linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "volumes.h"
  12#include "disk-io.h"
  13#include "ordered-data.h"
  14#include "transaction.h"
  15#include "backref.h"
  16#include "extent_io.h"
  17#include "dev-replace.h"
  18#include "check-integrity.h"
  19#include "rcu-string.h"
  20#include "raid56.h"
  21
  22/*
  23 * This is only the first step towards a full-features scrub. It reads all
  24 * extent and super block and verifies the checksums. In case a bad checksum
  25 * is found or the extent cannot be read, good data will be written back if
  26 * any can be found.
  27 *
  28 * Future enhancements:
  29 *  - In case an unrepairable extent is encountered, track which files are
  30 *    affected and report them
  31 *  - track and record media errors, throw out bad devices
  32 *  - add a mode to also read unallocated space
  33 */
  34
  35struct scrub_block;
  36struct scrub_ctx;
  37
  38/*
  39 * the following three values only influence the performance.
  40 * The last one configures the number of parallel and outstanding I/O
  41 * operations. The first two values configure an upper limit for the number
  42 * of (dynamically allocated) pages that are added to a bio.
  43 */
  44#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  45#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  46#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  47
  48/*
  49 * the following value times PAGE_SIZE needs to be large enough to match the
  50 * largest node/leaf/sector size that shall be supported.
  51 * Values larger than BTRFS_STRIPE_LEN are not supported.
  52 */
  53#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  54
  55struct scrub_recover {
  56        refcount_t              refs;
  57        struct btrfs_bio        *bbio;
  58        u64                     map_length;
  59};
  60
  61struct scrub_page {
  62        struct scrub_block      *sblock;
  63        struct page             *page;
  64        struct btrfs_device     *dev;
  65        struct list_head        list;
  66        u64                     flags;  /* extent flags */
  67        u64                     generation;
  68        u64                     logical;
  69        u64                     physical;
  70        u64                     physical_for_dev_replace;
  71        atomic_t                refs;
  72        struct {
  73                unsigned int    mirror_num:8;
  74                unsigned int    have_csum:1;
  75                unsigned int    io_error:1;
  76        };
  77        u8                      csum[BTRFS_CSUM_SIZE];
  78
  79        struct scrub_recover    *recover;
  80};
  81
  82struct scrub_bio {
  83        int                     index;
  84        struct scrub_ctx        *sctx;
  85        struct btrfs_device     *dev;
  86        struct bio              *bio;
  87        blk_status_t            status;
  88        u64                     logical;
  89        u64                     physical;
  90#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  91        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  92#else
  93        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  94#endif
  95        int                     page_count;
  96        int                     next_free;
  97        struct btrfs_work       work;
  98};
  99
 100struct scrub_block {
 101        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 102        int                     page_count;
 103        atomic_t                outstanding_pages;
 104        refcount_t              refs; /* free mem on transition to zero */
 105        struct scrub_ctx        *sctx;
 106        struct scrub_parity     *sparity;
 107        struct {
 108                unsigned int    header_error:1;
 109                unsigned int    checksum_error:1;
 110                unsigned int    no_io_error_seen:1;
 111                unsigned int    generation_error:1; /* also sets header_error */
 112
 113                /* The following is for the data used to check parity */
 114                /* It is for the data with checksum */
 115                unsigned int    data_corrected:1;
 116        };
 117        struct btrfs_work       work;
 118};
 119
 120/* Used for the chunks with parity stripe such RAID5/6 */
 121struct scrub_parity {
 122        struct scrub_ctx        *sctx;
 123
 124        struct btrfs_device     *scrub_dev;
 125
 126        u64                     logic_start;
 127
 128        u64                     logic_end;
 129
 130        int                     nsectors;
 131
 132        u64                     stripe_len;
 133
 134        refcount_t              refs;
 135
 136        struct list_head        spages;
 137
 138        /* Work of parity check and repair */
 139        struct btrfs_work       work;
 140
 141        /* Mark the parity blocks which have data */
 142        unsigned long           *dbitmap;
 143
 144        /*
 145         * Mark the parity blocks which have data, but errors happen when
 146         * read data or check data
 147         */
 148        unsigned long           *ebitmap;
 149
 150        unsigned long           bitmap[0];
 151};
 152
 153struct scrub_ctx {
 154        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 155        struct btrfs_fs_info    *fs_info;
 156        int                     first_free;
 157        int                     curr;
 158        atomic_t                bios_in_flight;
 159        atomic_t                workers_pending;
 160        spinlock_t              list_lock;
 161        wait_queue_head_t       list_wait;
 162        u16                     csum_size;
 163        struct list_head        csum_list;
 164        atomic_t                cancel_req;
 165        int                     readonly;
 166        int                     pages_per_rd_bio;
 167
 168        int                     is_dev_replace;
 169
 170        struct scrub_bio        *wr_curr_bio;
 171        struct mutex            wr_lock;
 172        int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 173        struct btrfs_device     *wr_tgtdev;
 174        bool                    flush_all_writes;
 175
 176        /*
 177         * statistics
 178         */
 179        struct btrfs_scrub_progress stat;
 180        spinlock_t              stat_lock;
 181
 182        /*
 183         * Use a ref counter to avoid use-after-free issues. Scrub workers
 184         * decrement bios_in_flight and workers_pending and then do a wakeup
 185         * on the list_wait wait queue. We must ensure the main scrub task
 186         * doesn't free the scrub context before or while the workers are
 187         * doing the wakeup() call.
 188         */
 189        refcount_t              refs;
 190};
 191
 192struct scrub_warning {
 193        struct btrfs_path       *path;
 194        u64                     extent_item_size;
 195        const char              *errstr;
 196        u64                     physical;
 197        u64                     logical;
 198        struct btrfs_device     *dev;
 199};
 200
 201struct full_stripe_lock {
 202        struct rb_node node;
 203        u64 logical;
 204        u64 refs;
 205        struct mutex mutex;
 206};
 207
 208static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 209static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 210static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 211static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 212                                     struct scrub_block *sblocks_for_recheck);
 213static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 214                                struct scrub_block *sblock,
 215                                int retry_failed_mirror);
 216static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 217static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 218                                             struct scrub_block *sblock_good);
 219static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 220                                            struct scrub_block *sblock_good,
 221                                            int page_num, int force_write);
 222static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 223static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 224                                           int page_num);
 225static int scrub_checksum_data(struct scrub_block *sblock);
 226static int scrub_checksum_tree_block(struct scrub_block *sblock);
 227static int scrub_checksum_super(struct scrub_block *sblock);
 228static void scrub_block_get(struct scrub_block *sblock);
 229static void scrub_block_put(struct scrub_block *sblock);
 230static void scrub_page_get(struct scrub_page *spage);
 231static void scrub_page_put(struct scrub_page *spage);
 232static void scrub_parity_get(struct scrub_parity *sparity);
 233static void scrub_parity_put(struct scrub_parity *sparity);
 234static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 235                                    struct scrub_page *spage);
 236static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 237                       u64 physical, struct btrfs_device *dev, u64 flags,
 238                       u64 gen, int mirror_num, u8 *csum, int force,
 239                       u64 physical_for_dev_replace);
 240static void scrub_bio_end_io(struct bio *bio);
 241static void scrub_bio_end_io_worker(struct btrfs_work *work);
 242static void scrub_block_complete(struct scrub_block *sblock);
 243static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 244                               u64 extent_logical, u64 extent_len,
 245                               u64 *extent_physical,
 246                               struct btrfs_device **extent_dev,
 247                               int *extent_mirror_num);
 248static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 249                                    struct scrub_page *spage);
 250static void scrub_wr_submit(struct scrub_ctx *sctx);
 251static void scrub_wr_bio_end_io(struct bio *bio);
 252static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 253static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 254static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 255static void scrub_put_ctx(struct scrub_ctx *sctx);
 256
 257static inline int scrub_is_page_on_raid56(struct scrub_page *page)
 258{
 259        return page->recover &&
 260               (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 261}
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 265        refcount_inc(&sctx->refs);
 266        atomic_inc(&sctx->bios_in_flight);
 267}
 268
 269static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 270{
 271        atomic_dec(&sctx->bios_in_flight);
 272        wake_up(&sctx->list_wait);
 273        scrub_put_ctx(sctx);
 274}
 275
 276static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 277{
 278        while (atomic_read(&fs_info->scrub_pause_req)) {
 279                mutex_unlock(&fs_info->scrub_lock);
 280                wait_event(fs_info->scrub_pause_wait,
 281                   atomic_read(&fs_info->scrub_pause_req) == 0);
 282                mutex_lock(&fs_info->scrub_lock);
 283        }
 284}
 285
 286static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 287{
 288        atomic_inc(&fs_info->scrubs_paused);
 289        wake_up(&fs_info->scrub_pause_wait);
 290}
 291
 292static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 293{
 294        mutex_lock(&fs_info->scrub_lock);
 295        __scrub_blocked_if_needed(fs_info);
 296        atomic_dec(&fs_info->scrubs_paused);
 297        mutex_unlock(&fs_info->scrub_lock);
 298
 299        wake_up(&fs_info->scrub_pause_wait);
 300}
 301
 302static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 303{
 304        scrub_pause_on(fs_info);
 305        scrub_pause_off(fs_info);
 306}
 307
 308/*
 309 * Insert new full stripe lock into full stripe locks tree
 310 *
 311 * Return pointer to existing or newly inserted full_stripe_lock structure if
 312 * everything works well.
 313 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 314 *
 315 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 316 * function
 317 */
 318static struct full_stripe_lock *insert_full_stripe_lock(
 319                struct btrfs_full_stripe_locks_tree *locks_root,
 320                u64 fstripe_logical)
 321{
 322        struct rb_node **p;
 323        struct rb_node *parent = NULL;
 324        struct full_stripe_lock *entry;
 325        struct full_stripe_lock *ret;
 326
 327        lockdep_assert_held(&locks_root->lock);
 328
 329        p = &locks_root->root.rb_node;
 330        while (*p) {
 331                parent = *p;
 332                entry = rb_entry(parent, struct full_stripe_lock, node);
 333                if (fstripe_logical < entry->logical) {
 334                        p = &(*p)->rb_left;
 335                } else if (fstripe_logical > entry->logical) {
 336                        p = &(*p)->rb_right;
 337                } else {
 338                        entry->refs++;
 339                        return entry;
 340                }
 341        }
 342
 343        /*
 344         * Insert new lock.
 345         */
 346        ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 347        if (!ret)
 348                return ERR_PTR(-ENOMEM);
 349        ret->logical = fstripe_logical;
 350        ret->refs = 1;
 351        mutex_init(&ret->mutex);
 352
 353        rb_link_node(&ret->node, parent, p);
 354        rb_insert_color(&ret->node, &locks_root->root);
 355        return ret;
 356}
 357
 358/*
 359 * Search for a full stripe lock of a block group
 360 *
 361 * Return pointer to existing full stripe lock if found
 362 * Return NULL if not found
 363 */
 364static struct full_stripe_lock *search_full_stripe_lock(
 365                struct btrfs_full_stripe_locks_tree *locks_root,
 366                u64 fstripe_logical)
 367{
 368        struct rb_node *node;
 369        struct full_stripe_lock *entry;
 370
 371        lockdep_assert_held(&locks_root->lock);
 372
 373        node = locks_root->root.rb_node;
 374        while (node) {
 375                entry = rb_entry(node, struct full_stripe_lock, node);
 376                if (fstripe_logical < entry->logical)
 377                        node = node->rb_left;
 378                else if (fstripe_logical > entry->logical)
 379                        node = node->rb_right;
 380                else
 381                        return entry;
 382        }
 383        return NULL;
 384}
 385
 386/*
 387 * Helper to get full stripe logical from a normal bytenr.
 388 *
 389 * Caller must ensure @cache is a RAID56 block group.
 390 */
 391static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
 392                                   u64 bytenr)
 393{
 394        u64 ret;
 395
 396        /*
 397         * Due to chunk item size limit, full stripe length should not be
 398         * larger than U32_MAX. Just a sanity check here.
 399         */
 400        WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 401
 402        /*
 403         * round_down() can only handle power of 2, while RAID56 full
 404         * stripe length can be 64KiB * n, so we need to manually round down.
 405         */
 406        ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
 407                cache->full_stripe_len + cache->key.objectid;
 408        return ret;
 409}
 410
 411/*
 412 * Lock a full stripe to avoid concurrency of recovery and read
 413 *
 414 * It's only used for profiles with parities (RAID5/6), for other profiles it
 415 * does nothing.
 416 *
 417 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 418 * So caller must call unlock_full_stripe() at the same context.
 419 *
 420 * Return <0 if encounters error.
 421 */
 422static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 423                            bool *locked_ret)
 424{
 425        struct btrfs_block_group_cache *bg_cache;
 426        struct btrfs_full_stripe_locks_tree *locks_root;
 427        struct full_stripe_lock *existing;
 428        u64 fstripe_start;
 429        int ret = 0;
 430
 431        *locked_ret = false;
 432        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 433        if (!bg_cache) {
 434                ASSERT(0);
 435                return -ENOENT;
 436        }
 437
 438        /* Profiles not based on parity don't need full stripe lock */
 439        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 440                goto out;
 441        locks_root = &bg_cache->full_stripe_locks_root;
 442
 443        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 444
 445        /* Now insert the full stripe lock */
 446        mutex_lock(&locks_root->lock);
 447        existing = insert_full_stripe_lock(locks_root, fstripe_start);
 448        mutex_unlock(&locks_root->lock);
 449        if (IS_ERR(existing)) {
 450                ret = PTR_ERR(existing);
 451                goto out;
 452        }
 453        mutex_lock(&existing->mutex);
 454        *locked_ret = true;
 455out:
 456        btrfs_put_block_group(bg_cache);
 457        return ret;
 458}
 459
 460/*
 461 * Unlock a full stripe.
 462 *
 463 * NOTE: Caller must ensure it's the same context calling corresponding
 464 * lock_full_stripe().
 465 *
 466 * Return 0 if we unlock full stripe without problem.
 467 * Return <0 for error
 468 */
 469static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 470                              bool locked)
 471{
 472        struct btrfs_block_group_cache *bg_cache;
 473        struct btrfs_full_stripe_locks_tree *locks_root;
 474        struct full_stripe_lock *fstripe_lock;
 475        u64 fstripe_start;
 476        bool freeit = false;
 477        int ret = 0;
 478
 479        /* If we didn't acquire full stripe lock, no need to continue */
 480        if (!locked)
 481                return 0;
 482
 483        bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 484        if (!bg_cache) {
 485                ASSERT(0);
 486                return -ENOENT;
 487        }
 488        if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 489                goto out;
 490
 491        locks_root = &bg_cache->full_stripe_locks_root;
 492        fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 493
 494        mutex_lock(&locks_root->lock);
 495        fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 496        /* Unpaired unlock_full_stripe() detected */
 497        if (!fstripe_lock) {
 498                WARN_ON(1);
 499                ret = -ENOENT;
 500                mutex_unlock(&locks_root->lock);
 501                goto out;
 502        }
 503
 504        if (fstripe_lock->refs == 0) {
 505                WARN_ON(1);
 506                btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 507                        fstripe_lock->logical);
 508        } else {
 509                fstripe_lock->refs--;
 510        }
 511
 512        if (fstripe_lock->refs == 0) {
 513                rb_erase(&fstripe_lock->node, &locks_root->root);
 514                freeit = true;
 515        }
 516        mutex_unlock(&locks_root->lock);
 517
 518        mutex_unlock(&fstripe_lock->mutex);
 519        if (freeit)
 520                kfree(fstripe_lock);
 521out:
 522        btrfs_put_block_group(bg_cache);
 523        return ret;
 524}
 525
 526static void scrub_free_csums(struct scrub_ctx *sctx)
 527{
 528        while (!list_empty(&sctx->csum_list)) {
 529                struct btrfs_ordered_sum *sum;
 530                sum = list_first_entry(&sctx->csum_list,
 531                                       struct btrfs_ordered_sum, list);
 532                list_del(&sum->list);
 533                kfree(sum);
 534        }
 535}
 536
 537static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 538{
 539        int i;
 540
 541        if (!sctx)
 542                return;
 543
 544        /* this can happen when scrub is cancelled */
 545        if (sctx->curr != -1) {
 546                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 547
 548                for (i = 0; i < sbio->page_count; i++) {
 549                        WARN_ON(!sbio->pagev[i]->page);
 550                        scrub_block_put(sbio->pagev[i]->sblock);
 551                }
 552                bio_put(sbio->bio);
 553        }
 554
 555        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 556                struct scrub_bio *sbio = sctx->bios[i];
 557
 558                if (!sbio)
 559                        break;
 560                kfree(sbio);
 561        }
 562
 563        kfree(sctx->wr_curr_bio);
 564        scrub_free_csums(sctx);
 565        kfree(sctx);
 566}
 567
 568static void scrub_put_ctx(struct scrub_ctx *sctx)
 569{
 570        if (refcount_dec_and_test(&sctx->refs))
 571                scrub_free_ctx(sctx);
 572}
 573
 574static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 575                struct btrfs_fs_info *fs_info, int is_dev_replace)
 576{
 577        struct scrub_ctx *sctx;
 578        int             i;
 579
 580        sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 581        if (!sctx)
 582                goto nomem;
 583        refcount_set(&sctx->refs, 1);
 584        sctx->is_dev_replace = is_dev_replace;
 585        sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 586        sctx->curr = -1;
 587        sctx->fs_info = fs_info;
 588        INIT_LIST_HEAD(&sctx->csum_list);
 589        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 590                struct scrub_bio *sbio;
 591
 592                sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 593                if (!sbio)
 594                        goto nomem;
 595                sctx->bios[i] = sbio;
 596
 597                sbio->index = i;
 598                sbio->sctx = sctx;
 599                sbio->page_count = 0;
 600                btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 601                                scrub_bio_end_io_worker, NULL, NULL);
 602
 603                if (i != SCRUB_BIOS_PER_SCTX - 1)
 604                        sctx->bios[i]->next_free = i + 1;
 605                else
 606                        sctx->bios[i]->next_free = -1;
 607        }
 608        sctx->first_free = 0;
 609        atomic_set(&sctx->bios_in_flight, 0);
 610        atomic_set(&sctx->workers_pending, 0);
 611        atomic_set(&sctx->cancel_req, 0);
 612        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 613
 614        spin_lock_init(&sctx->list_lock);
 615        spin_lock_init(&sctx->stat_lock);
 616        init_waitqueue_head(&sctx->list_wait);
 617
 618        WARN_ON(sctx->wr_curr_bio != NULL);
 619        mutex_init(&sctx->wr_lock);
 620        sctx->wr_curr_bio = NULL;
 621        if (is_dev_replace) {
 622                WARN_ON(!fs_info->dev_replace.tgtdev);
 623                sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
 624                sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 625                sctx->flush_all_writes = false;
 626        }
 627
 628        return sctx;
 629
 630nomem:
 631        scrub_free_ctx(sctx);
 632        return ERR_PTR(-ENOMEM);
 633}
 634
 635static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 636                                     void *warn_ctx)
 637{
 638        u64 isize;
 639        u32 nlink;
 640        int ret;
 641        int i;
 642        unsigned nofs_flag;
 643        struct extent_buffer *eb;
 644        struct btrfs_inode_item *inode_item;
 645        struct scrub_warning *swarn = warn_ctx;
 646        struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 647        struct inode_fs_paths *ipath = NULL;
 648        struct btrfs_root *local_root;
 649        struct btrfs_key root_key;
 650        struct btrfs_key key;
 651
 652        root_key.objectid = root;
 653        root_key.type = BTRFS_ROOT_ITEM_KEY;
 654        root_key.offset = (u64)-1;
 655        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 656        if (IS_ERR(local_root)) {
 657                ret = PTR_ERR(local_root);
 658                goto err;
 659        }
 660
 661        /*
 662         * this makes the path point to (inum INODE_ITEM ioff)
 663         */
 664        key.objectid = inum;
 665        key.type = BTRFS_INODE_ITEM_KEY;
 666        key.offset = 0;
 667
 668        ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 669        if (ret) {
 670                btrfs_release_path(swarn->path);
 671                goto err;
 672        }
 673
 674        eb = swarn->path->nodes[0];
 675        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 676                                        struct btrfs_inode_item);
 677        isize = btrfs_inode_size(eb, inode_item);
 678        nlink = btrfs_inode_nlink(eb, inode_item);
 679        btrfs_release_path(swarn->path);
 680
 681        /*
 682         * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 683         * uses GFP_NOFS in this context, so we keep it consistent but it does
 684         * not seem to be strictly necessary.
 685         */
 686        nofs_flag = memalloc_nofs_save();
 687        ipath = init_ipath(4096, local_root, swarn->path);
 688        memalloc_nofs_restore(nofs_flag);
 689        if (IS_ERR(ipath)) {
 690                ret = PTR_ERR(ipath);
 691                ipath = NULL;
 692                goto err;
 693        }
 694        ret = paths_from_inode(inum, ipath);
 695
 696        if (ret < 0)
 697                goto err;
 698
 699        /*
 700         * we deliberately ignore the bit ipath might have been too small to
 701         * hold all of the paths here
 702         */
 703        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 704                btrfs_warn_in_rcu(fs_info,
 705"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 706                                  swarn->errstr, swarn->logical,
 707                                  rcu_str_deref(swarn->dev->name),
 708                                  swarn->physical,
 709                                  root, inum, offset,
 710                                  min(isize - offset, (u64)PAGE_SIZE), nlink,
 711                                  (char *)(unsigned long)ipath->fspath->val[i]);
 712
 713        free_ipath(ipath);
 714        return 0;
 715
 716err:
 717        btrfs_warn_in_rcu(fs_info,
 718                          "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 719                          swarn->errstr, swarn->logical,
 720                          rcu_str_deref(swarn->dev->name),
 721                          swarn->physical,
 722                          root, inum, offset, ret);
 723
 724        free_ipath(ipath);
 725        return 0;
 726}
 727
 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 729{
 730        struct btrfs_device *dev;
 731        struct btrfs_fs_info *fs_info;
 732        struct btrfs_path *path;
 733        struct btrfs_key found_key;
 734        struct extent_buffer *eb;
 735        struct btrfs_extent_item *ei;
 736        struct scrub_warning swarn;
 737        unsigned long ptr = 0;
 738        u64 extent_item_pos;
 739        u64 flags = 0;
 740        u64 ref_root;
 741        u32 item_size;
 742        u8 ref_level = 0;
 743        int ret;
 744
 745        WARN_ON(sblock->page_count < 1);
 746        dev = sblock->pagev[0]->dev;
 747        fs_info = sblock->sctx->fs_info;
 748
 749        path = btrfs_alloc_path();
 750        if (!path)
 751                return;
 752
 753        swarn.physical = sblock->pagev[0]->physical;
 754        swarn.logical = sblock->pagev[0]->logical;
 755        swarn.errstr = errstr;
 756        swarn.dev = NULL;
 757
 758        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 759                                  &flags);
 760        if (ret < 0)
 761                goto out;
 762
 763        extent_item_pos = swarn.logical - found_key.objectid;
 764        swarn.extent_item_size = found_key.offset;
 765
 766        eb = path->nodes[0];
 767        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 768        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 769
 770        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 771                do {
 772                        ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 773                                                      item_size, &ref_root,
 774                                                      &ref_level);
 775                        btrfs_warn_in_rcu(fs_info,
 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 777                                errstr, swarn.logical,
 778                                rcu_str_deref(dev->name),
 779                                swarn.physical,
 780                                ref_level ? "node" : "leaf",
 781                                ret < 0 ? -1 : ref_level,
 782                                ret < 0 ? -1 : ref_root);
 783                } while (ret != 1);
 784                btrfs_release_path(path);
 785        } else {
 786                btrfs_release_path(path);
 787                swarn.path = path;
 788                swarn.dev = dev;
 789                iterate_extent_inodes(fs_info, found_key.objectid,
 790                                        extent_item_pos, 1,
 791                                        scrub_print_warning_inode, &swarn, false);
 792        }
 793
 794out:
 795        btrfs_free_path(path);
 796}
 797
 798static inline void scrub_get_recover(struct scrub_recover *recover)
 799{
 800        refcount_inc(&recover->refs);
 801}
 802
 803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 804                                     struct scrub_recover *recover)
 805{
 806        if (refcount_dec_and_test(&recover->refs)) {
 807                btrfs_bio_counter_dec(fs_info);
 808                btrfs_put_bbio(recover->bbio);
 809                kfree(recover);
 810        }
 811}
 812
 813/*
 814 * scrub_handle_errored_block gets called when either verification of the
 815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 816 * case, this function handles all pages in the bio, even though only one
 817 * may be bad.
 818 * The goal of this function is to repair the errored block by using the
 819 * contents of one of the mirrors.
 820 */
 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 822{
 823        struct scrub_ctx *sctx = sblock_to_check->sctx;
 824        struct btrfs_device *dev;
 825        struct btrfs_fs_info *fs_info;
 826        u64 logical;
 827        unsigned int failed_mirror_index;
 828        unsigned int is_metadata;
 829        unsigned int have_csum;
 830        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 831        struct scrub_block *sblock_bad;
 832        int ret;
 833        int mirror_index;
 834        int page_num;
 835        int success;
 836        bool full_stripe_locked;
 837        unsigned int nofs_flag;
 838        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 839                                      DEFAULT_RATELIMIT_BURST);
 840
 841        BUG_ON(sblock_to_check->page_count < 1);
 842        fs_info = sctx->fs_info;
 843        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 844                /*
 845                 * if we find an error in a super block, we just report it.
 846                 * They will get written with the next transaction commit
 847                 * anyway
 848                 */
 849                spin_lock(&sctx->stat_lock);
 850                ++sctx->stat.super_errors;
 851                spin_unlock(&sctx->stat_lock);
 852                return 0;
 853        }
 854        logical = sblock_to_check->pagev[0]->logical;
 855        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 856        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 857        is_metadata = !(sblock_to_check->pagev[0]->flags &
 858                        BTRFS_EXTENT_FLAG_DATA);
 859        have_csum = sblock_to_check->pagev[0]->have_csum;
 860        dev = sblock_to_check->pagev[0]->dev;
 861
 862        /*
 863         * We must use GFP_NOFS because the scrub task might be waiting for a
 864         * worker task executing this function and in turn a transaction commit
 865         * might be waiting the scrub task to pause (which needs to wait for all
 866         * the worker tasks to complete before pausing).
 867         * We do allocations in the workers through insert_full_stripe_lock()
 868         * and scrub_add_page_to_wr_bio(), which happens down the call chain of
 869         * this function.
 870         */
 871        nofs_flag = memalloc_nofs_save();
 872        /*
 873         * For RAID5/6, race can happen for a different device scrub thread.
 874         * For data corruption, Parity and Data threads will both try
 875         * to recovery the data.
 876         * Race can lead to doubly added csum error, or even unrecoverable
 877         * error.
 878         */
 879        ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
 880        if (ret < 0) {
 881                memalloc_nofs_restore(nofs_flag);
 882                spin_lock(&sctx->stat_lock);
 883                if (ret == -ENOMEM)
 884                        sctx->stat.malloc_errors++;
 885                sctx->stat.read_errors++;
 886                sctx->stat.uncorrectable_errors++;
 887                spin_unlock(&sctx->stat_lock);
 888                return ret;
 889        }
 890
 891        /*
 892         * read all mirrors one after the other. This includes to
 893         * re-read the extent or metadata block that failed (that was
 894         * the cause that this fixup code is called) another time,
 895         * page by page this time in order to know which pages
 896         * caused I/O errors and which ones are good (for all mirrors).
 897         * It is the goal to handle the situation when more than one
 898         * mirror contains I/O errors, but the errors do not
 899         * overlap, i.e. the data can be repaired by selecting the
 900         * pages from those mirrors without I/O error on the
 901         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 902         * would be that mirror #1 has an I/O error on the first page,
 903         * the second page is good, and mirror #2 has an I/O error on
 904         * the second page, but the first page is good.
 905         * Then the first page of the first mirror can be repaired by
 906         * taking the first page of the second mirror, and the
 907         * second page of the second mirror can be repaired by
 908         * copying the contents of the 2nd page of the 1st mirror.
 909         * One more note: if the pages of one mirror contain I/O
 910         * errors, the checksum cannot be verified. In order to get
 911         * the best data for repairing, the first attempt is to find
 912         * a mirror without I/O errors and with a validated checksum.
 913         * Only if this is not possible, the pages are picked from
 914         * mirrors with I/O errors without considering the checksum.
 915         * If the latter is the case, at the end, the checksum of the
 916         * repaired area is verified in order to correctly maintain
 917         * the statistics.
 918         */
 919
 920        sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 921                                      sizeof(*sblocks_for_recheck), GFP_KERNEL);
 922        if (!sblocks_for_recheck) {
 923                spin_lock(&sctx->stat_lock);
 924                sctx->stat.malloc_errors++;
 925                sctx->stat.read_errors++;
 926                sctx->stat.uncorrectable_errors++;
 927                spin_unlock(&sctx->stat_lock);
 928                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 929                goto out;
 930        }
 931
 932        /* setup the context, map the logical blocks and alloc the pages */
 933        ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 934        if (ret) {
 935                spin_lock(&sctx->stat_lock);
 936                sctx->stat.read_errors++;
 937                sctx->stat.uncorrectable_errors++;
 938                spin_unlock(&sctx->stat_lock);
 939                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 940                goto out;
 941        }
 942        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 943        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 944
 945        /* build and submit the bios for the failed mirror, check checksums */
 946        scrub_recheck_block(fs_info, sblock_bad, 1);
 947
 948        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 949            sblock_bad->no_io_error_seen) {
 950                /*
 951                 * the error disappeared after reading page by page, or
 952                 * the area was part of a huge bio and other parts of the
 953                 * bio caused I/O errors, or the block layer merged several
 954                 * read requests into one and the error is caused by a
 955                 * different bio (usually one of the two latter cases is
 956                 * the cause)
 957                 */
 958                spin_lock(&sctx->stat_lock);
 959                sctx->stat.unverified_errors++;
 960                sblock_to_check->data_corrected = 1;
 961                spin_unlock(&sctx->stat_lock);
 962
 963                if (sctx->is_dev_replace)
 964                        scrub_write_block_to_dev_replace(sblock_bad);
 965                goto out;
 966        }
 967
 968        if (!sblock_bad->no_io_error_seen) {
 969                spin_lock(&sctx->stat_lock);
 970                sctx->stat.read_errors++;
 971                spin_unlock(&sctx->stat_lock);
 972                if (__ratelimit(&_rs))
 973                        scrub_print_warning("i/o error", sblock_to_check);
 974                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 975        } else if (sblock_bad->checksum_error) {
 976                spin_lock(&sctx->stat_lock);
 977                sctx->stat.csum_errors++;
 978                spin_unlock(&sctx->stat_lock);
 979                if (__ratelimit(&_rs))
 980                        scrub_print_warning("checksum error", sblock_to_check);
 981                btrfs_dev_stat_inc_and_print(dev,
 982                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 983        } else if (sblock_bad->header_error) {
 984                spin_lock(&sctx->stat_lock);
 985                sctx->stat.verify_errors++;
 986                spin_unlock(&sctx->stat_lock);
 987                if (__ratelimit(&_rs))
 988                        scrub_print_warning("checksum/header error",
 989                                            sblock_to_check);
 990                if (sblock_bad->generation_error)
 991                        btrfs_dev_stat_inc_and_print(dev,
 992                                BTRFS_DEV_STAT_GENERATION_ERRS);
 993                else
 994                        btrfs_dev_stat_inc_and_print(dev,
 995                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 996        }
 997
 998        if (sctx->readonly) {
 999                ASSERT(!sctx->is_dev_replace);
1000                goto out;
1001        }
1002
1003        /*
1004         * now build and submit the bios for the other mirrors, check
1005         * checksums.
1006         * First try to pick the mirror which is completely without I/O
1007         * errors and also does not have a checksum error.
1008         * If one is found, and if a checksum is present, the full block
1009         * that is known to contain an error is rewritten. Afterwards
1010         * the block is known to be corrected.
1011         * If a mirror is found which is completely correct, and no
1012         * checksum is present, only those pages are rewritten that had
1013         * an I/O error in the block to be repaired, since it cannot be
1014         * determined, which copy of the other pages is better (and it
1015         * could happen otherwise that a correct page would be
1016         * overwritten by a bad one).
1017         */
1018        for (mirror_index = 0; ;mirror_index++) {
1019                struct scrub_block *sblock_other;
1020
1021                if (mirror_index == failed_mirror_index)
1022                        continue;
1023
1024                /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025                if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1027                                break;
1028                        if (!sblocks_for_recheck[mirror_index].page_count)
1029                                break;
1030
1031                        sblock_other = sblocks_for_recheck + mirror_index;
1032                } else {
1033                        struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034                        int max_allowed = r->bbio->num_stripes -
1035                                                r->bbio->num_tgtdevs;
1036
1037                        if (mirror_index >= max_allowed)
1038                                break;
1039                        if (!sblocks_for_recheck[1].page_count)
1040                                break;
1041
1042                        ASSERT(failed_mirror_index == 0);
1043                        sblock_other = sblocks_for_recheck + 1;
1044                        sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045                }
1046
1047                /* build and submit the bios, check checksums */
1048                scrub_recheck_block(fs_info, sblock_other, 0);
1049
1050                if (!sblock_other->header_error &&
1051                    !sblock_other->checksum_error &&
1052                    sblock_other->no_io_error_seen) {
1053                        if (sctx->is_dev_replace) {
1054                                scrub_write_block_to_dev_replace(sblock_other);
1055                                goto corrected_error;
1056                        } else {
1057                                ret = scrub_repair_block_from_good_copy(
1058                                                sblock_bad, sblock_other);
1059                                if (!ret)
1060                                        goto corrected_error;
1061                        }
1062                }
1063        }
1064
1065        if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066                goto did_not_correct_error;
1067
1068        /*
1069         * In case of I/O errors in the area that is supposed to be
1070         * repaired, continue by picking good copies of those pages.
1071         * Select the good pages from mirrors to rewrite bad pages from
1072         * the area to fix. Afterwards verify the checksum of the block
1073         * that is supposed to be repaired. This verification step is
1074         * only done for the purpose of statistic counting and for the
1075         * final scrub report, whether errors remain.
1076         * A perfect algorithm could make use of the checksum and try
1077         * all possible combinations of pages from the different mirrors
1078         * until the checksum verification succeeds. For example, when
1079         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080         * of mirror #2 is readable but the final checksum test fails,
1081         * then the 2nd page of mirror #3 could be tried, whether now
1082         * the final checksum succeeds. But this would be a rare
1083         * exception and is therefore not implemented. At least it is
1084         * avoided that the good copy is overwritten.
1085         * A more useful improvement would be to pick the sectors
1086         * without I/O error based on sector sizes (512 bytes on legacy
1087         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088         * mirror could be repaired by taking 512 byte of a different
1089         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090         * area are unreadable.
1091         */
1092        success = 1;
1093        for (page_num = 0; page_num < sblock_bad->page_count;
1094             page_num++) {
1095                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096                struct scrub_block *sblock_other = NULL;
1097
1098                /* skip no-io-error page in scrub */
1099                if (!page_bad->io_error && !sctx->is_dev_replace)
1100                        continue;
1101
1102                if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103                        /*
1104                         * In case of dev replace, if raid56 rebuild process
1105                         * didn't work out correct data, then copy the content
1106                         * in sblock_bad to make sure target device is identical
1107                         * to source device, instead of writing garbage data in
1108                         * sblock_for_recheck array to target device.
1109                         */
1110                        sblock_other = NULL;
1111                } else if (page_bad->io_error) {
1112                        /* try to find no-io-error page in mirrors */
1113                        for (mirror_index = 0;
1114                             mirror_index < BTRFS_MAX_MIRRORS &&
1115                             sblocks_for_recheck[mirror_index].page_count > 0;
1116                             mirror_index++) {
1117                                if (!sblocks_for_recheck[mirror_index].
1118                                    pagev[page_num]->io_error) {
1119                                        sblock_other = sblocks_for_recheck +
1120                                                       mirror_index;
1121                                        break;
1122                                }
1123                        }
1124                        if (!sblock_other)
1125                                success = 0;
1126                }
1127
1128                if (sctx->is_dev_replace) {
1129                        /*
1130                         * did not find a mirror to fetch the page
1131                         * from. scrub_write_page_to_dev_replace()
1132                         * handles this case (page->io_error), by
1133                         * filling the block with zeros before
1134                         * submitting the write request
1135                         */
1136                        if (!sblock_other)
1137                                sblock_other = sblock_bad;
1138
1139                        if (scrub_write_page_to_dev_replace(sblock_other,
1140                                                            page_num) != 0) {
1141                                atomic64_inc(
1142                                        &fs_info->dev_replace.num_write_errors);
1143                                success = 0;
1144                        }
1145                } else if (sblock_other) {
1146                        ret = scrub_repair_page_from_good_copy(sblock_bad,
1147                                                               sblock_other,
1148                                                               page_num, 0);
1149                        if (0 == ret)
1150                                page_bad->io_error = 0;
1151                        else
1152                                success = 0;
1153                }
1154        }
1155
1156        if (success && !sctx->is_dev_replace) {
1157                if (is_metadata || have_csum) {
1158                        /*
1159                         * need to verify the checksum now that all
1160                         * sectors on disk are repaired (the write
1161                         * request for data to be repaired is on its way).
1162                         * Just be lazy and use scrub_recheck_block()
1163                         * which re-reads the data before the checksum
1164                         * is verified, but most likely the data comes out
1165                         * of the page cache.
1166                         */
1167                        scrub_recheck_block(fs_info, sblock_bad, 1);
1168                        if (!sblock_bad->header_error &&
1169                            !sblock_bad->checksum_error &&
1170                            sblock_bad->no_io_error_seen)
1171                                goto corrected_error;
1172                        else
1173                                goto did_not_correct_error;
1174                } else {
1175corrected_error:
1176                        spin_lock(&sctx->stat_lock);
1177                        sctx->stat.corrected_errors++;
1178                        sblock_to_check->data_corrected = 1;
1179                        spin_unlock(&sctx->stat_lock);
1180                        btrfs_err_rl_in_rcu(fs_info,
1181                                "fixed up error at logical %llu on dev %s",
1182                                logical, rcu_str_deref(dev->name));
1183                }
1184        } else {
1185did_not_correct_error:
1186                spin_lock(&sctx->stat_lock);
1187                sctx->stat.uncorrectable_errors++;
1188                spin_unlock(&sctx->stat_lock);
1189                btrfs_err_rl_in_rcu(fs_info,
1190                        "unable to fixup (regular) error at logical %llu on dev %s",
1191                        logical, rcu_str_deref(dev->name));
1192        }
1193
1194out:
1195        if (sblocks_for_recheck) {
1196                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197                     mirror_index++) {
1198                        struct scrub_block *sblock = sblocks_for_recheck +
1199                                                     mirror_index;
1200                        struct scrub_recover *recover;
1201                        int page_index;
1202
1203                        for (page_index = 0; page_index < sblock->page_count;
1204                             page_index++) {
1205                                sblock->pagev[page_index]->sblock = NULL;
1206                                recover = sblock->pagev[page_index]->recover;
1207                                if (recover) {
1208                                        scrub_put_recover(fs_info, recover);
1209                                        sblock->pagev[page_index]->recover =
1210                                                                        NULL;
1211                                }
1212                                scrub_page_put(sblock->pagev[page_index]);
1213                        }
1214                }
1215                kfree(sblocks_for_recheck);
1216        }
1217
1218        ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219        memalloc_nofs_restore(nofs_flag);
1220        if (ret < 0)
1221                return ret;
1222        return 0;
1223}
1224
1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226{
1227        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228                return 2;
1229        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230                return 3;
1231        else
1232                return (int)bbio->num_stripes;
1233}
1234
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236                                                 u64 *raid_map,
1237                                                 u64 mapped_length,
1238                                                 int nstripes, int mirror,
1239                                                 int *stripe_index,
1240                                                 u64 *stripe_offset)
1241{
1242        int i;
1243
1244        if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245                /* RAID5/6 */
1246                for (i = 0; i < nstripes; i++) {
1247                        if (raid_map[i] == RAID6_Q_STRIPE ||
1248                            raid_map[i] == RAID5_P_STRIPE)
1249                                continue;
1250
1251                        if (logical >= raid_map[i] &&
1252                            logical < raid_map[i] + mapped_length)
1253                                break;
1254                }
1255
1256                *stripe_index = i;
1257                *stripe_offset = logical - raid_map[i];
1258        } else {
1259                /* The other RAID type */
1260                *stripe_index = mirror;
1261                *stripe_offset = 0;
1262        }
1263}
1264
1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266                                     struct scrub_block *sblocks_for_recheck)
1267{
1268        struct scrub_ctx *sctx = original_sblock->sctx;
1269        struct btrfs_fs_info *fs_info = sctx->fs_info;
1270        u64 length = original_sblock->page_count * PAGE_SIZE;
1271        u64 logical = original_sblock->pagev[0]->logical;
1272        u64 generation = original_sblock->pagev[0]->generation;
1273        u64 flags = original_sblock->pagev[0]->flags;
1274        u64 have_csum = original_sblock->pagev[0]->have_csum;
1275        struct scrub_recover *recover;
1276        struct btrfs_bio *bbio;
1277        u64 sublen;
1278        u64 mapped_length;
1279        u64 stripe_offset;
1280        int stripe_index;
1281        int page_index = 0;
1282        int mirror_index;
1283        int nmirrors;
1284        int ret;
1285
1286        /*
1287         * note: the two members refs and outstanding_pages
1288         * are not used (and not set) in the blocks that are used for
1289         * the recheck procedure
1290         */
1291
1292        while (length > 0) {
1293                sublen = min_t(u64, length, PAGE_SIZE);
1294                mapped_length = sublen;
1295                bbio = NULL;
1296
1297                /*
1298                 * with a length of PAGE_SIZE, each returned stripe
1299                 * represents one mirror
1300                 */
1301                btrfs_bio_counter_inc_blocked(fs_info);
1302                ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303                                logical, &mapped_length, &bbio);
1304                if (ret || !bbio || mapped_length < sublen) {
1305                        btrfs_put_bbio(bbio);
1306                        btrfs_bio_counter_dec(fs_info);
1307                        return -EIO;
1308                }
1309
1310                recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311                if (!recover) {
1312                        btrfs_put_bbio(bbio);
1313                        btrfs_bio_counter_dec(fs_info);
1314                        return -ENOMEM;
1315                }
1316
1317                refcount_set(&recover->refs, 1);
1318                recover->bbio = bbio;
1319                recover->map_length = mapped_length;
1320
1321                BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322
1323                nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1324
1325                for (mirror_index = 0; mirror_index < nmirrors;
1326                     mirror_index++) {
1327                        struct scrub_block *sblock;
1328                        struct scrub_page *page;
1329
1330                        sblock = sblocks_for_recheck + mirror_index;
1331                        sblock->sctx = sctx;
1332
1333                        page = kzalloc(sizeof(*page), GFP_NOFS);
1334                        if (!page) {
1335leave_nomem:
1336                                spin_lock(&sctx->stat_lock);
1337                                sctx->stat.malloc_errors++;
1338                                spin_unlock(&sctx->stat_lock);
1339                                scrub_put_recover(fs_info, recover);
1340                                return -ENOMEM;
1341                        }
1342                        scrub_page_get(page);
1343                        sblock->pagev[page_index] = page;
1344                        page->sblock = sblock;
1345                        page->flags = flags;
1346                        page->generation = generation;
1347                        page->logical = logical;
1348                        page->have_csum = have_csum;
1349                        if (have_csum)
1350                                memcpy(page->csum,
1351                                       original_sblock->pagev[0]->csum,
1352                                       sctx->csum_size);
1353
1354                        scrub_stripe_index_and_offset(logical,
1355                                                      bbio->map_type,
1356                                                      bbio->raid_map,
1357                                                      mapped_length,
1358                                                      bbio->num_stripes -
1359                                                      bbio->num_tgtdevs,
1360                                                      mirror_index,
1361                                                      &stripe_index,
1362                                                      &stripe_offset);
1363                        page->physical = bbio->stripes[stripe_index].physical +
1364                                         stripe_offset;
1365                        page->dev = bbio->stripes[stripe_index].dev;
1366
1367                        BUG_ON(page_index >= original_sblock->page_count);
1368                        page->physical_for_dev_replace =
1369                                original_sblock->pagev[page_index]->
1370                                physical_for_dev_replace;
1371                        /* for missing devices, dev->bdev is NULL */
1372                        page->mirror_num = mirror_index + 1;
1373                        sblock->page_count++;
1374                        page->page = alloc_page(GFP_NOFS);
1375                        if (!page->page)
1376                                goto leave_nomem;
1377
1378                        scrub_get_recover(recover);
1379                        page->recover = recover;
1380                }
1381                scrub_put_recover(fs_info, recover);
1382                length -= sublen;
1383                logical += sublen;
1384                page_index++;
1385        }
1386
1387        return 0;
1388}
1389
1390static void scrub_bio_wait_endio(struct bio *bio)
1391{
1392        complete(bio->bi_private);
1393}
1394
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396                                        struct bio *bio,
1397                                        struct scrub_page *page)
1398{
1399        DECLARE_COMPLETION_ONSTACK(done);
1400        int ret;
1401        int mirror_num;
1402
1403        bio->bi_iter.bi_sector = page->logical >> 9;
1404        bio->bi_private = &done;
1405        bio->bi_end_io = scrub_bio_wait_endio;
1406
1407        mirror_num = page->sblock->pagev[0]->mirror_num;
1408        ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409                                    page->recover->map_length,
1410                                    mirror_num, 0);
1411        if (ret)
1412                return ret;
1413
1414        wait_for_completion_io(&done);
1415        return blk_status_to_errno(bio->bi_status);
1416}
1417
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419                                          struct scrub_block *sblock)
1420{
1421        struct scrub_page *first_page = sblock->pagev[0];
1422        struct bio *bio;
1423        int page_num;
1424
1425        /* All pages in sblock belong to the same stripe on the same device. */
1426        ASSERT(first_page->dev);
1427        if (!first_page->dev->bdev)
1428                goto out;
1429
1430        bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431        bio_set_dev(bio, first_page->dev->bdev);
1432
1433        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434                struct scrub_page *page = sblock->pagev[page_num];
1435
1436                WARN_ON(!page->page);
1437                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438        }
1439
1440        if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441                bio_put(bio);
1442                goto out;
1443        }
1444
1445        bio_put(bio);
1446
1447        scrub_recheck_block_checksum(sblock);
1448
1449        return;
1450out:
1451        for (page_num = 0; page_num < sblock->page_count; page_num++)
1452                sblock->pagev[page_num]->io_error = 1;
1453
1454        sblock->no_io_error_seen = 0;
1455}
1456
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465                                struct scrub_block *sblock,
1466                                int retry_failed_mirror)
1467{
1468        int page_num;
1469
1470        sblock->no_io_error_seen = 1;
1471
1472        /* short cut for raid56 */
1473        if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474                return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
1476        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477                struct bio *bio;
1478                struct scrub_page *page = sblock->pagev[page_num];
1479
1480                if (page->dev->bdev == NULL) {
1481                        page->io_error = 1;
1482                        sblock->no_io_error_seen = 0;
1483                        continue;
1484                }
1485
1486                WARN_ON(!page->page);
1487                bio = btrfs_io_bio_alloc(1);
1488                bio_set_dev(bio, page->dev->bdev);
1489
1490                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1491                bio->bi_iter.bi_sector = page->physical >> 9;
1492                bio->bi_opf = REQ_OP_READ;
1493
1494                if (btrfsic_submit_bio_wait(bio)) {
1495                        page->io_error = 1;
1496                        sblock->no_io_error_seen = 0;
1497                }
1498
1499                bio_put(bio);
1500        }
1501
1502        if (sblock->no_io_error_seen)
1503                scrub_recheck_block_checksum(sblock);
1504}
1505
1506static inline int scrub_check_fsid(u8 fsid[],
1507                                   struct scrub_page *spage)
1508{
1509        struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510        int ret;
1511
1512        ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1513        return !ret;
1514}
1515
1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1517{
1518        sblock->header_error = 0;
1519        sblock->checksum_error = 0;
1520        sblock->generation_error = 0;
1521
1522        if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523                scrub_checksum_data(sblock);
1524        else
1525                scrub_checksum_tree_block(sblock);
1526}
1527
1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529                                             struct scrub_block *sblock_good)
1530{
1531        int page_num;
1532        int ret = 0;
1533
1534        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535                int ret_sub;
1536
1537                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538                                                           sblock_good,
1539                                                           page_num, 1);
1540                if (ret_sub)
1541                        ret = ret_sub;
1542        }
1543
1544        return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548                                            struct scrub_block *sblock_good,
1549                                            int page_num, int force_write)
1550{
1551        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552        struct scrub_page *page_good = sblock_good->pagev[page_num];
1553        struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554
1555        BUG_ON(page_bad->page == NULL);
1556        BUG_ON(page_good->page == NULL);
1557        if (force_write || sblock_bad->header_error ||
1558            sblock_bad->checksum_error || page_bad->io_error) {
1559                struct bio *bio;
1560                int ret;
1561
1562                if (!page_bad->dev->bdev) {
1563                        btrfs_warn_rl(fs_info,
1564                                "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565                        return -EIO;
1566                }
1567
1568                bio = btrfs_io_bio_alloc(1);
1569                bio_set_dev(bio, page_bad->dev->bdev);
1570                bio->bi_iter.bi_sector = page_bad->physical >> 9;
1571                bio->bi_opf = REQ_OP_WRITE;
1572
1573                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574                if (PAGE_SIZE != ret) {
1575                        bio_put(bio);
1576                        return -EIO;
1577                }
1578
1579                if (btrfsic_submit_bio_wait(bio)) {
1580                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1581                                BTRFS_DEV_STAT_WRITE_ERRS);
1582                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583                        bio_put(bio);
1584                        return -EIO;
1585                }
1586                bio_put(bio);
1587        }
1588
1589        return 0;
1590}
1591
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
1594        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595        int page_num;
1596
1597        /*
1598         * This block is used for the check of the parity on the source device,
1599         * so the data needn't be written into the destination device.
1600         */
1601        if (sblock->sparity)
1602                return;
1603
1604        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605                int ret;
1606
1607                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608                if (ret)
1609                        atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610        }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614                                           int page_num)
1615{
1616        struct scrub_page *spage = sblock->pagev[page_num];
1617
1618        BUG_ON(spage->page == NULL);
1619        if (spage->io_error) {
1620                void *mapped_buffer = kmap_atomic(spage->page);
1621
1622                clear_page(mapped_buffer);
1623                flush_dcache_page(spage->page);
1624                kunmap_atomic(mapped_buffer);
1625        }
1626        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1627}
1628
1629static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1630                                    struct scrub_page *spage)
1631{
1632        struct scrub_bio *sbio;
1633        int ret;
1634
1635        mutex_lock(&sctx->wr_lock);
1636again:
1637        if (!sctx->wr_curr_bio) {
1638                sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639                                              GFP_KERNEL);
1640                if (!sctx->wr_curr_bio) {
1641                        mutex_unlock(&sctx->wr_lock);
1642                        return -ENOMEM;
1643                }
1644                sctx->wr_curr_bio->sctx = sctx;
1645                sctx->wr_curr_bio->page_count = 0;
1646        }
1647        sbio = sctx->wr_curr_bio;
1648        if (sbio->page_count == 0) {
1649                struct bio *bio;
1650
1651                sbio->physical = spage->physical_for_dev_replace;
1652                sbio->logical = spage->logical;
1653                sbio->dev = sctx->wr_tgtdev;
1654                bio = sbio->bio;
1655                if (!bio) {
1656                        bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1657                        sbio->bio = bio;
1658                }
1659
1660                bio->bi_private = sbio;
1661                bio->bi_end_io = scrub_wr_bio_end_io;
1662                bio_set_dev(bio, sbio->dev->bdev);
1663                bio->bi_iter.bi_sector = sbio->physical >> 9;
1664                bio->bi_opf = REQ_OP_WRITE;
1665                sbio->status = 0;
1666        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1667                   spage->physical_for_dev_replace ||
1668                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1669                   spage->logical) {
1670                scrub_wr_submit(sctx);
1671                goto again;
1672        }
1673
1674        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1675        if (ret != PAGE_SIZE) {
1676                if (sbio->page_count < 1) {
1677                        bio_put(sbio->bio);
1678                        sbio->bio = NULL;
1679                        mutex_unlock(&sctx->wr_lock);
1680                        return -EIO;
1681                }
1682                scrub_wr_submit(sctx);
1683                goto again;
1684        }
1685
1686        sbio->pagev[sbio->page_count] = spage;
1687        scrub_page_get(spage);
1688        sbio->page_count++;
1689        if (sbio->page_count == sctx->pages_per_wr_bio)
1690                scrub_wr_submit(sctx);
1691        mutex_unlock(&sctx->wr_lock);
1692
1693        return 0;
1694}
1695
1696static void scrub_wr_submit(struct scrub_ctx *sctx)
1697{
1698        struct scrub_bio *sbio;
1699
1700        if (!sctx->wr_curr_bio)
1701                return;
1702
1703        sbio = sctx->wr_curr_bio;
1704        sctx->wr_curr_bio = NULL;
1705        WARN_ON(!sbio->bio->bi_disk);
1706        scrub_pending_bio_inc(sctx);
1707        /* process all writes in a single worker thread. Then the block layer
1708         * orders the requests before sending them to the driver which
1709         * doubled the write performance on spinning disks when measured
1710         * with Linux 3.5 */
1711        btrfsic_submit_bio(sbio->bio);
1712}
1713
1714static void scrub_wr_bio_end_io(struct bio *bio)
1715{
1716        struct scrub_bio *sbio = bio->bi_private;
1717        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718
1719        sbio->status = bio->bi_status;
1720        sbio->bio = bio;
1721
1722        btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1723                         scrub_wr_bio_end_io_worker, NULL, NULL);
1724        btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1725}
1726
1727static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728{
1729        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1730        struct scrub_ctx *sctx = sbio->sctx;
1731        int i;
1732
1733        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1734        if (sbio->status) {
1735                struct btrfs_dev_replace *dev_replace =
1736                        &sbio->sctx->fs_info->dev_replace;
1737
1738                for (i = 0; i < sbio->page_count; i++) {
1739                        struct scrub_page *spage = sbio->pagev[i];
1740
1741                        spage->io_error = 1;
1742                        atomic64_inc(&dev_replace->num_write_errors);
1743                }
1744        }
1745
1746        for (i = 0; i < sbio->page_count; i++)
1747                scrub_page_put(sbio->pagev[i]);
1748
1749        bio_put(sbio->bio);
1750        kfree(sbio);
1751        scrub_pending_bio_dec(sctx);
1752}
1753
1754static int scrub_checksum(struct scrub_block *sblock)
1755{
1756        u64 flags;
1757        int ret;
1758
1759        /*
1760         * No need to initialize these stats currently,
1761         * because this function only use return value
1762         * instead of these stats value.
1763         *
1764         * Todo:
1765         * always use stats
1766         */
1767        sblock->header_error = 0;
1768        sblock->generation_error = 0;
1769        sblock->checksum_error = 0;
1770
1771        WARN_ON(sblock->page_count < 1);
1772        flags = sblock->pagev[0]->flags;
1773        ret = 0;
1774        if (flags & BTRFS_EXTENT_FLAG_DATA)
1775                ret = scrub_checksum_data(sblock);
1776        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1777                ret = scrub_checksum_tree_block(sblock);
1778        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1779                (void)scrub_checksum_super(sblock);
1780        else
1781                WARN_ON(1);
1782        if (ret)
1783                scrub_handle_errored_block(sblock);
1784
1785        return ret;
1786}
1787
1788static int scrub_checksum_data(struct scrub_block *sblock)
1789{
1790        struct scrub_ctx *sctx = sblock->sctx;
1791        struct btrfs_fs_info *fs_info = sctx->fs_info;
1792        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1793        u8 csum[BTRFS_CSUM_SIZE];
1794        u8 *on_disk_csum;
1795        struct page *page;
1796        void *buffer;
1797        u64 len;
1798        int index;
1799
1800        BUG_ON(sblock->page_count < 1);
1801        if (!sblock->pagev[0]->have_csum)
1802                return 0;
1803
1804        shash->tfm = fs_info->csum_shash;
1805        crypto_shash_init(shash);
1806
1807        on_disk_csum = sblock->pagev[0]->csum;
1808        page = sblock->pagev[0]->page;
1809        buffer = kmap_atomic(page);
1810
1811        len = sctx->fs_info->sectorsize;
1812        index = 0;
1813        for (;;) {
1814                u64 l = min_t(u64, len, PAGE_SIZE);
1815
1816                crypto_shash_update(shash, buffer, l);
1817                kunmap_atomic(buffer);
1818                len -= l;
1819                if (len == 0)
1820                        break;
1821                index++;
1822                BUG_ON(index >= sblock->page_count);
1823                BUG_ON(!sblock->pagev[index]->page);
1824                page = sblock->pagev[index]->page;
1825                buffer = kmap_atomic(page);
1826        }
1827
1828        crypto_shash_final(shash, csum);
1829        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1830                sblock->checksum_error = 1;
1831
1832        return sblock->checksum_error;
1833}
1834
1835static int scrub_checksum_tree_block(struct scrub_block *sblock)
1836{
1837        struct scrub_ctx *sctx = sblock->sctx;
1838        struct btrfs_header *h;
1839        struct btrfs_fs_info *fs_info = sctx->fs_info;
1840        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1841        u8 calculated_csum[BTRFS_CSUM_SIZE];
1842        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1843        struct page *page;
1844        void *mapped_buffer;
1845        u64 mapped_size;
1846        void *p;
1847        u64 len;
1848        int index;
1849
1850        shash->tfm = fs_info->csum_shash;
1851        crypto_shash_init(shash);
1852
1853        BUG_ON(sblock->page_count < 1);
1854        page = sblock->pagev[0]->page;
1855        mapped_buffer = kmap_atomic(page);
1856        h = (struct btrfs_header *)mapped_buffer;
1857        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1858
1859        /*
1860         * we don't use the getter functions here, as we
1861         * a) don't have an extent buffer and
1862         * b) the page is already kmapped
1863         */
1864        if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1865                sblock->header_error = 1;
1866
1867        if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1868                sblock->header_error = 1;
1869                sblock->generation_error = 1;
1870        }
1871
1872        if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1873                sblock->header_error = 1;
1874
1875        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1876                   BTRFS_UUID_SIZE))
1877                sblock->header_error = 1;
1878
1879        len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1880        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1881        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1882        index = 0;
1883        for (;;) {
1884                u64 l = min_t(u64, len, mapped_size);
1885
1886                crypto_shash_update(shash, p, l);
1887                kunmap_atomic(mapped_buffer);
1888                len -= l;
1889                if (len == 0)
1890                        break;
1891                index++;
1892                BUG_ON(index >= sblock->page_count);
1893                BUG_ON(!sblock->pagev[index]->page);
1894                page = sblock->pagev[index]->page;
1895                mapped_buffer = kmap_atomic(page);
1896                mapped_size = PAGE_SIZE;
1897                p = mapped_buffer;
1898        }
1899
1900        crypto_shash_final(shash, calculated_csum);
1901        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1902                sblock->checksum_error = 1;
1903
1904        return sblock->header_error || sblock->checksum_error;
1905}
1906
1907static int scrub_checksum_super(struct scrub_block *sblock)
1908{
1909        struct btrfs_super_block *s;
1910        struct scrub_ctx *sctx = sblock->sctx;
1911        struct btrfs_fs_info *fs_info = sctx->fs_info;
1912        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1913        u8 calculated_csum[BTRFS_CSUM_SIZE];
1914        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915        struct page *page;
1916        void *mapped_buffer;
1917        u64 mapped_size;
1918        void *p;
1919        int fail_gen = 0;
1920        int fail_cor = 0;
1921        u64 len;
1922        int index;
1923
1924        shash->tfm = fs_info->csum_shash;
1925        crypto_shash_init(shash);
1926
1927        BUG_ON(sblock->page_count < 1);
1928        page = sblock->pagev[0]->page;
1929        mapped_buffer = kmap_atomic(page);
1930        s = (struct btrfs_super_block *)mapped_buffer;
1931        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1932
1933        if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1934                ++fail_cor;
1935
1936        if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1937                ++fail_gen;
1938
1939        if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1940                ++fail_cor;
1941
1942        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1943        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1944        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1945        index = 0;
1946        for (;;) {
1947                u64 l = min_t(u64, len, mapped_size);
1948
1949                crypto_shash_update(shash, p, l);
1950                kunmap_atomic(mapped_buffer);
1951                len -= l;
1952                if (len == 0)
1953                        break;
1954                index++;
1955                BUG_ON(index >= sblock->page_count);
1956                BUG_ON(!sblock->pagev[index]->page);
1957                page = sblock->pagev[index]->page;
1958                mapped_buffer = kmap_atomic(page);
1959                mapped_size = PAGE_SIZE;
1960                p = mapped_buffer;
1961        }
1962
1963        crypto_shash_final(shash, calculated_csum);
1964        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1965                ++fail_cor;
1966
1967        if (fail_cor + fail_gen) {
1968                /*
1969                 * if we find an error in a super block, we just report it.
1970                 * They will get written with the next transaction commit
1971                 * anyway
1972                 */
1973                spin_lock(&sctx->stat_lock);
1974                ++sctx->stat.super_errors;
1975                spin_unlock(&sctx->stat_lock);
1976                if (fail_cor)
1977                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1979                else
1980                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981                                BTRFS_DEV_STAT_GENERATION_ERRS);
1982        }
1983
1984        return fail_cor + fail_gen;
1985}
1986
1987static void scrub_block_get(struct scrub_block *sblock)
1988{
1989        refcount_inc(&sblock->refs);
1990}
1991
1992static void scrub_block_put(struct scrub_block *sblock)
1993{
1994        if (refcount_dec_and_test(&sblock->refs)) {
1995                int i;
1996
1997                if (sblock->sparity)
1998                        scrub_parity_put(sblock->sparity);
1999
2000                for (i = 0; i < sblock->page_count; i++)
2001                        scrub_page_put(sblock->pagev[i]);
2002                kfree(sblock);
2003        }
2004}
2005
2006static void scrub_page_get(struct scrub_page *spage)
2007{
2008        atomic_inc(&spage->refs);
2009}
2010
2011static void scrub_page_put(struct scrub_page *spage)
2012{
2013        if (atomic_dec_and_test(&spage->refs)) {
2014                if (spage->page)
2015                        __free_page(spage->page);
2016                kfree(spage);
2017        }
2018}
2019
2020static void scrub_submit(struct scrub_ctx *sctx)
2021{
2022        struct scrub_bio *sbio;
2023
2024        if (sctx->curr == -1)
2025                return;
2026
2027        sbio = sctx->bios[sctx->curr];
2028        sctx->curr = -1;
2029        scrub_pending_bio_inc(sctx);
2030        btrfsic_submit_bio(sbio->bio);
2031}
2032
2033static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2034                                    struct scrub_page *spage)
2035{
2036        struct scrub_block *sblock = spage->sblock;
2037        struct scrub_bio *sbio;
2038        int ret;
2039
2040again:
2041        /*
2042         * grab a fresh bio or wait for one to become available
2043         */
2044        while (sctx->curr == -1) {
2045                spin_lock(&sctx->list_lock);
2046                sctx->curr = sctx->first_free;
2047                if (sctx->curr != -1) {
2048                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049                        sctx->bios[sctx->curr]->next_free = -1;
2050                        sctx->bios[sctx->curr]->page_count = 0;
2051                        spin_unlock(&sctx->list_lock);
2052                } else {
2053                        spin_unlock(&sctx->list_lock);
2054                        wait_event(sctx->list_wait, sctx->first_free != -1);
2055                }
2056        }
2057        sbio = sctx->bios[sctx->curr];
2058        if (sbio->page_count == 0) {
2059                struct bio *bio;
2060
2061                sbio->physical = spage->physical;
2062                sbio->logical = spage->logical;
2063                sbio->dev = spage->dev;
2064                bio = sbio->bio;
2065                if (!bio) {
2066                        bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2067                        sbio->bio = bio;
2068                }
2069
2070                bio->bi_private = sbio;
2071                bio->bi_end_io = scrub_bio_end_io;
2072                bio_set_dev(bio, sbio->dev->bdev);
2073                bio->bi_iter.bi_sector = sbio->physical >> 9;
2074                bio->bi_opf = REQ_OP_READ;
2075                sbio->status = 0;
2076        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2077                   spage->physical ||
2078                   sbio->logical + sbio->page_count * PAGE_SIZE !=
2079                   spage->logical ||
2080                   sbio->dev != spage->dev) {
2081                scrub_submit(sctx);
2082                goto again;
2083        }
2084
2085        sbio->pagev[sbio->page_count] = spage;
2086        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2087        if (ret != PAGE_SIZE) {
2088                if (sbio->page_count < 1) {
2089                        bio_put(sbio->bio);
2090                        sbio->bio = NULL;
2091                        return -EIO;
2092                }
2093                scrub_submit(sctx);
2094                goto again;
2095        }
2096
2097        scrub_block_get(sblock); /* one for the page added to the bio */
2098        atomic_inc(&sblock->outstanding_pages);
2099        sbio->page_count++;
2100        if (sbio->page_count == sctx->pages_per_rd_bio)
2101                scrub_submit(sctx);
2102
2103        return 0;
2104}
2105
2106static void scrub_missing_raid56_end_io(struct bio *bio)
2107{
2108        struct scrub_block *sblock = bio->bi_private;
2109        struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2110
2111        if (bio->bi_status)
2112                sblock->no_io_error_seen = 0;
2113
2114        bio_put(bio);
2115
2116        btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2117}
2118
2119static void scrub_missing_raid56_worker(struct btrfs_work *work)
2120{
2121        struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2122        struct scrub_ctx *sctx = sblock->sctx;
2123        struct btrfs_fs_info *fs_info = sctx->fs_info;
2124        u64 logical;
2125        struct btrfs_device *dev;
2126
2127        logical = sblock->pagev[0]->logical;
2128        dev = sblock->pagev[0]->dev;
2129
2130        if (sblock->no_io_error_seen)
2131                scrub_recheck_block_checksum(sblock);
2132
2133        if (!sblock->no_io_error_seen) {
2134                spin_lock(&sctx->stat_lock);
2135                sctx->stat.read_errors++;
2136                spin_unlock(&sctx->stat_lock);
2137                btrfs_err_rl_in_rcu(fs_info,
2138                        "IO error rebuilding logical %llu for dev %s",
2139                        logical, rcu_str_deref(dev->name));
2140        } else if (sblock->header_error || sblock->checksum_error) {
2141                spin_lock(&sctx->stat_lock);
2142                sctx->stat.uncorrectable_errors++;
2143                spin_unlock(&sctx->stat_lock);
2144                btrfs_err_rl_in_rcu(fs_info,
2145                        "failed to rebuild valid logical %llu for dev %s",
2146                        logical, rcu_str_deref(dev->name));
2147        } else {
2148                scrub_write_block_to_dev_replace(sblock);
2149        }
2150
2151        scrub_block_put(sblock);
2152
2153        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2154                mutex_lock(&sctx->wr_lock);
2155                scrub_wr_submit(sctx);
2156                mutex_unlock(&sctx->wr_lock);
2157        }
2158
2159        scrub_pending_bio_dec(sctx);
2160}
2161
2162static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2163{
2164        struct scrub_ctx *sctx = sblock->sctx;
2165        struct btrfs_fs_info *fs_info = sctx->fs_info;
2166        u64 length = sblock->page_count * PAGE_SIZE;
2167        u64 logical = sblock->pagev[0]->logical;
2168        struct btrfs_bio *bbio = NULL;
2169        struct bio *bio;
2170        struct btrfs_raid_bio *rbio;
2171        int ret;
2172        int i;
2173
2174        btrfs_bio_counter_inc_blocked(fs_info);
2175        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2176                        &length, &bbio);
2177        if (ret || !bbio || !bbio->raid_map)
2178                goto bbio_out;
2179
2180        if (WARN_ON(!sctx->is_dev_replace ||
2181                    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2182                /*
2183                 * We shouldn't be scrubbing a missing device. Even for dev
2184                 * replace, we should only get here for RAID 5/6. We either
2185                 * managed to mount something with no mirrors remaining or
2186                 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2187                 */
2188                goto bbio_out;
2189        }
2190
2191        bio = btrfs_io_bio_alloc(0);
2192        bio->bi_iter.bi_sector = logical >> 9;
2193        bio->bi_private = sblock;
2194        bio->bi_end_io = scrub_missing_raid56_end_io;
2195
2196        rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2197        if (!rbio)
2198                goto rbio_out;
2199
2200        for (i = 0; i < sblock->page_count; i++) {
2201                struct scrub_page *spage = sblock->pagev[i];
2202
2203                raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2204        }
2205
2206        btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2207                        scrub_missing_raid56_worker, NULL, NULL);
2208        scrub_block_get(sblock);
2209        scrub_pending_bio_inc(sctx);
2210        raid56_submit_missing_rbio(rbio);
2211        return;
2212
2213rbio_out:
2214        bio_put(bio);
2215bbio_out:
2216        btrfs_bio_counter_dec(fs_info);
2217        btrfs_put_bbio(bbio);
2218        spin_lock(&sctx->stat_lock);
2219        sctx->stat.malloc_errors++;
2220        spin_unlock(&sctx->stat_lock);
2221}
2222
2223static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2224                       u64 physical, struct btrfs_device *dev, u64 flags,
2225                       u64 gen, int mirror_num, u8 *csum, int force,
2226                       u64 physical_for_dev_replace)
2227{
2228        struct scrub_block *sblock;
2229        int index;
2230
2231        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2232        if (!sblock) {
2233                spin_lock(&sctx->stat_lock);
2234                sctx->stat.malloc_errors++;
2235                spin_unlock(&sctx->stat_lock);
2236                return -ENOMEM;
2237        }
2238
2239        /* one ref inside this function, plus one for each page added to
2240         * a bio later on */
2241        refcount_set(&sblock->refs, 1);
2242        sblock->sctx = sctx;
2243        sblock->no_io_error_seen = 1;
2244
2245        for (index = 0; len > 0; index++) {
2246                struct scrub_page *spage;
2247                u64 l = min_t(u64, len, PAGE_SIZE);
2248
2249                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2250                if (!spage) {
2251leave_nomem:
2252                        spin_lock(&sctx->stat_lock);
2253                        sctx->stat.malloc_errors++;
2254                        spin_unlock(&sctx->stat_lock);
2255                        scrub_block_put(sblock);
2256                        return -ENOMEM;
2257                }
2258                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2259                scrub_page_get(spage);
2260                sblock->pagev[index] = spage;
2261                spage->sblock = sblock;
2262                spage->dev = dev;
2263                spage->flags = flags;
2264                spage->generation = gen;
2265                spage->logical = logical;
2266                spage->physical = physical;
2267                spage->physical_for_dev_replace = physical_for_dev_replace;
2268                spage->mirror_num = mirror_num;
2269                if (csum) {
2270                        spage->have_csum = 1;
2271                        memcpy(spage->csum, csum, sctx->csum_size);
2272                } else {
2273                        spage->have_csum = 0;
2274                }
2275                sblock->page_count++;
2276                spage->page = alloc_page(GFP_KERNEL);
2277                if (!spage->page)
2278                        goto leave_nomem;
2279                len -= l;
2280                logical += l;
2281                physical += l;
2282                physical_for_dev_replace += l;
2283        }
2284
2285        WARN_ON(sblock->page_count == 0);
2286        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2287                /*
2288                 * This case should only be hit for RAID 5/6 device replace. See
2289                 * the comment in scrub_missing_raid56_pages() for details.
2290                 */
2291                scrub_missing_raid56_pages(sblock);
2292        } else {
2293                for (index = 0; index < sblock->page_count; index++) {
2294                        struct scrub_page *spage = sblock->pagev[index];
2295                        int ret;
2296
2297                        ret = scrub_add_page_to_rd_bio(sctx, spage);
2298                        if (ret) {
2299                                scrub_block_put(sblock);
2300                                return ret;
2301                        }
2302                }
2303
2304                if (force)
2305                        scrub_submit(sctx);
2306        }
2307
2308        /* last one frees, either here or in bio completion for last page */
2309        scrub_block_put(sblock);
2310        return 0;
2311}
2312
2313static void scrub_bio_end_io(struct bio *bio)
2314{
2315        struct scrub_bio *sbio = bio->bi_private;
2316        struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2317
2318        sbio->status = bio->bi_status;
2319        sbio->bio = bio;
2320
2321        btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2322}
2323
2324static void scrub_bio_end_io_worker(struct btrfs_work *work)
2325{
2326        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2327        struct scrub_ctx *sctx = sbio->sctx;
2328        int i;
2329
2330        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2331        if (sbio->status) {
2332                for (i = 0; i < sbio->page_count; i++) {
2333                        struct scrub_page *spage = sbio->pagev[i];
2334
2335                        spage->io_error = 1;
2336                        spage->sblock->no_io_error_seen = 0;
2337                }
2338        }
2339
2340        /* now complete the scrub_block items that have all pages completed */
2341        for (i = 0; i < sbio->page_count; i++) {
2342                struct scrub_page *spage = sbio->pagev[i];
2343                struct scrub_block *sblock = spage->sblock;
2344
2345                if (atomic_dec_and_test(&sblock->outstanding_pages))
2346                        scrub_block_complete(sblock);
2347                scrub_block_put(sblock);
2348        }
2349
2350        bio_put(sbio->bio);
2351        sbio->bio = NULL;
2352        spin_lock(&sctx->list_lock);
2353        sbio->next_free = sctx->first_free;
2354        sctx->first_free = sbio->index;
2355        spin_unlock(&sctx->list_lock);
2356
2357        if (sctx->is_dev_replace && sctx->flush_all_writes) {
2358                mutex_lock(&sctx->wr_lock);
2359                scrub_wr_submit(sctx);
2360                mutex_unlock(&sctx->wr_lock);
2361        }
2362
2363        scrub_pending_bio_dec(sctx);
2364}
2365
2366static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2367                                       unsigned long *bitmap,
2368                                       u64 start, u64 len)
2369{
2370        u64 offset;
2371        u64 nsectors64;
2372        u32 nsectors;
2373        int sectorsize = sparity->sctx->fs_info->sectorsize;
2374
2375        if (len >= sparity->stripe_len) {
2376                bitmap_set(bitmap, 0, sparity->nsectors);
2377                return;
2378        }
2379
2380        start -= sparity->logic_start;
2381        start = div64_u64_rem(start, sparity->stripe_len, &offset);
2382        offset = div_u64(offset, sectorsize);
2383        nsectors64 = div_u64(len, sectorsize);
2384
2385        ASSERT(nsectors64 < UINT_MAX);
2386        nsectors = (u32)nsectors64;
2387
2388        if (offset + nsectors <= sparity->nsectors) {
2389                bitmap_set(bitmap, offset, nsectors);
2390                return;
2391        }
2392
2393        bitmap_set(bitmap, offset, sparity->nsectors - offset);
2394        bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2395}
2396
2397static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2398                                                   u64 start, u64 len)
2399{
2400        __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2401}
2402
2403static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2404                                                  u64 start, u64 len)
2405{
2406        __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2407}
2408
2409static void scrub_block_complete(struct scrub_block *sblock)
2410{
2411        int corrupted = 0;
2412
2413        if (!sblock->no_io_error_seen) {
2414                corrupted = 1;
2415                scrub_handle_errored_block(sblock);
2416        } else {
2417                /*
2418                 * if has checksum error, write via repair mechanism in
2419                 * dev replace case, otherwise write here in dev replace
2420                 * case.
2421                 */
2422                corrupted = scrub_checksum(sblock);
2423                if (!corrupted && sblock->sctx->is_dev_replace)
2424                        scrub_write_block_to_dev_replace(sblock);
2425        }
2426
2427        if (sblock->sparity && corrupted && !sblock->data_corrected) {
2428                u64 start = sblock->pagev[0]->logical;
2429                u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2430                          PAGE_SIZE;
2431
2432                scrub_parity_mark_sectors_error(sblock->sparity,
2433                                                start, end - start);
2434        }
2435}
2436
2437static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2438{
2439        struct btrfs_ordered_sum *sum = NULL;
2440        unsigned long index;
2441        unsigned long num_sectors;
2442
2443        while (!list_empty(&sctx->csum_list)) {
2444                sum = list_first_entry(&sctx->csum_list,
2445                                       struct btrfs_ordered_sum, list);
2446                if (sum->bytenr > logical)
2447                        return 0;
2448                if (sum->bytenr + sum->len > logical)
2449                        break;
2450
2451                ++sctx->stat.csum_discards;
2452                list_del(&sum->list);
2453                kfree(sum);
2454                sum = NULL;
2455        }
2456        if (!sum)
2457                return 0;
2458
2459        index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2460        ASSERT(index < UINT_MAX);
2461
2462        num_sectors = sum->len / sctx->fs_info->sectorsize;
2463        memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2464        if (index == num_sectors - 1) {
2465                list_del(&sum->list);
2466                kfree(sum);
2467        }
2468        return 1;
2469}
2470
2471/* scrub extent tries to collect up to 64 kB for each bio */
2472static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2473                        u64 logical, u64 len,
2474                        u64 physical, struct btrfs_device *dev, u64 flags,
2475                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2476{
2477        int ret;
2478        u8 csum[BTRFS_CSUM_SIZE];
2479        u32 blocksize;
2480
2481        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2482                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2483                        blocksize = map->stripe_len;
2484                else
2485                        blocksize = sctx->fs_info->sectorsize;
2486                spin_lock(&sctx->stat_lock);
2487                sctx->stat.data_extents_scrubbed++;
2488                sctx->stat.data_bytes_scrubbed += len;
2489                spin_unlock(&sctx->stat_lock);
2490        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2491                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2492                        blocksize = map->stripe_len;
2493                else
2494                        blocksize = sctx->fs_info->nodesize;
2495                spin_lock(&sctx->stat_lock);
2496                sctx->stat.tree_extents_scrubbed++;
2497                sctx->stat.tree_bytes_scrubbed += len;
2498                spin_unlock(&sctx->stat_lock);
2499        } else {
2500                blocksize = sctx->fs_info->sectorsize;
2501                WARN_ON(1);
2502        }
2503
2504        while (len) {
2505                u64 l = min_t(u64, len, blocksize);
2506                int have_csum = 0;
2507
2508                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2509                        /* push csums to sbio */
2510                        have_csum = scrub_find_csum(sctx, logical, csum);
2511                        if (have_csum == 0)
2512                                ++sctx->stat.no_csum;
2513                }
2514                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2515                                  mirror_num, have_csum ? csum : NULL, 0,
2516                                  physical_for_dev_replace);
2517                if (ret)
2518                        return ret;
2519                len -= l;
2520                logical += l;
2521                physical += l;
2522                physical_for_dev_replace += l;
2523        }
2524        return 0;
2525}
2526
2527static int scrub_pages_for_parity(struct scrub_parity *sparity,
2528                                  u64 logical, u64 len,
2529                                  u64 physical, struct btrfs_device *dev,
2530                                  u64 flags, u64 gen, int mirror_num, u8 *csum)
2531{
2532        struct scrub_ctx *sctx = sparity->sctx;
2533        struct scrub_block *sblock;
2534        int index;
2535
2536        sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2537        if (!sblock) {
2538                spin_lock(&sctx->stat_lock);
2539                sctx->stat.malloc_errors++;
2540                spin_unlock(&sctx->stat_lock);
2541                return -ENOMEM;
2542        }
2543
2544        /* one ref inside this function, plus one for each page added to
2545         * a bio later on */
2546        refcount_set(&sblock->refs, 1);
2547        sblock->sctx = sctx;
2548        sblock->no_io_error_seen = 1;
2549        sblock->sparity = sparity;
2550        scrub_parity_get(sparity);
2551
2552        for (index = 0; len > 0; index++) {
2553                struct scrub_page *spage;
2554                u64 l = min_t(u64, len, PAGE_SIZE);
2555
2556                spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2557                if (!spage) {
2558leave_nomem:
2559                        spin_lock(&sctx->stat_lock);
2560                        sctx->stat.malloc_errors++;
2561                        spin_unlock(&sctx->stat_lock);
2562                        scrub_block_put(sblock);
2563                        return -ENOMEM;
2564                }
2565                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2566                /* For scrub block */
2567                scrub_page_get(spage);
2568                sblock->pagev[index] = spage;
2569                /* For scrub parity */
2570                scrub_page_get(spage);
2571                list_add_tail(&spage->list, &sparity->spages);
2572                spage->sblock = sblock;
2573                spage->dev = dev;
2574                spage->flags = flags;
2575                spage->generation = gen;
2576                spage->logical = logical;
2577                spage->physical = physical;
2578                spage->mirror_num = mirror_num;
2579                if (csum) {
2580                        spage->have_csum = 1;
2581                        memcpy(spage->csum, csum, sctx->csum_size);
2582                } else {
2583                        spage->have_csum = 0;
2584                }
2585                sblock->page_count++;
2586                spage->page = alloc_page(GFP_KERNEL);
2587                if (!spage->page)
2588                        goto leave_nomem;
2589                len -= l;
2590                logical += l;
2591                physical += l;
2592        }
2593
2594        WARN_ON(sblock->page_count == 0);
2595        for (index = 0; index < sblock->page_count; index++) {
2596                struct scrub_page *spage = sblock->pagev[index];
2597                int ret;
2598
2599                ret = scrub_add_page_to_rd_bio(sctx, spage);
2600                if (ret) {
2601                        scrub_block_put(sblock);
2602                        return ret;
2603                }
2604        }
2605
2606        /* last one frees, either here or in bio completion for last page */
2607        scrub_block_put(sblock);
2608        return 0;
2609}
2610
2611static int scrub_extent_for_parity(struct scrub_parity *sparity,
2612                                   u64 logical, u64 len,
2613                                   u64 physical, struct btrfs_device *dev,
2614                                   u64 flags, u64 gen, int mirror_num)
2615{
2616        struct scrub_ctx *sctx = sparity->sctx;
2617        int ret;
2618        u8 csum[BTRFS_CSUM_SIZE];
2619        u32 blocksize;
2620
2621        if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2622                scrub_parity_mark_sectors_error(sparity, logical, len);
2623                return 0;
2624        }
2625
2626        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2627                blocksize = sparity->stripe_len;
2628        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2629                blocksize = sparity->stripe_len;
2630        } else {
2631                blocksize = sctx->fs_info->sectorsize;
2632                WARN_ON(1);
2633        }
2634
2635        while (len) {
2636                u64 l = min_t(u64, len, blocksize);
2637                int have_csum = 0;
2638
2639                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2640                        /* push csums to sbio */
2641                        have_csum = scrub_find_csum(sctx, logical, csum);
2642                        if (have_csum == 0)
2643                                goto skip;
2644                }
2645                ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2646                                             flags, gen, mirror_num,
2647                                             have_csum ? csum : NULL);
2648                if (ret)
2649                        return ret;
2650skip:
2651                len -= l;
2652                logical += l;
2653                physical += l;
2654        }
2655        return 0;
2656}
2657
2658/*
2659 * Given a physical address, this will calculate it's
2660 * logical offset. if this is a parity stripe, it will return
2661 * the most left data stripe's logical offset.
2662 *
2663 * return 0 if it is a data stripe, 1 means parity stripe.
2664 */
2665static int get_raid56_logic_offset(u64 physical, int num,
2666                                   struct map_lookup *map, u64 *offset,
2667                                   u64 *stripe_start)
2668{
2669        int i;
2670        int j = 0;
2671        u64 stripe_nr;
2672        u64 last_offset;
2673        u32 stripe_index;
2674        u32 rot;
2675        const int data_stripes = nr_data_stripes(map);
2676
2677        last_offset = (physical - map->stripes[num].physical) * data_stripes;
2678        if (stripe_start)
2679                *stripe_start = last_offset;
2680
2681        *offset = last_offset;
2682        for (i = 0; i < data_stripes; i++) {
2683                *offset = last_offset + i * map->stripe_len;
2684
2685                stripe_nr = div64_u64(*offset, map->stripe_len);
2686                stripe_nr = div_u64(stripe_nr, data_stripes);
2687
2688                /* Work out the disk rotation on this stripe-set */
2689                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2690                /* calculate which stripe this data locates */
2691                rot += i;
2692                stripe_index = rot % map->num_stripes;
2693                if (stripe_index == num)
2694                        return 0;
2695                if (stripe_index < num)
2696                        j++;
2697        }
2698        *offset = last_offset + j * map->stripe_len;
2699        return 1;
2700}
2701
2702static void scrub_free_parity(struct scrub_parity *sparity)
2703{
2704        struct scrub_ctx *sctx = sparity->sctx;
2705        struct scrub_page *curr, *next;
2706        int nbits;
2707
2708        nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2709        if (nbits) {
2710                spin_lock(&sctx->stat_lock);
2711                sctx->stat.read_errors += nbits;
2712                sctx->stat.uncorrectable_errors += nbits;
2713                spin_unlock(&sctx->stat_lock);
2714        }
2715
2716        list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2717                list_del_init(&curr->list);
2718                scrub_page_put(curr);
2719        }
2720
2721        kfree(sparity);
2722}
2723
2724static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2725{
2726        struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2727                                                    work);
2728        struct scrub_ctx *sctx = sparity->sctx;
2729
2730        scrub_free_parity(sparity);
2731        scrub_pending_bio_dec(sctx);
2732}
2733
2734static void scrub_parity_bio_endio(struct bio *bio)
2735{
2736        struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2737        struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2738
2739        if (bio->bi_status)
2740                bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2741                          sparity->nsectors);
2742
2743        bio_put(bio);
2744
2745        btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2746                        scrub_parity_bio_endio_worker, NULL, NULL);
2747        btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2748}
2749
2750static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2751{
2752        struct scrub_ctx *sctx = sparity->sctx;
2753        struct btrfs_fs_info *fs_info = sctx->fs_info;
2754        struct bio *bio;
2755        struct btrfs_raid_bio *rbio;
2756        struct btrfs_bio *bbio = NULL;
2757        u64 length;
2758        int ret;
2759
2760        if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2761                           sparity->nsectors))
2762                goto out;
2763
2764        length = sparity->logic_end - sparity->logic_start;
2765
2766        btrfs_bio_counter_inc_blocked(fs_info);
2767        ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2768                               &length, &bbio);
2769        if (ret || !bbio || !bbio->raid_map)
2770                goto bbio_out;
2771
2772        bio = btrfs_io_bio_alloc(0);
2773        bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2774        bio->bi_private = sparity;
2775        bio->bi_end_io = scrub_parity_bio_endio;
2776
2777        rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2778                                              length, sparity->scrub_dev,
2779                                              sparity->dbitmap,
2780                                              sparity->nsectors);
2781        if (!rbio)
2782                goto rbio_out;
2783
2784        scrub_pending_bio_inc(sctx);
2785        raid56_parity_submit_scrub_rbio(rbio);
2786        return;
2787
2788rbio_out:
2789        bio_put(bio);
2790bbio_out:
2791        btrfs_bio_counter_dec(fs_info);
2792        btrfs_put_bbio(bbio);
2793        bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2794                  sparity->nsectors);
2795        spin_lock(&sctx->stat_lock);
2796        sctx->stat.malloc_errors++;
2797        spin_unlock(&sctx->stat_lock);
2798out:
2799        scrub_free_parity(sparity);
2800}
2801
2802static inline int scrub_calc_parity_bitmap_len(int nsectors)
2803{
2804        return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2805}
2806
2807static void scrub_parity_get(struct scrub_parity *sparity)
2808{
2809        refcount_inc(&sparity->refs);
2810}
2811
2812static void scrub_parity_put(struct scrub_parity *sparity)
2813{
2814        if (!refcount_dec_and_test(&sparity->refs))
2815                return;
2816
2817        scrub_parity_check_and_repair(sparity);
2818}
2819
2820static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2821                                                  struct map_lookup *map,
2822                                                  struct btrfs_device *sdev,
2823                                                  struct btrfs_path *path,
2824                                                  u64 logic_start,
2825                                                  u64 logic_end)
2826{
2827        struct btrfs_fs_info *fs_info = sctx->fs_info;
2828        struct btrfs_root *root = fs_info->extent_root;
2829        struct btrfs_root *csum_root = fs_info->csum_root;
2830        struct btrfs_extent_item *extent;
2831        struct btrfs_bio *bbio = NULL;
2832        u64 flags;
2833        int ret;
2834        int slot;
2835        struct extent_buffer *l;
2836        struct btrfs_key key;
2837        u64 generation;
2838        u64 extent_logical;
2839        u64 extent_physical;
2840        u64 extent_len;
2841        u64 mapped_length;
2842        struct btrfs_device *extent_dev;
2843        struct scrub_parity *sparity;
2844        int nsectors;
2845        int bitmap_len;
2846        int extent_mirror_num;
2847        int stop_loop = 0;
2848
2849        nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2850        bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2851        sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2852                          GFP_NOFS);
2853        if (!sparity) {
2854                spin_lock(&sctx->stat_lock);
2855                sctx->stat.malloc_errors++;
2856                spin_unlock(&sctx->stat_lock);
2857                return -ENOMEM;
2858        }
2859
2860        sparity->stripe_len = map->stripe_len;
2861        sparity->nsectors = nsectors;
2862        sparity->sctx = sctx;
2863        sparity->scrub_dev = sdev;
2864        sparity->logic_start = logic_start;
2865        sparity->logic_end = logic_end;
2866        refcount_set(&sparity->refs, 1);
2867        INIT_LIST_HEAD(&sparity->spages);
2868        sparity->dbitmap = sparity->bitmap;
2869        sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2870
2871        ret = 0;
2872        while (logic_start < logic_end) {
2873                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2874                        key.type = BTRFS_METADATA_ITEM_KEY;
2875                else
2876                        key.type = BTRFS_EXTENT_ITEM_KEY;
2877                key.objectid = logic_start;
2878                key.offset = (u64)-1;
2879
2880                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2881                if (ret < 0)
2882                        goto out;
2883
2884                if (ret > 0) {
2885                        ret = btrfs_previous_extent_item(root, path, 0);
2886                        if (ret < 0)
2887                                goto out;
2888                        if (ret > 0) {
2889                                btrfs_release_path(path);
2890                                ret = btrfs_search_slot(NULL, root, &key,
2891                                                        path, 0, 0);
2892                                if (ret < 0)
2893                                        goto out;
2894                        }
2895                }
2896
2897                stop_loop = 0;
2898                while (1) {
2899                        u64 bytes;
2900
2901                        l = path->nodes[0];
2902                        slot = path->slots[0];
2903                        if (slot >= btrfs_header_nritems(l)) {
2904                                ret = btrfs_next_leaf(root, path);
2905                                if (ret == 0)
2906                                        continue;
2907                                if (ret < 0)
2908                                        goto out;
2909
2910                                stop_loop = 1;
2911                                break;
2912                        }
2913                        btrfs_item_key_to_cpu(l, &key, slot);
2914
2915                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2916                            key.type != BTRFS_METADATA_ITEM_KEY)
2917                                goto next;
2918
2919                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2920                                bytes = fs_info->nodesize;
2921                        else
2922                                bytes = key.offset;
2923
2924                        if (key.objectid + bytes <= logic_start)
2925                                goto next;
2926
2927                        if (key.objectid >= logic_end) {
2928                                stop_loop = 1;
2929                                break;
2930                        }
2931
2932                        while (key.objectid >= logic_start + map->stripe_len)
2933                                logic_start += map->stripe_len;
2934
2935                        extent = btrfs_item_ptr(l, slot,
2936                                                struct btrfs_extent_item);
2937                        flags = btrfs_extent_flags(l, extent);
2938                        generation = btrfs_extent_generation(l, extent);
2939
2940                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2941                            (key.objectid < logic_start ||
2942                             key.objectid + bytes >
2943                             logic_start + map->stripe_len)) {
2944                                btrfs_err(fs_info,
2945                                          "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2946                                          key.objectid, logic_start);
2947                                spin_lock(&sctx->stat_lock);
2948                                sctx->stat.uncorrectable_errors++;
2949                                spin_unlock(&sctx->stat_lock);
2950                                goto next;
2951                        }
2952again:
2953                        extent_logical = key.objectid;
2954                        extent_len = bytes;
2955
2956                        if (extent_logical < logic_start) {
2957                                extent_len -= logic_start - extent_logical;
2958                                extent_logical = logic_start;
2959                        }
2960
2961                        if (extent_logical + extent_len >
2962                            logic_start + map->stripe_len)
2963                                extent_len = logic_start + map->stripe_len -
2964                                             extent_logical;
2965
2966                        scrub_parity_mark_sectors_data(sparity, extent_logical,
2967                                                       extent_len);
2968
2969                        mapped_length = extent_len;
2970                        bbio = NULL;
2971                        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2972                                        extent_logical, &mapped_length, &bbio,
2973                                        0);
2974                        if (!ret) {
2975                                if (!bbio || mapped_length < extent_len)
2976                                        ret = -EIO;
2977                        }
2978                        if (ret) {
2979                                btrfs_put_bbio(bbio);
2980                                goto out;
2981                        }
2982                        extent_physical = bbio->stripes[0].physical;
2983                        extent_mirror_num = bbio->mirror_num;
2984                        extent_dev = bbio->stripes[0].dev;
2985                        btrfs_put_bbio(bbio);
2986
2987                        ret = btrfs_lookup_csums_range(csum_root,
2988                                                extent_logical,
2989                                                extent_logical + extent_len - 1,
2990                                                &sctx->csum_list, 1);
2991                        if (ret)
2992                                goto out;
2993
2994                        ret = scrub_extent_for_parity(sparity, extent_logical,
2995                                                      extent_len,
2996                                                      extent_physical,
2997                                                      extent_dev, flags,
2998                                                      generation,
2999                                                      extent_mirror_num);
3000
3001                        scrub_free_csums(sctx);
3002
3003                        if (ret)
3004                                goto out;
3005
3006                        if (extent_logical + extent_len <
3007                            key.objectid + bytes) {
3008                                logic_start += map->stripe_len;
3009
3010                                if (logic_start >= logic_end) {
3011                                        stop_loop = 1;
3012                                        break;
3013                                }
3014
3015                                if (logic_start < key.objectid + bytes) {
3016                                        cond_resched();
3017                                        goto again;
3018                                }
3019                        }
3020next:
3021                        path->slots[0]++;
3022                }
3023
3024                btrfs_release_path(path);
3025
3026                if (stop_loop)
3027                        break;
3028
3029                logic_start += map->stripe_len;
3030        }
3031out:
3032        if (ret < 0)
3033                scrub_parity_mark_sectors_error(sparity, logic_start,
3034                                                logic_end - logic_start);
3035        scrub_parity_put(sparity);
3036        scrub_submit(sctx);
3037        mutex_lock(&sctx->wr_lock);
3038        scrub_wr_submit(sctx);
3039        mutex_unlock(&sctx->wr_lock);
3040
3041        btrfs_release_path(path);
3042        return ret < 0 ? ret : 0;
3043}
3044
3045static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3046                                           struct map_lookup *map,
3047                                           struct btrfs_device *scrub_dev,
3048                                           int num, u64 base, u64 length)
3049{
3050        struct btrfs_path *path, *ppath;
3051        struct btrfs_fs_info *fs_info = sctx->fs_info;
3052        struct btrfs_root *root = fs_info->extent_root;
3053        struct btrfs_root *csum_root = fs_info->csum_root;
3054        struct btrfs_extent_item *extent;
3055        struct blk_plug plug;
3056        u64 flags;
3057        int ret;
3058        int slot;
3059        u64 nstripes;
3060        struct extent_buffer *l;
3061        u64 physical;
3062        u64 logical;
3063        u64 logic_end;
3064        u64 physical_end;
3065        u64 generation;
3066        int mirror_num;
3067        struct reada_control *reada1;
3068        struct reada_control *reada2;
3069        struct btrfs_key key;
3070        struct btrfs_key key_end;
3071        u64 increment = map->stripe_len;
3072        u64 offset;
3073        u64 extent_logical;
3074        u64 extent_physical;
3075        u64 extent_len;
3076        u64 stripe_logical;
3077        u64 stripe_end;
3078        struct btrfs_device *extent_dev;
3079        int extent_mirror_num;
3080        int stop_loop = 0;
3081
3082        physical = map->stripes[num].physical;
3083        offset = 0;
3084        nstripes = div64_u64(length, map->stripe_len);
3085        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3086                offset = map->stripe_len * num;
3087                increment = map->stripe_len * map->num_stripes;
3088                mirror_num = 1;
3089        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3090                int factor = map->num_stripes / map->sub_stripes;
3091                offset = map->stripe_len * (num / map->sub_stripes);
3092                increment = map->stripe_len * factor;
3093                mirror_num = num % map->sub_stripes + 1;
3094        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3095                increment = map->stripe_len;
3096                mirror_num = num % map->num_stripes + 1;
3097        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3098                increment = map->stripe_len;
3099                mirror_num = num % map->num_stripes + 1;
3100        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3101                get_raid56_logic_offset(physical, num, map, &offset, NULL);
3102                increment = map->stripe_len * nr_data_stripes(map);
3103                mirror_num = 1;
3104        } else {
3105                increment = map->stripe_len;
3106                mirror_num = 1;
3107        }
3108
3109        path = btrfs_alloc_path();
3110        if (!path)
3111                return -ENOMEM;
3112
3113        ppath = btrfs_alloc_path();
3114        if (!ppath) {
3115                btrfs_free_path(path);
3116                return -ENOMEM;
3117        }
3118
3119        /*
3120         * work on commit root. The related disk blocks are static as
3121         * long as COW is applied. This means, it is save to rewrite
3122         * them to repair disk errors without any race conditions
3123         */
3124        path->search_commit_root = 1;
3125        path->skip_locking = 1;
3126
3127        ppath->search_commit_root = 1;
3128        ppath->skip_locking = 1;
3129        /*
3130         * trigger the readahead for extent tree csum tree and wait for
3131         * completion. During readahead, the scrub is officially paused
3132         * to not hold off transaction commits
3133         */
3134        logical = base + offset;
3135        physical_end = physical + nstripes * map->stripe_len;
3136        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3137                get_raid56_logic_offset(physical_end, num,
3138                                        map, &logic_end, NULL);
3139                logic_end += base;
3140        } else {
3141                logic_end = logical + increment * nstripes;
3142        }
3143        wait_event(sctx->list_wait,
3144                   atomic_read(&sctx->bios_in_flight) == 0);
3145        scrub_blocked_if_needed(fs_info);
3146
3147        /* FIXME it might be better to start readahead at commit root */
3148        key.objectid = logical;
3149        key.type = BTRFS_EXTENT_ITEM_KEY;
3150        key.offset = (u64)0;
3151        key_end.objectid = logic_end;
3152        key_end.type = BTRFS_METADATA_ITEM_KEY;
3153        key_end.offset = (u64)-1;
3154        reada1 = btrfs_reada_add(root, &key, &key_end);
3155
3156        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3157        key.type = BTRFS_EXTENT_CSUM_KEY;
3158        key.offset = logical;
3159        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3160        key_end.type = BTRFS_EXTENT_CSUM_KEY;
3161        key_end.offset = logic_end;
3162        reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3163
3164        if (!IS_ERR(reada1))
3165                btrfs_reada_wait(reada1);
3166        if (!IS_ERR(reada2))
3167                btrfs_reada_wait(reada2);
3168
3169
3170        /*
3171         * collect all data csums for the stripe to avoid seeking during
3172         * the scrub. This might currently (crc32) end up to be about 1MB
3173         */
3174        blk_start_plug(&plug);
3175
3176        /*
3177         * now find all extents for each stripe and scrub them
3178         */
3179        ret = 0;
3180        while (physical < physical_end) {
3181                /*
3182                 * canceled?
3183                 */
3184                if (atomic_read(&fs_info->scrub_cancel_req) ||
3185                    atomic_read(&sctx->cancel_req)) {
3186                        ret = -ECANCELED;
3187                        goto out;
3188                }
3189                /*
3190                 * check to see if we have to pause
3191                 */
3192                if (atomic_read(&fs_info->scrub_pause_req)) {
3193                        /* push queued extents */
3194                        sctx->flush_all_writes = true;
3195                        scrub_submit(sctx);
3196                        mutex_lock(&sctx->wr_lock);
3197                        scrub_wr_submit(sctx);
3198                        mutex_unlock(&sctx->wr_lock);
3199                        wait_event(sctx->list_wait,
3200                                   atomic_read(&sctx->bios_in_flight) == 0);
3201                        sctx->flush_all_writes = false;
3202                        scrub_blocked_if_needed(fs_info);
3203                }
3204
3205                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3206                        ret = get_raid56_logic_offset(physical, num, map,
3207                                                      &logical,
3208                                                      &stripe_logical);
3209                        logical += base;
3210                        if (ret) {
3211                                /* it is parity strip */
3212                                stripe_logical += base;
3213                                stripe_end = stripe_logical + increment;
3214                                ret = scrub_raid56_parity(sctx, map, scrub_dev,
3215                                                          ppath, stripe_logical,
3216                                                          stripe_end);
3217                                if (ret)
3218                                        goto out;
3219                                goto skip;
3220                        }
3221                }
3222
3223                if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3224                        key.type = BTRFS_METADATA_ITEM_KEY;
3225                else
3226                        key.type = BTRFS_EXTENT_ITEM_KEY;
3227                key.objectid = logical;
3228                key.offset = (u64)-1;
3229
3230                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3231                if (ret < 0)
3232                        goto out;
3233
3234                if (ret > 0) {
3235                        ret = btrfs_previous_extent_item(root, path, 0);
3236                        if (ret < 0)
3237                                goto out;
3238                        if (ret > 0) {
3239                                /* there's no smaller item, so stick with the
3240                                 * larger one */
3241                                btrfs_release_path(path);
3242                                ret = btrfs_search_slot(NULL, root, &key,
3243                                                        path, 0, 0);
3244                                if (ret < 0)
3245                                        goto out;
3246                        }
3247                }
3248
3249                stop_loop = 0;
3250                while (1) {
3251                        u64 bytes;
3252
3253                        l = path->nodes[0];
3254                        slot = path->slots[0];
3255                        if (slot >= btrfs_header_nritems(l)) {
3256                                ret = btrfs_next_leaf(root, path);
3257                                if (ret == 0)
3258                                        continue;
3259                                if (ret < 0)
3260                                        goto out;
3261
3262                                stop_loop = 1;
3263                                break;
3264                        }
3265                        btrfs_item_key_to_cpu(l, &key, slot);
3266
3267                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3268                            key.type != BTRFS_METADATA_ITEM_KEY)
3269                                goto next;
3270
3271                        if (key.type == BTRFS_METADATA_ITEM_KEY)
3272                                bytes = fs_info->nodesize;
3273                        else
3274                                bytes = key.offset;
3275
3276                        if (key.objectid + bytes <= logical)
3277                                goto next;
3278
3279                        if (key.objectid >= logical + map->stripe_len) {
3280                                /* out of this device extent */
3281                                if (key.objectid >= logic_end)
3282                                        stop_loop = 1;
3283                                break;
3284                        }
3285
3286                        extent = btrfs_item_ptr(l, slot,
3287                                                struct btrfs_extent_item);
3288                        flags = btrfs_extent_flags(l, extent);
3289                        generation = btrfs_extent_generation(l, extent);
3290
3291                        if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3292                            (key.objectid < logical ||
3293                             key.objectid + bytes >
3294                             logical + map->stripe_len)) {
3295                                btrfs_err(fs_info,
3296                                           "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3297                                       key.objectid, logical);
3298                                spin_lock(&sctx->stat_lock);
3299                                sctx->stat.uncorrectable_errors++;
3300                                spin_unlock(&sctx->stat_lock);
3301                                goto next;
3302                        }
3303
3304again:
3305                        extent_logical = key.objectid;
3306                        extent_len = bytes;
3307
3308                        /*
3309                         * trim extent to this stripe
3310                         */
3311                        if (extent_logical < logical) {
3312                                extent_len -= logical - extent_logical;
3313                                extent_logical = logical;
3314                        }
3315                        if (extent_logical + extent_len >
3316                            logical + map->stripe_len) {
3317                                extent_len = logical + map->stripe_len -
3318                                             extent_logical;
3319                        }
3320
3321                        extent_physical = extent_logical - logical + physical;
3322                        extent_dev = scrub_dev;
3323                        extent_mirror_num = mirror_num;
3324                        if (sctx->is_dev_replace)
3325                                scrub_remap_extent(fs_info, extent_logical,
3326                                                   extent_len, &extent_physical,
3327                                                   &extent_dev,
3328                                                   &extent_mirror_num);
3329
3330                        ret = btrfs_lookup_csums_range(csum_root,
3331                                                       extent_logical,
3332                                                       extent_logical +
3333                                                       extent_len - 1,
3334                                                       &sctx->csum_list, 1);
3335                        if (ret)
3336                                goto out;
3337
3338                        ret = scrub_extent(sctx, map, extent_logical, extent_len,
3339                                           extent_physical, extent_dev, flags,
3340                                           generation, extent_mirror_num,
3341                                           extent_logical - logical + physical);
3342
3343                        scrub_free_csums(sctx);
3344
3345                        if (ret)
3346                                goto out;
3347
3348                        if (extent_logical + extent_len <
3349                            key.objectid + bytes) {
3350                                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3351                                        /*
3352                                         * loop until we find next data stripe
3353                                         * or we have finished all stripes.
3354                                         */
3355loop:
3356                                        physical += map->stripe_len;
3357                                        ret = get_raid56_logic_offset(physical,
3358                                                        num, map, &logical,
3359                                                        &stripe_logical);
3360                                        logical += base;
3361
3362                                        if (ret && physical < physical_end) {
3363                                                stripe_logical += base;
3364                                                stripe_end = stripe_logical +
3365                                                                increment;
3366                                                ret = scrub_raid56_parity(sctx,
3367                                                        map, scrub_dev, ppath,
3368                                                        stripe_logical,
3369                                                        stripe_end);
3370                                                if (ret)
3371                                                        goto out;
3372                                                goto loop;
3373                                        }
3374                                } else {
3375                                        physical += map->stripe_len;
3376                                        logical += increment;
3377                                }
3378                                if (logical < key.objectid + bytes) {
3379                                        cond_resched();
3380                                        goto again;
3381                                }
3382
3383                                if (physical >= physical_end) {
3384                                        stop_loop = 1;
3385                                        break;
3386                                }
3387                        }
3388next:
3389                        path->slots[0]++;
3390                }
3391                btrfs_release_path(path);
3392skip:
3393                logical += increment;
3394                physical += map->stripe_len;
3395                spin_lock(&sctx->stat_lock);
3396                if (stop_loop)
3397                        sctx->stat.last_physical = map->stripes[num].physical +
3398                                                   length;
3399                else
3400                        sctx->stat.last_physical = physical;
3401                spin_unlock(&sctx->stat_lock);
3402                if (stop_loop)
3403                        break;
3404        }
3405out:
3406        /* push queued extents */
3407        scrub_submit(sctx);
3408        mutex_lock(&sctx->wr_lock);
3409        scrub_wr_submit(sctx);
3410        mutex_unlock(&sctx->wr_lock);
3411
3412        blk_finish_plug(&plug);
3413        btrfs_free_path(path);
3414        btrfs_free_path(ppath);
3415        return ret < 0 ? ret : 0;
3416}
3417
3418static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3419                                          struct btrfs_device *scrub_dev,
3420                                          u64 chunk_offset, u64 length,
3421                                          u64 dev_offset,
3422                                          struct btrfs_block_group_cache *cache)
3423{
3424        struct btrfs_fs_info *fs_info = sctx->fs_info;
3425        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3426        struct map_lookup *map;
3427        struct extent_map *em;
3428        int i;
3429        int ret = 0;
3430
3431        read_lock(&map_tree->lock);
3432        em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3433        read_unlock(&map_tree->lock);
3434
3435        if (!em) {
3436                /*
3437                 * Might have been an unused block group deleted by the cleaner
3438                 * kthread or relocation.
3439                 */
3440                spin_lock(&cache->lock);
3441                if (!cache->removed)
3442                        ret = -EINVAL;
3443                spin_unlock(&cache->lock);
3444
3445                return ret;
3446        }
3447
3448        map = em->map_lookup;
3449        if (em->start != chunk_offset)
3450                goto out;
3451
3452        if (em->len < length)
3453                goto out;
3454
3455        for (i = 0; i < map->num_stripes; ++i) {
3456                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3457                    map->stripes[i].physical == dev_offset) {
3458                        ret = scrub_stripe(sctx, map, scrub_dev, i,
3459                                           chunk_offset, length);
3460                        if (ret)
3461                                goto out;
3462                }
3463        }
3464out:
3465        free_extent_map(em);
3466
3467        return ret;
3468}
3469
3470static noinline_for_stack
3471int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3472                           struct btrfs_device *scrub_dev, u64 start, u64 end)
3473{
3474        struct btrfs_dev_extent *dev_extent = NULL;
3475        struct btrfs_path *path;
3476        struct btrfs_fs_info *fs_info = sctx->fs_info;
3477        struct btrfs_root *root = fs_info->dev_root;
3478        u64 length;
3479        u64 chunk_offset;
3480        int ret = 0;
3481        int ro_set;
3482        int slot;
3483        struct extent_buffer *l;
3484        struct btrfs_key key;
3485        struct btrfs_key found_key;
3486        struct btrfs_block_group_cache *cache;
3487        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3488
3489        path = btrfs_alloc_path();
3490        if (!path)
3491                return -ENOMEM;
3492
3493        path->reada = READA_FORWARD;
3494        path->search_commit_root = 1;
3495        path->skip_locking = 1;
3496
3497        key.objectid = scrub_dev->devid;
3498        key.offset = 0ull;
3499        key.type = BTRFS_DEV_EXTENT_KEY;
3500
3501        while (1) {
3502                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503                if (ret < 0)
3504                        break;
3505                if (ret > 0) {
3506                        if (path->slots[0] >=
3507                            btrfs_header_nritems(path->nodes[0])) {
3508                                ret = btrfs_next_leaf(root, path);
3509                                if (ret < 0)
3510                                        break;
3511                                if (ret > 0) {
3512                                        ret = 0;
3513                                        break;
3514                                }
3515                        } else {
3516                                ret = 0;
3517                        }
3518                }
3519
3520                l = path->nodes[0];
3521                slot = path->slots[0];
3522
3523                btrfs_item_key_to_cpu(l, &found_key, slot);
3524
3525                if (found_key.objectid != scrub_dev->devid)
3526                        break;
3527
3528                if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3529                        break;
3530
3531                if (found_key.offset >= end)
3532                        break;
3533
3534                if (found_key.offset < key.offset)
3535                        break;
3536
3537                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3538                length = btrfs_dev_extent_length(l, dev_extent);
3539
3540                if (found_key.offset + length <= start)
3541                        goto skip;
3542
3543                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3544
3545                /*
3546                 * get a reference on the corresponding block group to prevent
3547                 * the chunk from going away while we scrub it
3548                 */
3549                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3550
3551                /* some chunks are removed but not committed to disk yet,
3552                 * continue scrubbing */
3553                if (!cache)
3554                        goto skip;
3555
3556                /*
3557                 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3558                 * to avoid deadlock caused by:
3559                 * btrfs_inc_block_group_ro()
3560                 * -> btrfs_wait_for_commit()
3561                 * -> btrfs_commit_transaction()
3562                 * -> btrfs_scrub_pause()
3563                 */
3564                scrub_pause_on(fs_info);
3565                ret = btrfs_inc_block_group_ro(cache);
3566                if (!ret && sctx->is_dev_replace) {
3567                        /*
3568                         * If we are doing a device replace wait for any tasks
3569                         * that started delalloc right before we set the block
3570                         * group to RO mode, as they might have just allocated
3571                         * an extent from it or decided they could do a nocow
3572                         * write. And if any such tasks did that, wait for their
3573                         * ordered extents to complete and then commit the
3574                         * current transaction, so that we can later see the new
3575                         * extent items in the extent tree - the ordered extents
3576                         * create delayed data references (for cow writes) when
3577                         * they complete, which will be run and insert the
3578                         * corresponding extent items into the extent tree when
3579                         * we commit the transaction they used when running
3580                         * inode.c:btrfs_finish_ordered_io(). We later use
3581                         * the commit root of the extent tree to find extents
3582                         * to copy from the srcdev into the tgtdev, and we don't
3583                         * want to miss any new extents.
3584                         */
3585                        btrfs_wait_block_group_reservations(cache);
3586                        btrfs_wait_nocow_writers(cache);
3587                        ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3588                                                       cache->key.objectid,
3589                                                       cache->key.offset);
3590                        if (ret > 0) {
3591                                struct btrfs_trans_handle *trans;
3592
3593                                trans = btrfs_join_transaction(root);
3594                                if (IS_ERR(trans))
3595                                        ret = PTR_ERR(trans);
3596                                else
3597                                        ret = btrfs_commit_transaction(trans);
3598                                if (ret) {
3599                                        scrub_pause_off(fs_info);
3600                                        btrfs_put_block_group(cache);
3601                                        break;
3602                                }
3603                        }
3604                }
3605                scrub_pause_off(fs_info);
3606
3607                if (ret == 0) {
3608                        ro_set = 1;
3609                } else if (ret == -ENOSPC) {
3610                        /*
3611                         * btrfs_inc_block_group_ro return -ENOSPC when it
3612                         * failed in creating new chunk for metadata.
3613                         * It is not a problem for scrub/replace, because
3614                         * metadata are always cowed, and our scrub paused
3615                         * commit_transactions.
3616                         */
3617                        ro_set = 0;
3618                } else {
3619                        btrfs_warn(fs_info,
3620                                   "failed setting block group ro: %d", ret);
3621                        btrfs_put_block_group(cache);
3622                        break;
3623                }
3624
3625                down_write(&fs_info->dev_replace.rwsem);
3626                dev_replace->cursor_right = found_key.offset + length;
3627                dev_replace->cursor_left = found_key.offset;
3628                dev_replace->item_needs_writeback = 1;
3629                up_write(&dev_replace->rwsem);
3630
3631                ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3632                                  found_key.offset, cache);
3633
3634                /*
3635                 * flush, submit all pending read and write bios, afterwards
3636                 * wait for them.
3637                 * Note that in the dev replace case, a read request causes
3638                 * write requests that are submitted in the read completion
3639                 * worker. Therefore in the current situation, it is required
3640                 * that all write requests are flushed, so that all read and
3641                 * write requests are really completed when bios_in_flight
3642                 * changes to 0.
3643                 */
3644                sctx->flush_all_writes = true;
3645                scrub_submit(sctx);
3646                mutex_lock(&sctx->wr_lock);
3647                scrub_wr_submit(sctx);
3648                mutex_unlock(&sctx->wr_lock);
3649
3650                wait_event(sctx->list_wait,
3651                           atomic_read(&sctx->bios_in_flight) == 0);
3652
3653                scrub_pause_on(fs_info);
3654
3655                /*
3656                 * must be called before we decrease @scrub_paused.
3657                 * make sure we don't block transaction commit while
3658                 * we are waiting pending workers finished.
3659                 */
3660                wait_event(sctx->list_wait,
3661                           atomic_read(&sctx->workers_pending) == 0);
3662                sctx->flush_all_writes = false;
3663
3664                scrub_pause_off(fs_info);
3665
3666                down_write(&fs_info->dev_replace.rwsem);
3667                dev_replace->cursor_left = dev_replace->cursor_right;
3668                dev_replace->item_needs_writeback = 1;
3669                up_write(&fs_info->dev_replace.rwsem);
3670
3671                if (ro_set)
3672                        btrfs_dec_block_group_ro(cache);
3673
3674                /*
3675                 * We might have prevented the cleaner kthread from deleting
3676                 * this block group if it was already unused because we raced
3677                 * and set it to RO mode first. So add it back to the unused
3678                 * list, otherwise it might not ever be deleted unless a manual
3679                 * balance is triggered or it becomes used and unused again.
3680                 */
3681                spin_lock(&cache->lock);
3682                if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3683                    btrfs_block_group_used(&cache->item) == 0) {
3684                        spin_unlock(&cache->lock);
3685                        btrfs_mark_bg_unused(cache);
3686                } else {
3687                        spin_unlock(&cache->lock);
3688                }
3689
3690                btrfs_put_block_group(cache);
3691                if (ret)
3692                        break;
3693                if (sctx->is_dev_replace &&
3694                    atomic64_read(&dev_replace->num_write_errors) > 0) {
3695                        ret = -EIO;
3696                        break;
3697                }
3698                if (sctx->stat.malloc_errors > 0) {
3699                        ret = -ENOMEM;
3700                        break;
3701                }
3702skip:
3703                key.offset = found_key.offset + length;
3704                btrfs_release_path(path);
3705        }
3706
3707        btrfs_free_path(path);
3708
3709        return ret;
3710}
3711
3712static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3713                                           struct btrfs_device *scrub_dev)
3714{
3715        int     i;
3716        u64     bytenr;
3717        u64     gen;
3718        int     ret;
3719        struct btrfs_fs_info *fs_info = sctx->fs_info;
3720
3721        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3722                return -EIO;
3723
3724        /* Seed devices of a new filesystem has their own generation. */
3725        if (scrub_dev->fs_devices != fs_info->fs_devices)
3726                gen = scrub_dev->generation;
3727        else
3728                gen = fs_info->last_trans_committed;
3729
3730        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3731                bytenr = btrfs_sb_offset(i);
3732                if (bytenr + BTRFS_SUPER_INFO_SIZE >
3733                    scrub_dev->commit_total_bytes)
3734                        break;
3735
3736                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3737                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3738                                  NULL, 1, bytenr);
3739                if (ret)
3740                        return ret;
3741        }
3742        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3743
3744        return 0;
3745}
3746
3747/*
3748 * get a reference count on fs_info->scrub_workers. start worker if necessary
3749 */
3750static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3751                                                int is_dev_replace)
3752{
3753        unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3754        int max_active = fs_info->thread_pool_size;
3755
3756        lockdep_assert_held(&fs_info->scrub_lock);
3757
3758        if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3759                ASSERT(fs_info->scrub_workers == NULL);
3760                fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3761                                flags, is_dev_replace ? 1 : max_active, 4);
3762                if (!fs_info->scrub_workers)
3763                        goto fail_scrub_workers;
3764
3765                ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3766                fs_info->scrub_wr_completion_workers =
3767                        btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3768                                              max_active, 2);
3769                if (!fs_info->scrub_wr_completion_workers)
3770                        goto fail_scrub_wr_completion_workers;
3771
3772                ASSERT(fs_info->scrub_parity_workers == NULL);
3773                fs_info->scrub_parity_workers =
3774                        btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3775                                              max_active, 2);
3776                if (!fs_info->scrub_parity_workers)
3777                        goto fail_scrub_parity_workers;
3778
3779                refcount_set(&fs_info->scrub_workers_refcnt, 1);
3780        } else {
3781                refcount_inc(&fs_info->scrub_workers_refcnt);
3782        }
3783        return 0;
3784
3785fail_scrub_parity_workers:
3786        btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3787fail_scrub_wr_completion_workers:
3788        btrfs_destroy_workqueue(fs_info->scrub_workers);
3789fail_scrub_workers:
3790        return -ENOMEM;
3791}
3792
3793int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3794                    u64 end, struct btrfs_scrub_progress *progress,
3795                    int readonly, int is_dev_replace)
3796{
3797        struct scrub_ctx *sctx;
3798        int ret;
3799        struct btrfs_device *dev;
3800        unsigned int nofs_flag;
3801        struct btrfs_workqueue *scrub_workers = NULL;
3802        struct btrfs_workqueue *scrub_wr_comp = NULL;
3803        struct btrfs_workqueue *scrub_parity = NULL;
3804
3805        if (btrfs_fs_closing(fs_info))
3806                return -EAGAIN;
3807
3808        if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3809                /*
3810                 * in this case scrub is unable to calculate the checksum
3811                 * the way scrub is implemented. Do not handle this
3812                 * situation at all because it won't ever happen.
3813                 */
3814                btrfs_err(fs_info,
3815                           "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3816                       fs_info->nodesize,
3817                       BTRFS_STRIPE_LEN);
3818                return -EINVAL;
3819        }
3820
3821        if (fs_info->sectorsize != PAGE_SIZE) {
3822                /* not supported for data w/o checksums */
3823                btrfs_err_rl(fs_info,
3824                           "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3825                       fs_info->sectorsize, PAGE_SIZE);
3826                return -EINVAL;
3827        }
3828
3829        if (fs_info->nodesize >
3830            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3831            fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3832                /*
3833                 * would exhaust the array bounds of pagev member in
3834                 * struct scrub_block
3835                 */
3836                btrfs_err(fs_info,
3837                          "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3838                       fs_info->nodesize,
3839                       SCRUB_MAX_PAGES_PER_BLOCK,
3840                       fs_info->sectorsize,
3841                       SCRUB_MAX_PAGES_PER_BLOCK);
3842                return -EINVAL;
3843        }
3844
3845        /* Allocate outside of device_list_mutex */
3846        sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3847        if (IS_ERR(sctx))
3848                return PTR_ERR(sctx);
3849
3850        mutex_lock(&fs_info->fs_devices->device_list_mutex);
3851        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3852        if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3853                     !is_dev_replace)) {
3854                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855                ret = -ENODEV;
3856                goto out_free_ctx;
3857        }
3858
3859        if (!is_dev_replace && !readonly &&
3860            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3861                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3862                btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3863                                rcu_str_deref(dev->name));
3864                ret = -EROFS;
3865                goto out_free_ctx;
3866        }
3867
3868        mutex_lock(&fs_info->scrub_lock);
3869        if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3870            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3871                mutex_unlock(&fs_info->scrub_lock);
3872                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3873                ret = -EIO;
3874                goto out_free_ctx;
3875        }
3876
3877        down_read(&fs_info->dev_replace.rwsem);
3878        if (dev->scrub_ctx ||
3879            (!is_dev_replace &&
3880             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3881                up_read(&fs_info->dev_replace.rwsem);
3882                mutex_unlock(&fs_info->scrub_lock);
3883                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884                ret = -EINPROGRESS;
3885                goto out_free_ctx;
3886        }
3887        up_read(&fs_info->dev_replace.rwsem);
3888
3889        ret = scrub_workers_get(fs_info, is_dev_replace);
3890        if (ret) {
3891                mutex_unlock(&fs_info->scrub_lock);
3892                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893                goto out_free_ctx;
3894        }
3895
3896        sctx->readonly = readonly;
3897        dev->scrub_ctx = sctx;
3898        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3899
3900        /*
3901         * checking @scrub_pause_req here, we can avoid
3902         * race between committing transaction and scrubbing.
3903         */
3904        __scrub_blocked_if_needed(fs_info);
3905        atomic_inc(&fs_info->scrubs_running);
3906        mutex_unlock(&fs_info->scrub_lock);
3907
3908        /*
3909         * In order to avoid deadlock with reclaim when there is a transaction
3910         * trying to pause scrub, make sure we use GFP_NOFS for all the
3911         * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3912         * invoked by our callees. The pausing request is done when the
3913         * transaction commit starts, and it blocks the transaction until scrub
3914         * is paused (done at specific points at scrub_stripe() or right above
3915         * before incrementing fs_info->scrubs_running).
3916         */
3917        nofs_flag = memalloc_nofs_save();
3918        if (!is_dev_replace) {
3919                btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3920                /*
3921                 * by holding device list mutex, we can
3922                 * kick off writing super in log tree sync.
3923                 */
3924                mutex_lock(&fs_info->fs_devices->device_list_mutex);
3925                ret = scrub_supers(sctx, dev);
3926                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927        }
3928
3929        if (!ret)
3930                ret = scrub_enumerate_chunks(sctx, dev, start, end);
3931        memalloc_nofs_restore(nofs_flag);
3932
3933        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3934        atomic_dec(&fs_info->scrubs_running);
3935        wake_up(&fs_info->scrub_pause_wait);
3936
3937        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3938
3939        if (progress)
3940                memcpy(progress, &sctx->stat, sizeof(*progress));
3941
3942        if (!is_dev_replace)
3943                btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3944                        ret ? "not finished" : "finished", devid, ret);
3945
3946        mutex_lock(&fs_info->scrub_lock);
3947        dev->scrub_ctx = NULL;
3948        if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3949                scrub_workers = fs_info->scrub_workers;
3950                scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3951                scrub_parity = fs_info->scrub_parity_workers;
3952
3953                fs_info->scrub_workers = NULL;
3954                fs_info->scrub_wr_completion_workers = NULL;
3955                fs_info->scrub_parity_workers = NULL;
3956        }
3957        mutex_unlock(&fs_info->scrub_lock);
3958
3959        btrfs_destroy_workqueue(scrub_workers);
3960        btrfs_destroy_workqueue(scrub_wr_comp);
3961        btrfs_destroy_workqueue(scrub_parity);
3962        scrub_put_ctx(sctx);
3963
3964        return ret;
3965
3966out_free_ctx:
3967        scrub_free_ctx(sctx);
3968
3969        return ret;
3970}
3971
3972void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3973{
3974        mutex_lock(&fs_info->scrub_lock);
3975        atomic_inc(&fs_info->scrub_pause_req);
3976        while (atomic_read(&fs_info->scrubs_paused) !=
3977               atomic_read(&fs_info->scrubs_running)) {
3978                mutex_unlock(&fs_info->scrub_lock);
3979                wait_event(fs_info->scrub_pause_wait,
3980                           atomic_read(&fs_info->scrubs_paused) ==
3981                           atomic_read(&fs_info->scrubs_running));
3982                mutex_lock(&fs_info->scrub_lock);
3983        }
3984        mutex_unlock(&fs_info->scrub_lock);
3985}
3986
3987void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3988{
3989        atomic_dec(&fs_info->scrub_pause_req);
3990        wake_up(&fs_info->scrub_pause_wait);
3991}
3992
3993int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3994{
3995        mutex_lock(&fs_info->scrub_lock);
3996        if (!atomic_read(&fs_info->scrubs_running)) {
3997                mutex_unlock(&fs_info->scrub_lock);
3998                return -ENOTCONN;
3999        }
4000
4001        atomic_inc(&fs_info->scrub_cancel_req);
4002        while (atomic_read(&fs_info->scrubs_running)) {
4003                mutex_unlock(&fs_info->scrub_lock);
4004                wait_event(fs_info->scrub_pause_wait,
4005                           atomic_read(&fs_info->scrubs_running) == 0);
4006                mutex_lock(&fs_info->scrub_lock);
4007        }
4008        atomic_dec(&fs_info->scrub_cancel_req);
4009        mutex_unlock(&fs_info->scrub_lock);
4010
4011        return 0;
4012}
4013
4014int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4015{
4016        struct btrfs_fs_info *fs_info = dev->fs_info;
4017        struct scrub_ctx *sctx;
4018
4019        mutex_lock(&fs_info->scrub_lock);
4020        sctx = dev->scrub_ctx;
4021        if (!sctx) {
4022                mutex_unlock(&fs_info->scrub_lock);
4023                return -ENOTCONN;
4024        }
4025        atomic_inc(&sctx->cancel_req);
4026        while (dev->scrub_ctx) {
4027                mutex_unlock(&fs_info->scrub_lock);
4028                wait_event(fs_info->scrub_pause_wait,
4029                           dev->scrub_ctx == NULL);
4030                mutex_lock(&fs_info->scrub_lock);
4031        }
4032        mutex_unlock(&fs_info->scrub_lock);
4033
4034        return 0;
4035}
4036
4037int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4038                         struct btrfs_scrub_progress *progress)
4039{
4040        struct btrfs_device *dev;
4041        struct scrub_ctx *sctx = NULL;
4042
4043        mutex_lock(&fs_info->fs_devices->device_list_mutex);
4044        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4045        if (dev)
4046                sctx = dev->scrub_ctx;
4047        if (sctx)
4048                memcpy(progress, &sctx->stat, sizeof(*progress));
4049        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4050
4051        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4052}
4053
4054static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4055                               u64 extent_logical, u64 extent_len,
4056                               u64 *extent_physical,
4057                               struct btrfs_device **extent_dev,
4058                               int *extent_mirror_num)
4059{
4060        u64 mapped_length;
4061        struct btrfs_bio *bbio = NULL;
4062        int ret;
4063
4064        mapped_length = extent_len;
4065        ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4066                              &mapped_length, &bbio, 0);
4067        if (ret || !bbio || mapped_length < extent_len ||
4068            !bbio->stripes[0].dev->bdev) {
4069                btrfs_put_bbio(bbio);
4070                return;
4071        }
4072
4073        *extent_physical = bbio->stripes[0].physical;
4074        *extent_mirror_num = bbio->mirror_num;
4075        *extent_dev = bbio->stripes[0].dev;
4076        btrfs_put_bbio(bbio);
4077}
4078