == fs_info->tree_root ||
5489              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5490                btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5491
5492free_rsv:
5493        btrfs_free_block_rsv(fs_info, rsv);
5494no_delete:
5495        /*
5496         * If we didn't successfully delete, the orphan item will still be in
5497         * the tree and we'll retry on the next mount. Again, we might also want
5498         * to retry these periodically in the future.
5499         */
5500        btrfs_remove_delayed_node(BTRFS_I(inode));
5501        clear_inode(inode);
5502}
5503
5504/*
5505 * Return the key found in the dir entry in the location pointer, fill @type
5506 * with BTRFS_FT_*, and return 0.
5507 *
5508 * If no dir entries were found, returns -ENOENT.
5509 * If found a corrupted location in dir entry, returns -EUCLEAN.
5510 */
5511static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5512                               struct btrfs_key *location, u8 *type)
5513{
5514        const char *name = dentry->d_name.name;
5515        int namelen = dentry->d_name.len;
5516        struct btrfs_dir_item *di;
5517        struct btrfs_path *path;
5518        struct btrfs_root *root = BTRFS_I(dir)->root;
5519        int ret = 0;
5520
5521        path = btrfs_alloc_path();
5522        if (!path)
5523                return -ENOMEM;
5524
5525        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5526                        name, namelen, 0);
5527        if (IS_ERR_OR_NULL(di)) {
5528                ret = di ? PTR_ERR(di) : -ENOENT;
5529                goto out;
5530        }
5531
5532        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5533        if (location->type != BTRFS_INODE_ITEM_KEY &&
5534            location->type != BTRFS_ROOT_ITEM_KEY) {
5535                ret = -EUCLEAN;
5536                btrfs_warn(root->fs_info,
5537"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5538                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5539                           location->objectid, location->type, location->offset);
5540        }
5541        if (!ret)
5542                *type = btrfs_dir_type(path->nodes[0], di);
5543out:
5544        btrfs_free_path(path);
5545        return ret;
5546}
5547
5548/*
5549 * when we hit a tree root in a directory, the btrfs part of the inode
5550 * needs to be changed to reflect the root directory of the tree root.  This
5551 * is kind of like crossing a mount point.
5552 */
5553static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5554                                    struct inode *dir,
5555                                    struct dentry *dentry,
5556                                    struct btrfs_key *location,
5557                                    struct btrfs_root **sub_root)
5558{
5559        struct btrfs_path *path;
5560        struct btrfs_root *new_root;
5561        struct btrfs_root_ref *ref;
5562        struct extent_buffer *leaf;
5563        struct btrfs_key key;
5564        int ret;
5565        int err = 0;
5566
5567        path = btrfs_alloc_path();
5568        if (!path) {
5569                err = -ENOMEM;
5570                goto out;
5571        }
5572
5573        err = -ENOENT;
5574        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5575        key.type = BTRFS_ROOT_REF_KEY;
5576        key.offset = location->objectid;
5577
5578        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5579        if (ret) {
5580                if (ret < 0)
5581                        err = ret;
5582                goto out;
5583        }
5584
5585        leaf = path->nodes[0];
5586        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5587        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5588            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5589                goto out;
5590
5591        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5592                                   (unsigned long)(ref + 1),
5593                                   dentry->d_name.len);
5594        if (ret)
5595                goto out;
5596
5597        btrfs_release_path(path);
5598
5599        new_root = btrfs_read_fs_root_no_name(fs_info, location);
5600        if (IS_ERR(new_root)) {
5601                err = PTR_ERR(new_root);
5602                goto out;
5603        }
5604
5605        *sub_root = new_root;
5606        location->objectid = btrfs_root_dirid(&new_root->root_item);
5607        location->type = BTRFS_INODE_ITEM_KEY;
5608        location->offset = 0;
5609        err = 0;
5610out:
5611        btrfs_free_path(path);
5612        return err;
5613}
5614
5615static void inode_tree_add(struct inode *inode)
5616{
5617        struct btrfs_root *root = BTRFS_I(inode)->root;
5618        struct btrfs_inode *entry;
5619        struct rb_node **p;
5620        struct rb_node *parent;
5621        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5622        u64 ino = btrfs_ino(BTRFS_I(inode));
5623
5624        if (inode_unhashed(inode))
5625                return;
5626        parent = NULL;
5627        spin_lock(&root->inode_lock);
5628        p = &root->inode_tree.rb_node;
5629        while (*p) {
5630                parent = *p;
5631                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5632
5633                if (ino < btrfs_ino(entry))
5634                        p = &parent->rb_left;
5635                else if (ino > btrfs_ino(entry))
5636                        p = &parent->rb_right;
5637                else {
5638                        WARN_ON(!(entry->vfs_inode.i_state &
5639                                  (I_WILL_FREE | I_FREEING)));
5640                        rb_replace_node(parent, new, &root->inode_tree);
5641                        RB_CLEAR_NODE(parent);
5642                        spin_unlock(&root->inode_lock);
5643                        return;
5644                }
5645        }
5646        rb_link_node(new, parent, p);
5647        rb_insert_color(new, &root->inode_tree);
5648        spin_unlock(&root->inode_lock);
5649}
5650
5651static void inode_tree_del(struct inode *inode)
5652{
5653        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5654        struct btrfs_root *root = BTRFS_I(inode)->root;
5655        int empty = 0;
5656
5657        spin_lock(&root->inode_lock);
5658        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5659                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5660                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5661                empty = RB_EMPTY_ROOT(&root->inode_tree);
5662        }
5663        spin_unlock(&root->inode_lock);
5664
5665        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5666                synchronize_srcu(&fs_info->subvol_srcu);
5667                spin_lock(&root->inode_lock);
5668                empty = RB_EMPTY_ROOT(&root->inode_tree);
5669                spin_unlock(&root->inode_lock);
5670                if (empty)
5671                        btrfs_add_dead_root(root);
5672        }
5673}
5674
5675
5676static int btrfs_init_locked_inode(struct inode *inode, void *p)
5677{
5678        struct btrfs_iget_args *args = p;
5679        inode->i_ino = args->location->objectid;
5680        memcpy(&BTRFS_I(inode)->location, args->location,
5681               sizeof(*args->location));
5682        BTRFS_I(inode)->root = args->root;
5683        return 0;
5684}
5685
5686static int btrfs_find_actor(struct inode *inode, void *opaque)
5687{
5688        struct btrfs_iget_args *args = opaque;
5689        return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5690                args->root == BTRFS_I(inode)->root;
5691}
5692
5693static struct inode *btrfs_iget_locked(struct super_block *s,
5694                                       struct btrfs_key *location,
5695                                       struct btrfs_root *root)
5696{
5697        struct inode *inode;
5698        struct btrfs_iget_args args;
5699        unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5700
5701        args.location = location;
5702        args.root = root;
5703
5704        inode = iget5_locked(s, hashval, btrfs_find_actor,
5705                             btrfs_init_locked_inode,
5706                             (void *)&args);
5707        return inode;
5708}
5709
5710/* Get an inode object given its location and corresponding root.
5711 * Returns in *is_new if the inode was read from disk
5712 */
5713struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5714                              struct btrfs_root *root, int *new,
5715                              struct btrfs_path *path)
5716{
5717        struct inode *inode;
5718
5719        inode = btrfs_iget_locked(s, location, root);
5720        if (!inode)
5721                return ERR_PTR(-ENOMEM);
5722
5723        if (inode->i_state & I_NEW) {
5724                int ret;
5725
5726                ret = btrfs_read_locked_inode(inode, path);
5727                if (!ret) {
5728                        inode_tree_add(inode);
5729                        unlock_new_inode(inode);
5730                        if (new)
5731                                *new = 1;
5732                } else {
5733                        iget_failed(inode);
5734                        /*
5735                         * ret > 0 can come from btrfs_search_slot called by
5736                         * btrfs_read_locked_inode, this means the inode item
5737                         * was not found.
5738                         */
5739                        if (ret > 0)
5740                                ret = -ENOENT;
5741                        inode = ERR_PTR(ret);
5742                }
5743        }
5744
5745        return inode;
5746}
5747
5748struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5749                         struct btrfs_root *root, int *new)
5750{
5751        return btrfs_iget_path(s, location, root, new, NULL);
5752}
5753
5754static struct inode *new_simple_dir(struct super_block *s,
5755                                    struct btrfs_key *key,
5756                                    struct btrfs_root *root)
5757{
5758        struct inode *inode = new_inode(s);
5759
5760        if (!inode)
5761                return ERR_PTR(-ENOMEM);
5762
5763        BTRFS_I(inode)->root = root;
5764        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5765        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5766
5767        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5768        inode->i_op = &btrfs_dir_ro_inode_operations;
5769        inode->i_opflags &= ~IOP_XATTR;
5770        inode->i_fop = &simple_dir_operations;
5771        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5772        inode->i_mtime = current_time(inode);
5773        inode->i_atime = inode->i_mtime;
5774        inode->i_ctime = inode->i_mtime;
5775        BTRFS_I(inode)->i_otime = inode->i_mtime;
5776
5777        return inode;
5778}
5779
5780static inline u8 btrfs_inode_type(struct inode *inode)
5781{
5782        /*
5783         * Compile-time asserts that generic FT_* types still match
5784         * BTRFS_FT_* types
5785         */
5786        BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5787        BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5788        BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5789        BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5790        BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5791        BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5792        BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5793        BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5794
5795        return fs_umode_to_ftype(inode->i_mode);
5796}
5797
5798struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5799{
5800        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5801        struct inode *inode;
5802        struct btrfs_root *root = BTRFS_I(dir)->root;
5803        struct btrfs_root *sub_root = root;
5804        struct btrfs_key location;
5805        u8 di_type = 0;
5806        int index;
5807        int ret = 0;
5808
5809        if (dentry->d_name.len > BTRFS_NAME_LEN)
5810                return ERR_PTR(-ENAMETOOLONG);
5811
5812        ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5813        if (ret < 0)
5814                return ERR_PTR(ret);
5815
5816        if (location.type == BTRFS_INODE_ITEM_KEY) {
5817                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5818                if (IS_ERR(inode))
5819                        return inode;
5820
5821                /* Do extra check against inode mode with di_type */
5822                if (btrfs_inode_type(inode) != di_type) {
5823                        btrfs_crit(fs_info,
5824"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5825                                  inode->i_mode, btrfs_inode_type(inode),
5826                                  di_type);
5827                        iput(inode);
5828                        return ERR_PTR(-EUCLEAN);
5829                }
5830                return inode;
5831        }
5832
5833        index = srcu_read_lock(&fs_info->subvol_srcu);
5834        ret = fixup_tree_root_location(fs_info, dir, dentry,
5835                                       &location, &sub_root);
5836        if (ret < 0) {
5837                if (ret != -ENOENT)
5838                        inode = ERR_PTR(ret);
5839                else
5840                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5841        } else {
5842                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5843        }
5844        srcu_read_unlock(&fs_info->subvol_srcu, index);
5845
5846        if (!IS_ERR(inode) && root != sub_root) {
5847                down_read(&fs_info->cleanup_work_sem);
5848                if (!sb_rdonly(inode->i_sb))
5849                        ret = btrfs_orphan_cleanup(sub_root);
5850                up_read(&fs_info->cleanup_work_sem);
5851                if (ret) {
5852                        iput(inode);
5853                        inode = ERR_PTR(ret);
5854                }
5855        }
5856
5857        return inode;
5858}
5859
5860static int btrfs_dentry_delete(const struct dentry *dentry)
5861{
5862        struct btrfs_root *root;
5863        struct inode *inode = d_inode(dentry);
5864
5865        if (!inode && !IS_ROOT(dentry))
5866                inode = d_inode(dentry->d_parent);
5867
5868        if (inode) {
5869                root = BTRFS_I(inode)->root;
5870                if (btrfs_root_refs(&root->root_item) == 0)
5871                        return 1;
5872
5873                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5874                        return 1;
5875        }
5876        return 0;
5877}
5878
5879static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5880                                   unsigned int flags)
5881{
5882        struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5883
5884        if (inode == ERR_PTR(-ENOENT))
5885                inode = NULL;
5886        return d_splice_alias(inode, dentry);
5887}
5888
5889/*
5890 * All this infrastructure exists because dir_emit can fault, and we are holding
5891 * the tree lock when doing readdir.  For now just allocate a buffer and copy
5892 * our information into that, and then dir_emit from the buffer.  This is
5893 * similar to what NFS does, only we don't keep the buffer around in pagecache
5894 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5895 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5896 * tree lock.
5897 */
5898static int btrfs_opendir(struct inode *inode, struct file *file)
5899{
5900        struct btrfs_file_private *private;
5901
5902        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5903        if (!private)
5904                return -ENOMEM;
5905        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5906        if (!private->filldir_buf) {
5907                kfree(private);
5908                return -ENOMEM;
5909        }
5910        file->private_data = private;
5911        return 0;
5912}
5913
5914struct dir_entry {
5915        u64 ino;
5916        u64 offset;
5917        unsigned type;
5918        int name_len;
5919};
5920
5921static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5922{
5923        while (entries--) {
5924                struct dir_entry *entry = addr;
5925                char *name = (char *)(entry + 1);
5926
5927                ctx->pos = get_unaligned(&entry->offset);
5928                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5929                                         get_unaligned(&entry->ino),
5930                                         get_unaligned(&entry->type)))
5931                        return 1;
5932                addr += sizeof(struct dir_entry) +
5933                        get_unaligned(&entry->name_len);
5934                ctx->pos++;
5935        }
5936        return 0;
5937}
5938
5939static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5940{
5941        struct inode *inode = file_inode(file);
5942        struct btrfs_root *root = BTRFS_I(inode)->root;
5943        struct btrfs_file_private *private = file->private_data;
5944        struct btrfs_dir_item *di;
5945        struct btrfs_key key;
5946        struct btrfs_key found_key;
5947        struct btrfs_path *path;
5948        void *addr;
5949        struct list_head ins_list;
5950        struct list_head del_list;
5951        int ret;
5952        struct extent_buffer *leaf;
5953        int slot;
5954        char *name_ptr;
5955        int name_len;
5956        int entries = 0;
5957        int total_len = 0;
5958        bool put = false;
5959        struct btrfs_key location;
5960
5961        if (!dir_emit_dots(file, ctx))
5962                return 0;
5963
5964        path = btrfs_alloc_path();
5965        if (!path)
5966                return -ENOMEM;
5967
5968        addr = private->filldir_buf;
5969        path->reada = READA_FORWARD;
5970
5971        INIT_LIST_HEAD(&ins_list);
5972        INIT_LIST_HEAD(&del_list);
5973        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5974
5975again:
5976        key.type = BTRFS_DIR_INDEX_KEY;
5977        key.offset = ctx->pos;
5978        key.objectid = btrfs_ino(BTRFS_I(inode));
5979
5980        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5981        if (ret < 0)
5982                goto err;
5983
5984        while (1) {
5985                struct dir_entry *entry;
5986
5987                leaf = path->nodes[0];
5988                slot = path->slots[0];
5989                if (slot >= btrfs_header_nritems(leaf)) {
5990                        ret = btrfs_next_leaf(root, path);
5991                        if (ret < 0)
5992                                goto err;
5993                        else if (ret > 0)
5994                                break;
5995                        continue;
5996                }
5997
5998                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5999
6000                if (found_key.objectid != key.objectid)
6001                        break;
6002                if (found_key.type != BTRFS_DIR_INDEX_KEY)
6003                        break;
6004                if (found_key.offset < ctx->pos)
6005                        goto next;
6006                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6007                        goto next;
6008                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6009                name_len = btrfs_dir_name_len(leaf, di);
6010                if ((total_len + sizeof(struct dir_entry) + name_len) >=
6011                    PAGE_SIZE) {
6012                        btrfs_release_path(path);
6013                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6014                        if (ret)
6015                                goto nopos;
6016                        addr = private->filldir_buf;
6017                        entries = 0;
6018                        total_len = 0;
6019                        goto again;
6020                }
6021
6022                entry = addr;
6023                put_unaligned(name_len, &entry->name_len);
6024                name_ptr = (char *)(entry + 1);
6025                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6026                                   name_len);
6027                put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6028                                &entry->type);
6029                btrfs_dir_item_key_to_cpu(leaf, di, &location);
6030                put_unaligned(location.objectid, &entry->ino);
6031                put_unaligned(found_key.offset, &entry->offset);
6032                entries++;
6033                addr += sizeof(struct dir_entry) + name_len;
6034                total_len += sizeof(struct dir_entry) + name_len;
6035next:
6036                path->slots[0]++;
6037        }
6038        btrfs_release_path(path);
6039
6040        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6041        if (ret)
6042                goto nopos;
6043
6044        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6045        if (ret)
6046                goto nopos;
6047
6048        /*
6049         * Stop new entries from being returned after we return the last
6050         * entry.
6051         *
6052         * New directory entries are assigned a strictly increasing
6053         * offset.  This means that new entries created during readdir
6054         * are *guaranteed* to be seen in the future by that readdir.
6055         * This has broken buggy programs which operate on names as
6056         * they're returned by readdir.  Until we re-use freed offsets
6057         * we have this hack to stop new entries from being returned
6058         * under the assumption that they'll never reach this huge
6059         * offset.
6060         *
6061         * This is being careful not to overflow 32bit loff_t unless the
6062         * last entry requires it because doing so has broken 32bit apps
6063         * in the past.
6064         */
6065        if (ctx->pos >= INT_MAX)
6066                ctx->pos = LLONG_MAX;
6067        else
6068                ctx->pos = INT_MAX;
6069nopos:
6070        ret = 0;
6071err:
6072        if (put)
6073                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6074        btrfs_free_path(path);
6075        return ret;
6076}
6077
6078/*
6079 * This is somewhat expensive, updating the tree every time the
6080 * inode changes.  But, it is most likely to find the inode in cache.
6081 * FIXME, needs more benchmarking...there are no reasons other than performance
6082 * to keep or drop this code.
6083 */
6084static int btrfs_dirty_inode(struct inode *inode)
6085{
6086        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6087        struct btrfs_root *root = BTRFS_I(inode)->root;
6088        struct btrfs_trans_handle *trans;
6089        int ret;
6090
6091        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6092                return 0;
6093
6094        trans = btrfs_join_transaction(root);
6095        if (IS_ERR(trans))
6096                return PTR_ERR(trans);
6097
6098        ret = btrfs_update_inode(trans, root, inode);
6099        if (ret && ret == -ENOSPC) {
6100                /* whoops, lets try again with the full transaction */
6101                btrfs_end_transaction(trans);
6102                trans = btrfs_start_transaction(root, 1);
6103                if (IS_ERR(trans))
6104                        return PTR_ERR(trans);
6105
6106                ret = btrfs_update_inode(trans, root, inode);
6107        }
6108        btrfs_end_transaction(trans);
6109        if (BTRFS_I(inode)->delayed_node)
6110                btrfs_balance_delayed_items(fs_info);
6111
6112        return ret;
6113}
6114
6115/*
6116 * This is a copy of file_update_time.  We need this so we can return error on
6117 * ENOSPC for updating the inode in the case of file write and mmap writes.
6118 */
6119static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6120                             int flags)
6121{
6122        struct btrfs_root *root = BTRFS_I(inode)->root;
6123        bool dirty = flags & ~S_VERSION;
6124
6125        if (btrfs_root_readonly(root))
6126                return -EROFS;
6127
6128        if (flags & S_VERSION)
6129                dirty |= inode_maybe_inc_iversion(inode, dirty);
6130        if (flags & S_CTIME)
6131                inode->i_ctime = *now;
6132        if (flags & S_MTIME)
6133                inode->i_mtime = *now;
6134        if (flags & S_ATIME)
6135                inode->i_atime = *now;
6136        return dirty ? btrfs_dirty_inode(inode) : 0;
6137}
6138
6139/*
6140 * find the highest existing sequence number in a directory
6141 * and then set the in-memory index_cnt variable to reflect
6142 * free sequence numbers
6143 */
6144static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6145{
6146        struct btrfs_root *root = inode->root;
6147        struct btrfs_key key, found_key;
6148        struct btrfs_path *path;
6149        struct extent_buffer *leaf;
6150        int ret;
6151
6152        key.objectid = btrfs_ino(inode);
6153        key.type = BTRFS_DIR_INDEX_KEY;
6154        key.offset = (u64)-1;
6155
6156        path = btrfs_alloc_path();
6157        if (!path)
6158                return -ENOMEM;
6159
6160        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6161        if (ret < 0)
6162                goto out;
6163        /* FIXME: we should be able to handle this */
6164        if (ret == 0)
6165                goto out;
6166        ret = 0;
6167
6168        /*
6169         * MAGIC NUMBER EXPLANATION:
6170         * since we search a directory based on f_pos we have to start at 2
6171         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6172         * else has to start at 2
6173         */
6174        if (path->slots[0] == 0) {
6175                inode->index_cnt = 2;
6176                goto out;
6177        }
6178
6179        path->slots[0]--;
6180
6181        leaf = path->nodes[0];
6182        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6183
6184        if (found_key.objectid != btrfs_ino(inode) ||
6185            found_key.type != BTRFS_DIR_INDEX_KEY) {
6186                inode->index_cnt = 2;
6187                goto out;
6188        }
6189
6190        inode->index_cnt = found_key.offset + 1;
6191out:
6192        btrfs_free_path(path);
6193        return ret;
6194}
6195
6196/*
6197 * helper to find a free sequence number in a given directory.  This current
6198 * code is very simple, later versions will do smarter things in the btree
6199 */
6200int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6201{
6202        int ret = 0;
6203
6204        if (dir->index_cnt == (u64)-1) {
6205                ret = btrfs_inode_delayed_dir_index_count(dir);
6206                if (ret) {
6207                        ret = btrfs_set_inode_index_count(dir);
6208                        if (ret)
6209                                return ret;
6210                }
6211        }
6212
6213        *index = dir->index_cnt;
6214        dir->index_cnt++;
6215
6216        return ret;
6217}
6218
6219static int btrfs_insert_inode_locked(struct inode *inode)
6220{
6221        struct btrfs_iget_args args;
6222        args.location = &BTRFS_I(inode)->location;
6223        args.root = BTRFS_I(inode)->root;
6224
6225        return insert_inode_locked4(inode,
6226                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6227                   btrfs_find_actor, &args);
6228}
6229
6230/*
6231 * Inherit flags from the parent inode.
6232 *
6233 * Currently only the compression flags and the cow flags are inherited.
6234 */
6235static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6236{
6237        unsigned int flags;
6238
6239        if (!dir)
6240                return;
6241
6242        flags = BTRFS_I(dir)->flags;
6243
6244        if (flags & BTRFS_INODE_NOCOMPRESS) {
6245                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6246                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6247        } else if (flags & BTRFS_INODE_COMPRESS) {
6248                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6249                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6250        }
6251
6252        if (flags & BTRFS_INODE_NODATACOW) {
6253                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6254                if (S_ISREG(inode->i_mode))
6255                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6256        }
6257
6258        btrfs_sync_inode_flags_to_i_flags(inode);
6259}
6260
6261static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6262                                     struct btrfs_root *root,
6263                                     struct inode *dir,
6264                                     const char *name, int name_len,
6265                                     u64 ref_objectid, u64 objectid,
6266                                     umode_t mode, u64 *index)
6267{
6268        struct btrfs_fs_info *fs_info = root->fs_info;
6269        struct inode *inode;
6270        struct btrfs_inode_item *inode_item;
6271        struct btrfs_key *location;
6272        struct btrfs_path *path;
6273        struct btrfs_inode_ref *ref;
6274        struct btrfs_key key[2];
6275        u32 sizes[2];
6276        int nitems = name ? 2 : 1;
6277        unsigned long ptr;
6278        int ret;
6279
6280        path = btrfs_alloc_path();
6281        if (!path)
6282                return ERR_PTR(-ENOMEM);
6283
6284        inode = new_inode(fs_info->sb);
6285        if (!inode) {
6286                btrfs_free_path(path);
6287                return ERR_PTR(-ENOMEM);
6288        }
6289
6290        /*
6291         * O_TMPFILE, set link count to 0, so that after this point,
6292         * we fill in an inode item with the correct link count.
6293         */
6294        if (!name)
6295                set_nlink(inode, 0);
6296
6297        /*
6298         * we have to initialize this early, so we can reclaim the inode
6299         * number if we fail afterwards in this function.
6300         */
6301        inode->i_ino = objectid;
6302
6303        if (dir && name) {
6304                trace_btrfs_inode_request(dir);
6305
6306                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6307                if (ret) {
6308                        btrfs_free_path(path);
6309                        iput(inode);
6310                        return ERR_PTR(ret);
6311                }
6312        } else if (dir) {
6313                *index = 0;
6314        }
6315        /*
6316         * index_cnt is ignored for everything but a dir,
6317         * btrfs_set_inode_index_count has an explanation for the magic
6318         * number
6319         */
6320        BTRFS_I(inode)->index_cnt = 2;
6321        BTRFS_I(inode)->dir_index = *index;
6322        BTRFS_I(inode)->root = root;
6323        BTRFS_I(inode)->generation = trans->transid;
6324        inode->i_generation = BTRFS_I(inode)->generation;
6325
6326        /*
6327         * We could have gotten an inode number from somebody who was fsynced
6328         * and then removed in this same transaction, so let's just set full
6329         * sync since it will be a full sync anyway and this will blow away the
6330         * old info in the log.
6331         */
6332        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6333
6334        key[0].objectid = objectid;
6335        key[0].type = BTRFS_INODE_ITEM_KEY;
6336        key[0].offset = 0;
6337
6338        sizes[0] = sizeof(struct btrfs_inode_item);
6339
6340        if (name) {
6341                /*
6342                 * Start new inodes with an inode_ref. This is slightly more
6343                 * efficient for small numbers of hard links since they will
6344                 * be packed into one item. Extended refs will kick in if we
6345                 * add more hard links than can fit in the ref item.
6346                 */
6347                key[1].objectid = objectid;
6348                key[1].type = BTRFS_INODE_REF_KEY;
6349                key[1].offset = ref_objectid;
6350
6351                sizes[1] = name_len + sizeof(*ref);
6352        }
6353
6354        location = &BTRFS_I(inode)->location;
6355        location->objectid = objectid;
6356        location->offset = 0;
6357        location->type = BTRFS_INODE_ITEM_KEY;
6358
6359        ret = btrfs_insert_inode_locked(inode);
6360        if (ret < 0) {
6361                iput(inode);
6362                goto fail;
6363        }
6364
6365        path->leave_spinning = 1;
6366        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6367        if (ret != 0)
6368                goto fail_unlock;
6369
6370        inode_init_owner(inode, dir, mode);
6371        inode_set_bytes(inode, 0);
6372
6373        inode->i_mtime = current_time(inode);
6374        inode->i_atime = inode->i_mtime;
6375        inode->i_ctime = inode->i_mtime;
6376        BTRFS_I(inode)->i_otime = inode->i_mtime;
6377
6378        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6379                                  struct btrfs_inode_item);
6380        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6381                             sizeof(*inode_item));
6382        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6383
6384        if (name) {
6385                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6386                                     struct btrfs_inode_ref);
6387                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6388                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6389                ptr = (unsigned long)(ref + 1);
6390                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6391        }
6392
6393        btrfs_mark_buffer_dirty(path->nodes[0]);
6394        btrfs_free_path(path);
6395
6396        btrfs_inherit_iflags(inode, dir);
6397
6398        if (S_ISREG(mode)) {
6399                if (btrfs_test_opt(fs_info, NODATASUM))
6400                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6401                if (btrfs_test_opt(fs_info, NODATACOW))
6402                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6403                                BTRFS_INODE_NODATASUM;
6404        }
6405
6406        inode_tree_add(inode);
6407
6408        trace_btrfs_inode_new(inode);
6409        btrfs_set_inode_last_trans(trans, inode);
6410
6411        btrfs_update_root_times(trans, root);
6412
6413        ret = btrfs_inode_inherit_props(trans, inode, dir);
6414        if (ret)
6415                btrfs_err(fs_info,
6416                          "error inheriting props for ino %llu (root %llu): %d",
6417                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6418
6419        return inode;
6420
6421fail_unlock:
6422        discard_new_inode(inode);
6423fail:
6424        if (dir && name)
6425                BTRFS_I(dir)->index_cnt--;
6426        btrfs_free_path(path);
6427        return ERR_PTR(ret);
6428}
6429
6430/*
6431 * utility function to add 'inode' into 'parent_inode' with
6432 * a give name and a given sequence number.
6433 * if 'add_backref' is true, also insert a backref from the
6434 * inode to the parent directory.
6435 */
6436int btrfs_add_link(struct btrfs_trans_handle *trans,
6437                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6438                   const char *name, int name_len, int add_backref, u64 index)
6439{
6440        int ret = 0;
6441        struct btrfs_key key;
6442        struct btrfs_root *root = parent_inode->root;
6443        u64 ino = btrfs_ino(inode);
6444        u64 parent_ino = btrfs_ino(parent_inode);
6445
6446        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6447                memcpy(&key, &inode->root->root_key, sizeof(key));
6448        } else {
6449                key.objectid = ino;
6450                key.type = BTRFS_INODE_ITEM_KEY;
6451                key.offset = 0;
6452        }
6453
6454        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6455                ret = btrfs_add_root_ref(trans, key.objectid,
6456                                         root->root_key.objectid, parent_ino,
6457                                         index, name, name_len);
6458        } else if (add_backref) {
6459                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6460                                             parent_ino, index);
6461        }
6462
6463        /* Nothing to clean up yet */
6464        if (ret)
6465                return ret;
6466
6467        ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6468                                    btrfs_inode_type(&inode->vfs_inode), index);
6469        if (ret == -EEXIST || ret == -EOVERFLOW)
6470                goto fail_dir_item;
6471        else if (ret) {
6472                btrfs_abort_transaction(trans, ret);
6473                return ret;
6474        }
6475
6476        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6477                           name_len * 2);
6478        inode_inc_iversion(&parent_inode->vfs_inode);
6479        /*
6480         * If we are replaying a log tree, we do not want to update the mtime
6481         * and ctime of the parent directory with the current time, since the
6482         * log replay procedure is responsible for setting them to their correct
6483         * values (the ones it had when the fsync was done).
6484         */
6485        if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6486                struct timespec64 now = current_time(&parent_inode->vfs_inode);
6487
6488                parent_inode->vfs_inode.i_mtime = now;
6489                parent_inode->vfs_inode.i_ctime = now;
6490        }
6491        ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6492        if (ret)
6493                btrfs_abort_transaction(trans, ret);
6494        return ret;
6495
6496fail_dir_item:
6497        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6498                u64 local_index;
6499                int err;
6500                err = btrfs_del_root_ref(trans, key.objectid,
6501                                         root->root_key.objectid, parent_ino,
6502                                         &local_index, name, name_len);
6503                if (err)
6504                        btrfs_abort_transaction(trans, err);
6505        } else if (add_backref) {
6506                u64 local_index;
6507                int err;
6508
6509                err = btrfs_del_inode_ref(trans, root, name, name_len,
6510                                          ino, parent_ino, &local_index);
6511                if (err)
6512                        btrfs_abort_transaction(trans, err);
6513        }
6514
6515        /* Return the original error code */
6516        return ret;
6517}
6518
6519static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6520                            struct btrfs_inode *dir, struct dentry *dentry,
6521                            struct btrfs_inode *inode, int backref, u64 index)
6522{
6523        int err = btrfs_add_link(trans, dir, inode,
6524                                 dentry->d_name.name, dentry->d_name.len,
6525                                 backref, index);
6526        if (err > 0)
6527                err = -EEXIST;
6528        return err;
6529}
6530
6531static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6532                        umode_t mode, dev_t rdev)
6533{
6534        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6535        struct btrfs_trans_handle *trans;
6536        struct btrfs_root *root = BTRFS_I(dir)->root;
6537        struct inode *inode = NULL;
6538        int err;
6539        u64 objectid;
6540        u64 index = 0;
6541
6542        /*
6543         * 2 for inode item and ref
6544         * 2 for dir items
6545         * 1 for xattr if selinux is on
6546         */
6547        trans = btrfs_start_transaction(root, 5);
6548        if (IS_ERR(trans))
6549                return PTR_ERR(trans);
6550
6551        err = btrfs_find_free_ino(root, &objectid);
6552        if (err)
6553                goto out_unlock;
6554
6555        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6556                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6557                        mode, &index);
6558        if (IS_ERR(inode)) {
6559                err = PTR_ERR(inode);
6560                inode = NULL;
6561                goto out_unlock;
6562        }
6563
6564        /*
6565        * If the active LSM wants to access the inode during
6566        * d_instantiate it needs these. Smack checks to see
6567        * if the filesystem supports xattrs by looking at the
6568        * ops vector.
6569        */
6570        inode->i_op = &btrfs_special_inode_operations;
6571        init_special_inode(inode, inode->i_mode, rdev);
6572
6573        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6574        if (err)
6575                goto out_unlock;
6576
6577        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6578                        0, index);
6579        if (err)
6580                goto out_unlock;
6581
6582        btrfs_update_inode(trans, root, inode);
6583        d_instantiate_new(dentry, inode);
6584
6585out_unlock:
6586        btrfs_end_transaction(trans);
6587        btrfs_btree_balance_dirty(fs_info);
6588        if (err && inode) {
6589                inode_dec_link_count(inode);
6590                discard_new_inode(inode);
6591        }
6592        return err;
6593}
6594
6595static int btrfs_create(struct inode *dir, struct dentry *dentry,
6596                        umode_t mode, bool excl)
6597{
6598        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6599        struct btrfs_trans_handle *trans;
6600        struct btrfs_root *root = BTRFS_I(dir)->root;
6601        struct inode *inode = NULL;
6602        int err;
6603        u64 objectid;
6604        u64 index = 0;
6605
6606        /*
6607         * 2 for inode item and ref
6608         * 2 for dir items
6609         * 1 for xattr if selinux is on
6610         */
6611        trans = btrfs_start_transaction(root, 5);
6612        if (IS_ERR(trans))
6613                return PTR_ERR(trans);
6614
6615        err = btrfs_find_free_ino(root, &objectid);
6616        if (err)
6617                goto out_unlock;
6618
6619        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6620                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6621                        mode, &index);
6622        if (IS_ERR(inode)) {
6623                err = PTR_ERR(inode);
6624                inode = NULL;
6625                goto out_unlock;
6626        }
6627        /*
6628        * If the active LSM wants to access the inode during
6629        * d_instantiate it needs these. Smack checks to see
6630        * if the filesystem supports xattrs by looking at the
6631        * ops vector.
6632        */
6633        inode->i_fop = &btrfs_file_operations;
6634        inode->i_op = &btrfs_file_inode_operations;
6635        inode->i_mapping->a_ops = &btrfs_aops;
6636
6637        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6638        if (err)
6639                goto out_unlock;
6640
6641        err = btrfs_update_inode(trans, root, inode);
6642        if (err)
6643                goto out_unlock;
6644
6645        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6646                        0, index);
6647        if (err)
6648                goto out_unlock;
6649
6650        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6651        d_instantiate_new(dentry, inode);
6652
6653out_unlock:
6654        btrfs_end_transaction(trans);
6655        if (err && inode) {
6656                inode_dec_link_count(inode);
6657                discard_new_inode(inode);
6658        }
6659        btrfs_btree_balance_dirty(fs_info);
6660        return err;
6661}
6662
6663static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6664                      struct dentry *dentry)
6665{
6666        struct btrfs_trans_handle *trans = NULL;
6667        struct btrfs_root *root = BTRFS_I(dir)->root;
6668        struct inode *inode = d_inode(old_dentry);
6669        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6670        u64 index;
6671        int err;
6672        int drop_inode = 0;
6673
6674        /* do not allow sys_link's with other subvols of the same device */
6675        if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6676                return -EXDEV;
6677
6678        if (inode->i_nlink >= BTRFS_LINK_MAX)
6679                return -EMLINK;
6680
6681        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6682        if (err)
6683                goto fail;
6684
6685        /*
6686         * 2 items for inode and inode ref
6687         * 2 items for dir items
6688         * 1 item for parent inode
6689         * 1 item for orphan item deletion if O_TMPFILE
6690         */
6691        trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6692        if (IS_ERR(trans)) {
6693                err = PTR_ERR(trans);
6694                trans = NULL;
6695                goto fail;
6696        }
6697
6698        /* There are several dir indexes for this inode, clear the cache. */
6699        BTRFS_I(inode)->dir_index = 0ULL;
6700        inc_nlink(inode);
6701        inode_inc_iversion(inode);
6702        inode->i_ctime = current_time(inode);
6703        ihold(inode);
6704        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6705
6706        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6707                        1, index);
6708
6709        if (err) {
6710                drop_inode = 1;
6711        } else {
6712                struct dentry *parent = dentry->d_parent;
6713                int ret;
6714
6715                err = btrfs_update_inode(trans, root, inode);
6716                if (err)
6717                        goto fail;
6718                if (inode->i_nlink == 1) {
6719                        /*
6720                         * If new hard link count is 1, it's a file created
6721                         * with open(2) O_TMPFILE flag.
6722                         */
6723                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6724                        if (err)
6725                                goto fail;
6726                }
6727                d_instantiate(dentry, inode);
6728                ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6729                                         true, NULL);
6730                if (ret == BTRFS_NEED_TRANS_COMMIT) {
6731                        err = btrfs_commit_transaction(trans);
6732                        trans = NULL;
6733                }
6734        }
6735
6736fail:
6737        if (trans)
6738                btrfs_end_transaction(trans);
6739        if (drop_inode) {
6740                inode_dec_link_count(inode);
6741                iput(inode);
6742        }
6743        btrfs_btree_balance_dirty(fs_info);
6744        return err;
6745}
6746
6747static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6748{
6749        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6750        struct inode *inode = NULL;
6751        struct btrfs_trans_handle *trans;
6752        struct btrfs_root *root = BTRFS_I(dir)->root;
6753        int err = 0;
6754        u64 objectid = 0;
6755        u64 index = 0;
6756
6757        /*
6758         * 2 items for inode and ref
6759         * 2 items for dir items
6760         * 1 for xattr if selinux is on
6761         */
6762        trans = btrfs_start_transaction(root, 5);
6763        if (IS_ERR(trans))
6764                return PTR_ERR(trans);
6765
6766        err = btrfs_find_free_ino(root, &objectid);
6767        if (err)
6768                goto out_fail;
6769
6770        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6771                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6772                        S_IFDIR | mode, &index);
6773        if (IS_ERR(inode)) {
6774                err = PTR_ERR(inode);
6775                inode = NULL;
6776                goto out_fail;
6777        }
6778
6779        /* these must be set before we unlock the inode */
6780        inode->i_op = &btrfs_dir_inode_operations;
6781        inode->i_fop = &btrfs_dir_file_operations;
6782
6783        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6784        if (err)
6785                goto out_fail;
6786
6787        btrfs_i_size_write(BTRFS_I(inode), 0);
6788        err = btrfs_update_inode(trans, root, inode);
6789        if (err)
6790                goto out_fail;
6791
6792        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6793                        dentry->d_name.name,
6794                        dentry->d_name.len, 0, index);
6795        if (err)
6796                goto out_fail;
6797
6798        d_instantiate_new(dentry, inode);
6799
6800out_fail:
6801        btrfs_end_transaction(trans);
6802        if (err && inode) {
6803                inode_dec_link_count(inode);
6804                discard_new_inode(inode);
6805        }
6806        btrfs_btree_balance_dirty(fs_info);
6807        return err;
6808}
6809
6810static noinline int uncompress_inline(struct btrfs_path *path,
6811                                      struct page *page,
6812                                      size_t pg_offset, u64 extent_offset,
6813                                      struct btrfs_file_extent_item *item)
6814{
6815        int ret;
6816        struct extent_buffer *leaf = path->nodes[0];
6817        char *tmp;
6818        size_t max_size;
6819        unsigned long inline_size;
6820        unsigned long ptr;
6821        int compress_type;
6822
6823        WARN_ON(pg_offset != 0);
6824        compress_type = btrfs_file_extent_compression(leaf, item);
6825        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6826        inline_size = btrfs_file_extent_inline_item_len(leaf,
6827                                        btrfs_item_nr(path->slots[0]));
6828        tmp = kmalloc(inline_size, GFP_NOFS);
6829        if (!tmp)
6830                return -ENOMEM;
6831        ptr = btrfs_file_extent_inline_start(item);
6832
6833        read_extent_buffer(leaf, tmp, ptr, inline_size);
6834
6835        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6836        ret = btrfs_decompress(compress_type, tmp, page,
6837                               extent_offset, inline_size, max_size);
6838
6839        /*
6840         * decompression code contains a memset to fill in any space between the end
6841         * of the uncompressed data and the end of max_size in case the decompressed
6842         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6843         * the end of an inline extent and the beginning of the next block, so we
6844         * cover that region here.
6845         */
6846
6847        if (max_size + pg_offset < PAGE_SIZE) {
6848                char *map = kmap(page);
6849                memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6850                kunmap(page);
6851        }
6852        kfree(tmp);
6853        return ret;
6854}
6855
6856/*
6857 * a bit scary, this does extent mapping from logical file offset to the disk.
6858 * the ugly parts come from merging extents from the disk with the in-ram
6859 * representation.  This gets more complex because of the data=ordered code,
6860 * where the in-ram extents might be locked pending data=ordered completion.
6861 *
6862 * This also copies inline extents directly into the page.
6863 */
6864struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6865                                    struct page *page,
6866                                    size_t pg_offset, u64 start, u64 len,
6867                                    int create)
6868{
6869        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6870        int ret;
6871        int err = 0;
6872        u64 extent_start = 0;
6873        u64 extent_end = 0;
6874        u64 objectid = btrfs_ino(inode);
6875        int extent_type = -1;
6876        struct btrfs_path *path = NULL;
6877        struct btrfs_root *root = inode->root;
6878        struct btrfs_file_extent_item *item;
6879        struct extent_buffer *leaf;
6880        struct btrfs_key found_key;
6881        struct extent_map *em = NULL;
6882        struct extent_map_tree *em_tree = &inode->extent_tree;
6883        struct extent_io_tree *io_tree = &inode->io_tree;
6884        const bool new_inline = !page || create;
6885
6886        read_lock(&em_tree->lock);
6887        em = lookup_extent_mapping(em_tree, start, len);
6888        if (em)
6889                em->bdev = fs_info->fs_devices->latest_bdev;
6890        read_unlock(&em_tree->lock);
6891
6892        if (em) {
6893                if (em->start > start || em->start + em->len <= start)
6894                        free_extent_map(em);
6895                else if (em->block_start == EXTENT_MAP_INLINE && page)
6896                        free_extent_map(em);
6897                else
6898                        goto out;
6899        }
6900        em = alloc_extent_map();
6901        if (!em) {
6902                err = -ENOMEM;
6903                goto out;
6904        }
6905        em->bdev = fs_info->fs_devices->latest_bdev;
6906        em->start = EXTENT_MAP_HOLE;
6907        em->orig_start = EXTENT_MAP_HOLE;
6908        em->len = (u64)-1;
6909        em->block_len = (u64)-1;
6910
6911        path = btrfs_alloc_path();
6912        if (!path) {
6913                err = -ENOMEM;
6914                goto out;
6915        }
6916
6917        /* Chances are we'll be called again, so go ahead and do readahead */
6918        path->reada = READA_FORWARD;
6919
6920        /*
6921         * Unless we're going to uncompress the inline extent, no sleep would
6922         * happen.
6923         */
6924        path->leave_spinning = 1;
6925
6926        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6927        if (ret < 0) {
6928                err = ret;
6929                goto out;
6930        } else if (ret > 0) {
6931                if (path->slots[0] == 0)
6932                        goto not_found;
6933                path->slots[0]--;
6934        }
6935
6936        leaf = path->nodes[0];
6937        item = btrfs_item_ptr(leaf, path->slots[0],
6938                              struct btrfs_file_extent_item);
6939        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6940        if (found_key.objectid != objectid ||
6941            found_key.type != BTRFS_EXTENT_DATA_KEY) {
6942                /*
6943                 * If we backup past the first extent we want to move forward
6944                 * and see if there is an extent in front of us, otherwise we'll
6945                 * say there is a hole for our whole search range which can
6946                 * cause problems.
6947                 */
6948                extent_end = start;
6949                goto next;
6950        }
6951
6952        extent_type = btrfs_file_extent_type(leaf, item);
6953        extent_start = found_key.offset;
6954        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6955            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6956                /* Only regular file could have regular/prealloc extent */
6957                if (!S_ISREG(inode->vfs_inode.i_mode)) {
6958                        ret = -EUCLEAN;
6959                        btrfs_crit(fs_info,
6960                "regular/prealloc extent found for non-regular inode %llu",
6961                                   btrfs_ino(inode));
6962                        goto out;
6963                }
6964                extent_end = extent_start +
6965                       btrfs_file_extent_num_bytes(leaf, item);
6966
6967                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6968                                                       extent_start);
6969        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6970                size_t size;
6971
6972                size = btrfs_file_extent_ram_bytes(leaf, item);
6973                extent_end = ALIGN(extent_start + size,
6974                                   fs_info->sectorsize);
6975
6976                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6977                                                      path->slots[0],
6978                                                      extent_start);
6979        }
6980next:
6981        if (start >= extent_end) {
6982                path->slots[0]++;
6983                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6984                        ret = btrfs_next_leaf(root, path);
6985                        if (ret < 0) {
6986                                err = ret;
6987                                goto out;
6988                        } else if (ret > 0) {
6989                                goto not_found;
6990                        }
6991                        leaf = path->nodes[0];
6992                }
6993                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6994                if (found_key.objectid != objectid ||
6995                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6996                        goto not_found;
6997                if (start + len <= found_key.offset)
6998                        goto not_found;
6999                if (start > found_key.offset)
7000                        goto next;
7001
7002                /* New extent overlaps with existing one */
7003                em->start = start;
7004                em->orig_start = start;
7005                em->len = found_key.offset - start;
7006                em->block_start = EXTENT_MAP_HOLE;
7007                goto insert;
7008        }
7009
7010        btrfs_extent_item_to_extent_map(inode, path, item,
7011                        new_inline, em);
7012
7013        if (extent_type == BTRFS_FILE_EXTENT_REG ||
7014            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7015                goto insert;
7016        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7017                unsigned long ptr;
7018                char *map;
7019                size_t size;
7020                size_t extent_offset;
7021                size_t copy_size;
7022
7023                if (new_inline)
7024                        goto out;
7025
7026                size = btrfs_file_extent_ram_bytes(leaf, item);
7027                extent_offset = page_offset(page) + pg_offset - extent_start;
7028                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7029                                  size - extent_offset);
7030                em->start = extent_start + extent_offset;
7031                em->len = ALIGN(copy_size, fs_info->sectorsize);
7032                em->orig_block_len = em->len;
7033                em->orig_start = em->start;
7034                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7035
7036                btrfs_set_path_blocking(path);
7037                if (!PageUptodate(page)) {
7038                        if (btrfs_file_extent_compression(leaf, item) !=
7039                            BTRFS_COMPRESS_NONE) {
7040                                ret = uncompress_inline(path, page, pg_offset,
7041                                                        extent_offset, item);
7042                                if (ret) {
7043                                        err = ret;
7044                                        goto out;
7045                                }
7046                        } else {
7047                                map = kmap(page);
7048                                read_extent_buffer(leaf, map + pg_offset, ptr,
7049                                                   copy_size);
7050                                if (pg_offset + copy_size < PAGE_SIZE) {
7051                                        memset(map + pg_offset + copy_size, 0,
7052                                               PAGE_SIZE - pg_offset -
7053                                               copy_size);
7054                                }
7055                                kunmap(page);
7056                        }
7057                        flush_dcache_page(page);
7058                }
7059                set_extent_uptodate(io_tree, em->start,
7060                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
7061                goto insert;
7062        }
7063not_found:
7064        em->start = start;
7065        em->orig_start = start;
7066        em->len = len;
7067        em->block_start = EXTENT_MAP_HOLE;
7068insert:
7069        btrfs_release_path(path);
7070        if (em->start > start || extent_map_end(em) <= start) {
7071                btrfs_err(fs_info,
7072                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
7073                          em->start, em->len, start, len);
7074                err = -EIO;
7075                goto out;
7076        }
7077
7078        err = 0;
7079        write_lock(&em_tree->lock);
7080        err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7081        write_unlock(&em_tree->lock);
7082out:
7083        btrfs_free_path(path);
7084
7085        trace_btrfs_get_extent(root, inode, em);
7086
7087        if (err) {
7088                free_extent_map(em);
7089                return ERR_PTR(err);
7090        }
7091        BUG_ON(!em); /* Error is always set */
7092        return em;
7093}
7094
7095struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7096                                           u64 start, u64 len)
7097{
7098        struct extent_map *em;
7099        struct extent_map *hole_em = NULL;
7100        u64 delalloc_start = start;
7101        u64 end;
7102        u64 delalloc_len;
7103        u64 delalloc_end;
7104        int err = 0;
7105
7106        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7107        if (IS_ERR(em))
7108                return em;
7109        /*
7110         * If our em maps to:
7111         * - a hole or
7112         * - a pre-alloc extent,
7113         * there might actually be delalloc bytes behind it.
7114         */
7115        if (em->block_start != EXTENT_MAP_HOLE &&
7116            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7117                return em;
7118        else
7119                hole_em = em;
7120
7121        /* check to see if we've wrapped (len == -1 or similar) */
7122        end = start + len;
7123        if (end < start)
7124                end = (u64)-1;
7125        else
7126                end -= 1;
7127
7128        em = NULL;
7129
7130        /* ok, we didn't find anything, lets look for delalloc */
7131        delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7132                                 end, len, EXTENT_DELALLOC, 1);
7133        delalloc_end = delalloc_start + delalloc_len;
7134        if (delalloc_end < delalloc_start)
7135                delalloc_end = (u64)-1;
7136
7137        /*
7138         * We didn't find anything useful, return the original results from
7139         * get_extent()
7140         */
7141        if (delalloc_start > end || delalloc_end <= start) {
7142                em = hole_em;
7143                hole_em = NULL;
7144                goto out;
7145        }
7146
7147        /*
7148         * Adjust the delalloc_start to make sure it doesn't go backwards from
7149         * the start they passed in
7150         */
7151        delalloc_start = max(start, delalloc_start);
7152        delalloc_len = delalloc_end - delalloc_start;
7153
7154        if (delalloc_len > 0) {
7155                u64 hole_start;
7156                u64 hole_len;
7157                const u64 hole_end = extent_map_end(hole_em);
7158
7159                em = alloc_extent_map();
7160                if (!em) {
7161                        err = -ENOMEM;
7162                        goto out;
7163                }
7164                em->bdev = NULL;
7165
7166                ASSERT(hole_em);
7167                /*
7168                 * When btrfs_get_extent can't find anything it returns one
7169                 * huge hole
7170                 *
7171                 * Make sure what it found really fits our range, and adjust to
7172                 * make sure it is based on the start from the caller
7173                 */
7174                if (hole_end <= start || hole_em->start > end) {
7175                       free_extent_map(hole_em);
7176                       hole_em = NULL;
7177                } else {
7178                       hole_start = max(hole_em->start, start);
7179                       hole_len = hole_end - hole_start;
7180                }
7181
7182                if (hole_em && delalloc_start > hole_start) {
7183                        /*
7184                         * Our hole starts before our delalloc, so we have to
7185                         * return just the parts of the hole that go until the
7186                         * delalloc starts
7187                         */
7188                        em->len = min(hole_len, delalloc_start - hole_start);
7189                        em->start = hole_start;
7190                        em->orig_start = hole_start;
7191                        /*
7192                         * Don't adjust block start at all, it is fixed at
7193                         * EXTENT_MAP_HOLE
7194                         */
7195                        em->block_start = hole_em->block_start;
7196                        em->block_len = hole_len;
7197                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7198                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7199                } else {
7200                        /*
7201                         * Hole is out of passed range or it starts after
7202                         * delalloc range
7203                         */
7204                        em->start = delalloc_start;
7205                        em->len = delalloc_len;
7206                        em->orig_start = delalloc_start;
7207                        em->block_start = EXTENT_MAP_DELALLOC;
7208                        em->block_len = delalloc_len;
7209                }
7210        } else {
7211                return hole_em;
7212        }
7213out:
7214
7215        free_extent_map(hole_em);
7216        if (err) {
7217                free_extent_map(em);
7218                return ERR_PTR(err);
7219        }
7220        return em;
7221}
7222
7223static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7224                                                  const u64 start,
7225                                                  const u64 len,
7226                                                  const u64 orig_start,
7227                                                  const u64 block_start,
7228                                                  const u64 block_len,
7229                                                  const u64 orig_block_len,
7230                                                  const u64 ram_bytes,
7231                                                  const int type)
7232{
7233        struct extent_map *em = NULL;
7234        int ret;
7235
7236        if (type != BTRFS_ORDERED_NOCOW) {
7237                em = create_io_em(inode, start, len, orig_start,
7238                                  block_start, block_len, orig_block_len,
7239                                  ram_bytes,
7240                                  BTRFS_COMPRESS_NONE, /* compress_type */
7241                                  type);
7242                if (IS_ERR(em))
7243                        goto out;
7244        }
7245        ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7246                                           len, block_len, type);
7247        if (ret) {
7248                if (em) {
7249                        free_extent_map(em);
7250                        btrfs_drop_extent_cache(BTRFS_I(inode), start,
7251                                                start + len - 1, 0);
7252                }
7253                em = ERR_PTR(ret);
7254        }
7255 out:
7256
7257        return em;
7258}
7259
7260static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7261                                                  u64 start, u64 len)
7262{
7263        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7264        struct btrfs_root *root = BTRFS_I(inode)->root;
7265        struct extent_map *em;
7266        struct btrfs_key ins;
7267        u64 alloc_hint;
7268        int ret;
7269
7270        alloc_hint = get_extent_allocation_hint(inode, start, len);
7271        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7272                                   0, alloc_hint, &ins, 1, 1);
7273        if (ret)
7274                return ERR_PTR(ret);
7275
7276        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7277                                     ins.objectid, ins.offset, ins.offset,
7278                                     ins.offset, BTRFS_ORDERED_REGULAR);
7279        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7280        if (IS_ERR(em))
7281                btrfs_free_reserved_extent(fs_info, ins.objectid,
7282                                           ins.offset, 1);
7283
7284        return em;
7285}
7286
7287/*
7288 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7289 * block must be cow'd
7290 */
7291noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7292                              u64 *orig_start, u64 *orig_block_len,
7293                              u64 *ram_bytes)
7294{
7295        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7296        struct btrfs_path *path;
7297        int ret;
7298        struct extent_buffer *leaf;
7299        struct btrfs_root *root = BTRFS_I(inode)->root;
7300        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7301        struct btrfs_file_extent_item *fi;
7302        struct btrfs_key key;
7303        u64 disk_bytenr;
7304        u64 backref_offset;
7305        u64 extent_end;
7306        u64 num_bytes;
7307        int slot;
7308        int found_type;
7309        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7310
7311        path = btrfs_alloc_path();
7312        if (!path)
7313                return -ENOMEM;
7314
7315        ret = btrfs_lookup_file_extent(NULL, root, path,
7316                        btrfs_ino(BTRFS_I(inode)), offset, 0);
7317        if (ret < 0)
7318                goto out;
7319
7320        slot = path->slots[0];
7321        if (ret == 1) {
7322                if (slot == 0) {
7323                        /* can't find the item, must cow */
7324                        ret = 0;
7325                        goto out;
7326                }
7327                slot--;
7328        }
7329        ret = 0;
7330        leaf = path->nodes[0];
7331        btrfs_item_key_to_cpu(leaf, &key, slot);
7332        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7333            key.type != BTRFS_EXTENT_DATA_KEY) {
7334                /* not our file or wrong item type, must cow */
7335                goto out;
7336        }
7337
7338        if (key.offset > offset) {
7339                /* Wrong offset, must cow */
7340                goto out;
7341        }
7342
7343        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7344        found_type = btrfs_file_extent_type(leaf, fi);
7345        if (found_type != BTRFS_FILE_EXTENT_REG &&
7346            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7347                /* not a regular extent, must cow */
7348                goto out;
7349        }
7350
7351        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7352                goto out;
7353
7354        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7355        if (extent_end <= offset)
7356                goto out;
7357
7358        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7359        if (disk_bytenr == 0)
7360                goto out;
7361
7362        if (btrfs_file_extent_compression(leaf, fi) ||
7363            btrfs_file_extent_encryption(leaf, fi) ||
7364            btrfs_file_extent_other_encoding(leaf, fi))
7365                goto out;
7366
7367        /*
7368         * Do the same check as in btrfs_cross_ref_exist but without the
7369         * unnecessary search.
7370         */
7371        if (btrfs_file_extent_generation(leaf, fi) <=
7372            btrfs_root_last_snapshot(&root->root_item))
7373                goto out;
7374
7375        backref_offset = btrfs_file_extent_offset(leaf, fi);
7376
7377        if (orig_start) {
7378                *orig_start = key.offset - backref_offset;
7379                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7380                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7381        }
7382
7383        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7384                goto out;
7385
7386        num_bytes = min(offset + *len, extent_end) - offset;
7387        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7388                u64 range_end;
7389
7390                range_end = round_up(offset + num_bytes,
7391                                     root->fs_info->sectorsize) - 1;
7392                ret = test_range_bit(io_tree, offset, range_end,
7393                                     EXTENT_DELALLOC, 0, NULL);
7394                if (ret) {
7395                        ret = -EAGAIN;
7396                        goto out;
7397                }
7398        }
7399
7400        btrfs_release_path(path);
7401
7402        /*
7403         * look for other files referencing this extent, if we
7404         * find any we must cow
7405         */
7406
7407        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7408                                    key.offset - backref_offset, disk_bytenr);
7409        if (ret) {
7410                ret = 0;
7411                goto out;
7412        }
7413
7414        /*
7415         * adjust disk_bytenr and num_bytes to cover just the bytes
7416         * in this extent we are about to write.  If there
7417         * are any csums in that range we have to cow in order
7418         * to keep the csums correct
7419         */
7420        disk_bytenr += backref_offset;
7421        disk_bytenr += offset - key.offset;
7422        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7423                goto out;
7424        /*
7425         * all of the above have passed, it is safe to overwrite this extent
7426         * without cow
7427         */
7428        *len = num_bytes;
7429        ret = 1;
7430out:
7431        btrfs_free_path(path);
7432        return ret;
7433}
7434
7435static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7436                              struct extent_state **cached_state, int writing)
7437{
7438        struct btrfs_ordered_extent *ordered;
7439        int ret = 0;
7440
7441        while (1) {
7442                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443                                 cached_state);
7444                /*
7445                 * We're concerned with the entire range that we're going to be
7446                 * doing DIO to, so we need to make sure there's no ordered
7447                 * extents in this range.
7448                 */
7449                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7450                                                     lockend - lockstart + 1);
7451
7452                /*
7453                 * We need to make sure there are no buffered pages in this
7454                 * range either, we could have raced between the invalidate in
7455                 * generic_file_direct_write and locking the extent.  The
7456                 * invalidate needs to happen so that reads after a write do not
7457                 * get stale data.
7458                 */
7459                if (!ordered &&
7460                    (!writing || !filemap_range_has_page(inode->i_mapping,
7461                                                         lockstart, lockend)))
7462                        break;
7463
7464                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7465                                     cached_state);
7466
7467                if (ordered) {
7468                        /*
7469                         * If we are doing a DIO read and the ordered extent we
7470                         * found is for a buffered write, we can not wait for it
7471                         * to complete and retry, because if we do so we can
7472                         * deadlock with concurrent buffered writes on page
7473                         * locks. This happens only if our DIO read covers more
7474                         * than one extent map, if at this point has already
7475                         * created an ordered extent for a previous extent map
7476                         * and locked its range in the inode's io tree, and a
7477                         * concurrent write against that previous extent map's
7478                         * range and this range started (we unlock the ranges
7479                         * in the io tree only when the bios complete and
7480                         * buffered writes always lock pages before attempting
7481                         * to lock range in the io tree).
7482                         */
7483                        if (writing ||
7484                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7485                                btrfs_start_ordered_extent(inode, ordered, 1);
7486                        else
7487                                ret = -ENOTBLK;
7488                        btrfs_put_ordered_extent(ordered);
7489                } else {
7490                        /*
7491                         * We could trigger writeback for this range (and wait
7492                         * for it to complete) and then invalidate the pages for
7493                         * this range (through invalidate_inode_pages2_range()),
7494                         * but that can lead us to a deadlock with a concurrent
7495                         * call to readpages() (a buffered read or a defrag call
7496                         * triggered a readahead) on a page lock due to an
7497                         * ordered dio extent we created before but did not have
7498                         * yet a corresponding bio submitted (whence it can not
7499                         * complete), which makes readpages() wait for that
7500                         * ordered extent to complete while holding a lock on
7501                         * that page.
7502                         */
7503                        ret = -ENOTBLK;
7504                }
7505
7506                if (ret)
7507                        break;
7508
7509                cond_resched();
7510        }
7511
7512        return ret;
7513}
7514
7515/* The callers of this must take lock_extent() */
7516static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7517                                       u64 orig_start, u64 block_start,
7518                                       u64 block_len, u64 orig_block_len,
7519                                       u64 ram_bytes, int compress_type,
7520                                       int type)
7521{
7522        struct extent_map_tree *em_tree;
7523        struct extent_map *em;
7524        struct btrfs_root *root = BTRFS_I(inode)->root;
7525        int ret;
7526
7527        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7528               type == BTRFS_ORDERED_COMPRESSED ||
7529               type == BTRFS_ORDERED_NOCOW ||
7530               type == BTRFS_ORDERED_REGULAR);
7531
7532        em_tree = &BTRFS_I(inode)->extent_tree;
7533        em = alloc_extent_map();
7534        if (!em)
7535                return ERR_PTR(-ENOMEM);
7536
7537        em->start = start;
7538        em->orig_start = orig_start;
7539        em->len = len;
7540        em->block_len = block_len;
7541        em->block_start = block_start;
7542        em->bdev = root->fs_info->fs_devices->latest_bdev;
7543        em->orig_block_len = orig_block_len;
7544        em->ram_bytes = ram_bytes;
7545        em->generation = -1;
7546        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7547        if (type == BTRFS_ORDERED_PREALLOC) {
7548                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7549        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7550                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7551                em->compress_type = compress_type;
7552        }
7553
7554        do {
7555                btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7556                                em->start + em->len - 1, 0);
7557                write_lock(&em_tree->lock);
7558                ret = add_extent_mapping(em_tree, em, 1);
7559                write_unlock(&em_tree->lock);
7560                /*
7561                 * The caller has taken lock_extent(), who could race with us
7562                 * to add em?
7563                 */
7564        } while (ret == -EEXIST);
7565
7566        if (ret) {
7567                free_extent_map(em);
7568                return ERR_PTR(ret);
7569        }
7570
7571        /* em got 2 refs now, callers needs to do free_extent_map once. */
7572        return em;
7573}
7574
7575
7576static int btrfs_get_blocks_direct_read(struct extent_map *em,
7577                                        struct buffer_head *bh_result,
7578                                        struct inode *inode,
7579                                        u64 start, u64 len)
7580{
7581        if (em->block_start == EXTENT_MAP_HOLE ||
7582                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7583                return -ENOENT;
7584
7585        len = min(len, em->len - (start - em->start));
7586
7587        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7588                inode->i_blkbits;
7589        bh_result->b_size = len;
7590        bh_result->b_bdev = em->bdev;
7591        set_buffer_mapped(bh_result);
7592
7593        return 0;
7594}
7595
7596static int btrfs_get_blocks_direct_write(struct extent_map **map,
7597                                         struct buffer_head *bh_result,
7598                                         struct inode *inode,
7599                                         struct btrfs_dio_data *dio_data,
7600                                         u64 start, u64 len)
7601{
7602        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7603        struct extent_map *em = *map;
7604        int ret = 0;
7605
7606        /*
7607         * We don't allocate a new extent in the following cases
7608         *
7609         * 1) The inode is marked as NODATACOW. In this case we'll just use the
7610         * existing extent.
7611         * 2) The extent is marked as PREALLOC. We're good to go here and can
7612         * just use the extent.
7613         *
7614         */
7615        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7616            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7617             em->block_start != EXTENT_MAP_HOLE)) {
7618                int type;
7619                u64 block_start, orig_start, orig_block_len, ram_bytes;
7620
7621                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7622                        type = BTRFS_ORDERED_PREALLOC;
7623                else
7624                        type = BTRFS_ORDERED_NOCOW;
7625                len = min(len, em->len - (start - em->start));
7626                block_start = em->block_start + (start - em->start);
7627
7628                if (can_nocow_extent(inode, start, &len, &orig_start,
7629                                     &orig_block_len, &ram_bytes) == 1 &&
7630                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7631                        struct extent_map *em2;
7632
7633                        em2 = btrfs_create_dio_extent(inode, start, len,
7634                                                      orig_start, block_start,
7635                                                      len, orig_block_len,
7636                                                      ram_bytes, type);
7637                        btrfs_dec_nocow_writers(fs_info, block_start);
7638                        if (type == BTRFS_ORDERED_PREALLOC) {
7639                                free_extent_map(em);
7640                                *map = em = em2;
7641                        }
7642
7643                        if (em2 && IS_ERR(em2)) {
7644                                ret = PTR_ERR(em2);
7645                                goto out;
7646                        }
7647                        /*
7648                         * For inode marked NODATACOW or extent marked PREALLOC,
7649                         * use the existing or preallocated extent, so does not
7650                         * need to adjust btrfs_space_info's bytes_may_use.
7651                         */
7652                        btrfs_free_reserved_data_space_noquota(inode, start,
7653                                                               len);
7654                        goto skip_cow;
7655                }
7656        }
7657
7658        /* this will cow the extent */
7659        len = bh_result->b_size;
7660        free_extent_map(em);
7661        *map = em = btrfs_new_extent_direct(inode, start, len);
7662        if (IS_ERR(em)) {
7663                ret = PTR_ERR(em);
7664                goto out;
7665        }
7666
7667        len = min(len, em->len - (start - em->start));
7668
7669skip_cow:
7670        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7671                inode->i_blkbits;
7672        bh_result->b_size = len;
7673        bh_result->b_bdev = em->bdev;
7674        set_buffer_mapped(bh_result);
7675
7676        if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7677                set_buffer_new(bh_result);
7678
7679        /*
7680         * Need to update the i_size under the extent lock so buffered
7681         * readers will get the updated i_size when we unlock.
7682         */
7683        if (!dio_data->overwrite && start + len > i_size_read(inode))
7684                i_size_write(inode, start + len);
7685
7686        WARN_ON(dio_data->reserve < len);
7687        dio_data->reserve -= len;
7688        dio_data->unsubmitted_oe_range_end = start + len;
7689        current->journal_info = dio_data;
7690out:
7691        return ret;
7692}
7693
7694static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7695                                   struct buffer_head *bh_result, int create)
7696{
7697        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7698        struct extent_map *em;
7699        struct extent_state *cached_state = NULL;
7700        struct btrfs_dio_data *dio_data = NULL;
7701        u64 start = iblock << inode->i_blkbits;
7702        u64 lockstart, lockend;
7703        u64 len = bh_result->b_size;
7704        int unlock_bits = EXTENT_LOCKED;
7705        int ret = 0;
7706
7707        if (create)
7708                unlock_bits |= EXTENT_DIRTY;
7709        else
7710                len = min_t(u64, len, fs_info->sectorsize);
7711
7712        lockstart = start;
7713        lockend = start + len - 1;
7714
7715        if (current->journal_info) {
7716                /*
7717                 * Need to pull our outstanding extents and set journal_info to NULL so
7718                 * that anything that needs to check if there's a transaction doesn't get
7719                 * confused.
7720                 */
7721                dio_data = current->journal_info;
7722                current->journal_info = NULL;
7723        }
7724
7725        /*
7726         * If this errors out it's because we couldn't invalidate pagecache for
7727         * this range and we need to fallback to buffered.
7728         */
7729        if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7730                               create)) {
7731                ret = -ENOTBLK;
7732                goto err;
7733        }
7734
7735        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7736        if (IS_ERR(em)) {
7737                ret = PTR_ERR(em);
7738                goto unlock_err;
7739        }
7740
7741        /*
7742         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7743         * io.  INLINE is special, and we could probably kludge it in here, but
7744         * it's still buffered so for safety lets just fall back to the generic
7745         * buffered path.
7746         *
7747         * For COMPRESSED we _have_ to read the entire extent in so we can
7748         * decompress it, so there will be buffering required no matter what we
7749         * do, so go ahead and fallback to buffered.
7750         *
7751         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7752         * to buffered IO.  Don't blame me, this is the price we pay for using
7753         * the generic code.
7754         */
7755        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7756            em->block_start == EXTENT_MAP_INLINE) {
7757                free_extent_map(em);
7758                ret = -ENOTBLK;
7759                goto unlock_err;
7760        }
7761
7762        if (create) {
7763                ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7764                                                    dio_data, start, len);
7765                if (ret < 0)
7766                        goto unlock_err;
7767
7768                /* clear and unlock the entire range */
7769                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7770                                 unlock_bits, 1, 0, &cached_state);
7771        } else {
7772                ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7773                                                   start, len);
7774                /* Can be negative only if we read from a hole */
7775                if (ret < 0) {
7776                        ret = 0;
7777                        free_extent_map(em);
7778                        goto unlock_err;
7779                }
7780                /*
7781                 * We need to unlock only the end area that we aren't using.
7782                 * The rest is going to be unlocked by the endio routine.
7783                 */
7784                lockstart = start + bh_result->b_size;
7785                if (lockstart < lockend) {
7786                        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7787                                         lockend, unlock_bits, 1, 0,
7788                                         &cached_state);
7789                } else {
7790                        free_extent_state(cached_state);
7791                }
7792        }
7793
7794        free_extent_map(em);
7795
7796        return 0;
7797
7798unlock_err:
7799        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7800                         unlock_bits, 1, 0, &cached_state);
7801err:
7802        if (dio_data)
7803                current->journal_info = dio_data;
7804        return ret;
7805}
7806
7807static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7808                                                 struct bio *bio,
7809                                                 int mirror_num)
7810{
7811        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7812        blk_status_t ret;
7813
7814        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7815
7816        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7817        if (ret)
7818                return ret;
7819
7820        ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7821
7822        return ret;
7823}
7824
7825static int btrfs_check_dio_repairable(struct inode *inode,
7826                                      struct bio *failed_bio,
7827                                      struct io_failure_record *failrec,
7828                                      int failed_mirror)
7829{
7830        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7831        int num_copies;
7832
7833        num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7834        if (num_copies == 1) {
7835                /*
7836                 * we only have a single copy of the data, so don't bother with
7837                 * all the retry and error correction code that follows. no
7838                 * matter what the error is, it is very likely to persist.
7839                 */
7840                btrfs_debug(fs_info,
7841                        "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7842                        num_copies, failrec->this_mirror, failed_mirror);
7843                return 0;
7844        }
7845
7846        failrec->failed_mirror = failed_mirror;
7847        failrec->this_mirror++;
7848        if (failrec->this_mirror == failed_mirror)
7849                failrec->this_mirror++;
7850
7851        if (failrec->this_mirror > num_copies) {
7852                btrfs_debug(fs_info,
7853                        "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7854                        num_copies, failrec->this_mirror, failed_mirror);
7855                return 0;
7856        }
7857
7858        return 1;
7859}
7860
7861static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7862                                   struct page *page, unsigned int pgoff,
7863                                   u64 start, u64 end, int failed_mirror,
7864                                   bio_end_io_t *repair_endio, void *repair_arg)
7865{
7866        struct io_failure_record *failrec;
7867        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7868        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7869        struct bio *bio;
7870        int isector;
7871        unsigned int read_mode = 0;
7872        int segs;
7873        int ret;
7874        blk_status_t status;
7875        struct bio_vec bvec;
7876
7877        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7878
7879        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7880        if (ret)
7881                return errno_to_blk_status(ret);
7882
7883        ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7884                                         failed_mirror);
7885        if (!ret) {
7886                free_io_failure(failure_tree, io_tree, failrec);
7887                return BLK_STS_IOERR;
7888        }
7889
7890        segs = bio_segments(failed_bio);
7891        bio_get_first_bvec(failed_bio, &bvec);
7892        if (segs > 1 ||
7893            (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7894                read_mode |= REQ_FAILFAST_DEV;
7895
7896        isector = start - btrfs_io_bio(failed_bio)->logical;
7897        isector >>= inode->i_sb->s_blocksize_bits;
7898        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7899                                pgoff, isector, repair_endio, repair_arg);
7900        bio->bi_opf = REQ_OP_READ | read_mode;
7901
7902        btrfs_debug(BTRFS_I(inode)->root->fs_info,
7903                    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7904                    read_mode, failrec->this_mirror, failrec->in_validation);
7905
7906        status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7907        if (status) {
7908                free_io_failure(failure_tree, io_tree, failrec);
7909                bio_put(bio);
7910        }
7911
7912        return status;
7913}
7914
7915struct btrfs_retry_complete {
7916        struct completion done;
7917        struct inode *inode;
7918        u64 start;
7919        int uptodate;
7920};
7921
7922static void btrfs_retry_endio_nocsum(struct bio *bio)
7923{
7924        struct btrfs_retry_complete *done = bio->bi_private;
7925        struct inode *inode = done->inode;
7926        struct bio_vec *bvec;
7927        struct extent_io_tree *io_tree, *failure_tree;
7928        struct bvec_iter_all iter_all;
7929
7930        if (bio->bi_status)
7931                goto end;
7932
7933        ASSERT(bio->bi_vcnt == 1);
7934        io_tree = &BTRFS_I(inode)->io_tree;
7935        failure_tree = &BTRFS_I(inode)->io_failure_tree;
7936        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7937
7938        done->uptodate = 1;
7939        ASSERT(!bio_flagged(bio, BIO_CLONED));
7940        bio_for_each_segment_all(bvec, bio, iter_all)
7941                clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7942                                 io_tree, done->start, bvec->bv_page,
7943                                 btrfs_ino(BTRFS_I(inode)), 0);
7944end:
7945        complete(&done->done);
7946        bio_put(bio);
7947}
7948
7949static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7950                                                struct btrfs_io_bio *io_bio)
7951{
7952        struct btrfs_fs_info *fs_info;
7953        struct bio_vec bvec;
7954        struct bvec_iter iter;
7955        struct btrfs_retry_complete done;
7956        u64 start;
7957        unsigned int pgoff;
7958        u32 sectorsize;
7959        int nr_sectors;
7960        blk_status_t ret;
7961        blk_status_t err = BLK_STS_OK;
7962
7963        fs_info = BTRFS_I(inode)->root->fs_info;
7964        sectorsize = fs_info->sectorsize;
7965
7966        start = io_bio->logical;
7967        done.inode = inode;
7968        io_bio->bio.bi_iter = io_bio->iter;
7969
7970        bio_for_each_segment(bvec, &io_bio->bio, iter) {
7971                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7972                pgoff = bvec.bv_offset;
7973
7974next_block_or_try_again:
7975                done.uptodate = 0;
7976                done.start = start;
7977                init_completion(&done.done);
7978
7979                ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7980                                pgoff, start, start + sectorsize - 1,
7981                                io_bio->mirror_num,
7982                                btrfs_retry_endio_nocsum, &done);
7983                if (ret) {
7984                        err = ret;
7985                        goto next;
7986                }
7987
7988                wait_for_completion_io(&done.done);
7989
7990                if (!done.uptodate) {
7991                        /* We might have another mirror, so try again */
7992                        goto next_block_or_try_again;
7993                }
7994
7995next:
7996                start += sectorsize;
7997
7998                nr_sectors--;
7999                if (nr_sectors) {
8000                        pgoff += sectorsize;
8001                        ASSERT(pgoff < PAGE_SIZE);
8002                        goto next_block_or_try_again;
8003                }
8004        }
8005
8006        return err;
8007}
8008
8009static void btrfs_retry_endio(struct bio *bio)
8010{
8011        struct btrfs_retry_complete *done = bio->bi_private;
8012        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8013        struct extent_io_tree *io_tree, *failure_tree;
8014        struct inode *inode = done->inode;
8015        struct bio_vec *bvec;
8016        int uptodate;
8017        int ret;
8018        int i = 0;
8019        struct bvec_iter_all iter_all;
8020
8021        if (bio->bi_status)
8022                goto end;
8023
8024        uptodate = 1;
8025
8026        ASSERT(bio->bi_vcnt == 1);
8027        ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8028
8029        io_tree = &BTRFS_I(inode)->io_tree;
8030        failure_tree = &BTRFS_I(inode)->io_failure_tree;
8031
8032        ASSERT(!bio_flagged(bio, BIO_CLONED));
8033        bio_for_each_segment_all(bvec, bio, iter_all) {
8034                ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8035                                             bvec->bv_offset, done->start,
8036                                             bvec->bv_len);
8037                if (!ret)
8038                        clean_io_failure(BTRFS_I(inode)->root->fs_info,
8039                                         failure_tree, io_tree, done->start,
8040                                         bvec->bv_page,
8041                                         btrfs_ino(BTRFS_I(inode)),
8042                                         bvec->bv_offset);
8043                else
8044                        uptodate = 0;
8045                i++;
8046        }
8047
8048        done->uptodate = uptodate;
8049end:
8050        complete(&done->done);
8051        bio_put(bio);
8052}
8053
8054static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8055                struct btrfs_io_bio *io_bio, blk_status_t err)
8056{
8057        struct btrfs_fs_info *fs_info;
8058        struct bio_vec bvec;
8059        struct bvec_iter iter;
8060        struct btrfs_retry_complete done;
8061        u64 start;
8062        u64 offset = 0;
8063        u32 sectorsize;
8064        int nr_sectors;
8065        unsigned int pgoff;
8066        int csum_pos;
8067        bool uptodate = (err == 0);
8068        int ret;
8069        blk_status_t status;
8070
8071        fs_info = BTRFS_I(inode)->root->fs_info;
8072        sectorsize = fs_info->sectorsize;
8073
8074        err = BLK_STS_OK;
8075        start = io_bio->logical;
8076        done.inode = inode;
8077        io_bio->bio.bi_iter = io_bio->iter;
8078
8079        bio_for_each_segment(bvec, &io_bio->bio, iter) {
8080                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8081
8082                pgoff = bvec.bv_offset;
8083next_block:
8084                if (uptodate) {
8085                        csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8086                        ret = __readpage_endio_check(inode, io_bio, csum_pos,
8087                                        bvec.bv_page, pgoff, start, sectorsize);
8088                        if (likely(!ret))
8089                                goto next;
8090                }
8091try_again:
8092                done.uptodate = 0;
8093                done.start = start;
8094                init_completion(&done.done);
8095
8096                status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8097                                        pgoff, start, start + sectorsize - 1,
8098                                        io_bio->mirror_num, btrfs_retry_endio,
8099                                        &done);
8100                if (status) {
8101                        err = status;
8102                        goto next;
8103                }
8104
8105                wait_for_completion_io(&done.done);
8106
8107                if (!done.uptodate) {
8108                        /* We might have another mirror, so try again */
8109                        goto try_again;
8110                }
8111next:
8112                offset += sectorsize;
8113                start += sectorsize;
8114
8115                ASSERT(nr_sectors);
8116
8117                nr_sectors--;
8118                if (nr_sectors) {
8119                        pgoff += sectorsize;
8120                        ASSERT(pgoff < PAGE_SIZE);
8121                        goto next_block;
8122                }
8123        }
8124
8125        return err;
8126}
8127
8128static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8129                struct btrfs_io_bio *io_bio, blk_status_t err)
8130{
8131        bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8132
8133        if (skip_csum) {
8134                if (unlikely(err))
8135                        return __btrfs_correct_data_nocsum(inode, io_bio);
8136                else
8137                        return BLK_STS_OK;
8138        } else {
8139                return __btrfs_subio_endio_read(inode, io_bio, err);
8140        }
8141}
8142
8143static void btrfs_endio_direct_read(struct bio *bio)
8144{
8145        struct btrfs_dio_private *dip = bio->bi_private;
8146        struct inode *inode = dip->inode;
8147        struct bio *dio_bio;
8148        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8149        blk_status_t err = bio->bi_status;
8150
8151        if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8152                err = btrfs_subio_endio_read(inode, io_bio, err);
8153
8154        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8155                      dip->logical_offset + dip->bytes - 1);
8156        dio_bio = dip->dio_bio;
8157
8158        kfree(dip);
8159
8160        dio_bio->bi_status = err;
8161        dio_end_io(dio_bio);
8162        btrfs_io_bio_free_csum(io_bio);
8163        bio_put(bio);
8164}
8165
8166static void __endio_write_update_ordered(struct inode *inode,
8167                                         const u64 offset, const u64 bytes,
8168                                         const bool uptodate)
8169{
8170        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8171        struct btrfs_ordered_extent *ordered = NULL;
8172        struct btrfs_workqueue *wq;
8173        btrfs_work_func_t func;
8174        u64 ordered_offset = offset;
8175        u64 ordered_bytes = bytes;
8176        u64 last_offset;
8177
8178        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8179                wq = fs_info->endio_freespace_worker;
8180                func = btrfs_freespace_write_helper;
8181        } else {
8182                wq = fs_info->endio_write_workers;
8183                func = btrfs_endio_write_helper;
8184        }
8185
8186        while (ordered_offset < offset + bytes) {
8187                last_offset = ordered_offset;
8188                if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8189                                                           &ordered_offset,
8190                                                           ordered_bytes,
8191                                                           uptodate)) {
8192                        btrfs_init_work(&ordered->work, func,
8193                                        finish_ordered_fn,
8194                                        NULL, NULL);
8195                        btrfs_queue_work(wq, &ordered->work);
8196                }
8197                /*
8198                 * If btrfs_dec_test_ordered_pending does not find any ordered
8199                 * extent in the range, we can exit.
8200                 */
8201                if (ordered_offset == last_offset)
8202                        return;
8203                /*
8204                 * Our bio might span multiple ordered extents. In this case
8205                 * we keep going until we have accounted the whole dio.
8206                 */
8207                if (ordered_offset < offset + bytes) {
8208                        ordered_bytes = offset + bytes - ordered_offset;
8209                        ordered = NULL;
8210                }
8211        }
8212}
8213
8214static void btrfs_endio_direct_write(struct bio *bio)
8215{
8216        struct btrfs_dio_private *dip = bio->bi_private;
8217        struct bio *dio_bio = dip->dio_bio;
8218
8219        __endio_write_update_ordered(dip->inode, dip->logical_offset,
8220                                     dip->bytes, !bio->bi_status);
8221
8222        kfree(dip);
8223
8224        dio_bio->bi_status = bio->bi_status;
8225        dio_end_io(dio_bio);
8226        bio_put(bio);
8227}
8228
8229static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8230                                    struct bio *bio, u64 offset)
8231{
8232        struct inode *inode = private_data;
8233        blk_status_t ret;
8234        ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8235        BUG_ON(ret); /* -ENOMEM */
8236        return 0;
8237}
8238
8239static void btrfs_end_dio_bio(struct bio *bio)
8240{
8241        struct btrfs_dio_private *dip = bio->bi_private;
8242        blk_status_t err = bio->bi_status;
8243
8244        if (err)
8245                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8246                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8247                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8248                           bio->bi_opf,
8249                           (unsigned long long)bio->bi_iter.bi_sector,
8250                           bio->bi_iter.bi_size, err);
8251
8252        if (dip->subio_endio)
8253                err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8254
8255        if (err) {
8256                /*
8257                 * We want to perceive the errors flag being set before
8258                 * decrementing the reference count. We don't need a barrier
8259                 * since atomic operations with a return value are fully
8260                 * ordered as per atomic_t.txt
8261                 */
8262                dip->errors = 1;
8263        }
8264
8265        /* if there are more bios still pending for this dio, just exit */
8266        if (!atomic_dec_and_test(&dip->pending_bios))
8267                goto out;
8268
8269        if (dip->errors) {
8270                bio_io_error(dip->orig_bio);
8271        } else {
8272                dip->dio_bio->bi_status = BLK_STS_OK;
8273                bio_endio(dip->orig_bio);
8274        }
8275out:
8276        bio_put(bio);
8277}
8278
8279static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8280                                                 struct btrfs_dio_private *dip,
8281                                                 struct bio *bio,
8282                                                 u64 file_offset)
8283{
8284        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8285        struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8286        blk_status_t ret;
8287
8288        /*
8289         * We load all the csum data we need when we submit
8290         * the first bio to reduce the csum tree search and
8291         * contention.
8292         */
8293        if (dip->logical_offset == file_offset) {
8294                ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8295                                                file_offset);
8296                if (ret)
8297                        return ret;
8298        }
8299
8300        if (bio == dip->orig_bio)
8301                return 0;
8302
8303        file_offset -= dip->logical_offset;
8304        file_offset >>= inode->i_sb->s_blocksize_bits;
8305        io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8306
8307        return 0;
8308}
8309
8310static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8311                struct inode *inode, u64 file_offset, int async_submit)
8312{
8313        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8314        struct btrfs_dio_private *dip = bio->bi_private;
8315        bool write = bio_op(bio) == REQ_OP_WRITE;
8316        blk_status_t ret;
8317
8318        /* Check btrfs_submit_bio_hook() for rules about async submit. */
8319        if (async_submit)
8320                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8321
8322        if (!write) {
8323                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8324                if (ret)
8325                        goto err;
8326        }
8327
8328        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8329                goto map;
8330
8331        if (write && async_submit) {
8332                ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8333                                          file_offset, inode,
8334                                          btrfs_submit_bio_start_direct_io);
8335                goto err;
8336        } else if (write) {
8337                /*
8338                 * If we aren't doing async submit, calculate the csum of the
8339                 * bio now.
8340                 */
8341                ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8342                if (ret)
8343                        goto err;
8344        } else {
8345                ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8346                                                     file_offset);
8347                if (ret)
8348                        goto err;
8349        }
8350map:
8351        ret = btrfs_map_bio(fs_info, bio, 0, 0);
8352err:
8353        return ret;
8354}
8355
8356static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8357{
8358        struct inode *inode = dip->inode;
8359        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8360        struct bio *bio;
8361        struct bio *orig_bio = dip->orig_bio;
8362        u64 start_sector = orig_bio->bi_iter.bi_sector;
8363        u64 file_offset = dip->logical_offset;
8364        int async_submit = 0;
8365        u64 submit_len;
8366        int clone_offset = 0;
8367        int clone_len;
8368        int ret;
8369        blk_status_t status;
8370        struct btrfs_io_geometry geom;
8371
8372        submit_len = orig_bio->bi_iter.bi_size;
8373        ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8374                                    start_sector << 9, submit_len, &geom);
8375        if (ret)
8376                return -EIO;
8377
8378        if (geom.len >= submit_len) {
8379                bio = orig_bio;
8380                dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8381                goto submit;
8382        }
8383
8384        /* async crcs make it difficult to collect full stripe writes. */
8385        if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8386                async_submit = 0;
8387        else
8388                async_submit = 1;
8389
8390        /* bio split */
8391        ASSERT(geom.len <= INT_MAX);
8392        atomic_inc(&dip->pending_bios);
8393        do {
8394                clone_len = min_t(int, submit_len, geom.len);
8395
8396                /*
8397                 * This will never fail as it's passing GPF_NOFS and
8398                 * the allocation is backed by btrfs_bioset.
8399                 */
8400                bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8401                                              clone_len);
8402                bio->bi_private = dip;
8403                bio->bi_end_io = btrfs_end_dio_bio;
8404                btrfs_io_bio(bio)->logical = file_offset;
8405
8406                ASSERT(submit_len >= clone_len);
8407                submit_len -= clone_len;
8408                if (submit_len == 0)
8409                        break;
8410
8411                /*
8412                 * Increase the count before we submit the bio so we know
8413                 * the end IO handler won't happen before we increase the
8414                 * count. Otherwise, the dip might get freed before we're
8415                 * done setting it up.
8416                 */
8417                atomic_inc(&dip->pending_bios);
8418
8419                status = btrfs_submit_dio_bio(bio, inode, file_offset,
8420                                                async_submit);
8421                if (status) {
8422                        bio_put(bio);
8423                        atomic_dec(&dip->pending_bios);
8424                        goto out_err;
8425                }
8426
8427                clone_offset += clone_len;
8428                start_sector += clone_len >> 9;
8429                file_offset += clone_len;
8430
8431                ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8432                                      start_sector << 9, submit_len, &geom);
8433                if (ret)
8434                        goto out_err;
8435        } while (submit_len > 0);
8436
8437submit:
8438        status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8439        if (!status)
8440                return 0;
8441
8442        bio_put(bio);
8443out_err:
8444        dip->errors = 1;
8445        /*
8446         * Before atomic variable goto zero, we must  make sure dip->errors is
8447         * perceived to be set. This ordering is ensured by the fact that an
8448         * atomic operations with a return value are fully ordered as per
8449         * atomic_t.txt
8450         */
8451        if (atomic_dec_and_test(&dip->pending_bios))
8452                bio_io_error(dip->orig_bio);
8453
8454        /* bio_end_io() will handle error, so we needn't return it */
8455        return 0;
8456}
8457
8458static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8459                                loff_t file_offset)
8460{
8461        struct btrfs_dio_private *dip = NULL;
8462        struct bio *bio = NULL;
8463        struct btrfs_io_bio *io_bio;
8464        bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8465        int ret = 0;
8466
8467        bio = btrfs_bio_clone(dio_bio);
8468
8469        dip = kzalloc(sizeof(*dip), GFP_NOFS);
8470        if (!dip) {
8471                ret = -ENOMEM;
8472                goto free_ordered;
8473        }
8474
8475        dip->private = dio_bio->bi_private;
8476        dip->inode = inode;
8477        dip->logical_offset = file_offset;
8478        dip->bytes = dio_bio->bi_iter.bi_size;
8479        dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8480        bio->bi_private = dip;
8481        dip->orig_bio = bio;
8482        dip->dio_bio = dio_bio;
8483        atomic_set(&dip->pending_bios, 0);
8484        io_bio = btrfs_io_bio(bio);
8485        io_bio->logical = file_offset;
8486
8487        if (write) {
8488                bio->bi_end_io = btrfs_endio_direct_write;
8489        } else {
8490                bio->bi_end_io = btrfs_endio_direct_read;
8491                dip->subio_endio = btrfs_subio_endio_read;
8492        }
8493
8494        /*
8495         * Reset the range for unsubmitted ordered extents (to a 0 length range)
8496         * even if we fail to submit a bio, because in such case we do the
8497         * corresponding error handling below and it must not be done a second
8498         * time by btrfs_direct_IO().
8499         */
8500        if (write) {
8501                struct btrfs_dio_data *dio_data = current->journal_info;
8502
8503                dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8504                        dip->bytes;
8505                dio_data->unsubmitted_oe_range_start =
8506                        dio_data->unsubmitted_oe_range_end;
8507        }
8508
8509        ret = btrfs_submit_direct_hook(dip);
8510        if (!ret)
8511                return;
8512
8513        btrfs_io_bio_free_csum(io_bio);
8514
8515free_ordered:
8516        /*
8517         * If we arrived here it means either we failed to submit the dip
8518         * or we either failed to clone the dio_bio or failed to allocate the
8519         * dip. If we cloned the dio_bio and allocated the dip, we can just
8520         * call bio_endio against our io_bio so that we get proper resource
8521         * cleanup if we fail to submit the dip, otherwise, we must do the
8522         * same as btrfs_endio_direct_[write|read] because we can't call these
8523         * callbacks - they require an allocated dip and a clone of dio_bio.
8524         */
8525        if (bio && dip) {
8526                bio_io_error(bio);
8527                /*
8528                 * The end io callbacks free our dip, do the final put on bio
8529                 * and all the cleanup and final put for dio_bio (through
8530                 * dio_end_io()).
8531                 */
8532                dip = NULL;
8533                bio = NULL;
8534        } else {
8535                if (write)
8536                        __endio_write_update_ordered(inode,
8537                                                file_offset,
8538                                                dio_bio->bi_iter.bi_size,
8539                                                false);
8540                else
8541                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8542                              file_offset + dio_bio->bi_iter.bi_size - 1);
8543
8544                dio_bio->bi_status = BLK_STS_IOERR;
8545                /*
8546                 * Releases and cleans up our dio_bio, no need to bio_put()
8547                 * nor bio_endio()/bio_io_error() against dio_bio.
8548                 */
8549                dio_end_io(dio_bio);
8550        }
8551        if (bio)
8552                bio_put(bio);
8553        kfree(dip);
8554}
8555
8556static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8557                               const struct iov_iter *iter, loff_t offset)
8558{
8559        int seg;
8560        int i;
8561        unsigned int blocksize_mask = fs_info->sectorsize - 1;
8562        ssize_t retval = -EINVAL;
8563
8564        if (offset & blocksize_mask)
8565                goto out;
8566
8567        if (iov_iter_alignment(iter) & blocksize_mask)
8568                goto out;
8569
8570        /* If this is a write we don't need to check anymore */
8571        if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8572                return 0;
8573        /*
8574         * Check to make sure we don't have duplicate iov_base's in this
8575         * iovec, if so return EINVAL, otherwise we'll get csum errors
8576         * when reading back.
8577         */
8578        for (seg = 0; seg < iter->nr_segs; seg++) {
8579                for (i = seg + 1; i < iter->nr_segs; i++) {
8580                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8581                                goto out;
8582                }
8583        }
8584        retval = 0;
8585out:
8586        return retval;
8587}
8588
8589static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8590{
8591        struct file *file = iocb->ki_filp;
8592        struct inode *inode = file->f_mapping->host;
8593        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8594        struct btrfs_dio_data dio_data = { 0 };
8595        struct extent_changeset *data_reserved = NULL;
8596        loff_t offset = iocb->ki_pos;
8597        size_t count = 0;
8598        int flags = 0;
8599        bool wakeup = true;
8600        bool relock = false;
8601        ssize_t ret;
8602
8603        if (check_direct_IO(fs_info, iter, offset))
8604                return 0;
8605
8606        inode_dio_begin(inode);
8607
8608        /*
8609         * The generic stuff only does filemap_write_and_wait_range, which
8610         * isn't enough if we've written compressed pages to this area, so
8611         * we need to flush the dirty pages again to make absolutely sure
8612         * that any outstanding dirty pages are on disk.
8613         */
8614        count = iov_iter_count(iter);
8615        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8616                     &BTRFS_I(inode)->runtime_flags))
8617                filemap_fdatawrite_range(inode->i_mapping, offset,
8618                                         offset + count - 1);
8619
8620        if (iov_iter_rw(iter) == WRITE) {
8621                /*
8622                 * If the write DIO is beyond the EOF, we need update
8623                 * the isize, but it is protected by i_mutex. So we can
8624                 * not unlock the i_mutex at this case.
8625                 */
8626                if (offset + count <= inode->i_size) {
8627                        dio_data.overwrite = 1;
8628                        inode_unlock(inode);
8629                        relock = true;
8630                } else if (iocb->ki_flags & IOCB_NOWAIT) {
8631                        ret = -EAGAIN;
8632                        goto out;
8633                }
8634                ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8635                                                   offset, count);
8636                if (ret)
8637                        goto out;
8638
8639                /*
8640                 * We need to know how many extents we reserved so that we can
8641                 * do the accounting properly if we go over the number we
8642                 * originally calculated.  Abuse current->journal_info for this.
8643                 */
8644                dio_data.reserve = round_up(count,
8645                                            fs_info->sectorsize);
8646                dio_data.unsubmitted_oe_range_start = (u64)offset;
8647                dio_data.unsubmitted_oe_range_end = (u64)offset;
8648                current->journal_info = &dio_data;
8649                down_read(&BTRFS_I(inode)->dio_sem);
8650        } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8651                                     &BTRFS_I(inode)->runtime_flags)) {
8652                inode_dio_end(inode);
8653                flags = DIO_LOCKING | DIO_SKIP_HOLES;
8654                wakeup = false;
8655        }
8656
8657        ret = __blockdev_direct_IO(iocb, inode,
8658                                   fs_info->fs_devices->latest_bdev,
8659                                   iter, btrfs_get_blocks_direct, NULL,
8660                                   btrfs_submit_direct, flags);
8661        if (iov_iter_rw(iter) == WRITE) {
8662                up_read(&BTRFS_I(inode)->dio_sem);
8663                current->journal_info = NULL;
8664                if (ret < 0 && ret != -EIOCBQUEUED) {
8665                        if (dio_data.reserve)
8666                                btrfs_delalloc_release_space(inode, data_reserved,
8667                                        offset, dio_data.reserve, true);
8668                        /*
8669                         * On error we might have left some ordered extents
8670                         * without submitting corresponding bios for them, so
8671                         * cleanup them up to avoid other tasks getting them
8672                         * and waiting for them to complete forever.
8673                         */
8674                        if (dio_data.unsubmitted_oe_range_start <
8675                            dio_data.unsubmitted_oe_range_end)
8676                                __endio_write_update_ordered(inode,
8677                                        dio_data.unsubmitted_oe_range_start,
8678                                        dio_data.unsubmitted_oe_range_end -
8679                                        dio_data.unsubmitted_oe_range_start,
8680                                        false);
8681                } else if (ret >= 0 && (size_t)ret < count)
8682                        btrfs_delalloc_release_space(inode, data_reserved,
8683                                        offset, count - (size_t)ret, true);
8684                btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8685        }
8686out:
8687        if (wakeup)
8688                inode_dio_end(inode);
8689        if (relock)
8690                inode_lock(inode);
8691
8692        extent_changeset_free(data_reserved);
8693        return ret;
8694}
8695
8696#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8697
8698static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8699                __u64 start, __u64 len)
8700{
8701        int     ret;
8702
8703        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8704        if (ret)
8705                return ret;
8706
8707        return extent_fiemap(inode, fieinfo, start, len);
8708}
8709
8710int btrfs_readpage(struct file *file, struct page *page)
8711{
8712        struct extent_io_tree *tree;
8713        tree = &BTRFS_I(page->mapping->host)->io_tree;
8714        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8715}
8716
8717static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8718{
8719        struct inode *inode = page->mapping->host;
8720        int ret;
8721
8722        if (current->flags & PF_MEMALLOC) {
8723                redirty_page_for_writepage(wbc, page);
8724                unlock_page(page);
8725                return 0;
8726        }
8727
8728        /*
8729         * If we are under memory pressure we will call this directly from the
8730         * VM, we need to make sure we have the inode referenced for the ordered
8731         * extent.  If not just return like we didn't do anything.
8732         */
8733        if (!igrab(inode)) {
8734                redirty_page_for_writepage(wbc, page);
8735                return AOP_WRITEPAGE_ACTIVATE;
8736        }
8737        ret = extent_write_full_page(page, wbc);
8738        btrfs_add_delayed_iput(inode);
8739        return ret;
8740}
8741
8742static int btrfs_writepages(struct address_space *mapping,
8743                            struct writeback_control *wbc)
8744{
8745        return extent_writepages(mapping, wbc);
8746}
8747
8748static int
8749btrfs_readpages(struct file *file, struct address_space *mapping,
8750                struct list_head *pages, unsigned nr_pages)
8751{
8752        return extent_readpages(mapping, pages, nr_pages);
8753}
8754
8755static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8756{
8757        int ret = try_release_extent_mapping(page, gfp_flags);
8758        if (ret == 1) {
8759                ClearPagePrivate(page);
8760                set_page_private(page, 0);
8761                put_page(page);
8762        }
8763        return ret;
8764}
8765
8766static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8767{
8768        if (PageWriteback(page) || PageDirty(page))
8769                return 0;
8770        return __btrfs_releasepage(page, gfp_flags);
8771}
8772
8773static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8774                                 unsigned int length)
8775{
8776        struct inode *inode = page->mapping->host;
8777        struct extent_io_tree *tree;
8778        struct btrfs_ordered_extent *ordered;
8779        struct extent_state *cached_state = NULL;
8780        u64 page_start = page_offset(page);
8781        u64 page_end = page_start + PAGE_SIZE - 1;
8782        u64 start;
8783        u64 end;
8784        int inode_evicting = inode->i_state & I_FREEING;
8785
8786        /*
8787         * we have the page locked, so new writeback can't start,
8788         * and the dirty bit won't be cleared while we are here.
8789         *
8790         * Wait for IO on this page so that we can safely clear
8791         * the PagePrivate2 bit and do ordered accounting
8792         */
8793        wait_on_page_writeback(page);
8794
8795        tree = &BTRFS_I(inode)->io_tree;
8796        if (offset) {
8797                btrfs_releasepage(page, GFP_NOFS);
8798                return;
8799        }
8800
8801        if (!inode_evicting)
8802                lock_extent_bits(tree, page_start, page_end, &cached_state);
8803again:
8804        start = page_start;
8805        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8806                                        page_end - start + 1);
8807        if (ordered) {
8808                end = min(page_end, ordered->file_offset + ordered->len - 1);
8809                /*
8810                 * IO on this page will never be started, so we need
8811                 * to account for any ordered extents now
8812                 */
8813                if (!inode_evicting)
8814                        clear_extent_bit(tree, start, end,
8815                                         EXTENT_DIRTY | EXTENT_DELALLOC |
8816                                         EXTENT_DELALLOC_NEW |
8817                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8818                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8819                /*
8820                 * whoever cleared the private bit is responsible
8821                 * for the finish_ordered_io
8822                 */
8823                if (TestClearPagePrivate2(page)) {
8824                        struct btrfs_ordered_inode_tree *tree;
8825                        u64 new_len;
8826
8827                        tree = &BTRFS_I(inode)->ordered_tree;
8828
8829                        spin_lock_irq(&tree->lock);
8830                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8831                        new_len = start - ordered->file_offset;
8832                        if (new_len < ordered->truncated_len)
8833                                ordered->truncated_len = new_len;
8834                        spin_unlock_irq(&tree->lock);
8835
8836                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8837                                                           start,
8838                                                           end - start + 1, 1))
8839                                btrfs_finish_ordered_io(ordered);
8840                }
8841                btrfs_put_ordered_extent(ordered);
8842                if (!inode_evicting) {
8843                        cached_state = NULL;
8844                        lock_extent_bits(tree, start, end,
8845                                         &cached_state);
8846                }
8847
8848                start = end + 1;
8849                if (start < page_end)
8850                        goto again;
8851        }
8852
8853        /*
8854         * Qgroup reserved space handler
8855         * Page here will be either
8856         * 1) Already written to disk
8857         *    In this case, its reserved space is released from data rsv map
8858         *    and will be freed by delayed_ref handler finally.
8859         *    So even we call qgroup_free_data(), it won't decrease reserved
8860         *    space.
8861         * 2) Not written to disk
8862         *    This means the reserved space should be freed here. However,
8863         *    if a truncate invalidates the page (by clearing PageDirty)
8864         *    and the page is accounted for while allocating extent
8865         *    in btrfs_check_data_free_space() we let delayed_ref to
8866         *    free the entire extent.
8867         */
8868        if (PageDirty(page))
8869                btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8870        if (!inode_evicting) {
8871                clear_extent_bit(tree, page_start, page_end,
8872                                 EXTENT_LOCKED | EXTENT_DIRTY |
8873                                 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8874                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8875                                 &cached_state);
8876
8877                __btrfs_releasepage(page, GFP_NOFS);
8878        }
8879
8880        ClearPageChecked(page);
8881        if (PagePrivate(page)) {
8882                ClearPagePrivate(page);
8883                set_page_private(page, 0);
8884                put_page(page);
8885        }
8886}
8887
8888/*
8889 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890 * called from a page fault handler when a page is first dirtied. Hence we must
8891 * be careful to check for EOF conditions here. We set the page up correctly
8892 * for a written page which means we get ENOSPC checking when writing into
8893 * holes and correct delalloc and unwritten extent mapping on filesystems that
8894 * support these features.
8895 *
8896 * We are not allowed to take the i_mutex here so we have to play games to
8897 * protect against truncate races as the page could now be beyond EOF.  Because
8898 * truncate_setsize() writes the inode size before removing pages, once we have
8899 * the page lock we can determine safely if the page is beyond EOF. If it is not
8900 * beyond EOF, then the page is guaranteed safe against truncation until we
8901 * unlock the page.
8902 */
8903vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8904{
8905        struct page *page = vmf->page;
8906        struct inode *inode = file_inode(vmf->vma->vm_file);
8907        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8908        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909        struct btrfs_ordered_extent *ordered;
8910        struct extent_state *cached_state = NULL;
8911        struct extent_changeset *data_reserved = NULL;
8912        char *kaddr;
8913        unsigned long zero_start;
8914        loff_t size;
8915        vm_fault_t ret;
8916        int ret2;
8917        int reserved = 0;
8918        u64 reserved_space;
8919        u64 page_start;
8920        u64 page_end;
8921        u64 end;
8922
8923        reserved_space = PAGE_SIZE;
8924
8925        sb_start_pagefault(inode->i_sb);
8926        page_start = page_offset(page);
8927        page_end = page_start + PAGE_SIZE - 1;
8928        end = page_end;
8929
8930        /*
8931         * Reserving delalloc space after obtaining the page lock can lead to
8932         * deadlock. For example, if a dirty page is locked by this function
8933         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8934         * dirty page write out, then the btrfs_writepage() function could
8935         * end up waiting indefinitely to get a lock on the page currently
8936         * being processed by btrfs_page_mkwrite() function.
8937         */
8938        ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8939                                           reserved_space);
8940        if (!ret2) {
8941                ret2 = file_update_time(vmf->vma->vm_file);
8942                reserved = 1;
8943        }
8944        if (ret2) {
8945                ret = vmf_error(ret2);
8946                if (reserved)
8947                        goto out;
8948                goto out_noreserve;
8949        }
8950
8951        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8952again:
8953        lock_page(page);
8954        size = i_size_read(inode);
8955
8956        if ((page->mapping != inode->i_mapping) ||
8957            (page_start >= size)) {
8958                /* page got truncated out from underneath us */
8959                goto out_unlock;
8960        }
8961        wait_on_page_writeback(page);
8962
8963        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8964        set_page_extent_mapped(page);
8965
8966        /*
8967         * we can't set the delalloc bits if there are pending ordered
8968         * extents.  Drop our locks and wait for them to finish
8969         */
8970        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8971                        PAGE_SIZE);
8972        if (ordered) {
8973                unlock_extent_cached(io_tree, page_start, page_end,
8974                                     &cached_state);
8975                unlock_page(page);
8976                btrfs_start_ordered_extent(inode, ordered, 1);
8977                btrfs_put_ordered_extent(ordered);
8978                goto again;
8979        }
8980
8981        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8982                reserved_space = round_up(size - page_start,
8983                                          fs_info->sectorsize);
8984                if (reserved_space < PAGE_SIZE) {
8985                        end = page_start + reserved_space - 1;
8986                        btrfs_delalloc_release_space(inode, data_reserved,
8987                                        page_start, PAGE_SIZE - reserved_space,
8988                                        true);
8989                }
8990        }
8991
8992        /*
8993         * page_mkwrite gets called when the page is firstly dirtied after it's
8994         * faulted in, but write(2) could also dirty a page and set delalloc
8995         * bits, thus in this case for space account reason, we still need to
8996         * clear any delalloc bits within this page range since we have to
8997         * reserve data&meta space before lock_page() (see above comments).
8998         */
8999        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9000                          EXTENT_DIRTY | EXTENT_DELALLOC |
9001                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9002                          0, 0, &cached_state);
9003
9004        ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9005                                        &cached_state, 0);
9006        if (ret2) {
9007                unlock_extent_cached(io_tree, page_start, page_end,
9008                                     &cached_state);
9009                ret = VM_FAULT_SIGBUS;
9010                goto out_unlock;
9011        }
9012        ret2 = 0;
9013
9014        /* page is wholly or partially inside EOF */
9015        if (page_start + PAGE_SIZE > size)
9016                zero_start = offset_in_page(size);
9017        else
9018                zero_start = PAGE_SIZE;
9019
9020        if (zero_start != PAGE_SIZE) {
9021                kaddr = kmap(page);
9022                memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9023                flush_dcache_page(page);
9024                kunmap(page);
9025        }
9026        ClearPageChecked(page);
9027        set_page_dirty(page);
9028        SetPageUptodate(page);
9029
9030        BTRFS_I(inode)->last_trans = fs_info->generation;
9031        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9032        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9033
9034        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9035
9036        if (!ret2) {
9037                btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9038                sb_end_pagefault(inode->i_sb);
9039                extent_changeset_free(data_reserved);
9040                return VM_FAULT_LOCKED;
9041        }
9042
9043out_unlock:
9044        unlock_page(page);
9045out:
9046        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9047        btrfs_delalloc_release_space(inode, data_reserved, page_start,
9048                                     reserved_space, (ret != 0));
9049out_noreserve:
9050        sb_end_pagefault(inode->i_sb);
9051        extent_changeset_free(data_reserved);
9052        return ret;
9053}
9054
9055static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9056{
9057        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9058        struct btrfs_root *root = BTRFS_I(inode)->root;
9059        struct btrfs_block_rsv *rsv;
9060        int ret;
9061        struct btrfs_trans_handle *trans;
9062        u64 mask = fs_info->sectorsize - 1;
9063        u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9064
9065        if (!skip_writeback) {
9066                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9067                                               (u64)-1);
9068                if (ret)
9069                        return ret;
9070        }
9071
9072        /*
9073         * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9074         * things going on here:
9075         *
9076         * 1) We need to reserve space to update our inode.
9077         *
9078         * 2) We need to have something to cache all the space that is going to
9079         * be free'd up by the truncate operation, but also have some slack
9080         * space reserved in case it uses space during the truncate (thank you
9081         * very much snapshotting).
9082         *
9083         * And we need these to be separate.  The fact is we can use a lot of
9084         * space doing the truncate, and we have no earthly idea how much space
9085         * we will use, so we need the truncate reservation to be separate so it
9086         * doesn't end up using space reserved for updating the inode.  We also
9087         * need to be able to stop the transaction and start a new one, which
9088         * means we need to be able to update the inode several times, and we
9089         * have no idea of knowing how many times that will be, so we can't just
9090         * reserve 1 item for the entirety of the operation, so that has to be
9091         * done separately as well.
9092         *
9093         * So that leaves us with
9094         *
9095         * 1) rsv - for the truncate reservation, which we will steal from the
9096         * transaction reservation.
9097         * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9098         * updating the inode.
9099         */
9100        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9101        if (!rsv)
9102                return -ENOMEM;
9103        rsv->size = min_size;
9104        rsv->failfast = 1;
9105
9106        /*
9107         * 1 for the truncate slack space
9108         * 1 for updating the inode.
9109         */
9110        trans = btrfs_start_transaction(root, 2);
9111        if (IS_ERR(trans)) {
9112                ret = PTR_ERR(trans);
9113                goto out;
9114        }
9115
9116        /* Migrate the slack space for the truncate to our reserve */
9117        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9118                                      min_size, false);
9119        BUG_ON(ret);
9120
9121        /*
9122         * So if we truncate and then write and fsync we normally would just
9123         * write the extents that changed, which is a problem if we need to
9124         * first truncate that entire inode.  So set this flag so we write out
9125         * all of the extents in the inode to the sync log so we're completely
9126         * safe.
9127         */
9128        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9129        trans->block_rsv = rsv;
9130
9131        while (1) {
9132                ret = btrfs_truncate_inode_items(trans, root, inode,
9133                                                 inode->i_size,
9134                                                 BTRFS_EXTENT_DATA_KEY);
9135                trans->block_rsv = &fs_info->trans_block_rsv;
9136                if (ret != -ENOSPC && ret != -EAGAIN)
9137                        break;
9138
9139                ret = btrfs_update_inode(trans, root, inode);
9140                if (ret)
9141                        break;
9142
9143                btrfs_end_transaction(trans);
9144                btrfs_btree_balance_dirty(fs_info);
9145
9146                trans = btrfs_start_transaction(root, 2);
9147                if (IS_ERR(trans)) {
9148                        ret = PTR_ERR(trans);
9149                        trans = NULL;
9150                        break;
9151                }
9152
9153                btrfs_block_rsv_release(fs_info, rsv, -1);
9154                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9155                                              rsv, min_size, false);
9156                BUG_ON(ret);    /* shouldn't happen */
9157                trans->block_rsv = rsv;
9158        }
9159
9160        /*
9161         * We can't call btrfs_truncate_block inside a trans handle as we could
9162         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9163         * we've truncated everything except the last little bit, and can do
9164         * btrfs_truncate_block and then update the disk_i_size.
9165         */
9166        if (ret == NEED_TRUNCATE_BLOCK) {
9167                btrfs_end_transaction(trans);
9168                btrfs_btree_balance_dirty(fs_info);
9169
9170                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9171                if (ret)
9172                        goto out;
9173                trans = btrfs_start_transaction(root, 1);
9174                if (IS_ERR(trans)) {
9175                        ret = PTR_ERR(trans);
9176                        goto out;
9177                }
9178                btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9179        }
9180
9181        if (trans) {
9182                int ret2;
9183
9184                trans->block_rsv = &fs_info->trans_block_rsv;
9185                ret2 = btrfs_update_inode(trans, root, inode);
9186                if (ret2 && !ret)
9187                        ret = ret2;
9188
9189                ret2 = btrfs_end_transaction(trans);
9190                if (ret2 && !ret)
9191                        ret = ret2;
9192                btrfs_btree_balance_dirty(fs_info);
9193        }
9194out:
9195        btrfs_free_block_rsv(fs_info, rsv);
9196
9197        return ret;
9198}
9199
9200/*
9201 * create a new subvolume directory/inode (helper for the ioctl).
9202 */
9203int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9204                             struct btrfs_root *new_root,
9205                             struct btrfs_root *parent_root,
9206                             u64 new_dirid)
9207{
9208        struct inode *inode;
9209        int err;
9210        u64 index = 0;
9211
9212        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9213                                new_dirid, new_dirid,
9214                                S_IFDIR | (~current_umask() & S_IRWXUGO),
9215                                &index);
9216        if (IS_ERR(inode))
9217                return PTR_ERR(inode);
9218        inode->i_op = &btrfs_dir_inode_operations;
9219        inode->i_fop = &btrfs_dir_file_operations;
9220
9221        set_nlink(inode, 1);
9222        btrfs_i_size_write(BTRFS_I(inode), 0);
9223        unlock_new_inode(inode);
9224
9225        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9226        if (err)
9227                btrfs_err(new_root->fs_info,
9228                          "error inheriting subvolume %llu properties: %d",
9229                          new_root->root_key.objectid, err);
9230
9231        err = btrfs_update_inode(trans, new_root, inode);
9232
9233        iput(inode);
9234        return err;
9235}
9236
9237struct inode *btrfs_alloc_inode(struct super_block *sb)
9238{
9239        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9240        struct btrfs_inode *ei;
9241        struct inode *inode;
9242
9243        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9244        if (!ei)
9245                return NULL;
9246
9247        ei->root = NULL;
9248        ei->generation = 0;
9249        ei->last_trans = 0;
9250        ei->last_sub_trans = 0;
9251        ei->logged_trans = 0;
9252        ei->delalloc_bytes = 0;
9253        ei->new_delalloc_bytes = 0;
9254        ei->defrag_bytes = 0;
9255        ei->disk_i_size = 0;
9256        ei->flags = 0;
9257        ei->csum_bytes = 0;
9258        ei->index_cnt = (u64)-1;
9259        ei->dir_index = 0;
9260        ei->last_unlink_trans = 0;
9261        ei->last_log_commit = 0;
9262
9263        spin_lock_init(&ei->lock);
9264        ei->outstanding_extents = 0;
9265        if (sb->s_magic != BTRFS_TEST_MAGIC)
9266                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9267                                              BTRFS_BLOCK_RSV_DELALLOC);
9268        ei->runtime_flags = 0;
9269        ei->prop_compress = BTRFS_COMPRESS_NONE;
9270        ei->defrag_compress = BTRFS_COMPRESS_NONE;
9271
9272        ei->delayed_node = NULL;
9273
9274        ei->i_otime.tv_sec = 0;
9275        ei->i_otime.tv_nsec = 0;
9276
9277        inode = &ei->vfs_inode;
9278        extent_map_tree_init(&ei->extent_tree);
9279        extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9280        extent_io_tree_init(fs_info, &ei->io_failure_tree,
9281                            IO_TREE_INODE_IO_FAILURE, inode);
9282        ei->io_tree.track_uptodate = true;
9283        ei->io_failure_tree.track_uptodate = true;
9284        atomic_set(&ei->sync_writers, 0);
9285        mutex_init(&ei->log_mutex);
9286        mutex_init(&ei->delalloc_mutex);
9287        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9288        INIT_LIST_HEAD(&ei->delalloc_inodes);
9289        INIT_LIST_HEAD(&ei->delayed_iput);
9290        RB_CLEAR_NODE(&ei->rb_node);
9291        init_rwsem(&ei->dio_sem);
9292
9293        return inode;
9294}
9295
9296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9297void btrfs_test_destroy_inode(struct inode *inode)
9298{
9299        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9300        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301}
9302#endif
9303
9304void btrfs_free_inode(struct inode *inode)
9305{
9306        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9307}
9308
9309void btrfs_destroy_inode(struct inode *inode)
9310{
9311        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9312        struct btrfs_ordered_extent *ordered;
9313        struct btrfs_root *root = BTRFS_I(inode)->root;
9314
9315        WARN_ON(!hlist_empty(&inode->i_dentry));
9316        WARN_ON(inode->i_data.nrpages);
9317        WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9318        WARN_ON(BTRFS_I(inode)->block_rsv.size);
9319        WARN_ON(BTRFS_I(inode)->outstanding_extents);
9320        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9321        WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9322        WARN_ON(BTRFS_I(inode)->csum_bytes);
9323        WARN_ON(BTRFS_I(inode)->defrag_bytes);
9324
9325        /*
9326         * This can happen where we create an inode, but somebody else also
9327         * created the same inode and we need to destroy the one we already
9328         * created.
9329         */
9330        if (!root)
9331                return;
9332
9333        while (1) {
9334                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9335                if (!ordered)
9336                        break;
9337                else {
9338                        btrfs_err(fs_info,
9339                                  "found ordered extent %llu %llu on inode cleanup",
9340                                  ordered->file_offset, ordered->len);
9341                        btrfs_remove_ordered_extent(inode, ordered);
9342                        btrfs_put_ordered_extent(ordered);
9343                        btrfs_put_ordered_extent(ordered);
9344                }
9345        }
9346        btrfs_qgroup_check_reserved_leak(inode);
9347        inode_tree_del(inode);
9348        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9349}
9350
9351int btrfs_drop_inode(struct inode *inode)
9352{
9353        struct btrfs_root *root = BTRFS_I(inode)->root;
9354
9355        if (root == NULL)
9356                return 1;
9357
9358        /* the snap/subvol tree is on deleting */
9359        if (btrfs_root_refs(&root->root_item) == 0)
9360                return 1;
9361        else
9362                return generic_drop_inode(inode);
9363}
9364
9365static void init_once(void *foo)
9366{
9367        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9368
9369        inode_init_once(&ei->vfs_inode);
9370}
9371
9372void __cold btrfs_destroy_cachep(void)
9373{
9374        /*
9375         * Make sure all delayed rcu free inodes are flushed before we
9376         * destroy cache.
9377         */
9378        rcu_barrier();
9379        kmem_cache_destroy(btrfs_inode_cachep);
9380        kmem_cache_destroy(btrfs_trans_handle_cachep);
9381        kmem_cache_destroy(btrfs_path_cachep);
9382        kmem_cache_destroy(btrfs_free_space_cachep);
9383}
9384
9385int __init btrfs_init_cachep(void)
9386{
9387        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9388                        sizeof(struct btrfs_inode), 0,
9389                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9390                        init_once);
9391        if (!btrfs_inode_cachep)
9392                goto fail;
9393
9394        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9395                        sizeof(struct btrfs_trans_handle), 0,
9396                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9397        if (!btrfs_trans_handle_cachep)
9398                goto fail;
9399
9400        btrfs_path_cachep = kmem_cache_create("btrfs_path",
9401                        sizeof(struct btrfs_path), 0,
9402                        SLAB_MEM_SPREAD, NULL);
9403        if (!btrfs_path_cachep)
9404                goto fail;
9405
9406        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9407                        sizeof(struct btrfs_free_space), 0,
9408                        SLAB_MEM_SPREAD, NULL);
9409        if (!btrfs_free_space_cachep)
9410                goto fail;
9411
9412        return 0;
9413fail:
9414        btrfs_destroy_cachep();
9415        return -ENOMEM;
9416}
9417
9418static int btrfs_getattr(const struct path *path, struct kstat *stat,
9419                         u32 request_mask, unsigned int flags)
9420{
9421        u64 delalloc_bytes;
9422        struct inode *inode = d_inode(path->dentry);
9423        u32 blocksize = inode->i_sb->s_blocksize;
9424        u32 bi_flags = BTRFS_I(inode)->flags;
9425
9426        stat->result_mask |= STATX_BTIME;
9427        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9428        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9429        if (bi_flags & BTRFS_INODE_APPEND)
9430                stat->attributes |= STATX_ATTR_APPEND;
9431        if (bi_flags & BTRFS_INODE_COMPRESS)
9432                stat->attributes |= STATX_ATTR_COMPRESSED;
9433        if (bi_flags & BTRFS_INODE_IMMUTABLE)
9434                stat->attributes |= STATX_ATTR_IMMUTABLE;
9435        if (bi_flags & BTRFS_INODE_NODUMP)
9436                stat->attributes |= STATX_ATTR_NODUMP;
9437
9438        stat->attributes_mask |= (STATX_ATTR_APPEND |
9439                                  STATX_ATTR_COMPRESSED |
9440                                  STATX_ATTR_IMMUTABLE |
9441                                  STATX_ATTR_NODUMP);
9442
9443        generic_fillattr(inode, stat);
9444        stat->dev = BTRFS_I(inode)->root->anon_dev;
9445
9446        spin_lock(&BTRFS_I(inode)->lock);
9447        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9448        spin_unlock(&BTRFS_I(inode)->lock);
9449        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9450                        ALIGN(delalloc_bytes, blocksize)) >> 9;
9451        return 0;
9452}
9453
9454static int btrfs_rename_exchange(struct inode *old_dir,
9455                              struct dentry *old_dentry,
9456                              struct inode *new_dir,
9457                              struct dentry *new_dentry)
9458{
9459        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9460        struct btrfs_trans_handle *trans;
9461        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9462        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9463        struct inode *new_inode = new_dentry->d_inode;
9464        struct inode *old_inode = old_dentry->d_inode;
9465        struct timespec64 ctime = current_time(old_inode);
9466        struct dentry *parent;
9467        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9468        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9469        u64 old_idx = 0;
9470        u64 new_idx = 0;
9471        u64 root_objectid;
9472        int ret;
9473        bool root_log_pinned = false;
9474        bool dest_log_pinned = false;
9475        struct btrfs_log_ctx ctx_root;
9476        struct btrfs_log_ctx ctx_dest;
9477        bool sync_log_root = false;
9478        bool sync_log_dest = false;
9479        bool commit_transaction = false;
9480
9481        /* we only allow rename subvolume link between subvolumes */
9482        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9483                return -EXDEV;
9484
9485        btrfs_init_log_ctx(&ctx_root, old_inode);
9486        btrfs_init_log_ctx(&ctx_dest, new_inode);
9487
9488        /* close the race window with snapshot create/destroy ioctl */
9489        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9490                down_read(&fs_info->subvol_sem);
9491        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9492                down_read(&fs_info->subvol_sem);
9493
9494        /*
9495         * We want to reserve the absolute worst case amount of items.  So if
9496         * both inodes are subvols and we need to unlink them then that would
9497         * require 4 item modifications, but if they are both normal inodes it
9498         * would require 5 item modifications, so we'll assume their normal
9499         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9500         * should cover the worst case number of items we'll modify.
9501         */
9502        trans = btrfs_start_transaction(root, 12);
9503        if (IS_ERR(trans)) {
9504                ret = PTR_ERR(trans);
9505                goto out_notrans;
9506        }
9507
9508        /*
9509         * We need to find a free sequence number both in the source and
9510         * in the destination directory for the exchange.
9511         */
9512        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9513        if (ret)
9514                goto out_fail;
9515        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9516        if (ret)
9517                goto out_fail;
9518
9519        BTRFS_I(old_inode)->dir_index = 0ULL;
9520        BTRFS_I(new_inode)->dir_index = 0ULL;
9521
9522        /* Reference for the source. */
9523        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9524                /* force full log commit if subvolume involved. */
9525                btrfs_set_log_full_commit(trans);
9526        } else {
9527                btrfs_pin_log_trans(root);
9528                root_log_pinned = true;
9529                ret = btrfs_insert_inode_ref(trans, dest,
9530                                             new_dentry->d_name.name,
9531                                             new_dentry->d_name.len,
9532                                             old_ino,
9533                                             btrfs_ino(BTRFS_I(new_dir)),
9534                                             old_idx);
9535                if (ret)
9536                        goto out_fail;
9537        }
9538
9539        /* And now for the dest. */
9540        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9541                /* force full log commit if subvolume involved. */
9542                btrfs_set_log_full_commit(trans);
9543        } else {
9544                btrfs_pin_log_trans(dest);
9545                dest_log_pinned = true;
9546                ret = btrfs_insert_inode_ref(trans, root,
9547                                             old_dentry->d_name.name,
9548                                             old_dentry->d_name.len,
9549                                             new_ino,
9550                                             btrfs_ino(BTRFS_I(old_dir)),
9551                                             new_idx);
9552                if (ret)
9553                        goto out_fail;
9554        }
9555
9556        /* Update inode version and ctime/mtime. */
9557        inode_inc_iversion(old_dir);
9558        inode_inc_iversion(new_dir);
9559        inode_inc_iversion(old_inode);
9560        inode_inc_iversion(new_inode);
9561        old_dir->i_ctime = old_dir->i_mtime = ctime;
9562        new_dir->i_ctime = new_dir->i_mtime = ctime;
9563        old_inode->i_ctime = ctime;
9564        new_inode->i_ctime = ctime;
9565
9566        if (old_dentry->d_parent != new_dentry->d_parent) {
9567                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9568                                BTRFS_I(old_inode), 1);
9569                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9570                                BTRFS_I(new_inode), 1);
9571        }
9572
9573        /* src is a subvolume */
9574        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9575                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9576                ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9577                                          old_dentry->d_name.name,
9578                                          old_dentry->d_name.len);
9579        } else { /* src is an inode */
9580                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9581                                           BTRFS_I(old_dentry->d_inode),
9582                                           old_dentry->d_name.name,
9583                                           old_dentry->d_name.len);
9584                if (!ret)
9585                        ret = btrfs_update_inode(trans, root, old_inode);
9586        }
9587        if (ret) {
9588                btrfs_abort_transaction(trans, ret);
9589                goto out_fail;
9590        }
9591
9592        /* dest is a subvolume */
9593        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9594                root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9595                ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9596                                          new_dentry->d_name.name,
9597                                          new_dentry->d_name.len);
9598        } else { /* dest is an inode */
9599                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9600                                           BTRFS_I(new_dentry->d_inode),
9601                                           new_dentry->d_name.name,
9602                                           new_dentry->d_name.len);
9603                if (!ret)
9604                        ret = btrfs_update_inode(trans, dest, new_inode);
9605        }
9606        if (ret) {
9607                btrfs_abort_transaction(trans, ret);
9608                goto out_fail;
9609        }
9610
9611        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9612                             new_dentry->d_name.name,
9613                             new_dentry->d_name.len, 0, old_idx);
9614        if (ret) {
9615                btrfs_abort_transaction(trans, ret);
9616                goto out_fail;
9617        }
9618
9619        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9620                             old_dentry->d_name.name,
9621                             old_dentry->d_name.len, 0, new_idx);
9622        if (ret) {
9623                btrfs_abort_transaction(trans, ret);
9624                goto out_fail;
9625        }
9626
9627        if (old_inode->i_nlink == 1)
9628                BTRFS_I(old_inode)->dir_index = old_idx;
9629        if (new_inode->i_nlink == 1)
9630                BTRFS_I(new_inode)->dir_index = new_idx;
9631
9632        if (root_log_pinned) {
9633                parent = new_dentry->d_parent;
9634                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9635                                         BTRFS_I(old_dir), parent,
9636                                         false, &ctx_root);
9637                if (ret == BTRFS_NEED_LOG_SYNC)
9638                        sync_log_root = true;
9639                else if (ret == BTRFS_NEED_TRANS_COMMIT)
9640                        commit_transaction = true;
9641                ret = 0;
9642                btrfs_end_log_trans(root);
9643                root_log_pinned = false;
9644        }
9645        if (dest_log_pinned) {
9646                if (!commit_transaction) {
9647                        parent = old_dentry->d_parent;
9648                        ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9649                                                 BTRFS_I(new_dir), parent,
9650                                                 false, &ctx_dest);
9651                        if (ret == BTRFS_NEED_LOG_SYNC)
9652                                sync_log_dest = true;
9653                        else if (ret == BTRFS_NEED_TRANS_COMMIT)
9654                                commit_transaction = true;
9655                        ret = 0;
9656                }
9657                btrfs_end_log_trans(dest);
9658                dest_log_pinned = false;
9659        }
9660out_fail:
9661        /*
9662         * If we have pinned a log and an error happened, we unpin tasks
9663         * trying to sync the log and force them to fallback to a transaction
9664         * commit if the log currently contains any of the inodes involved in
9665         * this rename operation (to ensure we do not persist a log with an
9666         * inconsistent state for any of these inodes or leading to any
9667         * inconsistencies when replayed). If the transaction was aborted, the
9668         * abortion reason is propagated to userspace when attempting to commit
9669         * the transaction. If the log does not contain any of these inodes, we
9670         * allow the tasks to sync it.
9671         */
9672        if (ret && (root_log_pinned || dest_log_pinned)) {
9673                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9674                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9675                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9676                    (new_inode &&
9677                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9678                        btrfs_set_log_full_commit(trans);
9679
9680                if (root_log_pinned) {
9681                        btrfs_end_log_trans(root);
9682                        root_log_pinned = false;
9683                }
9684                if (dest_log_pinned) {
9685                        btrfs_end_log_trans(dest);
9686                        dest_log_pinned = false;
9687                }
9688        }
9689        if (!ret && sync_log_root && !commit_transaction) {
9690                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9691                                     &ctx_root);
9692                if (ret)
9693                        commit_transaction = true;
9694        }
9695        if (!ret && sync_log_dest && !commit_transaction) {
9696                ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9697                                     &ctx_dest);
9698                if (ret)
9699                        commit_transaction = true;
9700        }
9701        if (commit_transaction) {
9702                ret = btrfs_commit_transaction(trans);
9703        } else {
9704                int ret2;
9705
9706                ret2 = btrfs_end_transaction(trans);
9707                ret = ret ? ret : ret2;
9708        }
9709out_notrans:
9710        if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9711                up_read(&fs_info->subvol_sem);
9712        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9713                up_read(&fs_info->subvol_sem);
9714
9715        return ret;
9716}
9717
9718static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9719                                     struct btrfs_root *root,
9720                                     struct inode *dir,
9721                                     struct dentry *dentry)
9722{
9723        int ret;
9724        struct inode *inode;
9725        u64 objectid;
9726        u64 index;
9727
9728        ret = btrfs_find_free_ino(root, &objectid);
9729        if (ret)
9730                return ret;
9731
9732        inode = btrfs_new_inode(trans, root, dir,
9733                                dentry->d_name.name,
9734                                dentry->d_name.len,
9735                                btrfs_ino(BTRFS_I(dir)),
9736                                objectid,
9737                                S_IFCHR | WHITEOUT_MODE,
9738                                &index);
9739
9740        if (IS_ERR(inode)) {
9741                ret = PTR_ERR(inode);
9742                return ret;
9743        }
9744
9745        inode->i_op = &btrfs_special_inode_operations;
9746        init_special_inode(inode, inode->i_mode,
9747                WHITEOUT_DEV);
9748
9749        ret = btrfs_init_inode_security(trans, inode, dir,
9750                                &dentry->d_name);
9751        if (ret)
9752                goto out;
9753
9754        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9755                                BTRFS_I(inode), 0, index);
9756        if (ret)
9757                goto out;
9758
9759        ret = btrfs_update_inode(trans, root, inode);
9760out:
9761        unlock_new_inode(inode);
9762        if (ret)
9763                inode_dec_link_count(inode);
9764        iput(inode);
9765
9766        return ret;
9767}
9768
9769static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9770                           struct inode *new_dir, struct dentry *new_dentry,
9771                           unsigned int flags)
9772{
9773        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9774        struct btrfs_trans_handle *trans;
9775        unsigned int trans_num_items;
9776        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9777        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9778        struct inode *new_inode = d_inode(new_dentry);
9779        struct inode *old_inode = d_inode(old_dentry);
9780        u64 index = 0;
9781        u64 root_objectid;
9782        int ret;
9783        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9784        bool log_pinned = false;
9785        struct btrfs_log_ctx ctx;
9786        bool sync_log = false;
9787        bool commit_transaction = false;
9788
9789        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9790                return -EPERM;
9791
9792        /* we only allow rename subvolume link between subvolumes */
9793        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9794                return -EXDEV;
9795
9796        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9797            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9798                return -ENOTEMPTY;
9799
9800        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9801            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9802                return -ENOTEMPTY;
9803
9804
9805        /* check for collisions, even if the  name isn't there */
9806        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9807                             new_dentry->d_name.name,
9808                             new_dentry->d_name.len);
9809
9810        if (ret) {
9811                if (ret == -EEXIST) {
9812                        /* we shouldn't get
9813                         * eexist without a new_inode */
9814                        if (WARN_ON(!new_inode)) {
9815                                return ret;
9816                        }
9817                } else {
9818                        /* maybe -EOVERFLOW */
9819                        return ret;
9820                }
9821        }
9822        ret = 0;
9823
9824        /*
9825         * we're using rename to replace one file with another.  Start IO on it
9826         * now so  we don't add too much work to the end of the transaction
9827         */
9828        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9829                filemap_flush(old_inode->i_mapping);
9830
9831        /* close the racy window with snapshot create/destroy ioctl */
9832        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9833                down_read(&fs_info->subvol_sem);
9834        /*
9835         * We want to reserve the absolute worst case amount of items.  So if
9836         * both inodes are subvols and we need to unlink them then that would
9837         * require 4 item modifications, but if they are both normal inodes it
9838         * would require 5 item modifications, so we'll assume they are normal
9839         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9840         * should cover the worst case number of items we'll modify.
9841         * If our rename has the whiteout flag, we need more 5 units for the
9842         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9843         * when selinux is enabled).
9844         */
9845        trans_num_items = 11;
9846        if (flags & RENAME_WHITEOUT)
9847                trans_num_items += 5;
9848        trans = btrfs_start_transaction(root, trans_num_items);
9849        if (IS_ERR(trans)) {
9850                ret = PTR_ERR(trans);
9851                goto out_notrans;
9852        }
9853
9854        if (dest != root)
9855                btrfs_record_root_in_trans(trans, dest);
9856
9857        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9858        if (ret)
9859                goto out_fail;
9860
9861        BTRFS_I(old_inode)->dir_index = 0ULL;
9862        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9863                /* force full log commit if subvolume involved. */
9864                btrfs_set_log_full_commit(trans);
9865        } else {
9866                btrfs_pin_log_trans(root);
9867                log_pinned = true;
9868                ret = btrfs_insert_inode_ref(trans, dest,
9869                                             new_dentry->d_name.name,
9870                                             new_dentry->d_name.len,
9871                                             old_ino,
9872                                             btrfs_ino(BTRFS_I(new_dir)), index);
9873                if (ret)
9874                        goto out_fail;
9875        }
9876
9877        inode_inc_iversion(old_dir);
9878        inode_inc_iversion(new_dir);
9879        inode_inc_iversion(old_inode);
9880        old_dir->i_ctime = old_dir->i_mtime =
9881        new_dir->i_ctime = new_dir->i_mtime =
9882        old_inode->i_ctime = current_time(old_dir);
9883
9884        if (old_dentry->d_parent != new_dentry->d_parent)
9885                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9886                                BTRFS_I(old_inode), 1);
9887
9888        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9889                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9890                ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9891                                        old_dentry->d_name.name,
9892                                        old_dentry->d_name.len);
9893        } else {
9894                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9895                                        BTRFS_I(d_inode(old_dentry)),
9896                                        old_dentry->d_name.name,
9897                                        old_dentry->d_name.len);
9898                if (!ret)
9899                        ret = btrfs_update_inode(trans, root, old_inode);
9900        }
9901        if (ret) {
9902                btrfs_abort_transaction(trans, ret);
9903                goto out_fail;
9904        }
9905
9906        if (new_inode) {
9907                inode_inc_iversion(new_inode);
9908                new_inode->i_ctime = current_time(new_inode);
9909                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9910                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9911                        root_objectid = BTRFS_I(new_inode)->location.objectid;
9912                        ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9913                                                new_dentry->d_name.name,
9914                                                new_dentry->d_name.len);
9915                        BUG_ON(new_inode->i_nlink == 0);
9916                } else {
9917                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9918                                                 BTRFS_I(d_inode(new_dentry)),
9919                                                 new_dentry->d_name.name,
9920                                                 new_dentry->d_name.len);
9921                }
9922                if (!ret && new_inode->i_nlink == 0)
9923                        ret = btrfs_orphan_add(trans,
9924                                        BTRFS_I(d_inode(new_dentry)));
9925                if (ret) {
9926                        btrfs_abort_transaction(trans, ret);
9927                        goto out_fail;
9928                }
9929        }
9930
9931        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9932                             new_dentry->d_name.name,
9933                             new_dentry->d_name.len, 0, index);
9934        if (ret) {
9935                btrfs_abort_transaction(trans, ret);
9936                goto out_fail;
9937        }
9938
9939        if (old_inode->i_nlink == 1)
9940                BTRFS_I(old_inode)->dir_index = index;
9941
9942        if (log_pinned) {
9943                struct dentry *parent = new_dentry->d_parent;
9944
9945                btrfs_init_log_ctx(&ctx, old_inode);
9946                ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9947                                         BTRFS_I(old_dir), parent,
9948                                         false, &ctx);
9949                if (ret == BTRFS_NEED_LOG_SYNC)
9950                        sync_log = true;
9951                else if (ret == BTRFS_NEED_TRANS_COMMIT)
9952                        commit_transaction = true;
9953                ret = 0;
9954                btrfs_end_log_trans(root);
9955                log_pinned = false;
9956        }
9957
9958        if (flags & RENAME_WHITEOUT) {
9959                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9960                                                old_dentry);
9961
9962                if (ret) {
9963                        btrfs_abort_transaction(trans, ret);
9964                        goto out_fail;
9965                }
9966        }
9967out_fail:
9968        /*
9969         * If we have pinned the log and an error happened, we unpin tasks
9970         * trying to sync the log and force them to fallback to a transaction
9971         * commit if the log currently contains any of the inodes involved in
9972         * this rename operation (to ensure we do not persist a log with an
9973         * inconsistent state for any of these inodes or leading to any
9974         * inconsistencies when replayed). If the transaction was aborted, the
9975         * abortion reason is propagated to userspace when attempting to commit
9976         * the transaction. If the log does not contain any of these inodes, we
9977         * allow the tasks to sync it.
9978         */
9979        if (ret && log_pinned) {
9980                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9981                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9982                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9983                    (new_inode &&
9984                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9985                        btrfs_set_log_full_commit(trans);
9986
9987                btrfs_end_log_trans(root);
9988                log_pinned = false;
9989        }
9990        if (!ret && sync_log) {
9991                ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9992                if (ret)
9993                        commit_transaction = true;
9994        }
9995        if (commit_transaction) {
9996                ret = btrfs_commit_transaction(trans);
9997        } else {
9998                int ret2;
9999
10000                ret2 = btrfs_end_transaction(trans);
10001                ret = ret ? ret : ret2;
10002        }
10003out_notrans:
10004        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10005                up_read(&fs_info->subvol_sem);
10006
10007        return ret;
10008}
10009
10010static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10011                         struct inode *new_dir, struct dentry *new_dentry,
10012                         unsigned int flags)
10013{
10014        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10015                return -EINVAL;
10016
10017        if (flags & RENAME_EXCHANGE)
10018                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10019                                          new_dentry);
10020
10021        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10022}
10023
10024struct btrfs_delalloc_work {
10025        struct inode *inode;
10026        struct completion completion;
10027        struct list_head list;
10028        struct btrfs_work work;
10029};
10030
10031static void btrfs_run_delalloc_work(struct btrfs_work *work)
10032{
10033        struct btrfs_delalloc_work *delalloc_work;
10034        struct inode *inode;
10035
10036        delalloc_work = container_of(work, struct btrfs_delalloc_work,
10037                                     work);
10038        inode = delalloc_work->inode;
10039        filemap_flush(inode->i_mapping);
10040        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10041                                &BTRFS_I(inode)->runtime_flags))
10042                filemap_flush(inode->i_mapping);
10043
10044        iput(inode);
10045        complete(&delalloc_work->completion);
10046}
10047
10048static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10049{
10050        struct btrfs_delalloc_work *work;
10051
10052        work = kmalloc(sizeof(*work), GFP_NOFS);
10053        if (!work)
10054                return NULL;
10055
10056        init_completion(&work->completion);
10057        INIT_LIST_HEAD(&work->list);
10058        work->inode = inode;
10059        btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10060                        btrfs_run_delalloc_work, NULL, NULL);
10061
10062        return work;
10063}
10064
10065/*
10066 * some fairly slow code that needs optimization. This walks the list
10067 * of all the inodes with pending delalloc and forces them to disk.
10068 */
10069static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10070{
10071        struct btrfs_inode *binode;
10072        struct inode *inode;
10073        struct btrfs_delalloc_work *work, *next;
10074        struct list_head works;
10075        struct list_head splice;
10076        int ret = 0;
10077
10078        INIT_LIST_HEAD(&works);
10079        INIT_LIST_HEAD(&splice);
10080
10081        mutex_lock(&root->delalloc_mutex);
10082        spin_lock(&root->delalloc_lock);
10083        list_splice_init(&root->delalloc_inodes, &splice);
10084        while (!list_empty(&splice)) {
10085                binode = list_entry(splice.next, struct btrfs_inode,
10086                                    delalloc_inodes);
10087
10088                list_move_tail(&binode->delalloc_inodes,
10089                               &root->delalloc_inodes);
10090                inode = igrab(&binode->vfs_inode);
10091                if (!inode) {
10092                        cond_resched_lock(&root->delalloc_lock);
10093                        continue;
10094                }
10095                spin_unlock(&root->delalloc_lock);
10096
10097                if (snapshot)
10098                        set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10099                                &binode->runtime_flags);
10100                work = btrfs_alloc_delalloc_work(inode);
10101                if (!work) {
10102                        iput(inode);
10103                        ret = -ENOMEM;
10104                        goto out;
10105                }
10106                list_add_tail(&work->list, &works);
10107                btrfs_queue_work(root->fs_info->flush_workers,
10108                                 &work->work);
10109                ret++;
10110                if (nr != -1 && ret >= nr)
10111                        goto out;
10112                cond_resched();
10113                spin_lock(&root->delalloc_lock);
10114        }
10115        spin_unlock(&root->delalloc_lock);
10116
10117out:
10118        list_for_each_entry_safe(work, next, &works, list) {
10119                list_del_init(&work->list);
10120                wait_for_completion(&work->completion);
10121                kfree(work);
10122        }
10123
10124        if (!list_empty(&splice)) {
10125                spin_lock(&root->delalloc_lock);
10126                list_splice_tail(&splice, &root->delalloc_inodes);
10127                spin_unlock(&root->delalloc_lock);
10128        }
10129        mutex_unlock(&root->delalloc_mutex);
10130        return ret;
10131}
10132
10133int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10134{
10135        struct btrfs_fs_info *fs_info = root->fs_info;
10136        int ret;
10137
10138        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10139                return -EROFS;
10140
10141        ret = start_delalloc_inodes(root, -1, true);
10142        if (ret > 0)
10143                ret = 0;
10144        return ret;
10145}
10146
10147int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10148{
10149        struct btrfs_root *root;
10150        struct list_head splice;
10151        int ret;
10152
10153        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10154                return -EROFS;
10155
10156        INIT_LIST_HEAD(&splice);
10157
10158        mutex_lock(&fs_info->delalloc_root_mutex);
10159        spin_lock(&fs_info->delalloc_root_lock);
10160        list_splice_init(&fs_info->delalloc_roots, &splice);
10161        while (!list_empty(&splice) && nr) {
10162                root = list_first_entry(&splice, struct btrfs_root,
10163                                        delalloc_root);
10164                root = btrfs_grab_fs_root(root);
10165                BUG_ON(!root);
10166                list_move_tail(&root->delalloc_root,
10167                               &fs_info->delalloc_roots);
10168                spin_unlock(&fs_info->delalloc_root_lock);
10169
10170                ret = start_delalloc_inodes(root, nr, false);
10171                btrfs_put_fs_root(root);
10172                if (ret < 0)
10173                        goto out;
10174
10175                if (nr != -1) {
10176                        nr -= ret;
10177                        WARN_ON(nr < 0);
10178                }
10179                spin_lock(&fs_info->delalloc_root_lock);
10180        }
10181        spin_unlock(&fs_info->delalloc_root_lock);
10182
10183        ret = 0;
10184out:
10185        if (!list_empty(&splice)) {
10186                spin_lock(&fs_info->delalloc_root_lock);
10187                list_splice_tail(&splice, &fs_info->delalloc_roots);
10188                spin_unlock(&fs_info->delalloc_root_lock);
10189        }
10190        mutex_unlock(&fs_info->delalloc_root_mutex);
10191        return ret;
10192}
10193
10194static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10195                         const char *symname)
10196{
10197        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10198        struct btrfs_trans_handle *trans;
10199        struct btrfs_root *root = BTRFS_I(dir)->root;
10200        struct btrfs_path *path;
10201        struct btrfs_key key;
10202        struct inode *inode = NULL;
10203        int err;
10204        u64 objectid;
10205        u64 index = 0;
10206        int name_len;
10207        int datasize;
10208        unsigned long ptr;
10209        struct btrfs_file_extent_item *ei;
10210        struct extent_buffer *leaf;
10211
10212        name_len = strlen(symname);
10213        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10214                return -ENAMETOOLONG;
10215
10216        /*
10217         * 2 items for inode item and ref
10218         * 2 items for dir items
10219         * 1 item for updating parent inode item
10220         * 1 item for the inline extent item
10221         * 1 item for xattr if selinux is on
10222         */
10223        trans = btrfs_start_transaction(root, 7);
10224        if (IS_ERR(trans))
10225                return PTR_ERR(trans);
10226
10227        err = btrfs_find_free_ino(root, &objectid);
10228        if (err)
10229                goto out_unlock;
10230
10231        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10232                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10233                                objectid, S_IFLNK|S_IRWXUGO, &index);
10234        if (IS_ERR(inode)) {
10235                err = PTR_ERR(inode);
10236                inode = NULL;
10237                goto out_unlock;
10238        }
10239
10240        /*
10241        * If the active LSM wants to access the inode during
10242        * d_instantiate it needs these. Smack checks to see
10243        * if the filesystem supports xattrs by looking at the
10244        * ops vector.
10245        */
10246        inode->i_fop = &btrfs_file_operations;
10247        inode->i_op = &btrfs_file_inode_operations;
10248        inode->i_mapping->a_ops = &btrfs_aops;
10249        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10250
10251        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10252        if (err)
10253                goto out_unlock;
10254
10255        path = btrfs_alloc_path();
10256        if (!path) {
10257                err = -ENOMEM;
10258                goto out_unlock;
10259        }
10260        key.objectid = btrfs_ino(BTRFS_I(inode));
10261        key.offset = 0;
10262        key.type = BTRFS_EXTENT_DATA_KEY;
10263        datasize = btrfs_file_extent_calc_inline_size(name_len);
10264        err = btrfs_insert_empty_item(trans, root, path, &key,
10265                                      datasize);
10266        if (err) {
10267                btrfs_free_path(path);
10268                goto out_unlock;
10269        }
10270        leaf = path->nodes[0];
10271        ei = btrfs_item_ptr(leaf, path->slots[0],
10272                            struct btrfs_file_extent_item);
10273        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10274        btrfs_set_file_extent_type(leaf, ei,
10275                                   BTRFS_FILE_EXTENT_INLINE);
10276        btrfs_set_file_extent_encryption(leaf, ei, 0);
10277        btrfs_set_file_extent_compression(leaf, ei, 0);
10278        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10279        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10280
10281        ptr = btrfs_file_extent_inline_start(ei);
10282        write_extent_buffer(leaf, symname, ptr, name_len);
10283        btrfs_mark_buffer_dirty(leaf);
10284        btrfs_free_path(path);
10285
10286        inode->i_op = &btrfs_symlink_inode_operations;
10287        inode_nohighmem(inode);
10288        inode_set_bytes(inode, name_len);
10289        btrfs_i_size_write(BTRFS_I(inode), name_len);
10290        err = btrfs_update_inode(trans, root, inode);
10291        /*
10292         * Last step, add directory indexes for our symlink inode. This is the
10293         * last step to avoid extra cleanup of these indexes if an error happens
10294         * elsewhere above.
10295         */
10296        if (!err)
10297                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10298                                BTRFS_I(inode), 0, index);
10299        if (err)
10300                goto out_unlock;
10301
10302        d_instantiate_new(dentry, inode);
10303
10304out_unlock:
10305        btrfs_end_transaction(trans);
10306        if (err && inode) {
10307                inode_dec_link_count(inode);
10308                discard_new_inode(inode);
10309        }
10310        btrfs_btree_balance_dirty(fs_info);
10311        return err;
10312}
10313
10314static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10315                                       u64 start, u64 num_bytes, u64 min_size,
10316                                       loff_t actual_len, u64 *alloc_hint,
10317                                       struct btrfs_trans_handle *trans)
10318{
10319        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10320        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10321        struct extent_map *em;
10322        struct btrfs_root *root = BTRFS_I(inode)->root;
10323        struct btrfs_key ins;
10324        u64 cur_offset = start;
10325        u64 i_size;
10326        u64 cur_bytes;
10327        u64 last_alloc = (u64)-1;
10328        int ret = 0;
10329        bool own_trans = true;
10330        u64 end = start + num_bytes - 1;
10331
10332        if (trans)
10333                own_trans = false;
10334        while (num_bytes > 0) {
10335                if (own_trans) {
10336                        trans = btrfs_start_transaction(root, 3);
10337                        if (IS_ERR(trans)) {
10338                                ret = PTR_ERR(trans);
10339                                break;
10340                        }
10341                }
10342
10343                cur_bytes = min_t(u64, num_bytes, SZ_256M);
10344                cur_bytes = max(cur_bytes, min_size);
10345                /*
10346                 * If we are severely fragmented we could end up with really
10347                 * small allocations, so if the allocator is returning small
10348                 * chunks lets make its job easier by only searching for those
10349                 * sized chunks.
10350                 */
10351                cur_bytes = min(cur_bytes, last_alloc);
10352                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10353                                min_size, 0, *alloc_hint, &ins, 1, 0);
10354                if (ret) {
10355                        if (own_trans)
10356                                btrfs_end_transaction(trans);
10357                        break;
10358                }
10359                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10360
10361                last_alloc = ins.offset;
10362                ret = insert_reserved_file_extent(trans, inode,
10363                                                  cur_offset, ins.objectid,
10364                                                  ins.offset, ins.offset,
10365                                                  ins.offset, 0, 0, 0,
10366                                                  BTRFS_FILE_EXTENT_PREALLOC);
10367                if (ret) {
10368                        btrfs_free_reserved_extent(fs_info, ins.objectid,
10369                                                   ins.offset, 0);
10370                        btrfs_abort_transaction(trans, ret);
10371                        if (own_trans)
10372                                btrfs_end_transaction(trans);
10373                        break;
10374                }
10375
10376                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10377                                        cur_offset + ins.offset -1, 0);
10378
10379                em = alloc_extent_map();
10380                if (!em) {
10381                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10382                                &BTRFS_I(inode)->runtime_flags);
10383                        goto next;
10384                }
10385
10386                em->start = cur_offset;
10387                em->orig_start = cur_offset;
10388                em->len = ins.offset;
10389                em->block_start = ins.objectid;
10390                em->block_len = ins.offset;
10391                em->orig_block_len = ins.offset;
10392                em->ram_bytes = ins.offset;
10393                em->bdev = fs_info->fs_devices->latest_bdev;
10394                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10395                em->generation = trans->transid;
10396
10397                while (1) {
10398                        write_lock(&em_tree->lock);
10399                        ret = add_extent_mapping(em_tree, em, 1);
10400                        write_unlock(&em_tree->lock);
10401                        if (ret != -EEXIST)
10402                                break;
10403                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10404                                                cur_offset + ins.offset - 1,
10405                                                0);
10406                }
10407                free_extent_map(em);
10408next:
10409                num_bytes -= ins.offset;
10410                cur_offset += ins.offset;
10411                *alloc_hint = ins.objectid + ins.offset;
10412
10413                inode_inc_iversion(inode);
10414                inode->i_ctime = current_time(inode);
10415                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10416                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10417                    (actual_len > inode->i_size) &&
10418                    (cur_offset > inode->i_size)) {
10419                        if (cur_offset > actual_len)
10420                                i_size = actual_len;
10421                        else
10422                                i_size = cur_offset;
10423                        i_size_write(inode, i_size);
10424                        btrfs_ordered_update_i_size(inode, i_size, NULL);
10425                }
10426
10427                ret = btrfs_update_inode(trans, root, inode);
10428
10429                if (ret) {
10430                        btrfs_abort_transaction(trans, ret);
10431                        if (own_trans)
10432                                btrfs_end_transaction(trans);
10433                        break;
10434                }
10435
10436                if (own_trans)
10437                        btrfs_end_transaction(trans);
10438        }
10439        if (cur_offset < end)
10440                btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10441                        end - cur_offset + 1);
10442        return ret;
10443}
10444
10445int btrfs_prealloc_file_range(struct inode *inode, int mode,
10446                              u64 start, u64 num_bytes, u64 min_size,
10447                              loff_t actual_len, u64 *alloc_hint)
10448{
10449        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10450                                           min_size, actual_len, alloc_hint,
10451                                           NULL);
10452}
10453
10454int btrfs_prealloc_file_range_trans(struct inode *inode,
10455                                    struct btrfs_trans_handle *trans, int mode,
10456                                    u64 start, u64 num_bytes, u64 min_size,
10457                                    loff_t actual_len, u64 *alloc_hint)
10458{
10459        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10460                                           min_size, actual_len, alloc_hint, trans);
10461}
10462
10463static int btrfs_set_page_dirty(struct page *page)
10464{
10465        return __set_page_dirty_nobuffers(page);
10466}
10467
10468static int btrfs_permission(struct inode *inode, int mask)
10469{
10470        struct btrfs_root *root = BTRFS_I(inode)->root;
10471        umode_t mode = inode->i_mode;
10472
10473        if (mask & MAY_WRITE &&
10474            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10475                if (btrfs_root_readonly(root))
10476                        return -EROFS;
10477                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10478                        return -EACCES;
10479        }
10480        return generic_permission(inode, mask);
10481}
10482
10483static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10484{
10485        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10486        struct btrfs_trans_handle *trans;
10487        struct btrfs_root *root = BTRFS_I(dir)->root;
10488        struct inode *inode = NULL;
10489        u64 objectid;
10490        u64 index;
10491        int ret = 0;
10492
10493        /*
10494         * 5 units required for adding orphan entry
10495         */
10496        trans = btrfs_start_transaction(root, 5);
10497        if (IS_ERR(trans))
10498                return PTR_ERR(trans);
10499
10500        ret = btrfs_find_free_ino(root, &objectid);
10501        if (ret)
10502                goto out;
10503
10504        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10505                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10506        if (IS_ERR(inode)) {
10507                ret = PTR_ERR(inode);
10508                inode = NULL;
10509                goto out;
10510        }
10511
10512        inode->i_fop = &btrfs_file_operations;
10513        inode->i_op = &btrfs_file_inode_operations;
10514
10515        inode->i_mapping->a_ops = &btrfs_aops;
10516        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10517
10518        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10519        if (ret)
10520                goto out;
10521
10522        ret = btrfs_update_inode(trans, root, inode);
10523        if (ret)
10524                goto out;
10525        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10526        if (ret)
10527                goto out;
10528
10529        /*
10530         * We set number of links to 0 in btrfs_new_inode(), and here we set
10531         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10532         * through:
10533         *
10534         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10535         */
10536        set_nlink(inode, 1);
10537        d_tmpfile(dentry, inode);
10538        unlock_new_inode(inode);
10539        mark_inode_dirty(inode);
10540out:
10541        btrfs_end_transaction(trans);
10542        if (ret && inode)
10543                discard_new_inode(inode);
10544        btrfs_btree_balance_dirty(fs_info);
10545        return ret;
10546}
10547
10548void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10549{
10550        struct inode *inode = tree->private_data;
10551        unsigned long index = start >> PAGE_SHIFT;
10552        unsigned long end_index = end >> PAGE_SHIFT;
10553        struct page *page;
10554
10555        while (index <= end_index) {
10556                page = find_get_page(inode->i_mapping, index);
10557                ASSERT(page); /* Pages should be in the extent_io_tree */
10558                set_page_writeback(page);
10559                put_page(page);
10560                index++;
10561        }
10562}
10563
10564#ifdef CONFIG_SWAP
10565/*
10566 * Add an entry indicating a block group or device which is pinned by a
10567 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10568 * negative errno on failure.
10569 */
10570static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10571                                  bool is_block_group)
10572{
10573        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10574        struct btrfs_swapfile_pin *sp, *entry;
10575        struct rb_node **p;
10576        struct rb_node *parent = NULL;
10577
10578        sp = kmalloc(sizeof(*sp), GFP_NOFS);
10579        if (!sp)
10580                return -ENOMEM;
10581        sp->ptr = ptr;
10582        sp->inode = inode;
10583        sp->is_block_group = is_block_group;
10584
10585        spin_lock(&fs_info->swapfile_pins_lock);
10586        p = &fs_info->swapfile_pins.rb_node;
10587        while (*p) {
10588                parent = *p;
10589                entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10590                if (sp->ptr < entry->ptr ||
10591                    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10592                        p = &(*p)->rb_left;
10593                } else if (sp->ptr > entry->ptr ||
10594                           (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10595                        p = &(*p)->rb_right;
10596                } else {
10597                        spin_unlock(&fs_info->swapfile_pins_lock);
10598                        kfree(sp);
10599                        return 1;
10600                }
10601        }
10602        rb_link_node(&sp->node, parent, p);
10603        rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10604        spin_unlock(&fs_info->swapfile_pins_lock);
10605        return 0;
10606}
10607
10608/* Free all of the entries pinned by this swapfile. */
10609static void btrfs_free_swapfile_pins(struct inode *inode)
10610{
10611        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10612        struct btrfs_swapfile_pin *sp;
10613        struct rb_node *node, *next;
10614
10615        spin_lock(&fs_info->swapfile_pins_lock);
10616        node = rb_first(&fs_info->swapfile_pins);
10617        while (node) {
10618                next = rb_next(node);
10619                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10620                if (sp->inode == inode) {
10621                        rb_erase(&sp->node, &fs_info->swapfile_pins);
10622                        if (sp->is_block_group)
10623                                btrfs_put_block_group(sp->ptr);
10624                        kfree(sp);
10625                }
10626                node = next;
10627        }
10628        spin_unlock(&fs_info->swapfile_pins_lock);
10629}
10630
10631struct btrfs_swap_info {
10632        u64 start;
10633        u64 block_start;
10634        u64 block_len;
10635        u64 lowest_ppage;
10636        u64 highest_ppage;
10637        unsigned long nr_pages;
10638        int nr_extents;
10639};
10640
10641static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10642                                 struct btrfs_swap_info *bsi)
10643{
10644        unsigned long nr_pages;
10645        u64 first_ppage, first_ppage_reported, next_ppage;
10646        int ret;
10647
10648        first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10649        next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10650                                PAGE_SIZE) >> PAGE_SHIFT;
10651
10652        if (first_ppage >= next_ppage)
10653                return 0;
10654        nr_pages = next_ppage - first_ppage;
10655
10656        first_ppage_reported = first_ppage;
10657        if (bsi->start == 0)
10658                first_ppage_reported++;
10659        if (bsi->lowest_ppage > first_ppage_reported)
10660                bsi->lowest_ppage = first_ppage_reported;
10661        if (bsi->highest_ppage < (next_ppage - 1))
10662                bsi->highest_ppage = next_ppage - 1;
10663
10664        ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10665        if (ret < 0)
10666                return ret;
10667        bsi->nr_extents += ret;
10668        bsi->nr_pages += nr_pages;
10669        return 0;
10670}
10671
10672static void btrfs_swap_deactivate(struct file *file)
10673{
10674        struct inode *inode = file_inode(file);
10675
10676        btrfs_free_swapfile_pins(inode);
10677        atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10678}
10679
10680static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10681                               sector_t *span)
10682{
10683        struct inode *inode = file_inode(file);
10684        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10685        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10686        struct extent_state *cached_state = NULL;
10687        struct extent_map *em = NULL;
10688        struct btrfs_device *device = NULL;
10689        struct btrfs_swap_info bsi = {
10690                .lowest_ppage = (sector_t)-1ULL,
10691        };
10692        int ret = 0;
10693        u64 isize;
10694        u64 start;
10695
10696        /*
10697         * If the swap file was just created, make sure delalloc is done. If the
10698         * file changes again after this, the user is doing something stupid and
10699         * we don't really care.
10700         */
10701        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10702        if (ret)
10703                return ret;
10704
10705        /*
10706         * The inode is locked, so these flags won't change after we check them.
10707         */
10708        if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10709                btrfs_warn(fs_info, "swapfile must not be compressed");
10710                return -EINVAL;
10711        }
10712        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10713                btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10714                return -EINVAL;
10715        }
10716        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10717                btrfs_warn(fs_info, "swapfile must not be checksummed");
10718                return -EINVAL;
10719        }
10720
10721        /*
10722         * Balance or device remove/replace/resize can move stuff around from
10723         * under us. The EXCL_OP flag makes sure they aren't running/won't run
10724         * concurrently while we are mapping the swap extents, and
10725         * fs_info->swapfile_pins prevents them from running while the swap file
10726         * is active and moving the extents. Note that this also prevents a
10727         * concurrent device add which isn't actually necessary, but it's not
10728         * really worth the trouble to allow it.
10729         */
10730        if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10731                btrfs_warn(fs_info,
10732           "cannot activate swapfile while exclusive operation is running");
10733                return -EBUSY;
10734        }
10735        /*
10736         * Snapshots can create extents which require COW even if NODATACOW is
10737         * set. We use this counter to prevent snapshots. We must increment it
10738         * before walking the extents because we don't want a concurrent
10739         * snapshot to run after we've already checked the extents.
10740         */
10741        atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10742
10743        isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10744
10745        lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10746        start = 0;
10747        while (start < isize) {
10748                u64 logical_block_start, physical_block_start;
10749                struct btrfs_block_group_cache *bg;
10750                u64 len = isize - start;
10751
10752                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10753                if (IS_ERR(em)) {
10754                        ret = PTR_ERR(em);
10755                        goto out;
10756                }
10757
10758                if (em->block_start == EXTENT_MAP_HOLE) {
10759                        btrfs_warn(fs_info, "swapfile must not have holes");
10760                        ret = -EINVAL;
10761                        goto out;
10762                }
10763                if (em->block_start == EXTENT_MAP_INLINE) {
10764                        /*
10765                         * It's unlikely we'll ever actually find ourselves
10766                         * here, as a file small enough to fit inline won't be
10767                         * big enough to store more than the swap header, but in
10768                         * case something changes in the future, let's catch it
10769                         * here rather than later.
10770                         */
10771                        btrfs_warn(fs_info, "swapfile must not be inline");
10772                        ret = -EINVAL;
10773                        goto out;
10774                }
10775                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10776                        btrfs_warn(fs_info, "swapfile must not be compressed");
10777                        ret = -EINVAL;
10778                        goto out;
10779                }
10780
10781                logical_block_start = em->block_start + (start - em->start);
10782                len = min(len, em->len - (start - em->start));
10783                free_extent_map(em);
10784                em = NULL;
10785
10786                ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10787                if (ret < 0) {
10788                        goto out;
10789                } else if (ret) {
10790                        ret = 0;
10791                } else {
10792                        btrfs_warn(fs_info,
10793                                   "swapfile must not be copy-on-write");
10794                        ret = -EINVAL;
10795                        goto out;
10796                }
10797
10798                em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10799                if (IS_ERR(em)) {
10800                        ret = PTR_ERR(em);
10801                        goto out;
10802                }
10803
10804                if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10805                        btrfs_warn(fs_info,
10806                                   "swapfile must have single data profile");
10807                        ret = -EINVAL;
10808                        goto out;
10809                }
10810
10811                if (device == NULL) {
10812                        device = em->map_lookup->stripes[0].dev;
10813                        ret = btrfs_add_swapfile_pin(inode, device, false);
10814                        if (ret == 1)
10815                                ret = 0;
10816                        else if (ret)
10817                                goto out;
10818                } else if (device != em->map_lookup->stripes[0].dev) {
10819                        btrfs_warn(fs_info, "swapfile must be on one device");
10820                        ret = -EINVAL;
10821                        goto out;
10822                }
10823
10824                physical_block_start = (em->map_lookup->stripes[0].physical +
10825                                        (logical_block_start - em->start));
10826                len = min(len, em->len - (logical_block_start - em->start));
10827                free_extent_map(em);
10828                em = NULL;
10829
10830                bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10831                if (!bg) {
10832                        btrfs_warn(fs_info,
10833                           "could not find block group containing swapfile");
10834                        ret = -EINVAL;
10835                        goto out;
10836                }
10837
10838                ret = btrfs_add_swapfile_pin(inode, bg, true);
10839                if (ret) {
10840                        btrfs_put_block_group(bg);
10841                        if (ret == 1)
10842                                ret = 0;
10843                        else
10844                                goto out;
10845                }
10846
10847                if (bsi.block_len &&
10848                    bsi.block_start + bsi.block_len == physical_block_start) {
10849                        bsi.block_len += len;
10850                } else {
10851                        if (bsi.block_len) {
10852                                ret = btrfs_add_swap_extent(sis, &bsi);
10853                                if (ret)
10854                                        goto out;
10855                        }
10856                        bsi.start = start;
10857                        bsi.block_start = physical_block_start;
10858                        bsi.block_len = len;
10859                }
10860
10861                start += len;
10862        }
10863
10864        if (bsi.block_len)
10865                ret = btrfs_add_swap_extent(sis, &bsi);
10866
10867out:
10868        if (!IS_ERR_OR_NULL(em))
10869                free_extent_map(em);
10870
10871        unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10872
10873        if (ret)
10874                btrfs_swap_deactivate(file);
10875
10876        clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10877
10878        if (ret)
10879                return ret;
10880
10881        if (device)
10882                sis->bdev = device->bdev;
10883        *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10884        sis->max = bsi.nr_pages;
10885        sis->pages = bsi.nr_pages - 1;
10886        sis->highest_bit = bsi.nr_pages - 1;
10887        return bsi.nr_extents;
10888}
10889#else
10890static void btrfs_swap_deactivate(struct file *file)
10891{
10892}
10893
10894static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10895                               sector_t *span)
10896{
10897        return -EOPNOTSUPP;
10898}
10899#endif
10900
10901static const struct inode_operations btrfs_dir_inode_operations = {
10902        .getattr        = btrfs_getattr,
10903        .lookup         = btrfs_lookup,
10904        .create         = btrfs_create,
10905        .unlink         = btrfs_unlink,
10906        .link           = btrfs_link,
10907        .mkdir          = btrfs_mkdir,
10908        .rmdir          = btrfs_rmdir,
10909        .rename         = btrfs_rename2,
10910        .symlink        = btrfs_symlink,
10911        .setattr        = btrfs_setattr,
10912        .mknod          = btrfs_mknod,
10913        .listxattr      = btrfs_listxattr,
10914        .permission     = btrfs_permission,
10915        .get_acl        = btrfs_get_acl,
10916        .set_acl        = btrfs_set_acl,
10917        .update_time    = btrfs_update_time,
10918        .tmpfile        = btrfs_tmpfile,
10919};
10920static const struct inode_operations btrfs_dir_ro_inode_operations = {
10921        .lookup         = btrfs_lookup,
10922        .permission     = btrfs_permission,
10923        .update_time    = btrfs_update_time,
10924};
10925
10926static const struct file_operations btrfs_dir_file_operations = {
10927        .llseek         = generic_file_llseek,
10928        .read           = generic_read_dir,
10929        .iterate_shared = btrfs_real_readdir,
10930        .open           = btrfs_opendir,
10931        .unlocked_ioctl = btrfs_ioctl,
10932#ifdef CONFIG_COMPAT
10933        .compat_ioctl   = btrfs_compat_ioctl,
10934#endif
10935        .release        = btrfs_release_file,
10936        .fsync          = btrfs_sync_file,
10937};
10938
10939static const struct extent_io_ops btrfs_extent_io_ops = {
10940        /* mandatory callbacks */
10941        .submit_bio_hook = btrfs_submit_bio_hook,
10942        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10943};
10944
10945/*
10946 * btrfs doesn't support the bmap operation because swapfiles
10947 * use bmap to make a mapping of extents in the file.  They assume
10948 * these extents won't change over the life of the file and they
10949 * use the bmap result to do IO directly to the drive.
10950 *
10951 * the btrfs bmap call would return logical addresses that aren't
10952 * suitable for IO and they also will change frequently as COW
10953 * operations happen.  So, swapfile + btrfs == corruption.
10954 *
10955 * For now we're avoiding this by dropping bmap.
10956 */
10957static const struct address_space_operations btrfs_aops = {
10958        .readpage       = btrfs_readpage,
10959        .writepage      = btrfs_writepage,
10960        .writepages     = btrfs_writepages,
10961        .readpages      = btrfs_readpages,
10962        .direct_IO      = btrfs_direct_IO,
10963        .invalidatepage = btrfs_invalidatepage,
10964        .releasepage    = btrfs_releasepage,
10965        .set_page_dirty = btrfs_set_page_dirty,
10966        .error_remove_page = generic_error_remove_page,
10967        .swap_activate  = btrfs_swap_activate,
10968        .swap_deactivate = btrfs_swap_deactivate,
10969};
10970
10971static const struct inode_operations btrfs_file_inode_operations = {
10972        .getattr        = btrfs_getattr,
10973        .setattr        = btrfs_setattr,
10974        .listxattr      = btrfs_listxattr,
10975        .permission     = btrfs_permission,
10976        .fiemap         = btrfs_fiemap,
10977        .get_acl        = btrfs_get_acl,
10978        .set_acl        = btrfs_set_acl,
10979        .update_time    = btrfs_update_time,
10980};
10981static const struct inode_operations btrfs_special_inode_operations = {
10982        .getattr        = btrfs_getattr,
10983        .setattr        = btrfs_setattr,
10984        .permission     = btrfs_permission,
10985        .listxattr      = btrfs_listxattr,
10986        .get_acl        = btrfs_get_acl,
10987        .set_acl        = btrfs_set_acl,
10988        .update_time    = btrfs_update_time,
10989};
10990static const struct inode_operations btrfs_symlink_inode_operations = {
10991        .get_link       = page_get_link,
10992        .getattr        = btrfs_getattr,
10993        .setattr        = btrfs_setattr,
10994        .permission     = btrfs_permission,
10995        .listxattr      = btrfs_listxattr,
10996        .update_time    = btrfs_update_time,
10997};
10998
10999const struct dentry_operations btrfs_dentry_operations = {
11000        .d_delete       = btrfs_dentry_delete,
11001};
11002