linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26
  27/*
  28 * A fs_path is a helper to dynamically build path names with unknown size.
  29 * It reallocates the internal buffer on demand.
  30 * It allows fast adding of path elements on the right side (normal path) and
  31 * fast adding to the left side (reversed path). A reversed path can also be
  32 * unreversed if needed.
  33 */
  34struct fs_path {
  35        union {
  36                struct {
  37                        char *start;
  38                        char *end;
  39
  40                        char *buf;
  41                        unsigned short buf_len:15;
  42                        unsigned short reversed:1;
  43                        char inline_buf[];
  44                };
  45                /*
  46                 * Average path length does not exceed 200 bytes, we'll have
  47                 * better packing in the slab and higher chance to satisfy
  48                 * a allocation later during send.
  49                 */
  50                char pad[256];
  51        };
  52};
  53#define FS_PATH_INLINE_SIZE \
  54        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  55
  56
  57/* reused for each extent */
  58struct clone_root {
  59        struct btrfs_root *root;
  60        u64 ino;
  61        u64 offset;
  62
  63        u64 found_refs;
  64};
  65
  66#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  67#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  68
  69struct send_ctx {
  70        struct file *send_filp;
  71        loff_t send_off;
  72        char *send_buf;
  73        u32 send_size;
  74        u32 send_max_size;
  75        u64 total_send_size;
  76        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  77        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  78
  79        struct btrfs_root *send_root;
  80        struct btrfs_root *parent_root;
  81        struct clone_root *clone_roots;
  82        int clone_roots_cnt;
  83
  84        /* current state of the compare_tree call */
  85        struct btrfs_path *left_path;
  86        struct btrfs_path *right_path;
  87        struct btrfs_key *cmp_key;
  88
  89        /*
  90         * infos of the currently processed inode. In case of deleted inodes,
  91         * these are the values from the deleted inode.
  92         */
  93        u64 cur_ino;
  94        u64 cur_inode_gen;
  95        int cur_inode_new;
  96        int cur_inode_new_gen;
  97        int cur_inode_deleted;
  98        u64 cur_inode_size;
  99        u64 cur_inode_mode;
 100        u64 cur_inode_rdev;
 101        u64 cur_inode_last_extent;
 102        u64 cur_inode_next_write_offset;
 103        bool ignore_cur_inode;
 104
 105        u64 send_progress;
 106
 107        struct list_head new_refs;
 108        struct list_head deleted_refs;
 109
 110        struct radix_tree_root name_cache;
 111        struct list_head name_cache_list;
 112        int name_cache_size;
 113
 114        struct file_ra_state ra;
 115
 116        char *read_buf;
 117
 118        /*
 119         * We process inodes by their increasing order, so if before an
 120         * incremental send we reverse the parent/child relationship of
 121         * directories such that a directory with a lower inode number was
 122         * the parent of a directory with a higher inode number, and the one
 123         * becoming the new parent got renamed too, we can't rename/move the
 124         * directory with lower inode number when we finish processing it - we
 125         * must process the directory with higher inode number first, then
 126         * rename/move it and then rename/move the directory with lower inode
 127         * number. Example follows.
 128         *
 129         * Tree state when the first send was performed:
 130         *
 131         * .
 132         * |-- a                   (ino 257)
 133         *     |-- b               (ino 258)
 134         *         |
 135         *         |
 136         *         |-- c           (ino 259)
 137         *         |   |-- d       (ino 260)
 138         *         |
 139         *         |-- c2          (ino 261)
 140         *
 141         * Tree state when the second (incremental) send is performed:
 142         *
 143         * .
 144         * |-- a                   (ino 257)
 145         *     |-- b               (ino 258)
 146         *         |-- c2          (ino 261)
 147         *             |-- d2      (ino 260)
 148         *                 |-- cc  (ino 259)
 149         *
 150         * The sequence of steps that lead to the second state was:
 151         *
 152         * mv /a/b/c/d /a/b/c2/d2
 153         * mv /a/b/c /a/b/c2/d2/cc
 154         *
 155         * "c" has lower inode number, but we can't move it (2nd mv operation)
 156         * before we move "d", which has higher inode number.
 157         *
 158         * So we just memorize which move/rename operations must be performed
 159         * later when their respective parent is processed and moved/renamed.
 160         */
 161
 162        /* Indexed by parent directory inode number. */
 163        struct rb_root pending_dir_moves;
 164
 165        /*
 166         * Reverse index, indexed by the inode number of a directory that
 167         * is waiting for the move/rename of its immediate parent before its
 168         * own move/rename can be performed.
 169         */
 170        struct rb_root waiting_dir_moves;
 171
 172        /*
 173         * A directory that is going to be rm'ed might have a child directory
 174         * which is in the pending directory moves index above. In this case,
 175         * the directory can only be removed after the move/rename of its child
 176         * is performed. Example:
 177         *
 178         * Parent snapshot:
 179         *
 180         * .                        (ino 256)
 181         * |-- a/                   (ino 257)
 182         *     |-- b/               (ino 258)
 183         *         |-- c/           (ino 259)
 184         *         |   |-- x/       (ino 260)
 185         *         |
 186         *         |-- y/           (ino 261)
 187         *
 188         * Send snapshot:
 189         *
 190         * .                        (ino 256)
 191         * |-- a/                   (ino 257)
 192         *     |-- b/               (ino 258)
 193         *         |-- YY/          (ino 261)
 194         *              |-- x/      (ino 260)
 195         *
 196         * Sequence of steps that lead to the send snapshot:
 197         * rm -f /a/b/c/foo.txt
 198         * mv /a/b/y /a/b/YY
 199         * mv /a/b/c/x /a/b/YY
 200         * rmdir /a/b/c
 201         *
 202         * When the child is processed, its move/rename is delayed until its
 203         * parent is processed (as explained above), but all other operations
 204         * like update utimes, chown, chgrp, etc, are performed and the paths
 205         * that it uses for those operations must use the orphanized name of
 206         * its parent (the directory we're going to rm later), so we need to
 207         * memorize that name.
 208         *
 209         * Indexed by the inode number of the directory to be deleted.
 210         */
 211        struct rb_root orphan_dirs;
 212};
 213
 214struct pending_dir_move {
 215        struct rb_node node;
 216        struct list_head list;
 217        u64 parent_ino;
 218        u64 ino;
 219        u64 gen;
 220        struct list_head update_refs;
 221};
 222
 223struct waiting_dir_move {
 224        struct rb_node node;
 225        u64 ino;
 226        /*
 227         * There might be some directory that could not be removed because it
 228         * was waiting for this directory inode to be moved first. Therefore
 229         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 230         */
 231        u64 rmdir_ino;
 232        bool orphanized;
 233};
 234
 235struct orphan_dir_info {
 236        struct rb_node node;
 237        u64 ino;
 238        u64 gen;
 239        u64 last_dir_index_offset;
 240};
 241
 242struct name_cache_entry {
 243        struct list_head list;
 244        /*
 245         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 246         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 247         * more then one inum would fall into the same entry, we use radix_list
 248         * to store the additional entries. radix_list is also used to store
 249         * entries where two entries have the same inum but different
 250         * generations.
 251         */
 252        struct list_head radix_list;
 253        u64 ino;
 254        u64 gen;
 255        u64 parent_ino;
 256        u64 parent_gen;
 257        int ret;
 258        int need_later_update;
 259        int name_len;
 260        char name[];
 261};
 262
 263__cold
 264static void inconsistent_snapshot_error(struct send_ctx *sctx,
 265                                        enum btrfs_compare_tree_result result,
 266                                        const char *what)
 267{
 268        const char *result_string;
 269
 270        switch (result) {
 271        case BTRFS_COMPARE_TREE_NEW:
 272                result_string = "new";
 273                break;
 274        case BTRFS_COMPARE_TREE_DELETED:
 275                result_string = "deleted";
 276                break;
 277        case BTRFS_COMPARE_TREE_CHANGED:
 278                result_string = "updated";
 279                break;
 280        case BTRFS_COMPARE_TREE_SAME:
 281                ASSERT(0);
 282                result_string = "unchanged";
 283                break;
 284        default:
 285                ASSERT(0);
 286                result_string = "unexpected";
 287        }
 288
 289        btrfs_err(sctx->send_root->fs_info,
 290                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 291                  result_string, what, sctx->cmp_key->objectid,
 292                  sctx->send_root->root_key.objectid,
 293                  (sctx->parent_root ?
 294                   sctx->parent_root->root_key.objectid : 0));
 295}
 296
 297static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 298
 299static struct waiting_dir_move *
 300get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 301
 302static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 303
 304static int need_send_hole(struct send_ctx *sctx)
 305{
 306        return (sctx->parent_root && !sctx->cur_inode_new &&
 307                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 308                S_ISREG(sctx->cur_inode_mode));
 309}
 310
 311static void fs_path_reset(struct fs_path *p)
 312{
 313        if (p->reversed) {
 314                p->start = p->buf + p->buf_len - 1;
 315                p->end = p->start;
 316                *p->start = 0;
 317        } else {
 318                p->start = p->buf;
 319                p->end = p->start;
 320                *p->start = 0;
 321        }
 322}
 323
 324static struct fs_path *fs_path_alloc(void)
 325{
 326        struct fs_path *p;
 327
 328        p = kmalloc(sizeof(*p), GFP_KERNEL);
 329        if (!p)
 330                return NULL;
 331        p->reversed = 0;
 332        p->buf = p->inline_buf;
 333        p->buf_len = FS_PATH_INLINE_SIZE;
 334        fs_path_reset(p);
 335        return p;
 336}
 337
 338static struct fs_path *fs_path_alloc_reversed(void)
 339{
 340        struct fs_path *p;
 341
 342        p = fs_path_alloc();
 343        if (!p)
 344                return NULL;
 345        p->reversed = 1;
 346        fs_path_reset(p);
 347        return p;
 348}
 349
 350static void fs_path_free(struct fs_path *p)
 351{
 352        if (!p)
 353                return;
 354        if (p->buf != p->inline_buf)
 355                kfree(p->buf);
 356        kfree(p);
 357}
 358
 359static int fs_path_len(struct fs_path *p)
 360{
 361        return p->end - p->start;
 362}
 363
 364static int fs_path_ensure_buf(struct fs_path *p, int len)
 365{
 366        char *tmp_buf;
 367        int path_len;
 368        int old_buf_len;
 369
 370        len++;
 371
 372        if (p->buf_len >= len)
 373                return 0;
 374
 375        if (len > PATH_MAX) {
 376                WARN_ON(1);
 377                return -ENOMEM;
 378        }
 379
 380        path_len = p->end - p->start;
 381        old_buf_len = p->buf_len;
 382
 383        /*
 384         * First time the inline_buf does not suffice
 385         */
 386        if (p->buf == p->inline_buf) {
 387                tmp_buf = kmalloc(len, GFP_KERNEL);
 388                if (tmp_buf)
 389                        memcpy(tmp_buf, p->buf, old_buf_len);
 390        } else {
 391                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 392        }
 393        if (!tmp_buf)
 394                return -ENOMEM;
 395        p->buf = tmp_buf;
 396        /*
 397         * The real size of the buffer is bigger, this will let the fast path
 398         * happen most of the time
 399         */
 400        p->buf_len = ksize(p->buf);
 401
 402        if (p->reversed) {
 403                tmp_buf = p->buf + old_buf_len - path_len - 1;
 404                p->end = p->buf + p->buf_len - 1;
 405                p->start = p->end - path_len;
 406                memmove(p->start, tmp_buf, path_len + 1);
 407        } else {
 408                p->start = p->buf;
 409                p->end = p->start + path_len;
 410        }
 411        return 0;
 412}
 413
 414static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 415                                   char **prepared)
 416{
 417        int ret;
 418        int new_len;
 419
 420        new_len = p->end - p->start + name_len;
 421        if (p->start != p->end)
 422                new_len++;
 423        ret = fs_path_ensure_buf(p, new_len);
 424        if (ret < 0)
 425                goto out;
 426
 427        if (p->reversed) {
 428                if (p->start != p->end)
 429                        *--p->start = '/';
 430                p->start -= name_len;
 431                *prepared = p->start;
 432        } else {
 433                if (p->start != p->end)
 434                        *p->end++ = '/';
 435                *prepared = p->end;
 436                p->end += name_len;
 437                *p->end = 0;
 438        }
 439
 440out:
 441        return ret;
 442}
 443
 444static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 445{
 446        int ret;
 447        char *prepared;
 448
 449        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 450        if (ret < 0)
 451                goto out;
 452        memcpy(prepared, name, name_len);
 453
 454out:
 455        return ret;
 456}
 457
 458static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 459{
 460        int ret;
 461        char *prepared;
 462
 463        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 464        if (ret < 0)
 465                goto out;
 466        memcpy(prepared, p2->start, p2->end - p2->start);
 467
 468out:
 469        return ret;
 470}
 471
 472static int fs_path_add_from_extent_buffer(struct fs_path *p,
 473                                          struct extent_buffer *eb,
 474                                          unsigned long off, int len)
 475{
 476        int ret;
 477        char *prepared;
 478
 479        ret = fs_path_prepare_for_add(p, len, &prepared);
 480        if (ret < 0)
 481                goto out;
 482
 483        read_extent_buffer(eb, prepared, off, len);
 484
 485out:
 486        return ret;
 487}
 488
 489static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 490{
 491        int ret;
 492
 493        p->reversed = from->reversed;
 494        fs_path_reset(p);
 495
 496        ret = fs_path_add_path(p, from);
 497
 498        return ret;
 499}
 500
 501
 502static void fs_path_unreverse(struct fs_path *p)
 503{
 504        char *tmp;
 505        int len;
 506
 507        if (!p->reversed)
 508                return;
 509
 510        tmp = p->start;
 511        len = p->end - p->start;
 512        p->start = p->buf;
 513        p->end = p->start + len;
 514        memmove(p->start, tmp, len + 1);
 515        p->reversed = 0;
 516}
 517
 518static struct btrfs_path *alloc_path_for_send(void)
 519{
 520        struct btrfs_path *path;
 521
 522        path = btrfs_alloc_path();
 523        if (!path)
 524                return NULL;
 525        path->search_commit_root = 1;
 526        path->skip_locking = 1;
 527        path->need_commit_sem = 1;
 528        return path;
 529}
 530
 531static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 532{
 533        int ret;
 534        u32 pos = 0;
 535
 536        while (pos < len) {
 537                ret = kernel_write(filp, buf + pos, len - pos, off);
 538                /* TODO handle that correctly */
 539                /*if (ret == -ERESTARTSYS) {
 540                        continue;
 541                }*/
 542                if (ret < 0)
 543                        return ret;
 544                if (ret == 0) {
 545                        return -EIO;
 546                }
 547                pos += ret;
 548        }
 549
 550        return 0;
 551}
 552
 553static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 554{
 555        struct btrfs_tlv_header *hdr;
 556        int total_len = sizeof(*hdr) + len;
 557        int left = sctx->send_max_size - sctx->send_size;
 558
 559        if (unlikely(left < total_len))
 560                return -EOVERFLOW;
 561
 562        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 563        hdr->tlv_type = cpu_to_le16(attr);
 564        hdr->tlv_len = cpu_to_le16(len);
 565        memcpy(hdr + 1, data, len);
 566        sctx->send_size += total_len;
 567
 568        return 0;
 569}
 570
 571#define TLV_PUT_DEFINE_INT(bits) \
 572        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 573                        u##bits attr, u##bits value)                    \
 574        {                                                               \
 575                __le##bits __tmp = cpu_to_le##bits(value);              \
 576                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 577        }
 578
 579TLV_PUT_DEFINE_INT(64)
 580
 581static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 582                          const char *str, int len)
 583{
 584        if (len == -1)
 585                len = strlen(str);
 586        return tlv_put(sctx, attr, str, len);
 587}
 588
 589static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 590                        const u8 *uuid)
 591{
 592        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 593}
 594
 595static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 596                                  struct extent_buffer *eb,
 597                                  struct btrfs_timespec *ts)
 598{
 599        struct btrfs_timespec bts;
 600        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 601        return tlv_put(sctx, attr, &bts, sizeof(bts));
 602}
 603
 604
 605#define TLV_PUT(sctx, attrtype, data, attrlen) \
 606        do { \
 607                ret = tlv_put(sctx, attrtype, data, attrlen); \
 608                if (ret < 0) \
 609                        goto tlv_put_failure; \
 610        } while (0)
 611
 612#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 613        do { \
 614                ret = tlv_put_u##bits(sctx, attrtype, value); \
 615                if (ret < 0) \
 616                        goto tlv_put_failure; \
 617        } while (0)
 618
 619#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 620#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 621#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 622#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 623#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 624        do { \
 625                ret = tlv_put_string(sctx, attrtype, str, len); \
 626                if (ret < 0) \
 627                        goto tlv_put_failure; \
 628        } while (0)
 629#define TLV_PUT_PATH(sctx, attrtype, p) \
 630        do { \
 631                ret = tlv_put_string(sctx, attrtype, p->start, \
 632                        p->end - p->start); \
 633                if (ret < 0) \
 634                        goto tlv_put_failure; \
 635        } while(0)
 636#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 637        do { \
 638                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 639                if (ret < 0) \
 640                        goto tlv_put_failure; \
 641        } while (0)
 642#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 643        do { \
 644                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 645                if (ret < 0) \
 646                        goto tlv_put_failure; \
 647        } while (0)
 648
 649static int send_header(struct send_ctx *sctx)
 650{
 651        struct btrfs_stream_header hdr;
 652
 653        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 654        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 655
 656        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 657                                        &sctx->send_off);
 658}
 659
 660/*
 661 * For each command/item we want to send to userspace, we call this function.
 662 */
 663static int begin_cmd(struct send_ctx *sctx, int cmd)
 664{
 665        struct btrfs_cmd_header *hdr;
 666
 667        if (WARN_ON(!sctx->send_buf))
 668                return -EINVAL;
 669
 670        BUG_ON(sctx->send_size);
 671
 672        sctx->send_size += sizeof(*hdr);
 673        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 674        hdr->cmd = cpu_to_le16(cmd);
 675
 676        return 0;
 677}
 678
 679static int send_cmd(struct send_ctx *sctx)
 680{
 681        int ret;
 682        struct btrfs_cmd_header *hdr;
 683        u32 crc;
 684
 685        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 686        hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 687        hdr->crc = 0;
 688
 689        crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 690        hdr->crc = cpu_to_le32(crc);
 691
 692        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 693                                        &sctx->send_off);
 694
 695        sctx->total_send_size += sctx->send_size;
 696        sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 697        sctx->send_size = 0;
 698
 699        return ret;
 700}
 701
 702/*
 703 * Sends a move instruction to user space
 704 */
 705static int send_rename(struct send_ctx *sctx,
 706                     struct fs_path *from, struct fs_path *to)
 707{
 708        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 709        int ret;
 710
 711        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 712
 713        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 714        if (ret < 0)
 715                goto out;
 716
 717        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 718        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 719
 720        ret = send_cmd(sctx);
 721
 722tlv_put_failure:
 723out:
 724        return ret;
 725}
 726
 727/*
 728 * Sends a link instruction to user space
 729 */
 730static int send_link(struct send_ctx *sctx,
 731                     struct fs_path *path, struct fs_path *lnk)
 732{
 733        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 734        int ret;
 735
 736        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 737
 738        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 739        if (ret < 0)
 740                goto out;
 741
 742        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 743        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 744
 745        ret = send_cmd(sctx);
 746
 747tlv_put_failure:
 748out:
 749        return ret;
 750}
 751
 752/*
 753 * Sends an unlink instruction to user space
 754 */
 755static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 756{
 757        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 758        int ret;
 759
 760        btrfs_debug(fs_info, "send_unlink %s", path->start);
 761
 762        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 763        if (ret < 0)
 764                goto out;
 765
 766        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 767
 768        ret = send_cmd(sctx);
 769
 770tlv_put_failure:
 771out:
 772        return ret;
 773}
 774
 775/*
 776 * Sends a rmdir instruction to user space
 777 */
 778static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 779{
 780        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 781        int ret;
 782
 783        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 784
 785        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 786        if (ret < 0)
 787                goto out;
 788
 789        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 790
 791        ret = send_cmd(sctx);
 792
 793tlv_put_failure:
 794out:
 795        return ret;
 796}
 797
 798/*
 799 * Helper function to retrieve some fields from an inode item.
 800 */
 801static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 802                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 803                          u64 *gid, u64 *rdev)
 804{
 805        int ret;
 806        struct btrfs_inode_item *ii;
 807        struct btrfs_key key;
 808
 809        key.objectid = ino;
 810        key.type = BTRFS_INODE_ITEM_KEY;
 811        key.offset = 0;
 812        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 813        if (ret) {
 814                if (ret > 0)
 815                        ret = -ENOENT;
 816                return ret;
 817        }
 818
 819        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 820                        struct btrfs_inode_item);
 821        if (size)
 822                *size = btrfs_inode_size(path->nodes[0], ii);
 823        if (gen)
 824                *gen = btrfs_inode_generation(path->nodes[0], ii);
 825        if (mode)
 826                *mode = btrfs_inode_mode(path->nodes[0], ii);
 827        if (uid)
 828                *uid = btrfs_inode_uid(path->nodes[0], ii);
 829        if (gid)
 830                *gid = btrfs_inode_gid(path->nodes[0], ii);
 831        if (rdev)
 832                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 833
 834        return ret;
 835}
 836
 837static int get_inode_info(struct btrfs_root *root,
 838                          u64 ino, u64 *size, u64 *gen,
 839                          u64 *mode, u64 *uid, u64 *gid,
 840                          u64 *rdev)
 841{
 842        struct btrfs_path *path;
 843        int ret;
 844
 845        path = alloc_path_for_send();
 846        if (!path)
 847                return -ENOMEM;
 848        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 849                               rdev);
 850        btrfs_free_path(path);
 851        return ret;
 852}
 853
 854typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 855                                   struct fs_path *p,
 856                                   void *ctx);
 857
 858/*
 859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 860 * btrfs_inode_extref.
 861 * The iterate callback may return a non zero value to stop iteration. This can
 862 * be a negative value for error codes or 1 to simply stop it.
 863 *
 864 * path must point to the INODE_REF or INODE_EXTREF when called.
 865 */
 866static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 867                             struct btrfs_key *found_key, int resolve,
 868                             iterate_inode_ref_t iterate, void *ctx)
 869{
 870        struct extent_buffer *eb = path->nodes[0];
 871        struct btrfs_item *item;
 872        struct btrfs_inode_ref *iref;
 873        struct btrfs_inode_extref *extref;
 874        struct btrfs_path *tmp_path;
 875        struct fs_path *p;
 876        u32 cur = 0;
 877        u32 total;
 878        int slot = path->slots[0];
 879        u32 name_len;
 880        char *start;
 881        int ret = 0;
 882        int num = 0;
 883        int index;
 884        u64 dir;
 885        unsigned long name_off;
 886        unsigned long elem_size;
 887        unsigned long ptr;
 888
 889        p = fs_path_alloc_reversed();
 890        if (!p)
 891                return -ENOMEM;
 892
 893        tmp_path = alloc_path_for_send();
 894        if (!tmp_path) {
 895                fs_path_free(p);
 896                return -ENOMEM;
 897        }
 898
 899
 900        if (found_key->type == BTRFS_INODE_REF_KEY) {
 901                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 902                                                    struct btrfs_inode_ref);
 903                item = btrfs_item_nr(slot);
 904                total = btrfs_item_size(eb, item);
 905                elem_size = sizeof(*iref);
 906        } else {
 907                ptr = btrfs_item_ptr_offset(eb, slot);
 908                total = btrfs_item_size_nr(eb, slot);
 909                elem_size = sizeof(*extref);
 910        }
 911
 912        while (cur < total) {
 913                fs_path_reset(p);
 914
 915                if (found_key->type == BTRFS_INODE_REF_KEY) {
 916                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 917                        name_len = btrfs_inode_ref_name_len(eb, iref);
 918                        name_off = (unsigned long)(iref + 1);
 919                        index = btrfs_inode_ref_index(eb, iref);
 920                        dir = found_key->offset;
 921                } else {
 922                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 923                        name_len = btrfs_inode_extref_name_len(eb, extref);
 924                        name_off = (unsigned long)&extref->name;
 925                        index = btrfs_inode_extref_index(eb, extref);
 926                        dir = btrfs_inode_extref_parent(eb, extref);
 927                }
 928
 929                if (resolve) {
 930                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 931                                                  name_off, eb, dir,
 932                                                  p->buf, p->buf_len);
 933                        if (IS_ERR(start)) {
 934                                ret = PTR_ERR(start);
 935                                goto out;
 936                        }
 937                        if (start < p->buf) {
 938                                /* overflow , try again with larger buffer */
 939                                ret = fs_path_ensure_buf(p,
 940                                                p->buf_len + p->buf - start);
 941                                if (ret < 0)
 942                                        goto out;
 943                                start = btrfs_ref_to_path(root, tmp_path,
 944                                                          name_len, name_off,
 945                                                          eb, dir,
 946                                                          p->buf, p->buf_len);
 947                                if (IS_ERR(start)) {
 948                                        ret = PTR_ERR(start);
 949                                        goto out;
 950                                }
 951                                BUG_ON(start < p->buf);
 952                        }
 953                        p->start = start;
 954                } else {
 955                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 956                                                             name_len);
 957                        if (ret < 0)
 958                                goto out;
 959                }
 960
 961                cur += elem_size + name_len;
 962                ret = iterate(num, dir, index, p, ctx);
 963                if (ret)
 964                        goto out;
 965                num++;
 966        }
 967
 968out:
 969        btrfs_free_path(tmp_path);
 970        fs_path_free(p);
 971        return ret;
 972}
 973
 974typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 975                                  const char *name, int name_len,
 976                                  const char *data, int data_len,
 977                                  u8 type, void *ctx);
 978
 979/*
 980 * Helper function to iterate the entries in ONE btrfs_dir_item.
 981 * The iterate callback may return a non zero value to stop iteration. This can
 982 * be a negative value for error codes or 1 to simply stop it.
 983 *
 984 * path must point to the dir item when called.
 985 */
 986static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 987                            iterate_dir_item_t iterate, void *ctx)
 988{
 989        int ret = 0;
 990        struct extent_buffer *eb;
 991        struct btrfs_item *item;
 992        struct btrfs_dir_item *di;
 993        struct btrfs_key di_key;
 994        char *buf = NULL;
 995        int buf_len;
 996        u32 name_len;
 997        u32 data_len;
 998        u32 cur;
 999        u32 len;
1000        u32 total;
1001        int slot;
1002        int num;
1003        u8 type;
1004
1005        /*
1006         * Start with a small buffer (1 page). If later we end up needing more
1007         * space, which can happen for xattrs on a fs with a leaf size greater
1008         * then the page size, attempt to increase the buffer. Typically xattr
1009         * values are small.
1010         */
1011        buf_len = PATH_MAX;
1012        buf = kmalloc(buf_len, GFP_KERNEL);
1013        if (!buf) {
1014                ret = -ENOMEM;
1015                goto out;
1016        }
1017
1018        eb = path->nodes[0];
1019        slot = path->slots[0];
1020        item = btrfs_item_nr(slot);
1021        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022        cur = 0;
1023        len = 0;
1024        total = btrfs_item_size(eb, item);
1025
1026        num = 0;
1027        while (cur < total) {
1028                name_len = btrfs_dir_name_len(eb, di);
1029                data_len = btrfs_dir_data_len(eb, di);
1030                type = btrfs_dir_type(eb, di);
1031                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1032
1033                if (type == BTRFS_FT_XATTR) {
1034                        if (name_len > XATTR_NAME_MAX) {
1035                                ret = -ENAMETOOLONG;
1036                                goto out;
1037                        }
1038                        if (name_len + data_len >
1039                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1040                                ret = -E2BIG;
1041                                goto out;
1042                        }
1043                } else {
1044                        /*
1045                         * Path too long
1046                         */
1047                        if (name_len + data_len > PATH_MAX) {
1048                                ret = -ENAMETOOLONG;
1049                                goto out;
1050                        }
1051                }
1052
1053                if (name_len + data_len > buf_len) {
1054                        buf_len = name_len + data_len;
1055                        if (is_vmalloc_addr(buf)) {
1056                                vfree(buf);
1057                                buf = NULL;
1058                        } else {
1059                                char *tmp = krealloc(buf, buf_len,
1060                                                GFP_KERNEL | __GFP_NOWARN);
1061
1062                                if (!tmp)
1063                                        kfree(buf);
1064                                buf = tmp;
1065                        }
1066                        if (!buf) {
1067                                buf = kvmalloc(buf_len, GFP_KERNEL);
1068                                if (!buf) {
1069                                        ret = -ENOMEM;
1070                                        goto out;
1071                                }
1072                        }
1073                }
1074
1075                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076                                name_len + data_len);
1077
1078                len = sizeof(*di) + name_len + data_len;
1079                di = (struct btrfs_dir_item *)((char *)di + len);
1080                cur += len;
1081
1082                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083                                data_len, type, ctx);
1084                if (ret < 0)
1085                        goto out;
1086                if (ret) {
1087                        ret = 0;
1088                        goto out;
1089                }
1090
1091                num++;
1092        }
1093
1094out:
1095        kvfree(buf);
1096        return ret;
1097}
1098
1099static int __copy_first_ref(int num, u64 dir, int index,
1100                            struct fs_path *p, void *ctx)
1101{
1102        int ret;
1103        struct fs_path *pt = ctx;
1104
1105        ret = fs_path_copy(pt, p);
1106        if (ret < 0)
1107                return ret;
1108
1109        /* we want the first only */
1110        return 1;
1111}
1112
1113/*
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1116 */
1117static int get_inode_path(struct btrfs_root *root,
1118                          u64 ino, struct fs_path *path)
1119{
1120        int ret;
1121        struct btrfs_key key, found_key;
1122        struct btrfs_path *p;
1123
1124        p = alloc_path_for_send();
1125        if (!p)
1126                return -ENOMEM;
1127
1128        fs_path_reset(path);
1129
1130        key.objectid = ino;
1131        key.type = BTRFS_INODE_REF_KEY;
1132        key.offset = 0;
1133
1134        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135        if (ret < 0)
1136                goto out;
1137        if (ret) {
1138                ret = 1;
1139                goto out;
1140        }
1141        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142        if (found_key.objectid != ino ||
1143            (found_key.type != BTRFS_INODE_REF_KEY &&
1144             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1145                ret = -ENOENT;
1146                goto out;
1147        }
1148
1149        ret = iterate_inode_ref(root, p, &found_key, 1,
1150                                __copy_first_ref, path);
1151        if (ret < 0)
1152                goto out;
1153        ret = 0;
1154
1155out:
1156        btrfs_free_path(p);
1157        return ret;
1158}
1159
1160struct backref_ctx {
1161        struct send_ctx *sctx;
1162
1163        /* number of total found references */
1164        u64 found;
1165
1166        /*
1167         * used for clones found in send_root. clones found behind cur_objectid
1168         * and cur_offset are not considered as allowed clones.
1169         */
1170        u64 cur_objectid;
1171        u64 cur_offset;
1172
1173        /* may be truncated in case it's the last extent in a file */
1174        u64 extent_len;
1175
1176        /* data offset in the file extent item */
1177        u64 data_offset;
1178
1179        /* Just to check for bugs in backref resolving */
1180        int found_itself;
1181};
1182
1183static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1184{
1185        u64 root = (u64)(uintptr_t)key;
1186        struct clone_root *cr = (struct clone_root *)elt;
1187
1188        if (root < cr->root->root_key.objectid)
1189                return -1;
1190        if (root > cr->root->root_key.objectid)
1191                return 1;
1192        return 0;
1193}
1194
1195static int __clone_root_cmp_sort(const void *e1, const void *e2)
1196{
1197        struct clone_root *cr1 = (struct clone_root *)e1;
1198        struct clone_root *cr2 = (struct clone_root *)e2;
1199
1200        if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1201                return -1;
1202        if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1203                return 1;
1204        return 0;
1205}
1206
1207/*
1208 * Called for every backref that is found for the current extent.
1209 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1210 */
1211static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1212{
1213        struct backref_ctx *bctx = ctx_;
1214        struct clone_root *found;
1215
1216        /* First check if the root is in the list of accepted clone sources */
1217        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1218                        bctx->sctx->clone_roots_cnt,
1219                        sizeof(struct clone_root),
1220                        __clone_root_cmp_bsearch);
1221        if (!found)
1222                return 0;
1223
1224        if (found->root == bctx->sctx->send_root &&
1225            ino == bctx->cur_objectid &&
1226            offset == bctx->cur_offset) {
1227                bctx->found_itself = 1;
1228        }
1229
1230        /*
1231         * Make sure we don't consider clones from send_root that are
1232         * behind the current inode/offset.
1233         */
1234        if (found->root == bctx->sctx->send_root) {
1235                /*
1236                 * TODO for the moment we don't accept clones from the inode
1237                 * that is currently send. We may change this when
1238                 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1239                 * file.
1240                 */
1241                if (ino >= bctx->cur_objectid)
1242                        return 0;
1243        }
1244
1245        bctx->found++;
1246        found->found_refs++;
1247        if (ino < found->ino) {
1248                found->ino = ino;
1249                found->offset = offset;
1250        } else if (found->ino == ino) {
1251                /*
1252                 * same extent found more then once in the same file.
1253                 */
1254                if (found->offset > offset + bctx->extent_len)
1255                        found->offset = offset;
1256        }
1257
1258        return 0;
1259}
1260
1261/*
1262 * Given an inode, offset and extent item, it finds a good clone for a clone
1263 * instruction. Returns -ENOENT when none could be found. The function makes
1264 * sure that the returned clone is usable at the point where sending is at the
1265 * moment. This means, that no clones are accepted which lie behind the current
1266 * inode+offset.
1267 *
1268 * path must point to the extent item when called.
1269 */
1270static int find_extent_clone(struct send_ctx *sctx,
1271                             struct btrfs_path *path,
1272                             u64 ino, u64 data_offset,
1273                             u64 ino_size,
1274                             struct clone_root **found)
1275{
1276        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1277        int ret;
1278        int extent_type;
1279        u64 logical;
1280        u64 disk_byte;
1281        u64 num_bytes;
1282        u64 extent_item_pos;
1283        u64 flags = 0;
1284        struct btrfs_file_extent_item *fi;
1285        struct extent_buffer *eb = path->nodes[0];
1286        struct backref_ctx *backref_ctx = NULL;
1287        struct clone_root *cur_clone_root;
1288        struct btrfs_key found_key;
1289        struct btrfs_path *tmp_path;
1290        int compressed;
1291        u32 i;
1292
1293        tmp_path = alloc_path_for_send();
1294        if (!tmp_path)
1295                return -ENOMEM;
1296
1297        /* We only use this path under the commit sem */
1298        tmp_path->need_commit_sem = 0;
1299
1300        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1301        if (!backref_ctx) {
1302                ret = -ENOMEM;
1303                goto out;
1304        }
1305
1306        if (data_offset >= ino_size) {
1307                /*
1308                 * There may be extents that lie behind the file's size.
1309                 * I at least had this in combination with snapshotting while
1310                 * writing large files.
1311                 */
1312                ret = 0;
1313                goto out;
1314        }
1315
1316        fi = btrfs_item_ptr(eb, path->slots[0],
1317                        struct btrfs_file_extent_item);
1318        extent_type = btrfs_file_extent_type(eb, fi);
1319        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1320                ret = -ENOENT;
1321                goto out;
1322        }
1323        compressed = btrfs_file_extent_compression(eb, fi);
1324
1325        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1326        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1327        if (disk_byte == 0) {
1328                ret = -ENOENT;
1329                goto out;
1330        }
1331        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1332
1333        down_read(&fs_info->commit_root_sem);
1334        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1335                                  &found_key, &flags);
1336        up_read(&fs_info->commit_root_sem);
1337        btrfs_release_path(tmp_path);
1338
1339        if (ret < 0)
1340                goto out;
1341        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1342                ret = -EIO;
1343                goto out;
1344        }
1345
1346        /*
1347         * Setup the clone roots.
1348         */
1349        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1350                cur_clone_root = sctx->clone_roots + i;
1351                cur_clone_root->ino = (u64)-1;
1352                cur_clone_root->offset = 0;
1353                cur_clone_root->found_refs = 0;
1354        }
1355
1356        backref_ctx->sctx = sctx;
1357        backref_ctx->found = 0;
1358        backref_ctx->cur_objectid = ino;
1359        backref_ctx->cur_offset = data_offset;
1360        backref_ctx->found_itself = 0;
1361        backref_ctx->extent_len = num_bytes;
1362        /*
1363         * For non-compressed extents iterate_extent_inodes() gives us extent
1364         * offsets that already take into account the data offset, but not for
1365         * compressed extents, since the offset is logical and not relative to
1366         * the physical extent locations. We must take this into account to
1367         * avoid sending clone offsets that go beyond the source file's size,
1368         * which would result in the clone ioctl failing with -EINVAL on the
1369         * receiving end.
1370         */
1371        if (compressed == BTRFS_COMPRESS_NONE)
1372                backref_ctx->data_offset = 0;
1373        else
1374                backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1375
1376        /*
1377         * The last extent of a file may be too large due to page alignment.
1378         * We need to adjust extent_len in this case so that the checks in
1379         * __iterate_backrefs work.
1380         */
1381        if (data_offset + num_bytes >= ino_size)
1382                backref_ctx->extent_len = ino_size - data_offset;
1383
1384        /*
1385         * Now collect all backrefs.
1386         */
1387        if (compressed == BTRFS_COMPRESS_NONE)
1388                extent_item_pos = logical - found_key.objectid;
1389        else
1390                extent_item_pos = 0;
1391        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1392                                    extent_item_pos, 1, __iterate_backrefs,
1393                                    backref_ctx, false);
1394
1395        if (ret < 0)
1396                goto out;
1397
1398        if (!backref_ctx->found_itself) {
1399                /* found a bug in backref code? */
1400                ret = -EIO;
1401                btrfs_err(fs_info,
1402                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1403                          ino, data_offset, disk_byte, found_key.objectid);
1404                goto out;
1405        }
1406
1407        btrfs_debug(fs_info,
1408                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1409                    data_offset, ino, num_bytes, logical);
1410
1411        if (!backref_ctx->found)
1412                btrfs_debug(fs_info, "no clones found");
1413
1414        cur_clone_root = NULL;
1415        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1416                if (sctx->clone_roots[i].found_refs) {
1417                        if (!cur_clone_root)
1418                                cur_clone_root = sctx->clone_roots + i;
1419                        else if (sctx->clone_roots[i].root == sctx->send_root)
1420                                /* prefer clones from send_root over others */
1421                                cur_clone_root = sctx->clone_roots + i;
1422                }
1423
1424        }
1425
1426        if (cur_clone_root) {
1427                *found = cur_clone_root;
1428                ret = 0;
1429        } else {
1430                ret = -ENOENT;
1431        }
1432
1433out:
1434        btrfs_free_path(tmp_path);
1435        kfree(backref_ctx);
1436        return ret;
1437}
1438
1439static int read_symlink(struct btrfs_root *root,
1440                        u64 ino,
1441                        struct fs_path *dest)
1442{
1443        int ret;
1444        struct btrfs_path *path;
1445        struct btrfs_key key;
1446        struct btrfs_file_extent_item *ei;
1447        u8 type;
1448        u8 compression;
1449        unsigned long off;
1450        int len;
1451
1452        path = alloc_path_for_send();
1453        if (!path)
1454                return -ENOMEM;
1455
1456        key.objectid = ino;
1457        key.type = BTRFS_EXTENT_DATA_KEY;
1458        key.offset = 0;
1459        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1460        if (ret < 0)
1461                goto out;
1462        if (ret) {
1463                /*
1464                 * An empty symlink inode. Can happen in rare error paths when
1465                 * creating a symlink (transaction committed before the inode
1466                 * eviction handler removed the symlink inode items and a crash
1467                 * happened in between or the subvol was snapshoted in between).
1468                 * Print an informative message to dmesg/syslog so that the user
1469                 * can delete the symlink.
1470                 */
1471                btrfs_err(root->fs_info,
1472                          "Found empty symlink inode %llu at root %llu",
1473                          ino, root->root_key.objectid);
1474                ret = -EIO;
1475                goto out;
1476        }
1477
1478        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1479                        struct btrfs_file_extent_item);
1480        type = btrfs_file_extent_type(path->nodes[0], ei);
1481        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1482        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1483        BUG_ON(compression);
1484
1485        off = btrfs_file_extent_inline_start(ei);
1486        len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1487
1488        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1489
1490out:
1491        btrfs_free_path(path);
1492        return ret;
1493}
1494
1495/*
1496 * Helper function to generate a file name that is unique in the root of
1497 * send_root and parent_root. This is used to generate names for orphan inodes.
1498 */
1499static int gen_unique_name(struct send_ctx *sctx,
1500                           u64 ino, u64 gen,
1501                           struct fs_path *dest)
1502{
1503        int ret = 0;
1504        struct btrfs_path *path;
1505        struct btrfs_dir_item *di;
1506        char tmp[64];
1507        int len;
1508        u64 idx = 0;
1509
1510        path = alloc_path_for_send();
1511        if (!path)
1512                return -ENOMEM;
1513
1514        while (1) {
1515                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1516                                ino, gen, idx);
1517                ASSERT(len < sizeof(tmp));
1518
1519                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1520                                path, BTRFS_FIRST_FREE_OBJECTID,
1521                                tmp, strlen(tmp), 0);
1522                btrfs_release_path(path);
1523                if (IS_ERR(di)) {
1524                        ret = PTR_ERR(di);
1525                        goto out;
1526                }
1527                if (di) {
1528                        /* not unique, try again */
1529                        idx++;
1530                        continue;
1531                }
1532
1533                if (!sctx->parent_root) {
1534                        /* unique */
1535                        ret = 0;
1536                        break;
1537                }
1538
1539                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1540                                path, BTRFS_FIRST_FREE_OBJECTID,
1541                                tmp, strlen(tmp), 0);
1542                btrfs_release_path(path);
1543                if (IS_ERR(di)) {
1544                        ret = PTR_ERR(di);
1545                        goto out;
1546                }
1547                if (di) {
1548                        /* not unique, try again */
1549                        idx++;
1550                        continue;
1551                }
1552                /* unique */
1553                break;
1554        }
1555
1556        ret = fs_path_add(dest, tmp, strlen(tmp));
1557
1558out:
1559        btrfs_free_path(path);
1560        return ret;
1561}
1562
1563enum inode_state {
1564        inode_state_no_change,
1565        inode_state_will_create,
1566        inode_state_did_create,
1567        inode_state_will_delete,
1568        inode_state_did_delete,
1569};
1570
1571static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1572{
1573        int ret;
1574        int left_ret;
1575        int right_ret;
1576        u64 left_gen;
1577        u64 right_gen;
1578
1579        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1580                        NULL, NULL);
1581        if (ret < 0 && ret != -ENOENT)
1582                goto out;
1583        left_ret = ret;
1584
1585        if (!sctx->parent_root) {
1586                right_ret = -ENOENT;
1587        } else {
1588                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1589                                NULL, NULL, NULL, NULL);
1590                if (ret < 0 && ret != -ENOENT)
1591                        goto out;
1592                right_ret = ret;
1593        }
1594
1595        if (!left_ret && !right_ret) {
1596                if (left_gen == gen && right_gen == gen) {
1597                        ret = inode_state_no_change;
1598                } else if (left_gen == gen) {
1599                        if (ino < sctx->send_progress)
1600                                ret = inode_state_did_create;
1601                        else
1602                                ret = inode_state_will_create;
1603                } else if (right_gen == gen) {
1604                        if (ino < sctx->send_progress)
1605                                ret = inode_state_did_delete;
1606                        else
1607                                ret = inode_state_will_delete;
1608                } else  {
1609                        ret = -ENOENT;
1610                }
1611        } else if (!left_ret) {
1612                if (left_gen == gen) {
1613                        if (ino < sctx->send_progress)
1614                                ret = inode_state_did_create;
1615                        else
1616                                ret = inode_state_will_create;
1617                } else {
1618                        ret = -ENOENT;
1619                }
1620        } else if (!right_ret) {
1621                if (right_gen == gen) {
1622                        if (ino < sctx->send_progress)
1623                                ret = inode_state_did_delete;
1624                        else
1625                                ret = inode_state_will_delete;
1626                } else {
1627                        ret = -ENOENT;
1628                }
1629        } else {
1630                ret = -ENOENT;
1631        }
1632
1633out:
1634        return ret;
1635}
1636
1637static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1638{
1639        int ret;
1640
1641        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1642                return 1;
1643
1644        ret = get_cur_inode_state(sctx, ino, gen);
1645        if (ret < 0)
1646                goto out;
1647
1648        if (ret == inode_state_no_change ||
1649            ret == inode_state_did_create ||
1650            ret == inode_state_will_delete)
1651                ret = 1;
1652        else
1653                ret = 0;
1654
1655out:
1656        return ret;
1657}
1658
1659/*
1660 * Helper function to lookup a dir item in a dir.
1661 */
1662static int lookup_dir_item_inode(struct btrfs_root *root,
1663                                 u64 dir, const char *name, int name_len,
1664                                 u64 *found_inode,
1665                                 u8 *found_type)
1666{
1667        int ret = 0;
1668        struct btrfs_dir_item *di;
1669        struct btrfs_key key;
1670        struct btrfs_path *path;
1671
1672        path = alloc_path_for_send();
1673        if (!path)
1674                return -ENOMEM;
1675
1676        di = btrfs_lookup_dir_item(NULL, root, path,
1677                        dir, name, name_len, 0);
1678        if (IS_ERR_OR_NULL(di)) {
1679                ret = di ? PTR_ERR(di) : -ENOENT;
1680                goto out;
1681        }
1682        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1683        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1684                ret = -ENOENT;
1685                goto out;
1686        }
1687        *found_inode = key.objectid;
1688        *found_type = btrfs_dir_type(path->nodes[0], di);
1689
1690out:
1691        btrfs_free_path(path);
1692        return ret;
1693}
1694
1695/*
1696 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1697 * generation of the parent dir and the name of the dir entry.
1698 */
1699static int get_first_ref(struct btrfs_root *root, u64 ino,
1700                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1701{
1702        int ret;
1703        struct btrfs_key key;
1704        struct btrfs_key found_key;
1705        struct btrfs_path *path;
1706        int len;
1707        u64 parent_dir;
1708
1709        path = alloc_path_for_send();
1710        if (!path)
1711                return -ENOMEM;
1712
1713        key.objectid = ino;
1714        key.type = BTRFS_INODE_REF_KEY;
1715        key.offset = 0;
1716
1717        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1718        if (ret < 0)
1719                goto out;
1720        if (!ret)
1721                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1722                                path->slots[0]);
1723        if (ret || found_key.objectid != ino ||
1724            (found_key.type != BTRFS_INODE_REF_KEY &&
1725             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1726                ret = -ENOENT;
1727                goto out;
1728        }
1729
1730        if (found_key.type == BTRFS_INODE_REF_KEY) {
1731                struct btrfs_inode_ref *iref;
1732                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1733                                      struct btrfs_inode_ref);
1734                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1735                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1736                                                     (unsigned long)(iref + 1),
1737                                                     len);
1738                parent_dir = found_key.offset;
1739        } else {
1740                struct btrfs_inode_extref *extref;
1741                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1742                                        struct btrfs_inode_extref);
1743                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1744                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1745                                        (unsigned long)&extref->name, len);
1746                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1747        }
1748        if (ret < 0)
1749                goto out;
1750        btrfs_release_path(path);
1751
1752        if (dir_gen) {
1753                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1754                                     NULL, NULL, NULL);
1755                if (ret < 0)
1756                        goto out;
1757        }
1758
1759        *dir = parent_dir;
1760
1761out:
1762        btrfs_free_path(path);
1763        return ret;
1764}
1765
1766static int is_first_ref(struct btrfs_root *root,
1767                        u64 ino, u64 dir,
1768                        const char *name, int name_len)
1769{
1770        int ret;
1771        struct fs_path *tmp_name;
1772        u64 tmp_dir;
1773
1774        tmp_name = fs_path_alloc();
1775        if (!tmp_name)
1776                return -ENOMEM;
1777
1778        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1779        if (ret < 0)
1780                goto out;
1781
1782        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1783                ret = 0;
1784                goto out;
1785        }
1786
1787        ret = !memcmp(tmp_name->start, name, name_len);
1788
1789out:
1790        fs_path_free(tmp_name);
1791        return ret;
1792}
1793
1794/*
1795 * Used by process_recorded_refs to determine if a new ref would overwrite an
1796 * already existing ref. In case it detects an overwrite, it returns the
1797 * inode/gen in who_ino/who_gen.
1798 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1799 * to make sure later references to the overwritten inode are possible.
1800 * Orphanizing is however only required for the first ref of an inode.
1801 * process_recorded_refs does an additional is_first_ref check to see if
1802 * orphanizing is really required.
1803 */
1804static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1805                              const char *name, int name_len,
1806                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1807{
1808        int ret = 0;
1809        u64 gen;
1810        u64 other_inode = 0;
1811        u8 other_type = 0;
1812
1813        if (!sctx->parent_root)
1814                goto out;
1815
1816        ret = is_inode_existent(sctx, dir, dir_gen);
1817        if (ret <= 0)
1818                goto out;
1819
1820        /*
1821         * If we have a parent root we need to verify that the parent dir was
1822         * not deleted and then re-created, if it was then we have no overwrite
1823         * and we can just unlink this entry.
1824         */
1825        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1826                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1827                                     NULL, NULL, NULL);
1828                if (ret < 0 && ret != -ENOENT)
1829                        goto out;
1830                if (ret) {
1831                        ret = 0;
1832                        goto out;
1833                }
1834                if (gen != dir_gen)
1835                        goto out;
1836        }
1837
1838        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1839                        &other_inode, &other_type);
1840        if (ret < 0 && ret != -ENOENT)
1841                goto out;
1842        if (ret) {
1843                ret = 0;
1844                goto out;
1845        }
1846
1847        /*
1848         * Check if the overwritten ref was already processed. If yes, the ref
1849         * was already unlinked/moved, so we can safely assume that we will not
1850         * overwrite anything at this point in time.
1851         */
1852        if (other_inode > sctx->send_progress ||
1853            is_waiting_for_move(sctx, other_inode)) {
1854                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1855                                who_gen, who_mode, NULL, NULL, NULL);
1856                if (ret < 0)
1857                        goto out;
1858
1859                ret = 1;
1860                *who_ino = other_inode;
1861        } else {
1862                ret = 0;
1863        }
1864
1865out:
1866        return ret;
1867}
1868
1869/*
1870 * Checks if the ref was overwritten by an already processed inode. This is
1871 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1872 * thus the orphan name needs be used.
1873 * process_recorded_refs also uses it to avoid unlinking of refs that were
1874 * overwritten.
1875 */
1876static int did_overwrite_ref(struct send_ctx *sctx,
1877                            u64 dir, u64 dir_gen,
1878                            u64 ino, u64 ino_gen,
1879                            const char *name, int name_len)
1880{
1881        int ret = 0;
1882        u64 gen;
1883        u64 ow_inode;
1884        u8 other_type;
1885
1886        if (!sctx->parent_root)
1887                goto out;
1888
1889        ret = is_inode_existent(sctx, dir, dir_gen);
1890        if (ret <= 0)
1891                goto out;
1892
1893        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1894                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1895                                     NULL, NULL, NULL);
1896                if (ret < 0 && ret != -ENOENT)
1897                        goto out;
1898                if (ret) {
1899                        ret = 0;
1900                        goto out;
1901                }
1902                if (gen != dir_gen)
1903                        goto out;
1904        }
1905
1906        /* check if the ref was overwritten by another ref */
1907        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1908                        &ow_inode, &other_type);
1909        if (ret < 0 && ret != -ENOENT)
1910                goto out;
1911        if (ret) {
1912                /* was never and will never be overwritten */
1913                ret = 0;
1914                goto out;
1915        }
1916
1917        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1918                        NULL, NULL);
1919        if (ret < 0)
1920                goto out;
1921
1922        if (ow_inode == ino && gen == ino_gen) {
1923                ret = 0;
1924                goto out;
1925        }
1926
1927        /*
1928         * We know that it is or will be overwritten. Check this now.
1929         * The current inode being processed might have been the one that caused
1930         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1931         * the current inode being processed.
1932         */
1933        if ((ow_inode < sctx->send_progress) ||
1934            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1935             gen == sctx->cur_inode_gen))
1936                ret = 1;
1937        else
1938                ret = 0;
1939
1940out:
1941        return ret;
1942}
1943
1944/*
1945 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1946 * that got overwritten. This is used by process_recorded_refs to determine
1947 * if it has to use the path as returned by get_cur_path or the orphan name.
1948 */
1949static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1950{
1951        int ret = 0;
1952        struct fs_path *name = NULL;
1953        u64 dir;
1954        u64 dir_gen;
1955
1956        if (!sctx->parent_root)
1957                goto out;
1958
1959        name = fs_path_alloc();
1960        if (!name)
1961                return -ENOMEM;
1962
1963        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1964        if (ret < 0)
1965                goto out;
1966
1967        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1968                        name->start, fs_path_len(name));
1969
1970out:
1971        fs_path_free(name);
1972        return ret;
1973}
1974
1975/*
1976 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1977 * so we need to do some special handling in case we have clashes. This function
1978 * takes care of this with the help of name_cache_entry::radix_list.
1979 * In case of error, nce is kfreed.
1980 */
1981static int name_cache_insert(struct send_ctx *sctx,
1982                             struct name_cache_entry *nce)
1983{
1984        int ret = 0;
1985        struct list_head *nce_head;
1986
1987        nce_head = radix_tree_lookup(&sctx->name_cache,
1988                        (unsigned long)nce->ino);
1989        if (!nce_head) {
1990                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1991                if (!nce_head) {
1992                        kfree(nce);
1993                        return -ENOMEM;
1994                }
1995                INIT_LIST_HEAD(nce_head);
1996
1997                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1998                if (ret < 0) {
1999                        kfree(nce_head);
2000                        kfree(nce);
2001                        return ret;
2002                }
2003        }
2004        list_add_tail(&nce->radix_list, nce_head);
2005        list_add_tail(&nce->list, &sctx->name_cache_list);
2006        sctx->name_cache_size++;
2007
2008        return ret;
2009}
2010
2011static void name_cache_delete(struct send_ctx *sctx,
2012                              struct name_cache_entry *nce)
2013{
2014        struct list_head *nce_head;
2015
2016        nce_head = radix_tree_lookup(&sctx->name_cache,
2017                        (unsigned long)nce->ino);
2018        if (!nce_head) {
2019                btrfs_err(sctx->send_root->fs_info,
2020              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2021                        nce->ino, sctx->name_cache_size);
2022        }
2023
2024        list_del(&nce->radix_list);
2025        list_del(&nce->list);
2026        sctx->name_cache_size--;
2027
2028        /*
2029         * We may not get to the final release of nce_head if the lookup fails
2030         */
2031        if (nce_head && list_empty(nce_head)) {
2032                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2033                kfree(nce_head);
2034        }
2035}
2036
2037static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2038                                                    u64 ino, u64 gen)
2039{
2040        struct list_head *nce_head;
2041        struct name_cache_entry *cur;
2042
2043        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2044        if (!nce_head)
2045                return NULL;
2046
2047        list_for_each_entry(cur, nce_head, radix_list) {
2048                if (cur->ino == ino && cur->gen == gen)
2049                        return cur;
2050        }
2051        return NULL;
2052}
2053
2054/*
2055 * Removes the entry from the list and adds it back to the end. This marks the
2056 * entry as recently used so that name_cache_clean_unused does not remove it.
2057 */
2058static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2059{
2060        list_del(&nce->list);
2061        list_add_tail(&nce->list, &sctx->name_cache_list);
2062}
2063
2064/*
2065 * Remove some entries from the beginning of name_cache_list.
2066 */
2067static void name_cache_clean_unused(struct send_ctx *sctx)
2068{
2069        struct name_cache_entry *nce;
2070
2071        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2072                return;
2073
2074        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2075                nce = list_entry(sctx->name_cache_list.next,
2076                                struct name_cache_entry, list);
2077                name_cache_delete(sctx, nce);
2078                kfree(nce);
2079        }
2080}
2081
2082static void name_cache_free(struct send_ctx *sctx)
2083{
2084        struct name_cache_entry *nce;
2085
2086        while (!list_empty(&sctx->name_cache_list)) {
2087                nce = list_entry(sctx->name_cache_list.next,
2088                                struct name_cache_entry, list);
2089                name_cache_delete(sctx, nce);
2090                kfree(nce);
2091        }
2092}
2093
2094/*
2095 * Used by get_cur_path for each ref up to the root.
2096 * Returns 0 if it succeeded.
2097 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2098 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2099 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2100 * Returns <0 in case of error.
2101 */
2102static int __get_cur_name_and_parent(struct send_ctx *sctx,
2103                                     u64 ino, u64 gen,
2104                                     u64 *parent_ino,
2105                                     u64 *parent_gen,
2106                                     struct fs_path *dest)
2107{
2108        int ret;
2109        int nce_ret;
2110        struct name_cache_entry *nce = NULL;
2111
2112        /*
2113         * First check if we already did a call to this function with the same
2114         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2115         * return the cached result.
2116         */
2117        nce = name_cache_search(sctx, ino, gen);
2118        if (nce) {
2119                if (ino < sctx->send_progress && nce->need_later_update) {
2120                        name_cache_delete(sctx, nce);
2121                        kfree(nce);
2122                        nce = NULL;
2123                } else {
2124                        name_cache_used(sctx, nce);
2125                        *parent_ino = nce->parent_ino;
2126                        *parent_gen = nce->parent_gen;
2127                        ret = fs_path_add(dest, nce->name, nce->name_len);
2128                        if (ret < 0)
2129                                goto out;
2130                        ret = nce->ret;
2131                        goto out;
2132                }
2133        }
2134
2135        /*
2136         * If the inode is not existent yet, add the orphan name and return 1.
2137         * This should only happen for the parent dir that we determine in
2138         * __record_new_ref
2139         */
2140        ret = is_inode_existent(sctx, ino, gen);
2141        if (ret < 0)
2142                goto out;
2143
2144        if (!ret) {
2145                ret = gen_unique_name(sctx, ino, gen, dest);
2146                if (ret < 0)
2147                        goto out;
2148                ret = 1;
2149                goto out_cache;
2150        }
2151
2152        /*
2153         * Depending on whether the inode was already processed or not, use
2154         * send_root or parent_root for ref lookup.
2155         */
2156        if (ino < sctx->send_progress)
2157                ret = get_first_ref(sctx->send_root, ino,
2158                                    parent_ino, parent_gen, dest);
2159        else
2160                ret = get_first_ref(sctx->parent_root, ino,
2161                                    parent_ino, parent_gen, dest);
2162        if (ret < 0)
2163                goto out;
2164
2165        /*
2166         * Check if the ref was overwritten by an inode's ref that was processed
2167         * earlier. If yes, treat as orphan and return 1.
2168         */
2169        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2170                        dest->start, dest->end - dest->start);
2171        if (ret < 0)
2172                goto out;
2173        if (ret) {
2174                fs_path_reset(dest);
2175                ret = gen_unique_name(sctx, ino, gen, dest);
2176                if (ret < 0)
2177                        goto out;
2178                ret = 1;
2179        }
2180
2181out_cache:
2182        /*
2183         * Store the result of the lookup in the name cache.
2184         */
2185        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2186        if (!nce) {
2187                ret = -ENOMEM;
2188                goto out;
2189        }
2190
2191        nce->ino = ino;
2192        nce->gen = gen;
2193        nce->parent_ino = *parent_ino;
2194        nce->parent_gen = *parent_gen;
2195        nce->name_len = fs_path_len(dest);
2196        nce->ret = ret;
2197        strcpy(nce->name, dest->start);
2198
2199        if (ino < sctx->send_progress)
2200                nce->need_later_update = 0;
2201        else
2202                nce->need_later_update = 1;
2203
2204        nce_ret = name_cache_insert(sctx, nce);
2205        if (nce_ret < 0)
2206                ret = nce_ret;
2207        name_cache_clean_unused(sctx);
2208
2209out:
2210        return ret;
2211}
2212
2213/*
2214 * Magic happens here. This function returns the first ref to an inode as it
2215 * would look like while receiving the stream at this point in time.
2216 * We walk the path up to the root. For every inode in between, we check if it
2217 * was already processed/sent. If yes, we continue with the parent as found
2218 * in send_root. If not, we continue with the parent as found in parent_root.
2219 * If we encounter an inode that was deleted at this point in time, we use the
2220 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2221 * that were not created yet and overwritten inodes/refs.
2222 *
2223 * When do we have orphan inodes:
2224 * 1. When an inode is freshly created and thus no valid refs are available yet
2225 * 2. When a directory lost all it's refs (deleted) but still has dir items
2226 *    inside which were not processed yet (pending for move/delete). If anyone
2227 *    tried to get the path to the dir items, it would get a path inside that
2228 *    orphan directory.
2229 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2230 *    of an unprocessed inode. If in that case the first ref would be
2231 *    overwritten, the overwritten inode gets "orphanized". Later when we
2232 *    process this overwritten inode, it is restored at a new place by moving
2233 *    the orphan inode.
2234 *
2235 * sctx->send_progress tells this function at which point in time receiving
2236 * would be.
2237 */
2238static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2239                        struct fs_path *dest)
2240{
2241        int ret = 0;
2242        struct fs_path *name = NULL;
2243        u64 parent_inode = 0;
2244        u64 parent_gen = 0;
2245        int stop = 0;
2246
2247        name = fs_path_alloc();
2248        if (!name) {
2249                ret = -ENOMEM;
2250                goto out;
2251        }
2252
2253        dest->reversed = 1;
2254        fs_path_reset(dest);
2255
2256        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2257                struct waiting_dir_move *wdm;
2258
2259                fs_path_reset(name);
2260
2261                if (is_waiting_for_rm(sctx, ino)) {
2262                        ret = gen_unique_name(sctx, ino, gen, name);
2263                        if (ret < 0)
2264                                goto out;
2265                        ret = fs_path_add_path(dest, name);
2266                        break;
2267                }
2268
2269                wdm = get_waiting_dir_move(sctx, ino);
2270                if (wdm && wdm->orphanized) {
2271                        ret = gen_unique_name(sctx, ino, gen, name);
2272                        stop = 1;
2273                } else if (wdm) {
2274                        ret = get_first_ref(sctx->parent_root, ino,
2275                                            &parent_inode, &parent_gen, name);
2276                } else {
2277                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2278                                                        &parent_inode,
2279                                                        &parent_gen, name);
2280                        if (ret)
2281                                stop = 1;
2282                }
2283
2284                if (ret < 0)
2285                        goto out;
2286
2287                ret = fs_path_add_path(dest, name);
2288                if (ret < 0)
2289                        goto out;
2290
2291                ino = parent_inode;
2292                gen = parent_gen;
2293        }
2294
2295out:
2296        fs_path_free(name);
2297        if (!ret)
2298                fs_path_unreverse(dest);
2299        return ret;
2300}
2301
2302/*
2303 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2304 */
2305static int send_subvol_begin(struct send_ctx *sctx)
2306{
2307        int ret;
2308        struct btrfs_root *send_root = sctx->send_root;
2309        struct btrfs_root *parent_root = sctx->parent_root;
2310        struct btrfs_path *path;
2311        struct btrfs_key key;
2312        struct btrfs_root_ref *ref;
2313        struct extent_buffer *leaf;
2314        char *name = NULL;
2315        int namelen;
2316
2317        path = btrfs_alloc_path();
2318        if (!path)
2319                return -ENOMEM;
2320
2321        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2322        if (!name) {
2323                btrfs_free_path(path);
2324                return -ENOMEM;
2325        }
2326
2327        key.objectid = send_root->root_key.objectid;
2328        key.type = BTRFS_ROOT_BACKREF_KEY;
2329        key.offset = 0;
2330
2331        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2332                                &key, path, 1, 0);
2333        if (ret < 0)
2334                goto out;
2335        if (ret) {
2336                ret = -ENOENT;
2337                goto out;
2338        }
2339
2340        leaf = path->nodes[0];
2341        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2342        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2343            key.objectid != send_root->root_key.objectid) {
2344                ret = -ENOENT;
2345                goto out;
2346        }
2347        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2348        namelen = btrfs_root_ref_name_len(leaf, ref);
2349        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2350        btrfs_release_path(path);
2351
2352        if (parent_root) {
2353                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2354                if (ret < 0)
2355                        goto out;
2356        } else {
2357                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2358                if (ret < 0)
2359                        goto out;
2360        }
2361
2362        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2363
2364        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2365                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2366                            sctx->send_root->root_item.received_uuid);
2367        else
2368                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2369                            sctx->send_root->root_item.uuid);
2370
2371        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2372                    le64_to_cpu(sctx->send_root->root_item.ctransid));
2373        if (parent_root) {
2374                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2375                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2376                                     parent_root->root_item.received_uuid);
2377                else
2378                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2379                                     parent_root->root_item.uuid);
2380                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2381                            le64_to_cpu(sctx->parent_root->root_item.ctransid));
2382        }
2383
2384        ret = send_cmd(sctx);
2385
2386tlv_put_failure:
2387out:
2388        btrfs_free_path(path);
2389        kfree(name);
2390        return ret;
2391}
2392
2393static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2394{
2395        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2396        int ret = 0;
2397        struct fs_path *p;
2398
2399        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2400
2401        p = fs_path_alloc();
2402        if (!p)
2403                return -ENOMEM;
2404
2405        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2406        if (ret < 0)
2407                goto out;
2408
2409        ret = get_cur_path(sctx, ino, gen, p);
2410        if (ret < 0)
2411                goto out;
2412        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2413        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2414
2415        ret = send_cmd(sctx);
2416
2417tlv_put_failure:
2418out:
2419        fs_path_free(p);
2420        return ret;
2421}
2422
2423static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2424{
2425        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2426        int ret = 0;
2427        struct fs_path *p;
2428
2429        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2430
2431        p = fs_path_alloc();
2432        if (!p)
2433                return -ENOMEM;
2434
2435        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2436        if (ret < 0)
2437                goto out;
2438
2439        ret = get_cur_path(sctx, ino, gen, p);
2440        if (ret < 0)
2441                goto out;
2442        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2443        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2444
2445        ret = send_cmd(sctx);
2446
2447tlv_put_failure:
2448out:
2449        fs_path_free(p);
2450        return ret;
2451}
2452
2453static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2454{
2455        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2456        int ret = 0;
2457        struct fs_path *p;
2458
2459        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2460                    ino, uid, gid);
2461
2462        p = fs_path_alloc();
2463        if (!p)
2464                return -ENOMEM;
2465
2466        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2467        if (ret < 0)
2468                goto out;
2469
2470        ret = get_cur_path(sctx, ino, gen, p);
2471        if (ret < 0)
2472                goto out;
2473        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2475        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2476
2477        ret = send_cmd(sctx);
2478
2479tlv_put_failure:
2480out:
2481        fs_path_free(p);
2482        return ret;
2483}
2484
2485static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2486{
2487        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2488        int ret = 0;
2489        struct fs_path *p = NULL;
2490        struct btrfs_inode_item *ii;
2491        struct btrfs_path *path = NULL;
2492        struct extent_buffer *eb;
2493        struct btrfs_key key;
2494        int slot;
2495
2496        btrfs_debug(fs_info, "send_utimes %llu", ino);
2497
2498        p = fs_path_alloc();
2499        if (!p)
2500                return -ENOMEM;
2501
2502        path = alloc_path_for_send();
2503        if (!path) {
2504                ret = -ENOMEM;
2505                goto out;
2506        }
2507
2508        key.objectid = ino;
2509        key.type = BTRFS_INODE_ITEM_KEY;
2510        key.offset = 0;
2511        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2512        if (ret > 0)
2513                ret = -ENOENT;
2514        if (ret < 0)
2515                goto out;
2516
2517        eb = path->nodes[0];
2518        slot = path->slots[0];
2519        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2520
2521        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2522        if (ret < 0)
2523                goto out;
2524
2525        ret = get_cur_path(sctx, ino, gen, p);
2526        if (ret < 0)
2527                goto out;
2528        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2529        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2530        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2531        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2532        /* TODO Add otime support when the otime patches get into upstream */
2533
2534        ret = send_cmd(sctx);
2535
2536tlv_put_failure:
2537out:
2538        fs_path_free(p);
2539        btrfs_free_path(path);
2540        return ret;
2541}
2542
2543/*
2544 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2545 * a valid path yet because we did not process the refs yet. So, the inode
2546 * is created as orphan.
2547 */
2548static int send_create_inode(struct send_ctx *sctx, u64 ino)
2549{
2550        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2551        int ret = 0;
2552        struct fs_path *p;
2553        int cmd;
2554        u64 gen;
2555        u64 mode;
2556        u64 rdev;
2557
2558        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2559
2560        p = fs_path_alloc();
2561        if (!p)
2562                return -ENOMEM;
2563
2564        if (ino != sctx->cur_ino) {
2565                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2566                                     NULL, NULL, &rdev);
2567                if (ret < 0)
2568                        goto out;
2569        } else {
2570                gen = sctx->cur_inode_gen;
2571                mode = sctx->cur_inode_mode;
2572                rdev = sctx->cur_inode_rdev;
2573        }
2574
2575        if (S_ISREG(mode)) {
2576                cmd = BTRFS_SEND_C_MKFILE;
2577        } else if (S_ISDIR(mode)) {
2578                cmd = BTRFS_SEND_C_MKDIR;
2579        } else if (S_ISLNK(mode)) {
2580                cmd = BTRFS_SEND_C_SYMLINK;
2581        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2582                cmd = BTRFS_SEND_C_MKNOD;
2583        } else if (S_ISFIFO(mode)) {
2584                cmd = BTRFS_SEND_C_MKFIFO;
2585        } else if (S_ISSOCK(mode)) {
2586                cmd = BTRFS_SEND_C_MKSOCK;
2587        } else {
2588                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2589                                (int)(mode & S_IFMT));
2590                ret = -EOPNOTSUPP;
2591                goto out;
2592        }
2593
2594        ret = begin_cmd(sctx, cmd);
2595        if (ret < 0)
2596                goto out;
2597
2598        ret = gen_unique_name(sctx, ino, gen, p);
2599        if (ret < 0)
2600                goto out;
2601
2602        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2603        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2604
2605        if (S_ISLNK(mode)) {
2606                fs_path_reset(p);
2607                ret = read_symlink(sctx->send_root, ino, p);
2608                if (ret < 0)
2609                        goto out;
2610                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2611        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2612                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2613                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2614                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2615        }
2616
2617        ret = send_cmd(sctx);
2618        if (ret < 0)
2619                goto out;
2620
2621
2622tlv_put_failure:
2623out:
2624        fs_path_free(p);
2625        return ret;
2626}
2627
2628/*
2629 * We need some special handling for inodes that get processed before the parent
2630 * directory got created. See process_recorded_refs for details.
2631 * This function does the check if we already created the dir out of order.
2632 */
2633static int did_create_dir(struct send_ctx *sctx, u64 dir)
2634{
2635        int ret = 0;
2636        struct btrfs_path *path = NULL;
2637        struct btrfs_key key;
2638        struct btrfs_key found_key;
2639        struct btrfs_key di_key;
2640        struct extent_buffer *eb;
2641        struct btrfs_dir_item *di;
2642        int slot;
2643
2644        path = alloc_path_for_send();
2645        if (!path) {
2646                ret = -ENOMEM;
2647                goto out;
2648        }
2649
2650        key.objectid = dir;
2651        key.type = BTRFS_DIR_INDEX_KEY;
2652        key.offset = 0;
2653        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2654        if (ret < 0)
2655                goto out;
2656
2657        while (1) {
2658                eb = path->nodes[0];
2659                slot = path->slots[0];
2660                if (slot >= btrfs_header_nritems(eb)) {
2661                        ret = btrfs_next_leaf(sctx->send_root, path);
2662                        if (ret < 0) {
2663                                goto out;
2664                        } else if (ret > 0) {
2665                                ret = 0;
2666                                break;
2667                        }
2668                        continue;
2669                }
2670
2671                btrfs_item_key_to_cpu(eb, &found_key, slot);
2672                if (found_key.objectid != key.objectid ||
2673                    found_key.type != key.type) {
2674                        ret = 0;
2675                        goto out;
2676                }
2677
2678                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2679                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2680
2681                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2682                    di_key.objectid < sctx->send_progress) {
2683                        ret = 1;
2684                        goto out;
2685                }
2686
2687                path->slots[0]++;
2688        }
2689
2690out:
2691        btrfs_free_path(path);
2692        return ret;
2693}
2694
2695/*
2696 * Only creates the inode if it is:
2697 * 1. Not a directory
2698 * 2. Or a directory which was not created already due to out of order
2699 *    directories. See did_create_dir and process_recorded_refs for details.
2700 */
2701static int send_create_inode_if_needed(struct send_ctx *sctx)
2702{
2703        int ret;
2704
2705        if (S_ISDIR(sctx->cur_inode_mode)) {
2706                ret = did_create_dir(sctx, sctx->cur_ino);
2707                if (ret < 0)
2708                        goto out;
2709                if (ret) {
2710                        ret = 0;
2711                        goto out;
2712                }
2713        }
2714
2715        ret = send_create_inode(sctx, sctx->cur_ino);
2716        if (ret < 0)
2717                goto out;
2718
2719out:
2720        return ret;
2721}
2722
2723struct recorded_ref {
2724        struct list_head list;
2725        char *name;
2726        struct fs_path *full_path;
2727        u64 dir;
2728        u64 dir_gen;
2729        int name_len;
2730};
2731
2732static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2733{
2734        ref->full_path = path;
2735        ref->name = (char *)kbasename(ref->full_path->start);
2736        ref->name_len = ref->full_path->end - ref->name;
2737}
2738
2739/*
2740 * We need to process new refs before deleted refs, but compare_tree gives us
2741 * everything mixed. So we first record all refs and later process them.
2742 * This function is a helper to record one ref.
2743 */
2744static int __record_ref(struct list_head *head, u64 dir,
2745                      u64 dir_gen, struct fs_path *path)
2746{
2747        struct recorded_ref *ref;
2748
2749        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2750        if (!ref)
2751                return -ENOMEM;
2752
2753        ref->dir = dir;
2754        ref->dir_gen = dir_gen;
2755        set_ref_path(ref, path);
2756        list_add_tail(&ref->list, head);
2757        return 0;
2758}
2759
2760static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2761{
2762        struct recorded_ref *new;
2763
2764        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2765        if (!new)
2766                return -ENOMEM;
2767
2768        new->dir = ref->dir;
2769        new->dir_gen = ref->dir_gen;
2770        new->full_path = NULL;
2771        INIT_LIST_HEAD(&new->list);
2772        list_add_tail(&new->list, list);
2773        return 0;
2774}
2775
2776static void __free_recorded_refs(struct list_head *head)
2777{
2778        struct recorded_ref *cur;
2779
2780        while (!list_empty(head)) {
2781                cur = list_entry(head->next, struct recorded_ref, list);
2782                fs_path_free(cur->full_path);
2783                list_del(&cur->list);
2784                kfree(cur);
2785        }
2786}
2787
2788static void free_recorded_refs(struct send_ctx *sctx)
2789{
2790        __free_recorded_refs(&sctx->new_refs);
2791        __free_recorded_refs(&sctx->deleted_refs);
2792}
2793
2794/*
2795 * Renames/moves a file/dir to its orphan name. Used when the first
2796 * ref of an unprocessed inode gets overwritten and for all non empty
2797 * directories.
2798 */
2799static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2800                          struct fs_path *path)
2801{
2802        int ret;
2803        struct fs_path *orphan;
2804
2805        orphan = fs_path_alloc();
2806        if (!orphan)
2807                return -ENOMEM;
2808
2809        ret = gen_unique_name(sctx, ino, gen, orphan);
2810        if (ret < 0)
2811                goto out;
2812
2813        ret = send_rename(sctx, path, orphan);
2814
2815out:
2816        fs_path_free(orphan);
2817        return ret;
2818}
2819
2820static struct orphan_dir_info *
2821add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2822{
2823        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2824        struct rb_node *parent = NULL;
2825        struct orphan_dir_info *entry, *odi;
2826
2827        while (*p) {
2828                parent = *p;
2829                entry = rb_entry(parent, struct orphan_dir_info, node);
2830                if (dir_ino < entry->ino) {
2831                        p = &(*p)->rb_left;
2832                } else if (dir_ino > entry->ino) {
2833                        p = &(*p)->rb_right;
2834                } else {
2835                        return entry;
2836                }
2837        }
2838
2839        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2840        if (!odi)
2841                return ERR_PTR(-ENOMEM);
2842        odi->ino = dir_ino;
2843        odi->gen = 0;
2844        odi->last_dir_index_offset = 0;
2845
2846        rb_link_node(&odi->node, parent, p);
2847        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2848        return odi;
2849}
2850
2851static struct orphan_dir_info *
2852get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2853{
2854        struct rb_node *n = sctx->orphan_dirs.rb_node;
2855        struct orphan_dir_info *entry;
2856
2857        while (n) {
2858                entry = rb_entry(n, struct orphan_dir_info, node);
2859                if (dir_ino < entry->ino)
2860                        n = n->rb_left;
2861                else if (dir_ino > entry->ino)
2862                        n = n->rb_right;
2863                else
2864                        return entry;
2865        }
2866        return NULL;
2867}
2868
2869static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2870{
2871        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2872
2873        return odi != NULL;
2874}
2875
2876static void free_orphan_dir_info(struct send_ctx *sctx,
2877                                 struct orphan_dir_info *odi)
2878{
2879        if (!odi)
2880                return;
2881        rb_erase(&odi->node, &sctx->orphan_dirs);
2882        kfree(odi);
2883}
2884
2885/*
2886 * Returns 1 if a directory can be removed at this point in time.
2887 * We check this by iterating all dir items and checking if the inode behind
2888 * the dir item was already processed.
2889 */
2890static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2891                     u64 send_progress)
2892{
2893        int ret = 0;
2894        struct btrfs_root *root = sctx->parent_root;
2895        struct btrfs_path *path;
2896        struct btrfs_key key;
2897        struct btrfs_key found_key;
2898        struct btrfs_key loc;
2899        struct btrfs_dir_item *di;
2900        struct orphan_dir_info *odi = NULL;
2901
2902        /*
2903         * Don't try to rmdir the top/root subvolume dir.
2904         */
2905        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2906                return 0;
2907
2908        path = alloc_path_for_send();
2909        if (!path)
2910                return -ENOMEM;
2911
2912        key.objectid = dir;
2913        key.type = BTRFS_DIR_INDEX_KEY;
2914        key.offset = 0;
2915
2916        odi = get_orphan_dir_info(sctx, dir);
2917        if (odi)
2918                key.offset = odi->last_dir_index_offset;
2919
2920        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2921        if (ret < 0)
2922                goto out;
2923
2924        while (1) {
2925                struct waiting_dir_move *dm;
2926
2927                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2928                        ret = btrfs_next_leaf(root, path);
2929                        if (ret < 0)
2930                                goto out;
2931                        else if (ret > 0)
2932                                break;
2933                        continue;
2934                }
2935                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2936                                      path->slots[0]);
2937                if (found_key.objectid != key.objectid ||
2938                    found_key.type != key.type)
2939                        break;
2940
2941                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2942                                struct btrfs_dir_item);
2943                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2944
2945                dm = get_waiting_dir_move(sctx, loc.objectid);
2946                if (dm) {
2947                        odi = add_orphan_dir_info(sctx, dir);
2948                        if (IS_ERR(odi)) {
2949                                ret = PTR_ERR(odi);
2950                                goto out;
2951                        }
2952                        odi->gen = dir_gen;
2953                        odi->last_dir_index_offset = found_key.offset;
2954                        dm->rmdir_ino = dir;
2955                        ret = 0;
2956                        goto out;
2957                }
2958
2959                if (loc.objectid > send_progress) {
2960                        odi = add_orphan_dir_info(sctx, dir);
2961                        if (IS_ERR(odi)) {
2962                                ret = PTR_ERR(odi);
2963                                goto out;
2964                        }
2965                        odi->gen = dir_gen;
2966                        odi->last_dir_index_offset = found_key.offset;
2967                        ret = 0;
2968                        goto out;
2969                }
2970
2971                path->slots[0]++;
2972        }
2973        free_orphan_dir_info(sctx, odi);
2974
2975        ret = 1;
2976
2977out:
2978        btrfs_free_path(path);
2979        return ret;
2980}
2981
2982static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2983{
2984        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2985
2986        return entry != NULL;
2987}
2988
2989static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2990{
2991        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2992        struct rb_node *parent = NULL;
2993        struct waiting_dir_move *entry, *dm;
2994
2995        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2996        if (!dm)
2997                return -ENOMEM;
2998        dm->ino = ino;
2999        dm->rmdir_ino = 0;
3000        dm->orphanized = orphanized;
3001
3002        while (*p) {
3003                parent = *p;
3004                entry = rb_entry(parent, struct waiting_dir_move, node);
3005                if (ino < entry->ino) {
3006                        p = &(*p)->rb_left;
3007                } else if (ino > entry->ino) {
3008                        p = &(*p)->rb_right;
3009                } else {
3010                        kfree(dm);
3011                        return -EEXIST;
3012                }
3013        }
3014
3015        rb_link_node(&dm->node, parent, p);
3016        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3017        return 0;
3018}
3019
3020static struct waiting_dir_move *
3021get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3022{
3023        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3024        struct waiting_dir_move *entry;
3025
3026        while (n) {
3027                entry = rb_entry(n, struct waiting_dir_move, node);
3028                if (ino < entry->ino)
3029                        n = n->rb_left;
3030                else if (ino > entry->ino)
3031                        n = n->rb_right;
3032                else
3033                        return entry;
3034        }
3035        return NULL;
3036}
3037
3038static void free_waiting_dir_move(struct send_ctx *sctx,
3039                                  struct waiting_dir_move *dm)
3040{
3041        if (!dm)
3042                return;
3043        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3044        kfree(dm);
3045}
3046
3047static int add_pending_dir_move(struct send_ctx *sctx,
3048                                u64 ino,
3049                                u64 ino_gen,
3050                                u64 parent_ino,
3051                                struct list_head *new_refs,
3052                                struct list_head *deleted_refs,
3053                                const bool is_orphan)
3054{
3055        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3056        struct rb_node *parent = NULL;
3057        struct pending_dir_move *entry = NULL, *pm;
3058        struct recorded_ref *cur;
3059        int exists = 0;
3060        int ret;
3061
3062        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3063        if (!pm)
3064                return -ENOMEM;
3065        pm->parent_ino = parent_ino;
3066        pm->ino = ino;
3067        pm->gen = ino_gen;
3068        INIT_LIST_HEAD(&pm->list);
3069        INIT_LIST_HEAD(&pm->update_refs);
3070        RB_CLEAR_NODE(&pm->node);
3071
3072        while (*p) {
3073                parent = *p;
3074                entry = rb_entry(parent, struct pending_dir_move, node);
3075                if (parent_ino < entry->parent_ino) {
3076                        p = &(*p)->rb_left;
3077                } else if (parent_ino > entry->parent_ino) {
3078                        p = &(*p)->rb_right;
3079                } else {
3080                        exists = 1;
3081                        break;
3082                }
3083        }
3084
3085        list_for_each_entry(cur, deleted_refs, list) {
3086                ret = dup_ref(cur, &pm->update_refs);
3087                if (ret < 0)
3088                        goto out;
3089        }
3090        list_for_each_entry(cur, new_refs, list) {
3091                ret = dup_ref(cur, &pm->update_refs);
3092                if (ret < 0)
3093                        goto out;
3094        }
3095
3096        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3097        if (ret)
3098                goto out;
3099
3100        if (exists) {
3101                list_add_tail(&pm->list, &entry->list);
3102        } else {
3103                rb_link_node(&pm->node, parent, p);
3104                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3105        }
3106        ret = 0;
3107out:
3108        if (ret) {
3109                __free_recorded_refs(&pm->update_refs);
3110                kfree(pm);
3111        }
3112        return ret;
3113}
3114
3115static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3116                                                      u64 parent_ino)
3117{
3118        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3119        struct pending_dir_move *entry;
3120
3121        while (n) {
3122                entry = rb_entry(n, struct pending_dir_move, node);
3123                if (parent_ino < entry->parent_ino)
3124                        n = n->rb_left;
3125                else if (parent_ino > entry->parent_ino)
3126                        n = n->rb_right;
3127                else
3128                        return entry;
3129        }
3130        return NULL;
3131}
3132
3133static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3134                     u64 ino, u64 gen, u64 *ancestor_ino)
3135{
3136        int ret = 0;
3137        u64 parent_inode = 0;
3138        u64 parent_gen = 0;
3139        u64 start_ino = ino;
3140
3141        *ancestor_ino = 0;
3142        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3143                fs_path_reset(name);
3144
3145                if (is_waiting_for_rm(sctx, ino))
3146                        break;
3147                if (is_waiting_for_move(sctx, ino)) {
3148                        if (*ancestor_ino == 0)
3149                                *ancestor_ino = ino;
3150                        ret = get_first_ref(sctx->parent_root, ino,
3151                                            &parent_inode, &parent_gen, name);
3152                } else {
3153                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3154                                                        &parent_inode,
3155                                                        &parent_gen, name);
3156                        if (ret > 0) {
3157                                ret = 0;
3158                                break;
3159                        }
3160                }
3161                if (ret < 0)
3162                        break;
3163                if (parent_inode == start_ino) {
3164                        ret = 1;
3165                        if (*ancestor_ino == 0)
3166                                *ancestor_ino = ino;
3167                        break;
3168                }
3169                ino = parent_inode;
3170                gen = parent_gen;
3171        }
3172        return ret;
3173}
3174
3175static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3176{
3177        struct fs_path *from_path = NULL;
3178        struct fs_path *to_path = NULL;
3179        struct fs_path *name = NULL;
3180        u64 orig_progress = sctx->send_progress;
3181        struct recorded_ref *cur;
3182        u64 parent_ino, parent_gen;
3183        struct waiting_dir_move *dm = NULL;
3184        u64 rmdir_ino = 0;
3185        u64 ancestor;
3186        bool is_orphan;
3187        int ret;
3188
3189        name = fs_path_alloc();
3190        from_path = fs_path_alloc();
3191        if (!name || !from_path) {
3192                ret = -ENOMEM;
3193                goto out;
3194        }
3195
3196        dm = get_waiting_dir_move(sctx, pm->ino);
3197        ASSERT(dm);
3198        rmdir_ino = dm->rmdir_ino;
3199        is_orphan = dm->orphanized;
3200        free_waiting_dir_move(sctx, dm);
3201
3202        if (is_orphan) {
3203                ret = gen_unique_name(sctx, pm->ino,
3204                                      pm->gen, from_path);
3205        } else {
3206                ret = get_first_ref(sctx->parent_root, pm->ino,
3207                                    &parent_ino, &parent_gen, name);
3208                if (ret < 0)
3209                        goto out;
3210                ret = get_cur_path(sctx, parent_ino, parent_gen,
3211                                   from_path);
3212                if (ret < 0)
3213                        goto out;
3214                ret = fs_path_add_path(from_path, name);
3215        }
3216        if (ret < 0)
3217                goto out;
3218
3219        sctx->send_progress = sctx->cur_ino + 1;
3220        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3221        if (ret < 0)
3222                goto out;
3223        if (ret) {
3224                LIST_HEAD(deleted_refs);
3225                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3226                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3227                                           &pm->update_refs, &deleted_refs,
3228                                           is_orphan);
3229                if (ret < 0)
3230                        goto out;
3231                if (rmdir_ino) {
3232                        dm = get_waiting_dir_move(sctx, pm->ino);
3233                        ASSERT(dm);
3234                        dm->rmdir_ino = rmdir_ino;
3235                }
3236                goto out;
3237        }
3238        fs_path_reset(name);
3239        to_path = name;
3240        name = NULL;
3241        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3242        if (ret < 0)
3243                goto out;
3244
3245        ret = send_rename(sctx, from_path, to_path);
3246        if (ret < 0)
3247                goto out;
3248
3249        if (rmdir_ino) {
3250                struct orphan_dir_info *odi;
3251                u64 gen;
3252
3253                odi = get_orphan_dir_info(sctx, rmdir_ino);
3254                if (!odi) {
3255                        /* already deleted */
3256                        goto finish;
3257                }
3258                gen = odi->gen;
3259
3260                ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3261                if (ret < 0)
3262                        goto out;
3263                if (!ret)
3264                        goto finish;
3265
3266                name = fs_path_alloc();
3267                if (!name) {
3268                        ret = -ENOMEM;
3269                        goto out;
3270                }
3271                ret = get_cur_path(sctx, rmdir_ino, gen, name);
3272                if (ret < 0)
3273                        goto out;
3274                ret = send_rmdir(sctx, name);
3275                if (ret < 0)
3276                        goto out;
3277        }
3278
3279finish:
3280        ret = send_utimes(sctx, pm->ino, pm->gen);
3281        if (ret < 0)
3282                goto out;
3283
3284        /*
3285         * After rename/move, need to update the utimes of both new parent(s)
3286         * and old parent(s).
3287         */
3288        list_for_each_entry(cur, &pm->update_refs, list) {
3289                /*
3290                 * The parent inode might have been deleted in the send snapshot
3291                 */
3292                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3293                                     NULL, NULL, NULL, NULL, NULL);
3294                if (ret == -ENOENT) {
3295                        ret = 0;
3296                        continue;
3297                }
3298                if (ret < 0)
3299                        goto out;
3300
3301                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3302                if (ret < 0)
3303                        goto out;
3304        }
3305
3306out:
3307        fs_path_free(name);
3308        fs_path_free(from_path);
3309        fs_path_free(to_path);
3310        sctx->send_progress = orig_progress;
3311
3312        return ret;
3313}
3314
3315static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3316{
3317        if (!list_empty(&m->list))
3318                list_del(&m->list);
3319        if (!RB_EMPTY_NODE(&m->node))
3320                rb_erase(&m->node, &sctx->pending_dir_moves);
3321        __free_recorded_refs(&m->update_refs);
3322        kfree(m);
3323}
3324
3325static void tail_append_pending_moves(struct send_ctx *sctx,
3326                                      struct pending_dir_move *moves,
3327                                      struct list_head *stack)
3328{
3329        if (list_empty(&moves->list)) {
3330                list_add_tail(&moves->list, stack);
3331        } else {
3332                LIST_HEAD(list);
3333                list_splice_init(&moves->list, &list);
3334                list_add_tail(&moves->list, stack);
3335                list_splice_tail(&list, stack);
3336        }
3337        if (!RB_EMPTY_NODE(&moves->node)) {
3338                rb_erase(&moves->node, &sctx->pending_dir_moves);
3339                RB_CLEAR_NODE(&moves->node);
3340        }
3341}
3342
3343static int apply_children_dir_moves(struct send_ctx *sctx)
3344{
3345        struct pending_dir_move *pm;
3346        struct list_head stack;
3347        u64 parent_ino = sctx->cur_ino;
3348        int ret = 0;
3349
3350        pm = get_pending_dir_moves(sctx, parent_ino);
3351        if (!pm)
3352                return 0;
3353
3354        INIT_LIST_HEAD(&stack);
3355        tail_append_pending_moves(sctx, pm, &stack);
3356
3357        while (!list_empty(&stack)) {
3358                pm = list_first_entry(&stack, struct pending_dir_move, list);
3359                parent_ino = pm->ino;
3360                ret = apply_dir_move(sctx, pm);
3361                free_pending_move(sctx, pm);
3362                if (ret)
3363                        goto out;
3364                pm = get_pending_dir_moves(sctx, parent_ino);
3365                if (pm)
3366                        tail_append_pending_moves(sctx, pm, &stack);
3367        }
3368        return 0;
3369
3370out:
3371        while (!list_empty(&stack)) {
3372                pm = list_first_entry(&stack, struct pending_dir_move, list);
3373                free_pending_move(sctx, pm);
3374        }
3375        return ret;
3376}
3377
3378/*
3379 * We might need to delay a directory rename even when no ancestor directory
3380 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3381 * renamed. This happens when we rename a directory to the old name (the name
3382 * in the parent root) of some other unrelated directory that got its rename
3383 * delayed due to some ancestor with higher number that got renamed.
3384 *
3385 * Example:
3386 *
3387 * Parent snapshot:
3388 * .                                       (ino 256)
3389 * |---- a/                                (ino 257)
3390 * |     |---- file                        (ino 260)
3391 * |
3392 * |---- b/                                (ino 258)
3393 * |---- c/                                (ino 259)
3394 *
3395 * Send snapshot:
3396 * .                                       (ino 256)
3397 * |---- a/                                (ino 258)
3398 * |---- x/                                (ino 259)
3399 *       |---- y/                          (ino 257)
3400 *             |----- file                 (ino 260)
3401 *
3402 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3403 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3404 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3405 * must issue is:
3406 *
3407 * 1 - rename 259 from 'c' to 'x'
3408 * 2 - rename 257 from 'a' to 'x/y'
3409 * 3 - rename 258 from 'b' to 'a'
3410 *
3411 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3412 * be done right away and < 0 on error.
3413 */
3414static int wait_for_dest_dir_move(struct send_ctx *sctx,
3415                                  struct recorded_ref *parent_ref,
3416                                  const bool is_orphan)
3417{
3418        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3419        struct btrfs_path *path;
3420        struct btrfs_key key;
3421        struct btrfs_key di_key;
3422        struct btrfs_dir_item *di;
3423        u64 left_gen;
3424        u64 right_gen;
3425        int ret = 0;
3426        struct waiting_dir_move *wdm;
3427
3428        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3429                return 0;
3430
3431        path = alloc_path_for_send();
3432        if (!path)
3433                return -ENOMEM;
3434
3435        key.objectid = parent_ref->dir;
3436        key.type = BTRFS_DIR_ITEM_KEY;
3437        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3438
3439        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3440        if (ret < 0) {
3441                goto out;
3442        } else if (ret > 0) {
3443                ret = 0;
3444                goto out;
3445        }
3446
3447        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3448                                       parent_ref->name_len);
3449        if (!di) {
3450                ret = 0;
3451                goto out;
3452        }
3453        /*
3454         * di_key.objectid has the number of the inode that has a dentry in the
3455         * parent directory with the same name that sctx->cur_ino is being
3456         * renamed to. We need to check if that inode is in the send root as
3457         * well and if it is currently marked as an inode with a pending rename,
3458         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3459         * that it happens after that other inode is renamed.
3460         */
3461        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3462        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3463                ret = 0;
3464                goto out;
3465        }
3466
3467        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3468                             &left_gen, NULL, NULL, NULL, NULL);
3469        if (ret < 0)
3470                goto out;
3471        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3472                             &right_gen, NULL, NULL, NULL, NULL);
3473        if (ret < 0) {
3474                if (ret == -ENOENT)
3475                        ret = 0;
3476                goto out;
3477        }
3478
3479        /* Different inode, no need to delay the rename of sctx->cur_ino */
3480        if (right_gen != left_gen) {
3481                ret = 0;
3482                goto out;
3483        }
3484
3485        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3486        if (wdm && !wdm->orphanized) {
3487                ret = add_pending_dir_move(sctx,
3488                                           sctx->cur_ino,
3489                                           sctx->cur_inode_gen,
3490                                           di_key.objectid,
3491                                           &sctx->new_refs,
3492                                           &sctx->deleted_refs,
3493                                           is_orphan);
3494                if (!ret)
3495                        ret = 1;
3496        }
3497out:
3498        btrfs_free_path(path);
3499        return ret;
3500}
3501
3502/*
3503 * Check if inode ino2, or any of its ancestors, is inode ino1.
3504 * Return 1 if true, 0 if false and < 0 on error.
3505 */
3506static int check_ino_in_path(struct btrfs_root *root,
3507                             const u64 ino1,
3508                             const u64 ino1_gen,
3509                             const u64 ino2,
3510                             const u64 ino2_gen,
3511                             struct fs_path *fs_path)
3512{
3513        u64 ino = ino2;
3514
3515        if (ino1 == ino2)
3516                return ino1_gen == ino2_gen;
3517
3518        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3519                u64 parent;
3520                u64 parent_gen;
3521                int ret;
3522
3523                fs_path_reset(fs_path);
3524                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3525                if (ret < 0)
3526                        return ret;
3527                if (parent == ino1)
3528                        return parent_gen == ino1_gen;
3529                ino = parent;
3530        }
3531        return 0;
3532}
3533
3534/*
3535 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3536 * possible path (in case ino2 is not a directory and has multiple hard links).
3537 * Return 1 if true, 0 if false and < 0 on error.
3538 */
3539static int is_ancestor(struct btrfs_root *root,
3540                       const u64 ino1,
3541                       const u64 ino1_gen,
3542                       const u64 ino2,
3543                       struct fs_path *fs_path)
3544{
3545        bool free_fs_path = false;
3546        int ret = 0;
3547        struct btrfs_path *path = NULL;
3548        struct btrfs_key key;
3549
3550        if (!fs_path) {
3551                fs_path = fs_path_alloc();
3552                if (!fs_path)
3553                        return -ENOMEM;
3554                free_fs_path = true;
3555        }
3556
3557        path = alloc_path_for_send();
3558        if (!path) {
3559                ret = -ENOMEM;
3560                goto out;
3561        }
3562
3563        key.objectid = ino2;
3564        key.type = BTRFS_INODE_REF_KEY;
3565        key.offset = 0;
3566
3567        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3568        if (ret < 0)
3569                goto out;
3570
3571        while (true) {
3572                struct extent_buffer *leaf = path->nodes[0];
3573                int slot = path->slots[0];
3574                u32 cur_offset = 0;
3575                u32 item_size;
3576
3577                if (slot >= btrfs_header_nritems(leaf)) {
3578                        ret = btrfs_next_leaf(root, path);
3579                        if (ret < 0)
3580                                goto out;
3581                        if (ret > 0)
3582                                break;
3583                        continue;
3584                }
3585
3586                btrfs_item_key_to_cpu(leaf, &key, slot);
3587                if (key.objectid != ino2)
3588                        break;
3589                if (key.type != BTRFS_INODE_REF_KEY &&
3590                    key.type != BTRFS_INODE_EXTREF_KEY)
3591                        break;
3592
3593                item_size = btrfs_item_size_nr(leaf, slot);
3594                while (cur_offset < item_size) {
3595                        u64 parent;
3596                        u64 parent_gen;
3597
3598                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3599                                unsigned long ptr;
3600                                struct btrfs_inode_extref *extref;
3601
3602                                ptr = btrfs_item_ptr_offset(leaf, slot);
3603                                extref = (struct btrfs_inode_extref *)
3604                                        (ptr + cur_offset);
3605                                parent = btrfs_inode_extref_parent(leaf,
3606                                                                   extref);
3607                                cur_offset += sizeof(*extref);
3608                                cur_offset += btrfs_inode_extref_name_len(leaf,
3609                                                                  extref);
3610                        } else {
3611                                parent = key.offset;
3612                                cur_offset = item_size;
3613                        }
3614
3615                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3616                                             NULL, NULL, NULL, NULL);
3617                        if (ret < 0)
3618                                goto out;
3619                        ret = check_ino_in_path(root, ino1, ino1_gen,
3620                                                parent, parent_gen, fs_path);
3621                        if (ret)
3622                                goto out;
3623                }
3624                path->slots[0]++;
3625        }
3626        ret = 0;
3627 out:
3628        btrfs_free_path(path);
3629        if (free_fs_path)
3630                fs_path_free(fs_path);
3631        return ret;
3632}
3633
3634static int wait_for_parent_move(struct send_ctx *sctx,
3635                                struct recorded_ref *parent_ref,
3636                                const bool is_orphan)
3637{
3638        int ret = 0;
3639        u64 ino = parent_ref->dir;
3640        u64 ino_gen = parent_ref->dir_gen;
3641        u64 parent_ino_before, parent_ino_after;
3642        struct fs_path *path_before = NULL;
3643        struct fs_path *path_after = NULL;
3644        int len1, len2;
3645
3646        path_after = fs_path_alloc();
3647        path_before = fs_path_alloc();
3648        if (!path_after || !path_before) {
3649                ret = -ENOMEM;
3650                goto out;
3651        }
3652
3653        /*
3654         * Our current directory inode may not yet be renamed/moved because some
3655         * ancestor (immediate or not) has to be renamed/moved first. So find if
3656         * such ancestor exists and make sure our own rename/move happens after
3657         * that ancestor is processed to avoid path build infinite loops (done
3658         * at get_cur_path()).
3659         */
3660        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3661                u64 parent_ino_after_gen;
3662
3663                if (is_waiting_for_move(sctx, ino)) {
3664                        /*
3665                         * If the current inode is an ancestor of ino in the
3666                         * parent root, we need to delay the rename of the
3667                         * current inode, otherwise don't delayed the rename
3668                         * because we can end up with a circular dependency
3669                         * of renames, resulting in some directories never
3670                         * getting the respective rename operations issued in
3671                         * the send stream or getting into infinite path build
3672                         * loops.
3673                         */
3674                        ret = is_ancestor(sctx->parent_root,
3675                                          sctx->cur_ino, sctx->cur_inode_gen,
3676                                          ino, path_before);
3677                        if (ret)
3678                                break;
3679                }
3680
3681                fs_path_reset(path_before);
3682                fs_path_reset(path_after);
3683
3684                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3685                                    &parent_ino_after_gen, path_after);
3686                if (ret < 0)
3687                        goto out;
3688                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3689                                    NULL, path_before);
3690                if (ret < 0 && ret != -ENOENT) {
3691                        goto out;
3692                } else if (ret == -ENOENT) {
3693                        ret = 0;
3694                        break;
3695                }
3696
3697                len1 = fs_path_len(path_before);
3698                len2 = fs_path_len(path_after);
3699                if (ino > sctx->cur_ino &&
3700                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3701                     memcmp(path_before->start, path_after->start, len1))) {
3702                        u64 parent_ino_gen;
3703
3704                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3705                                             &parent_ino_gen, NULL, NULL, NULL,
3706                                             NULL);
3707                        if (ret < 0)
3708                                goto out;
3709                        if (ino_gen == parent_ino_gen) {
3710                                ret = 1;
3711                                break;
3712                        }
3713                }
3714                ino = parent_ino_after;
3715                ino_gen = parent_ino_after_gen;
3716        }
3717
3718out:
3719        fs_path_free(path_before);
3720        fs_path_free(path_after);
3721
3722        if (ret == 1) {
3723                ret = add_pending_dir_move(sctx,
3724                                           sctx->cur_ino,
3725                                           sctx->cur_inode_gen,
3726                                           ino,
3727                                           &sctx->new_refs,
3728                                           &sctx->deleted_refs,
3729                                           is_orphan);
3730                if (!ret)
3731                        ret = 1;
3732        }
3733
3734        return ret;
3735}
3736
3737static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3738{
3739        int ret;
3740        struct fs_path *new_path;
3741
3742        /*
3743         * Our reference's name member points to its full_path member string, so
3744         * we use here a new path.
3745         */
3746        new_path = fs_path_alloc();
3747        if (!new_path)
3748                return -ENOMEM;
3749
3750        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3751        if (ret < 0) {
3752                fs_path_free(new_path);
3753                return ret;
3754        }
3755        ret = fs_path_add(new_path, ref->name, ref->name_len);
3756        if (ret < 0) {
3757                fs_path_free(new_path);
3758                return ret;
3759        }
3760
3761        fs_path_free(ref->full_path);
3762        set_ref_path(ref, new_path);
3763
3764        return 0;
3765}
3766
3767/*
3768 * This does all the move/link/unlink/rmdir magic.
3769 */
3770static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3771{
3772        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3773        int ret = 0;
3774        struct recorded_ref *cur;
3775        struct recorded_ref *cur2;
3776        struct list_head check_dirs;
3777        struct fs_path *valid_path = NULL;
3778        u64 ow_inode = 0;
3779        u64 ow_gen;
3780        u64 ow_mode;
3781        int did_overwrite = 0;
3782        int is_orphan = 0;
3783        u64 last_dir_ino_rm = 0;
3784        bool can_rename = true;
3785        bool orphanized_dir = false;
3786        bool orphanized_ancestor = false;
3787
3788        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3789
3790        /*
3791         * This should never happen as the root dir always has the same ref
3792         * which is always '..'
3793         */
3794        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3795        INIT_LIST_HEAD(&check_dirs);
3796
3797        valid_path = fs_path_alloc();
3798        if (!valid_path) {
3799                ret = -ENOMEM;
3800                goto out;
3801        }
3802
3803        /*
3804         * First, check if the first ref of the current inode was overwritten
3805         * before. If yes, we know that the current inode was already orphanized
3806         * and thus use the orphan name. If not, we can use get_cur_path to
3807         * get the path of the first ref as it would like while receiving at
3808         * this point in time.
3809         * New inodes are always orphan at the beginning, so force to use the
3810         * orphan name in this case.
3811         * The first ref is stored in valid_path and will be updated if it
3812         * gets moved around.
3813         */
3814        if (!sctx->cur_inode_new) {
3815                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3816                                sctx->cur_inode_gen);
3817                if (ret < 0)
3818                        goto out;
3819                if (ret)
3820                        did_overwrite = 1;
3821        }
3822        if (sctx->cur_inode_new || did_overwrite) {
3823                ret = gen_unique_name(sctx, sctx->cur_ino,
3824                                sctx->cur_inode_gen, valid_path);
3825                if (ret < 0)
3826                        goto out;
3827                is_orphan = 1;
3828        } else {
3829                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3830                                valid_path);
3831                if (ret < 0)
3832                        goto out;
3833        }
3834
3835        list_for_each_entry(cur, &sctx->new_refs, list) {
3836                /*
3837                 * We may have refs where the parent directory does not exist
3838                 * yet. This happens if the parent directories inum is higher
3839                 * than the current inum. To handle this case, we create the
3840                 * parent directory out of order. But we need to check if this
3841                 * did already happen before due to other refs in the same dir.
3842                 */
3843                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3844                if (ret < 0)
3845                        goto out;
3846                if (ret == inode_state_will_create) {
3847                        ret = 0;
3848                        /*
3849                         * First check if any of the current inodes refs did
3850                         * already create the dir.
3851                         */
3852                        list_for_each_entry(cur2, &sctx->new_refs, list) {
3853                                if (cur == cur2)
3854                                        break;
3855                                if (cur2->dir == cur->dir) {
3856                                        ret = 1;
3857                                        break;
3858                                }
3859                        }
3860
3861                        /*
3862                         * If that did not happen, check if a previous inode
3863                         * did already create the dir.
3864                         */
3865                        if (!ret)
3866                                ret = did_create_dir(sctx, cur->dir);
3867                        if (ret < 0)
3868                                goto out;
3869                        if (!ret) {
3870                                ret = send_create_inode(sctx, cur->dir);
3871                                if (ret < 0)
3872                                        goto out;
3873                        }
3874                }
3875
3876                /*
3877                 * Check if this new ref would overwrite the first ref of
3878                 * another unprocessed inode. If yes, orphanize the
3879                 * overwritten inode. If we find an overwritten ref that is
3880                 * not the first ref, simply unlink it.
3881                 */
3882                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3883                                cur->name, cur->name_len,
3884                                &ow_inode, &ow_gen, &ow_mode);
3885                if (ret < 0)
3886                        goto out;
3887                if (ret) {
3888                        ret = is_first_ref(sctx->parent_root,
3889                                           ow_inode, cur->dir, cur->name,
3890                                           cur->name_len);
3891                        if (ret < 0)
3892                                goto out;
3893                        if (ret) {
3894                                struct name_cache_entry *nce;
3895                                struct waiting_dir_move *wdm;
3896
3897                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
3898                                                cur->full_path);
3899                                if (ret < 0)
3900                                        goto out;
3901                                if (S_ISDIR(ow_mode))
3902                                        orphanized_dir = true;
3903
3904                                /*
3905                                 * If ow_inode has its rename operation delayed
3906                                 * make sure that its orphanized name is used in
3907                                 * the source path when performing its rename
3908                                 * operation.
3909                                 */
3910                                if (is_waiting_for_move(sctx, ow_inode)) {
3911                                        wdm = get_waiting_dir_move(sctx,
3912                                                                   ow_inode);
3913                                        ASSERT(wdm);
3914                                        wdm->orphanized = true;
3915                                }
3916
3917                                /*
3918                                 * Make sure we clear our orphanized inode's
3919                                 * name from the name cache. This is because the
3920                                 * inode ow_inode might be an ancestor of some
3921                                 * other inode that will be orphanized as well
3922                                 * later and has an inode number greater than
3923                                 * sctx->send_progress. We need to prevent
3924                                 * future name lookups from using the old name
3925                                 * and get instead the orphan name.
3926                                 */
3927                                nce = name_cache_search(sctx, ow_inode, ow_gen);
3928                                if (nce) {
3929                                        name_cache_delete(sctx, nce);
3930                                        kfree(nce);
3931                                }
3932
3933                                /*
3934                                 * ow_inode might currently be an ancestor of
3935                                 * cur_ino, therefore compute valid_path (the
3936                                 * current path of cur_ino) again because it
3937                                 * might contain the pre-orphanization name of
3938                                 * ow_inode, which is no longer valid.
3939                                 */
3940                                ret = is_ancestor(sctx->parent_root,
3941                                                  ow_inode, ow_gen,
3942                                                  sctx->cur_ino, NULL);
3943                                if (ret > 0) {
3944                                        orphanized_ancestor = true;
3945                                        fs_path_reset(valid_path);
3946                                        ret = get_cur_path(sctx, sctx->cur_ino,
3947                                                           sctx->cur_inode_gen,
3948                                                           valid_path);
3949                                }
3950                                if (ret < 0)
3951                                        goto out;
3952                        } else {
3953                                ret = send_unlink(sctx, cur->full_path);
3954                                if (ret < 0)
3955                                        goto out;
3956                        }
3957                }
3958
3959                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3960                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3961                        if (ret < 0)
3962                                goto out;
3963                        if (ret == 1) {
3964                                can_rename = false;
3965                                *pending_move = 1;
3966                        }
3967                }
3968
3969                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3970                    can_rename) {
3971                        ret = wait_for_parent_move(sctx, cur, is_orphan);
3972                        if (ret < 0)
3973                                goto out;
3974                        if (ret == 1) {
3975                                can_rename = false;
3976                                *pending_move = 1;
3977                        }
3978                }
3979
3980                /*
3981                 * link/move the ref to the new place. If we have an orphan
3982                 * inode, move it and update valid_path. If not, link or move
3983                 * it depending on the inode mode.
3984                 */
3985                if (is_orphan && can_rename) {
3986                        ret = send_rename(sctx, valid_path, cur->full_path);
3987                        if (ret < 0)
3988                                goto out;
3989                        is_orphan = 0;
3990                        ret = fs_path_copy(valid_path, cur->full_path);
3991                        if (ret < 0)
3992                                goto out;
3993                } else if (can_rename) {
3994                        if (S_ISDIR(sctx->cur_inode_mode)) {
3995                                /*
3996                                 * Dirs can't be linked, so move it. For moved
3997                                 * dirs, we always have one new and one deleted
3998                                 * ref. The deleted ref is ignored later.
3999                                 */
4000                                ret = send_rename(sctx, valid_path,
4001                                                  cur->full_path);
4002                                if (!ret)
4003                                        ret = fs_path_copy(valid_path,
4004                                                           cur->full_path);
4005                                if (ret < 0)
4006                                        goto out;
4007                        } else {
4008                                /*
4009                                 * We might have previously orphanized an inode
4010                                 * which is an ancestor of our current inode,
4011                                 * so our reference's full path, which was
4012                                 * computed before any such orphanizations, must
4013                                 * be updated.
4014                                 */
4015                                if (orphanized_dir) {
4016                                        ret = update_ref_path(sctx, cur);
4017                                        if (ret < 0)
4018                                                goto out;
4019                                }
4020                                ret = send_link(sctx, cur->full_path,
4021                                                valid_path);
4022                                if (ret < 0)
4023                                        goto out;
4024                        }
4025                }
4026                ret = dup_ref(cur, &check_dirs);
4027                if (ret < 0)
4028                        goto out;
4029        }
4030
4031        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4032                /*
4033                 * Check if we can already rmdir the directory. If not,
4034                 * orphanize it. For every dir item inside that gets deleted
4035                 * later, we do this check again and rmdir it then if possible.
4036                 * See the use of check_dirs for more details.
4037                 */
4038                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4039                                sctx->cur_ino);
4040                if (ret < 0)
4041                        goto out;
4042                if (ret) {
4043                        ret = send_rmdir(sctx, valid_path);
4044                        if (ret < 0)
4045                                goto out;
4046                } else if (!is_orphan) {
4047                        ret = orphanize_inode(sctx, sctx->cur_ino,
4048                                        sctx->cur_inode_gen, valid_path);
4049                        if (ret < 0)
4050                                goto out;
4051                        is_orphan = 1;
4052                }
4053
4054                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4055                        ret = dup_ref(cur, &check_dirs);
4056                        if (ret < 0)
4057                                goto out;
4058                }
4059        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4060                   !list_empty(&sctx->deleted_refs)) {
4061                /*
4062                 * We have a moved dir. Add the old parent to check_dirs
4063                 */
4064                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4065                                list);
4066                ret = dup_ref(cur, &check_dirs);
4067                if (ret < 0)
4068                        goto out;
4069        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4070                /*
4071                 * We have a non dir inode. Go through all deleted refs and
4072                 * unlink them if they were not already overwritten by other
4073                 * inodes.
4074                 */
4075                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4076                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4077                                        sctx->cur_ino, sctx->cur_inode_gen,
4078                                        cur->name, cur->name_len);
4079                        if (ret < 0)
4080                                goto out;
4081                        if (!ret) {
4082                                /*
4083                                 * If we orphanized any ancestor before, we need
4084                                 * to recompute the full path for deleted names,
4085                                 * since any such path was computed before we
4086                                 * processed any references and orphanized any
4087                                 * ancestor inode.
4088                                 */
4089                                if (orphanized_ancestor) {
4090                                        ret = update_ref_path(sctx, cur);
4091                                        if (ret < 0)
4092                                                goto out;
4093                                }
4094                                ret = send_unlink(sctx, cur->full_path);
4095                                if (ret < 0)
4096                                        goto out;
4097                        }
4098                        ret = dup_ref(cur, &check_dirs);
4099                        if (ret < 0)
4100                                goto out;
4101                }
4102                /*
4103                 * If the inode is still orphan, unlink the orphan. This may
4104                 * happen when a previous inode did overwrite the first ref
4105                 * of this inode and no new refs were added for the current
4106                 * inode. Unlinking does not mean that the inode is deleted in
4107                 * all cases. There may still be links to this inode in other
4108                 * places.
4109                 */
4110                if (is_orphan) {
4111                        ret = send_unlink(sctx, valid_path);
4112                        if (ret < 0)
4113                                goto out;
4114                }
4115        }
4116
4117        /*
4118         * We did collect all parent dirs where cur_inode was once located. We
4119         * now go through all these dirs and check if they are pending for
4120         * deletion and if it's finally possible to perform the rmdir now.
4121         * We also update the inode stats of the parent dirs here.
4122         */
4123        list_for_each_entry(cur, &check_dirs, list) {
4124                /*
4125                 * In case we had refs into dirs that were not processed yet,
4126                 * we don't need to do the utime and rmdir logic for these dirs.
4127                 * The dir will be processed later.
4128                 */
4129                if (cur->dir > sctx->cur_ino)
4130                        continue;
4131
4132                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4133                if (ret < 0)
4134                        goto out;
4135
4136                if (ret == inode_state_did_create ||
4137                    ret == inode_state_no_change) {
4138                        /* TODO delayed utimes */
4139                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4140                        if (ret < 0)
4141                                goto out;
4142                } else if (ret == inode_state_did_delete &&
4143                           cur->dir != last_dir_ino_rm) {
4144                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4145                                        sctx->cur_ino);
4146                        if (ret < 0)
4147                                goto out;
4148                        if (ret) {
4149                                ret = get_cur_path(sctx, cur->dir,
4150                                                   cur->dir_gen, valid_path);
4151                                if (ret < 0)
4152                                        goto out;
4153                                ret = send_rmdir(sctx, valid_path);
4154                                if (ret < 0)
4155                                        goto out;
4156                                last_dir_ino_rm = cur->dir;
4157                        }
4158                }
4159        }
4160
4161        ret = 0;
4162
4163out:
4164        __free_recorded_refs(&check_dirs);
4165        free_recorded_refs(sctx);
4166        fs_path_free(valid_path);
4167        return ret;
4168}
4169
4170static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4171                      void *ctx, struct list_head *refs)
4172{
4173        int ret = 0;
4174        struct send_ctx *sctx = ctx;
4175        struct fs_path *p;
4176        u64 gen;
4177
4178        p = fs_path_alloc();
4179        if (!p)
4180                return -ENOMEM;
4181
4182        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4183                        NULL, NULL);
4184        if (ret < 0)
4185                goto out;
4186
4187        ret = get_cur_path(sctx, dir, gen, p);
4188        if (ret < 0)
4189                goto out;
4190        ret = fs_path_add_path(p, name);
4191        if (ret < 0)
4192                goto out;
4193
4194        ret = __record_ref(refs, dir, gen, p);
4195
4196out:
4197        if (ret)
4198                fs_path_free(p);
4199        return ret;
4200}
4201
4202static int __record_new_ref(int num, u64 dir, int index,
4203                            struct fs_path *name,
4204                            void *ctx)
4205{
4206        struct send_ctx *sctx = ctx;
4207        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4208}
4209
4210
4211static int __record_deleted_ref(int num, u64 dir, int index,
4212                                struct fs_path *name,
4213                                void *ctx)
4214{
4215        struct send_ctx *sctx = ctx;
4216        return record_ref(sctx->parent_root, dir, name, ctx,
4217                          &sctx->deleted_refs);
4218}
4219
4220static int record_new_ref(struct send_ctx *sctx)
4221{
4222        int ret;
4223
4224        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4225                                sctx->cmp_key, 0, __record_new_ref, sctx);
4226        if (ret < 0)
4227                goto out;
4228        ret = 0;
4229
4230out:
4231        return ret;
4232}
4233
4234static int record_deleted_ref(struct send_ctx *sctx)
4235{
4236        int ret;
4237
4238        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4239                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4240        if (ret < 0)
4241                goto out;
4242        ret = 0;
4243
4244out:
4245        return ret;
4246}
4247
4248struct find_ref_ctx {
4249        u64 dir;
4250        u64 dir_gen;
4251        struct btrfs_root *root;
4252        struct fs_path *name;
4253        int found_idx;
4254};
4255
4256static int __find_iref(int num, u64 dir, int index,
4257                       struct fs_path *name,
4258                       void *ctx_)
4259{
4260        struct find_ref_ctx *ctx = ctx_;
4261        u64 dir_gen;
4262        int ret;
4263
4264        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4265            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4266                /*
4267                 * To avoid doing extra lookups we'll only do this if everything
4268                 * else matches.
4269                 */
4270                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4271                                     NULL, NULL, NULL);
4272                if (ret)
4273                        return ret;
4274                if (dir_gen != ctx->dir_gen)
4275                        return 0;
4276                ctx->found_idx = num;
4277                return 1;
4278        }
4279        return 0;
4280}
4281
4282static int find_iref(struct btrfs_root *root,
4283                     struct btrfs_path *path,
4284                     struct btrfs_key *key,
4285                     u64 dir, u64 dir_gen, struct fs_path *name)
4286{
4287        int ret;
4288        struct find_ref_ctx ctx;
4289
4290        ctx.dir = dir;
4291        ctx.name = name;
4292        ctx.dir_gen = dir_gen;
4293        ctx.found_idx = -1;
4294        ctx.root = root;
4295
4296        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4297        if (ret < 0)
4298                return ret;
4299
4300        if (ctx.found_idx == -1)
4301                return -ENOENT;
4302
4303        return ctx.found_idx;
4304}
4305
4306static int __record_changed_new_ref(int num, u64 dir, int index,
4307                                    struct fs_path *name,
4308                                    void *ctx)
4309{
4310        u64 dir_gen;
4311        int ret;
4312        struct send_ctx *sctx = ctx;
4313
4314        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4315                             NULL, NULL, NULL);
4316        if (ret)
4317                return ret;
4318
4319        ret = find_iref(sctx->parent_root, sctx->right_path,
4320                        sctx->cmp_key, dir, dir_gen, name);
4321        if (ret == -ENOENT)
4322                ret = __record_new_ref(num, dir, index, name, sctx);
4323        else if (ret > 0)
4324                ret = 0;
4325
4326        return ret;
4327}
4328
4329static int __record_changed_deleted_ref(int num, u64 dir, int index,
4330                                        struct fs_path *name,
4331                                        void *ctx)
4332{
4333        u64 dir_gen;
4334        int ret;
4335        struct send_ctx *sctx = ctx;
4336
4337        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4338                             NULL, NULL, NULL);
4339        if (ret)
4340                return ret;
4341
4342        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4343                        dir, dir_gen, name);
4344        if (ret == -ENOENT)
4345                ret = __record_deleted_ref(num, dir, index, name, sctx);
4346        else if (ret > 0)
4347                ret = 0;
4348
4349        return ret;
4350}
4351
4352static int record_changed_ref(struct send_ctx *sctx)
4353{
4354        int ret = 0;
4355
4356        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4357                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4358        if (ret < 0)
4359                goto out;
4360        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4361                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4362        if (ret < 0)
4363                goto out;
4364        ret = 0;
4365
4366out:
4367        return ret;
4368}
4369
4370/*
4371 * Record and process all refs at once. Needed when an inode changes the
4372 * generation number, which means that it was deleted and recreated.
4373 */
4374static int process_all_refs(struct send_ctx *sctx,
4375                            enum btrfs_compare_tree_result cmd)
4376{
4377        int ret;
4378        struct btrfs_root *root;
4379        struct btrfs_path *path;
4380        struct btrfs_key key;
4381        struct btrfs_key found_key;
4382        struct extent_buffer *eb;
4383        int slot;
4384        iterate_inode_ref_t cb;
4385        int pending_move = 0;
4386
4387        path = alloc_path_for_send();
4388        if (!path)
4389                return -ENOMEM;
4390
4391        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4392                root = sctx->send_root;
4393                cb = __record_new_ref;
4394        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4395                root = sctx->parent_root;
4396                cb = __record_deleted_ref;
4397        } else {
4398                btrfs_err(sctx->send_root->fs_info,
4399                                "Wrong command %d in process_all_refs", cmd);
4400                ret = -EINVAL;
4401                goto out;
4402        }
4403
4404        key.objectid = sctx->cmp_key->objectid;
4405        key.type = BTRFS_INODE_REF_KEY;
4406        key.offset = 0;
4407        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4408        if (ret < 0)
4409                goto out;
4410
4411        while (1) {
4412                eb = path->nodes[0];
4413                slot = path->slots[0];
4414                if (slot >= btrfs_header_nritems(eb)) {
4415                        ret = btrfs_next_leaf(root, path);
4416                        if (ret < 0)
4417                                goto out;
4418                        else if (ret > 0)
4419                                break;
4420                        continue;
4421                }
4422
4423                btrfs_item_key_to_cpu(eb, &found_key, slot);
4424
4425                if (found_key.objectid != key.objectid ||
4426                    (found_key.type != BTRFS_INODE_REF_KEY &&
4427                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4428                        break;
4429
4430                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4431                if (ret < 0)
4432                        goto out;
4433
4434                path->slots[0]++;
4435        }
4436        btrfs_release_path(path);
4437
4438        /*
4439         * We don't actually care about pending_move as we are simply
4440         * re-creating this inode and will be rename'ing it into place once we
4441         * rename the parent directory.
4442         */
4443        ret = process_recorded_refs(sctx, &pending_move);
4444out:
4445        btrfs_free_path(path);
4446        return ret;
4447}
4448
4449static int send_set_xattr(struct send_ctx *sctx,
4450                          struct fs_path *path,
4451                          const char *name, int name_len,
4452                          const char *data, int data_len)
4453{
4454        int ret = 0;
4455
4456        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4457        if (ret < 0)
4458                goto out;
4459
4460        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4461        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4462        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4463
4464        ret = send_cmd(sctx);
4465
4466tlv_put_failure:
4467out:
4468        return ret;
4469}
4470
4471static int send_remove_xattr(struct send_ctx *sctx,
4472                          struct fs_path *path,
4473                          const char *name, int name_len)
4474{
4475        int ret = 0;
4476
4477        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4478        if (ret < 0)
4479                goto out;
4480
4481        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4482        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4483
4484        ret = send_cmd(sctx);
4485
4486tlv_put_failure:
4487out:
4488        return ret;
4489}
4490
4491static int __process_new_xattr(int num, struct btrfs_key *di_key,
4492                               const char *name, int name_len,
4493                               const char *data, int data_len,
4494                               u8 type, void *ctx)
4495{
4496        int ret;
4497        struct send_ctx *sctx = ctx;
4498        struct fs_path *p;
4499        struct posix_acl_xattr_header dummy_acl;
4500
4501        p = fs_path_alloc();
4502        if (!p)
4503                return -ENOMEM;
4504
4505        /*
4506         * This hack is needed because empty acls are stored as zero byte
4507         * data in xattrs. Problem with that is, that receiving these zero byte
4508         * acls will fail later. To fix this, we send a dummy acl list that
4509         * only contains the version number and no entries.
4510         */
4511        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4512            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4513                if (data_len == 0) {
4514                        dummy_acl.a_version =
4515                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4516                        data = (char *)&dummy_acl;
4517                        data_len = sizeof(dummy_acl);
4518                }
4519        }
4520
4521        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4522        if (ret < 0)
4523                goto out;
4524
4525        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4526
4527out:
4528        fs_path_free(p);
4529        return ret;
4530}
4531
4532static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4533                                   const char *name, int name_len,
4534                                   const char *data, int data_len,
4535                                   u8 type, void *ctx)
4536{
4537        int ret;
4538        struct send_ctx *sctx = ctx;
4539        struct fs_path *p;
4540
4541        p = fs_path_alloc();
4542        if (!p)
4543                return -ENOMEM;
4544
4545        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4546        if (ret < 0)
4547                goto out;
4548
4549        ret = send_remove_xattr(sctx, p, name, name_len);
4550
4551out:
4552        fs_path_free(p);
4553        return ret;
4554}
4555
4556static int process_new_xattr(struct send_ctx *sctx)
4557{
4558        int ret = 0;
4559
4560        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4561                               __process_new_xattr, sctx);
4562
4563        return ret;
4564}
4565
4566static int process_deleted_xattr(struct send_ctx *sctx)
4567{
4568        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4569                                __process_deleted_xattr, sctx);
4570}
4571
4572struct find_xattr_ctx {
4573        const char *name;
4574        int name_len;
4575        int found_idx;
4576        char *found_data;
4577        int found_data_len;
4578};
4579
4580static int __find_xattr(int num, struct btrfs_key *di_key,
4581                        const char *name, int name_len,
4582                        const char *data, int data_len,
4583                        u8 type, void *vctx)
4584{
4585        struct find_xattr_ctx *ctx = vctx;
4586
4587        if (name_len == ctx->name_len &&
4588            strncmp(name, ctx->name, name_len) == 0) {
4589                ctx->found_idx = num;
4590                ctx->found_data_len = data_len;
4591                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4592                if (!ctx->found_data)
4593                        return -ENOMEM;
4594                return 1;
4595        }
4596        return 0;
4597}
4598
4599static int find_xattr(struct btrfs_root *root,
4600                      struct btrfs_path *path,
4601                      struct btrfs_key *key,
4602                      const char *name, int name_len,
4603                      char **data, int *data_len)
4604{
4605        int ret;
4606        struct find_xattr_ctx ctx;
4607
4608        ctx.name = name;
4609        ctx.name_len = name_len;
4610        ctx.found_idx = -1;
4611        ctx.found_data = NULL;
4612        ctx.found_data_len = 0;
4613
4614        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4615        if (ret < 0)
4616                return ret;
4617
4618        if (ctx.found_idx == -1)
4619                return -ENOENT;
4620        if (data) {
4621                *data = ctx.found_data;
4622                *data_len = ctx.found_data_len;
4623        } else {
4624                kfree(ctx.found_data);
4625        }
4626        return ctx.found_idx;
4627}
4628
4629
4630static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4631                                       const char *name, int name_len,
4632                                       const char *data, int data_len,
4633                                       u8 type, void *ctx)
4634{
4635        int ret;
4636        struct send_ctx *sctx = ctx;
4637        char *found_data = NULL;
4638        int found_data_len  = 0;
4639
4640        ret = find_xattr(sctx->parent_root, sctx->right_path,
4641                         sctx->cmp_key, name, name_len, &found_data,
4642                         &found_data_len);
4643        if (ret == -ENOENT) {
4644                ret = __process_new_xattr(num, di_key, name, name_len, data,
4645                                data_len, type, ctx);
4646        } else if (ret >= 0) {
4647                if (data_len != found_data_len ||
4648                    memcmp(data, found_data, data_len)) {
4649                        ret = __process_new_xattr(num, di_key, name, name_len,
4650                                        data, data_len, type, ctx);
4651                } else {
4652                        ret = 0;
4653                }
4654        }
4655
4656        kfree(found_data);
4657        return ret;
4658}
4659
4660static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4661                                           const char *name, int name_len,
4662                                           const char *data, int data_len,
4663                                           u8 type, void *ctx)
4664{
4665        int ret;
4666        struct send_ctx *sctx = ctx;
4667
4668        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4669                         name, name_len, NULL, NULL);
4670        if (ret == -ENOENT)
4671                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4672                                data_len, type, ctx);
4673        else if (ret >= 0)
4674                ret = 0;
4675
4676        return ret;
4677}
4678
4679static int process_changed_xattr(struct send_ctx *sctx)
4680{
4681        int ret = 0;
4682
4683        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4684                        __process_changed_new_xattr, sctx);
4685        if (ret < 0)
4686                goto out;
4687        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4688                        __process_changed_deleted_xattr, sctx);
4689
4690out:
4691        return ret;
4692}
4693
4694static int process_all_new_xattrs(struct send_ctx *sctx)
4695{
4696        int ret;
4697        struct btrfs_root *root;
4698        struct btrfs_path *path;
4699        struct btrfs_key key;
4700        struct btrfs_key found_key;
4701        struct extent_buffer *eb;
4702        int slot;
4703
4704        path = alloc_path_for_send();
4705        if (!path)
4706                return -ENOMEM;
4707
4708        root = sctx->send_root;
4709
4710        key.objectid = sctx->cmp_key->objectid;
4711        key.type = BTRFS_XATTR_ITEM_KEY;
4712        key.offset = 0;
4713        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4714        if (ret < 0)
4715                goto out;
4716
4717        while (1) {
4718                eb = path->nodes[0];
4719                slot = path->slots[0];
4720                if (slot >= btrfs_header_nritems(eb)) {
4721                        ret = btrfs_next_leaf(root, path);
4722                        if (ret < 0) {
4723                                goto out;
4724                        } else if (ret > 0) {
4725                                ret = 0;
4726                                break;
4727                        }
4728                        continue;
4729                }
4730
4731                btrfs_item_key_to_cpu(eb, &found_key, slot);
4732                if (found_key.objectid != key.objectid ||
4733                    found_key.type != key.type) {
4734                        ret = 0;
4735                        goto out;
4736                }
4737
4738                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4739                if (ret < 0)
4740                        goto out;
4741
4742                path->slots[0]++;
4743        }
4744
4745out:
4746        btrfs_free_path(path);
4747        return ret;
4748}
4749
4750static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4751{
4752        struct btrfs_root *root = sctx->send_root;
4753        struct btrfs_fs_info *fs_info = root->fs_info;
4754        struct inode *inode;
4755        struct page *page;
4756        char *addr;
4757        struct btrfs_key key;
4758        pgoff_t index = offset >> PAGE_SHIFT;
4759        pgoff_t last_index;
4760        unsigned pg_offset = offset_in_page(offset);
4761        ssize_t ret = 0;
4762
4763        key.objectid = sctx->cur_ino;
4764        key.type = BTRFS_INODE_ITEM_KEY;
4765        key.offset = 0;
4766
4767        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4768        if (IS_ERR(inode))
4769                return PTR_ERR(inode);
4770
4771        if (offset + len > i_size_read(inode)) {
4772                if (offset > i_size_read(inode))
4773                        len = 0;
4774                else
4775                        len = offset - i_size_read(inode);
4776        }
4777        if (len == 0)
4778                goto out;
4779
4780        last_index = (offset + len - 1) >> PAGE_SHIFT;
4781
4782        /* initial readahead */
4783        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4784        file_ra_state_init(&sctx->ra, inode->i_mapping);
4785
4786        while (index <= last_index) {
4787                unsigned cur_len = min_t(unsigned, len,
4788                                         PAGE_SIZE - pg_offset);
4789
4790                page = find_lock_page(inode->i_mapping, index);
4791                if (!page) {
4792                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4793                                NULL, index, last_index + 1 - index);
4794
4795                        page = find_or_create_page(inode->i_mapping, index,
4796                                        GFP_KERNEL);
4797                        if (!page) {
4798                                ret = -ENOMEM;
4799                                break;
4800                        }
4801                }
4802
4803                if (PageReadahead(page)) {
4804                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4805                                NULL, page, index, last_index + 1 - index);
4806                }
4807
4808                if (!PageUptodate(page)) {
4809                        btrfs_readpage(NULL, page);
4810                        lock_page(page);
4811                        if (!PageUptodate(page)) {
4812                                unlock_page(page);
4813                                put_page(page);
4814                                ret = -EIO;
4815                                break;
4816                        }
4817                }
4818
4819                addr = kmap(page);
4820                memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4821                kunmap(page);
4822                unlock_page(page);
4823                put_page(page);
4824                index++;
4825                pg_offset = 0;
4826                len -= cur_len;
4827                ret += cur_len;
4828        }
4829out:
4830        iput(inode);
4831        return ret;
4832}
4833
4834/*
4835 * Read some bytes from the current inode/file and send a write command to
4836 * user space.
4837 */
4838static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4839{
4840        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4841        int ret = 0;
4842        struct fs_path *p;
4843        ssize_t num_read = 0;
4844
4845        p = fs_path_alloc();
4846        if (!p)
4847                return -ENOMEM;
4848
4849        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4850
4851        num_read = fill_read_buf(sctx, offset, len);
4852        if (num_read <= 0) {
4853                if (num_read < 0)
4854                        ret = num_read;
4855                goto out;
4856        }
4857
4858        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4859        if (ret < 0)
4860                goto out;
4861
4862        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4863        if (ret < 0)
4864                goto out;
4865
4866        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4867        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4868        TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4869
4870        ret = send_cmd(sctx);
4871
4872tlv_put_failure:
4873out:
4874        fs_path_free(p);
4875        if (ret < 0)
4876                return ret;
4877        return num_read;
4878}
4879
4880/*
4881 * Send a clone command to user space.
4882 */
4883static int send_clone(struct send_ctx *sctx,
4884                      u64 offset, u32 len,
4885                      struct clone_root *clone_root)
4886{
4887        int ret = 0;
4888        struct fs_path *p;
4889        u64 gen;
4890
4891        btrfs_debug(sctx->send_root->fs_info,
4892                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4893                    offset, len, clone_root->root->root_key.objectid,
4894                    clone_root->ino, clone_root->offset);
4895
4896        p = fs_path_alloc();
4897        if (!p)
4898                return -ENOMEM;
4899
4900        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4901        if (ret < 0)
4902                goto out;
4903
4904        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4905        if (ret < 0)
4906                goto out;
4907
4908        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4909        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4910        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4911
4912        if (clone_root->root == sctx->send_root) {
4913                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4914                                &gen, NULL, NULL, NULL, NULL);
4915                if (ret < 0)
4916                        goto out;
4917                ret = get_cur_path(sctx, clone_root->ino, gen, p);
4918        } else {
4919                ret = get_inode_path(clone_root->root, clone_root->ino, p);
4920        }
4921        if (ret < 0)
4922                goto out;
4923
4924        /*
4925         * If the parent we're using has a received_uuid set then use that as
4926         * our clone source as that is what we will look for when doing a
4927         * receive.
4928         *
4929         * This covers the case that we create a snapshot off of a received
4930         * subvolume and then use that as the parent and try to receive on a
4931         * different host.
4932         */
4933        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4934                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4935                             clone_root->root->root_item.received_uuid);
4936        else
4937                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4938                             clone_root->root->root_item.uuid);
4939        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4940                    le64_to_cpu(clone_root->root->root_item.ctransid));
4941        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4942        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4943                        clone_root->offset);
4944
4945        ret = send_cmd(sctx);
4946
4947tlv_put_failure:
4948out:
4949        fs_path_free(p);
4950        return ret;
4951}
4952
4953/*
4954 * Send an update extent command to user space.
4955 */
4956static int send_update_extent(struct send_ctx *sctx,
4957                              u64 offset, u32 len)
4958{
4959        int ret = 0;
4960        struct fs_path *p;
4961
4962        p = fs_path_alloc();
4963        if (!p)
4964                return -ENOMEM;
4965
4966        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4967        if (ret < 0)
4968                goto out;
4969
4970        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4971        if (ret < 0)
4972                goto out;
4973
4974        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4975        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4976        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4977
4978        ret = send_cmd(sctx);
4979
4980tlv_put_failure:
4981out:
4982        fs_path_free(p);
4983        return ret;
4984}
4985
4986static int send_hole(struct send_ctx *sctx, u64 end)
4987{
4988        struct fs_path *p = NULL;
4989        u64 offset = sctx->cur_inode_last_extent;
4990        u64 len;
4991        int ret = 0;
4992
4993        /*
4994         * A hole that starts at EOF or beyond it. Since we do not yet support
4995         * fallocate (for extent preallocation and hole punching), sending a
4996         * write of zeroes starting at EOF or beyond would later require issuing
4997         * a truncate operation which would undo the write and achieve nothing.
4998         */
4999        if (offset >= sctx->cur_inode_size)
5000                return 0;
5001
5002        /*
5003         * Don't go beyond the inode's i_size due to prealloc extents that start
5004         * after the i_size.
5005         */
5006        end = min_t(u64, end, sctx->cur_inode_size);
5007
5008        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5009                return send_update_extent(sctx, offset, end - offset);
5010
5011        p = fs_path_alloc();
5012        if (!p)
5013                return -ENOMEM;
5014        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5015        if (ret < 0)
5016                goto tlv_put_failure;
5017        memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5018        while (offset < end) {
5019                len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5020
5021                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5022                if (ret < 0)
5023                        break;
5024                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5025                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5026                TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5027                ret = send_cmd(sctx);
5028                if (ret < 0)
5029                        break;
5030                offset += len;
5031        }
5032        sctx->cur_inode_next_write_offset = offset;
5033tlv_put_failure:
5034        fs_path_free(p);
5035        return ret;
5036}
5037
5038static int send_extent_data(struct send_ctx *sctx,
5039                            const u64 offset,
5040                            const u64 len)
5041{
5042        u64 sent = 0;
5043
5044        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5045                return send_update_extent(sctx, offset, len);
5046
5047        while (sent < len) {
5048                u64 size = len - sent;
5049                int ret;
5050
5051                if (size > BTRFS_SEND_READ_SIZE)
5052                        size = BTRFS_SEND_READ_SIZE;
5053                ret = send_write(sctx, offset + sent, size);
5054                if (ret < 0)
5055                        return ret;
5056                if (!ret)
5057                        break;
5058                sent += ret;
5059        }
5060        return 0;
5061}
5062
5063static int clone_range(struct send_ctx *sctx,
5064                       struct clone_root *clone_root,
5065                       const u64 disk_byte,
5066                       u64 data_offset,
5067                       u64 offset,
5068                       u64 len)
5069{
5070        struct btrfs_path *path;
5071        struct btrfs_key key;
5072        int ret;
5073        u64 clone_src_i_size;
5074
5075        /*
5076         * Prevent cloning from a zero offset with a length matching the sector
5077         * size because in some scenarios this will make the receiver fail.
5078         *
5079         * For example, if in the source filesystem the extent at offset 0
5080         * has a length of sectorsize and it was written using direct IO, then
5081         * it can never be an inline extent (even if compression is enabled).
5082         * Then this extent can be cloned in the original filesystem to a non
5083         * zero file offset, but it may not be possible to clone in the
5084         * destination filesystem because it can be inlined due to compression
5085         * on the destination filesystem (as the receiver's write operations are
5086         * always done using buffered IO). The same happens when the original
5087         * filesystem does not have compression enabled but the destination
5088         * filesystem has.
5089         */
5090        if (clone_root->offset == 0 &&
5091            len == sctx->send_root->fs_info->sectorsize)
5092                return send_extent_data(sctx, offset, len);
5093
5094        path = alloc_path_for_send();
5095        if (!path)
5096                return -ENOMEM;
5097
5098        /*
5099         * There are inodes that have extents that lie behind its i_size. Don't
5100         * accept clones from these extents.
5101         */
5102        ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5103                               &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5104        btrfs_release_path(path);
5105        if (ret < 0)
5106                goto out;
5107
5108        /*
5109         * We can't send a clone operation for the entire range if we find
5110         * extent items in the respective range in the source file that
5111         * refer to different extents or if we find holes.
5112         * So check for that and do a mix of clone and regular write/copy
5113         * operations if needed.
5114         *
5115         * Example:
5116         *
5117         * mkfs.btrfs -f /dev/sda
5118         * mount /dev/sda /mnt
5119         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5120         * cp --reflink=always /mnt/foo /mnt/bar
5121         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5122         * btrfs subvolume snapshot -r /mnt /mnt/snap
5123         *
5124         * If when we send the snapshot and we are processing file bar (which
5125         * has a higher inode number than foo) we blindly send a clone operation
5126         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5127         * a file bar that matches the content of file foo - iow, doesn't match
5128         * the content from bar in the original filesystem.
5129         */
5130        key.objectid = clone_root->ino;
5131        key.type = BTRFS_EXTENT_DATA_KEY;
5132        key.offset = clone_root->offset;
5133        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5134        if (ret < 0)
5135                goto out;
5136        if (ret > 0 && path->slots[0] > 0) {
5137                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5138                if (key.objectid == clone_root->ino &&
5139                    key.type == BTRFS_EXTENT_DATA_KEY)
5140                        path->slots[0]--;
5141        }
5142
5143        while (true) {
5144                struct extent_buffer *leaf = path->nodes[0];
5145                int slot = path->slots[0];
5146                struct btrfs_file_extent_item *ei;
5147                u8 type;
5148                u64 ext_len;
5149                u64 clone_len;
5150                u64 clone_data_offset;
5151
5152                if (slot >= btrfs_header_nritems(leaf)) {
5153                        ret = btrfs_next_leaf(clone_root->root, path);
5154                        if (ret < 0)
5155                                goto out;
5156                        else if (ret > 0)
5157                                break;
5158                        continue;
5159                }
5160
5161                btrfs_item_key_to_cpu(leaf, &key, slot);
5162
5163                /*
5164                 * We might have an implicit trailing hole (NO_HOLES feature
5165                 * enabled). We deal with it after leaving this loop.
5166                 */
5167                if (key.objectid != clone_root->ino ||
5168                    key.type != BTRFS_EXTENT_DATA_KEY)
5169                        break;
5170
5171                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5172                type = btrfs_file_extent_type(leaf, ei);
5173                if (type == BTRFS_FILE_EXTENT_INLINE) {
5174                        ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5175                        ext_len = PAGE_ALIGN(ext_len);
5176                } else {
5177                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5178                }
5179
5180                if (key.offset + ext_len <= clone_root->offset)
5181                        goto next;
5182
5183                if (key.offset > clone_root->offset) {
5184                        /* Implicit hole, NO_HOLES feature enabled. */
5185                        u64 hole_len = key.offset - clone_root->offset;
5186
5187                        if (hole_len > len)
5188                                hole_len = len;
5189                        ret = send_extent_data(sctx, offset, hole_len);
5190                        if (ret < 0)
5191                                goto out;
5192
5193                        len -= hole_len;
5194                        if (len == 0)
5195                                break;
5196                        offset += hole_len;
5197                        clone_root->offset += hole_len;
5198                        data_offset += hole_len;
5199                }
5200
5201                if (key.offset >= clone_root->offset + len)
5202                        break;
5203
5204                if (key.offset >= clone_src_i_size)
5205                        break;
5206
5207                if (key.offset + ext_len > clone_src_i_size)
5208                        ext_len = clone_src_i_size - key.offset;
5209
5210                clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5211                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5212                        clone_root->offset = key.offset;
5213                        if (clone_data_offset < data_offset &&
5214                                clone_data_offset + ext_len > data_offset) {
5215                                u64 extent_offset;
5216
5217                                extent_offset = data_offset - clone_data_offset;
5218                                ext_len -= extent_offset;
5219                                clone_data_offset += extent_offset;
5220                                clone_root->offset += extent_offset;
5221                        }
5222                }
5223
5224                clone_len = min_t(u64, ext_len, len);
5225
5226                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5227                    clone_data_offset == data_offset) {
5228                        const u64 src_end = clone_root->offset + clone_len;
5229                        const u64 sectorsize = SZ_64K;
5230
5231                        /*
5232                         * We can't clone the last block, when its size is not
5233                         * sector size aligned, into the middle of a file. If we
5234                         * do so, the receiver will get a failure (-EINVAL) when
5235                         * trying to clone or will silently corrupt the data in
5236                         * the destination file if it's on a kernel without the
5237                         * fix introduced by commit ac765f83f1397646
5238                         * ("Btrfs: fix data corruption due to cloning of eof
5239                         * block).
5240                         *
5241                         * So issue a clone of the aligned down range plus a
5242                         * regular write for the eof block, if we hit that case.
5243                         *
5244                         * Also, we use the maximum possible sector size, 64K,
5245                         * because we don't know what's the sector size of the
5246                         * filesystem that receives the stream, so we have to
5247                         * assume the largest possible sector size.
5248                         */
5249                        if (src_end == clone_src_i_size &&
5250                            !IS_ALIGNED(src_end, sectorsize) &&
5251                            offset + clone_len < sctx->cur_inode_size) {
5252                                u64 slen;
5253
5254                                slen = ALIGN_DOWN(src_end - clone_root->offset,
5255                                                  sectorsize);
5256                                if (slen > 0) {
5257                                        ret = send_clone(sctx, offset, slen,
5258                                                         clone_root);
5259                                        if (ret < 0)
5260                                                goto out;
5261                                }
5262                                ret = send_extent_data(sctx, offset + slen,
5263                                                       clone_len - slen);
5264                        } else {
5265                                ret = send_clone(sctx, offset, clone_len,
5266                                                 clone_root);
5267                        }
5268                } else {
5269                        ret = send_extent_data(sctx, offset, clone_len);
5270                }
5271
5272                if (ret < 0)
5273                        goto out;
5274
5275                len -= clone_len;
5276                if (len == 0)
5277                        break;
5278                offset += clone_len;
5279                clone_root->offset += clone_len;
5280                data_offset += clone_len;
5281next:
5282                path->slots[0]++;
5283        }
5284
5285        if (len > 0)
5286                ret = send_extent_data(sctx, offset, len);
5287        else
5288                ret = 0;
5289out:
5290        btrfs_free_path(path);
5291        return ret;
5292}
5293
5294static int send_write_or_clone(struct send_ctx *sctx,
5295                               struct btrfs_path *path,
5296                               struct btrfs_key *key,
5297                               struct clone_root *clone_root)
5298{
5299        int ret = 0;
5300        struct btrfs_file_extent_item *ei;
5301        u64 offset = key->offset;
5302        u64 len;
5303        u8 type;
5304        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5305
5306        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5307                        struct btrfs_file_extent_item);
5308        type = btrfs_file_extent_type(path->nodes[0], ei);
5309        if (type == BTRFS_FILE_EXTENT_INLINE) {
5310                len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5311                /*
5312                 * it is possible the inline item won't cover the whole page,
5313                 * but there may be items after this page.  Make
5314                 * sure to send the whole thing
5315                 */
5316                len = PAGE_ALIGN(len);
5317        } else {
5318                len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5319        }
5320
5321        if (offset >= sctx->cur_inode_size) {
5322                ret = 0;
5323                goto out;
5324        }
5325        if (offset + len > sctx->cur_inode_size)
5326                len = sctx->cur_inode_size - offset;
5327        if (len == 0) {
5328                ret = 0;
5329                goto out;
5330        }
5331
5332        if (clone_root && IS_ALIGNED(offset + len, bs)) {
5333                u64 disk_byte;
5334                u64 data_offset;
5335
5336                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5337                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5338                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5339                                  offset, len);
5340        } else {
5341                ret = send_extent_data(sctx, offset, len);
5342        }
5343        sctx->cur_inode_next_write_offset = offset + len;
5344out:
5345        return ret;
5346}
5347
5348static int is_extent_unchanged(struct send_ctx *sctx,
5349                               struct btrfs_path *left_path,
5350                               struct btrfs_key *ekey)
5351{
5352        int ret = 0;
5353        struct btrfs_key key;
5354        struct btrfs_path *path = NULL;
5355        struct extent_buffer *eb;
5356        int slot;
5357        struct btrfs_key found_key;
5358        struct btrfs_file_extent_item *ei;
5359        u64 left_disknr;
5360        u64 right_disknr;
5361        u64 left_offset;
5362        u64 right_offset;
5363        u64 left_offset_fixed;
5364        u64 left_len;
5365        u64 right_len;
5366        u64 left_gen;
5367        u64 right_gen;
5368        u8 left_type;
5369        u8 right_type;
5370
5371        path = alloc_path_for_send();
5372        if (!path)
5373                return -ENOMEM;
5374
5375        eb = left_path->nodes[0];
5376        slot = left_path->slots[0];
5377        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5378        left_type = btrfs_file_extent_type(eb, ei);
5379
5380        if (left_type != BTRFS_FILE_EXTENT_REG) {
5381                ret = 0;
5382                goto out;
5383        }
5384        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5385        left_len = btrfs_file_extent_num_bytes(eb, ei);
5386        left_offset = btrfs_file_extent_offset(eb, ei);
5387        left_gen = btrfs_file_extent_generation(eb, ei);
5388
5389        /*
5390         * Following comments will refer to these graphics. L is the left
5391         * extents which we are checking at the moment. 1-8 are the right
5392         * extents that we iterate.
5393         *
5394         *       |-----L-----|
5395         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5396         *
5397         *       |-----L-----|
5398         * |--1--|-2b-|...(same as above)
5399         *
5400         * Alternative situation. Happens on files where extents got split.
5401         *       |-----L-----|
5402         * |-----------7-----------|-6-|
5403         *
5404         * Alternative situation. Happens on files which got larger.
5405         *       |-----L-----|
5406         * |-8-|
5407         * Nothing follows after 8.
5408         */
5409
5410        key.objectid = ekey->objectid;
5411        key.type = BTRFS_EXTENT_DATA_KEY;
5412        key.offset = ekey->offset;
5413        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5414        if (ret < 0)
5415                goto out;
5416        if (ret) {
5417                ret = 0;
5418                goto out;
5419        }
5420
5421        /*
5422         * Handle special case where the right side has no extents at all.
5423         */
5424        eb = path->nodes[0];
5425        slot = path->slots[0];
5426        btrfs_item_key_to_cpu(eb, &found_key, slot);
5427        if (found_key.objectid != key.objectid ||
5428            found_key.type != key.type) {
5429                /* If we're a hole then just pretend nothing changed */
5430                ret = (left_disknr) ? 0 : 1;
5431                goto out;
5432        }
5433
5434        /*
5435         * We're now on 2a, 2b or 7.
5436         */
5437        key = found_key;
5438        while (key.offset < ekey->offset + left_len) {
5439                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5440                right_type = btrfs_file_extent_type(eb, ei);
5441                if (right_type != BTRFS_FILE_EXTENT_REG &&
5442                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5443                        ret = 0;
5444                        goto out;
5445                }
5446
5447                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5448                        right_len = btrfs_file_extent_ram_bytes(eb, ei);
5449                        right_len = PAGE_ALIGN(right_len);
5450                } else {
5451                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5452                }
5453
5454                /*
5455                 * Are we at extent 8? If yes, we know the extent is changed.
5456                 * This may only happen on the first iteration.
5457                 */
5458                if (found_key.offset + right_len <= ekey->offset) {
5459                        /* If we're a hole just pretend nothing changed */
5460                        ret = (left_disknr) ? 0 : 1;
5461                        goto out;
5462                }
5463
5464                /*
5465                 * We just wanted to see if when we have an inline extent, what
5466                 * follows it is a regular extent (wanted to check the above
5467                 * condition for inline extents too). This should normally not
5468                 * happen but it's possible for example when we have an inline
5469                 * compressed extent representing data with a size matching
5470                 * the page size (currently the same as sector size).
5471                 */
5472                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5473                        ret = 0;
5474                        goto out;
5475                }
5476
5477                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5478                right_offset = btrfs_file_extent_offset(eb, ei);
5479                right_gen = btrfs_file_extent_generation(eb, ei);
5480
5481                left_offset_fixed = left_offset;
5482                if (key.offset < ekey->offset) {
5483                        /* Fix the right offset for 2a and 7. */
5484                        right_offset += ekey->offset - key.offset;
5485                } else {
5486                        /* Fix the left offset for all behind 2a and 2b */
5487                        left_offset_fixed += key.offset - ekey->offset;
5488                }
5489
5490                /*
5491                 * Check if we have the same extent.
5492                 */
5493                if (left_disknr != right_disknr ||
5494                    left_offset_fixed != right_offset ||
5495                    left_gen != right_gen) {
5496                        ret = 0;
5497                        goto out;
5498                }
5499
5500                /*
5501                 * Go to the next extent.
5502                 */
5503                ret = btrfs_next_item(sctx->parent_root, path);
5504                if (ret < 0)
5505                        goto out;
5506                if (!ret) {
5507                        eb = path->nodes[0];
5508                        slot = path->slots[0];
5509                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5510                }
5511                if (ret || found_key.objectid != key.objectid ||
5512                    found_key.type != key.type) {
5513                        key.offset += right_len;
5514                        break;
5515                }
5516                if (found_key.offset != key.offset + right_len) {
5517                        ret = 0;
5518                        goto out;
5519                }
5520                key = found_key;
5521        }
5522
5523        /*
5524         * We're now behind the left extent (treat as unchanged) or at the end
5525         * of the right side (treat as changed).
5526         */
5527        if (key.offset >= ekey->offset + left_len)
5528                ret = 1;
5529        else
5530                ret = 0;
5531
5532
5533out:
5534        btrfs_free_path(path);
5535        return ret;
5536}
5537
5538static int get_last_extent(struct send_ctx *sctx, u64 offset)
5539{
5540        struct btrfs_path *path;
5541        struct btrfs_root *root = sctx->send_root;
5542        struct btrfs_file_extent_item *fi;
5543        struct btrfs_key key;
5544        u64 extent_end;
5545        u8 type;
5546        int ret;
5547
5548        path = alloc_path_for_send();
5549        if (!path)
5550                return -ENOMEM;
5551
5552        sctx->cur_inode_last_extent = 0;
5553
5554        key.objectid = sctx->cur_ino;
5555        key.type = BTRFS_EXTENT_DATA_KEY;
5556        key.offset = offset;
5557        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5558        if (ret < 0)
5559                goto out;
5560        ret = 0;
5561        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5562        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5563                goto out;
5564
5565        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5566                            struct btrfs_file_extent_item);
5567        type = btrfs_file_extent_type(path->nodes[0], fi);
5568        if (type == BTRFS_FILE_EXTENT_INLINE) {
5569                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5570                extent_end = ALIGN(key.offset + size,
5571                                   sctx->send_root->fs_info->sectorsize);
5572        } else {
5573                extent_end = key.offset +
5574                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5575        }
5576        sctx->cur_inode_last_extent = extent_end;
5577out:
5578        btrfs_free_path(path);
5579        return ret;
5580}
5581
5582static int range_is_hole_in_parent(struct send_ctx *sctx,
5583                                   const u64 start,
5584                                   const u64 end)
5585{
5586        struct btrfs_path *path;
5587        struct btrfs_key key;
5588        struct btrfs_root *root = sctx->parent_root;
5589        u64 search_start = start;
5590        int ret;
5591
5592        path = alloc_path_for_send();
5593        if (!path)
5594                return -ENOMEM;
5595
5596        key.objectid = sctx->cur_ino;
5597        key.type = BTRFS_EXTENT_DATA_KEY;
5598        key.offset = search_start;
5599        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5600        if (ret < 0)
5601                goto out;
5602        if (ret > 0 && path->slots[0] > 0)
5603                path->slots[0]--;
5604
5605        while (search_start < end) {
5606                struct extent_buffer *leaf = path->nodes[0];
5607                int slot = path->slots[0];
5608                struct btrfs_file_extent_item *fi;
5609                u64 extent_end;
5610
5611                if (slot >= btrfs_header_nritems(leaf)) {
5612                        ret = btrfs_next_leaf(root, path);
5613                        if (ret < 0)
5614                                goto out;
5615                        else if (ret > 0)
5616                                break;
5617                        continue;
5618                }
5619
5620                btrfs_item_key_to_cpu(leaf, &key, slot);
5621                if (key.objectid < sctx->cur_ino ||
5622                    key.type < BTRFS_EXTENT_DATA_KEY)
5623                        goto next;
5624                if (key.objectid > sctx->cur_ino ||
5625                    key.type > BTRFS_EXTENT_DATA_KEY ||
5626                    key.offset >= end)
5627                        break;
5628
5629                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5630                if (btrfs_file_extent_type(leaf, fi) ==
5631                    BTRFS_FILE_EXTENT_INLINE) {
5632                        u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5633
5634                        extent_end = ALIGN(key.offset + size,
5635                                           root->fs_info->sectorsize);
5636                } else {
5637                        extent_end = key.offset +
5638                                btrfs_file_extent_num_bytes(leaf, fi);
5639                }
5640                if (extent_end <= start)
5641                        goto next;
5642                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5643                        search_start = extent_end;
5644                        goto next;
5645                }
5646                ret = 0;
5647                goto out;
5648next:
5649                path->slots[0]++;
5650        }
5651        ret = 1;
5652out:
5653        btrfs_free_path(path);
5654        return ret;
5655}
5656
5657static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5658                           struct btrfs_key *key)
5659{
5660        struct btrfs_file_extent_item *fi;
5661        u64 extent_end;
5662        u8 type;
5663        int ret = 0;
5664
5665        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5666                return 0;
5667
5668        if (sctx->cur_inode_last_extent == (u64)-1) {
5669                ret = get_last_extent(sctx, key->offset - 1);
5670                if (ret)
5671                        return ret;
5672        }
5673
5674        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5675                            struct btrfs_file_extent_item);
5676        type = btrfs_file_extent_type(path->nodes[0], fi);
5677        if (type == BTRFS_FILE_EXTENT_INLINE) {
5678                u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5679                extent_end = ALIGN(key->offset + size,
5680                                   sctx->send_root->fs_info->sectorsize);
5681        } else {
5682                extent_end = key->offset +
5683                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
5684        }
5685
5686        if (path->slots[0] == 0 &&
5687            sctx->cur_inode_last_extent < key->offset) {
5688                /*
5689                 * We might have skipped entire leafs that contained only
5690                 * file extent items for our current inode. These leafs have
5691                 * a generation number smaller (older) than the one in the
5692                 * current leaf and the leaf our last extent came from, and
5693                 * are located between these 2 leafs.
5694                 */
5695                ret = get_last_extent(sctx, key->offset - 1);
5696                if (ret)
5697                        return ret;
5698        }
5699
5700        if (sctx->cur_inode_last_extent < key->offset) {
5701                ret = range_is_hole_in_parent(sctx,
5702                                              sctx->cur_inode_last_extent,
5703                                              key->offset);
5704                if (ret < 0)
5705                        return ret;
5706                else if (ret == 0)
5707                        ret = send_hole(sctx, key->offset);
5708                else
5709                        ret = 0;
5710        }
5711        sctx->cur_inode_last_extent = extent_end;
5712        return ret;
5713}
5714
5715static int process_extent(struct send_ctx *sctx,
5716                          struct btrfs_path *path,
5717                          struct btrfs_key *key)
5718{
5719        struct clone_root *found_clone = NULL;
5720        int ret = 0;
5721
5722        if (S_ISLNK(sctx->cur_inode_mode))
5723                return 0;
5724
5725        if (sctx->parent_root && !sctx->cur_inode_new) {
5726                ret = is_extent_unchanged(sctx, path, key);
5727                if (ret < 0)
5728                        goto out;
5729                if (ret) {
5730                        ret = 0;
5731                        goto out_hole;
5732                }
5733        } else {
5734                struct btrfs_file_extent_item *ei;
5735                u8 type;
5736
5737                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5738                                    struct btrfs_file_extent_item);
5739                type = btrfs_file_extent_type(path->nodes[0], ei);
5740                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5741                    type == BTRFS_FILE_EXTENT_REG) {
5742                        /*
5743                         * The send spec does not have a prealloc command yet,
5744                         * so just leave a hole for prealloc'ed extents until
5745                         * we have enough commands queued up to justify rev'ing
5746                         * the send spec.
5747                         */
5748                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5749                                ret = 0;
5750                                goto out;
5751                        }
5752
5753                        /* Have a hole, just skip it. */
5754                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5755                                ret = 0;
5756                                goto out;
5757                        }
5758                }
5759        }
5760
5761        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5762                        sctx->cur_inode_size, &found_clone);
5763        if (ret != -ENOENT && ret < 0)
5764                goto out;
5765
5766        ret = send_write_or_clone(sctx, path, key, found_clone);
5767        if (ret)
5768                goto out;
5769out_hole:
5770        ret = maybe_send_hole(sctx, path, key);
5771out:
5772        return ret;
5773}
5774
5775static int process_all_extents(struct send_ctx *sctx)
5776{
5777        int ret;
5778        struct btrfs_root *root;
5779        struct btrfs_path *path;
5780        struct btrfs_key key;
5781        struct btrfs_key found_key;
5782        struct extent_buffer *eb;
5783        int slot;
5784
5785        root = sctx->send_root;
5786        path = alloc_path_for_send();
5787        if (!path)
5788                return -ENOMEM;
5789
5790        key.objectid = sctx->cmp_key->objectid;
5791        key.type = BTRFS_EXTENT_DATA_KEY;
5792        key.offset = 0;
5793        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5794        if (ret < 0)
5795                goto out;
5796
5797        while (1) {
5798                eb = path->nodes[0];
5799                slot = path->slots[0];
5800
5801                if (slot >= btrfs_header_nritems(eb)) {
5802                        ret = btrfs_next_leaf(root, path);
5803                        if (ret < 0) {
5804                                goto out;
5805                        } else if (ret > 0) {
5806                                ret = 0;
5807                                break;
5808                        }
5809                        continue;
5810                }
5811
5812                btrfs_item_key_to_cpu(eb, &found_key, slot);
5813
5814                if (found_key.objectid != key.objectid ||
5815                    found_key.type != key.type) {
5816                        ret = 0;
5817                        goto out;
5818                }
5819
5820                ret = process_extent(sctx, path, &found_key);
5821                if (ret < 0)
5822                        goto out;
5823
5824                path->slots[0]++;
5825        }
5826
5827out:
5828        btrfs_free_path(path);
5829        return ret;
5830}
5831
5832static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5833                                           int *pending_move,
5834                                           int *refs_processed)
5835{
5836        int ret = 0;
5837
5838        if (sctx->cur_ino == 0)
5839                goto out;
5840        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5841            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5842                goto out;
5843        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5844                goto out;
5845
5846        ret = process_recorded_refs(sctx, pending_move);
5847        if (ret < 0)
5848                goto out;
5849
5850        *refs_processed = 1;
5851out:
5852        return ret;
5853}
5854
5855static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5856{
5857        int ret = 0;
5858        u64 left_mode;
5859        u64 left_uid;
5860        u64 left_gid;
5861        u64 right_mode;
5862        u64 right_uid;
5863        u64 right_gid;
5864        int need_chmod = 0;
5865        int need_chown = 0;
5866        int need_truncate = 1;
5867        int pending_move = 0;
5868        int refs_processed = 0;
5869
5870        if (sctx->ignore_cur_inode)
5871                return 0;
5872
5873        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5874                                              &refs_processed);
5875        if (ret < 0)
5876                goto out;
5877
5878        /*
5879         * We have processed the refs and thus need to advance send_progress.
5880         * Now, calls to get_cur_xxx will take the updated refs of the current
5881         * inode into account.
5882         *
5883         * On the other hand, if our current inode is a directory and couldn't
5884         * be moved/renamed because its parent was renamed/moved too and it has
5885         * a higher inode number, we can only move/rename our current inode
5886         * after we moved/renamed its parent. Therefore in this case operate on
5887         * the old path (pre move/rename) of our current inode, and the
5888         * move/rename will be performed later.
5889         */
5890        if (refs_processed && !pending_move)
5891                sctx->send_progress = sctx->cur_ino + 1;
5892
5893        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5894                goto out;
5895        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5896                goto out;
5897
5898        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5899                        &left_mode, &left_uid, &left_gid, NULL);
5900        if (ret < 0)
5901                goto out;
5902
5903        if (!sctx->parent_root || sctx->cur_inode_new) {
5904                need_chown = 1;
5905                if (!S_ISLNK(sctx->cur_inode_mode))
5906                        need_chmod = 1;
5907                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5908                        need_truncate = 0;
5909        } else {
5910                u64 old_size;
5911
5912                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5913                                &old_size, NULL, &right_mode, &right_uid,
5914                                &right_gid, NULL);
5915                if (ret < 0)
5916                        goto out;
5917
5918                if (left_uid != right_uid || left_gid != right_gid)
5919                        need_chown = 1;
5920                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5921                        need_chmod = 1;
5922                if ((old_size == sctx->cur_inode_size) ||
5923                    (sctx->cur_inode_size > old_size &&
5924                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5925                        need_truncate = 0;
5926        }
5927
5928        if (S_ISREG(sctx->cur_inode_mode)) {
5929                if (need_send_hole(sctx)) {
5930                        if (sctx->cur_inode_last_extent == (u64)-1 ||
5931                            sctx->cur_inode_last_extent <
5932                            sctx->cur_inode_size) {
5933                                ret = get_last_extent(sctx, (u64)-1);
5934                                if (ret)
5935                                        goto out;
5936                        }
5937                        if (sctx->cur_inode_last_extent <
5938                            sctx->cur_inode_size) {
5939                                ret = send_hole(sctx, sctx->cur_inode_size);
5940                                if (ret)
5941                                        goto out;
5942                        }
5943                }
5944                if (need_truncate) {
5945                        ret = send_truncate(sctx, sctx->cur_ino,
5946                                            sctx->cur_inode_gen,
5947                                            sctx->cur_inode_size);
5948                        if (ret < 0)
5949                                goto out;
5950                }
5951        }
5952
5953        if (need_chown) {
5954                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5955                                left_uid, left_gid);
5956                if (ret < 0)
5957                        goto out;
5958        }
5959        if (need_chmod) {
5960                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5961                                left_mode);
5962                if (ret < 0)
5963                        goto out;
5964        }
5965
5966        /*
5967         * If other directory inodes depended on our current directory
5968         * inode's move/rename, now do their move/rename operations.
5969         */
5970        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5971                ret = apply_children_dir_moves(sctx);
5972                if (ret)
5973                        goto out;
5974                /*
5975                 * Need to send that every time, no matter if it actually
5976                 * changed between the two trees as we have done changes to
5977                 * the inode before. If our inode is a directory and it's
5978                 * waiting to be moved/renamed, we will send its utimes when
5979                 * it's moved/renamed, therefore we don't need to do it here.
5980                 */
5981                sctx->send_progress = sctx->cur_ino + 1;
5982                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5983                if (ret < 0)
5984                        goto out;
5985        }
5986
5987out:
5988        return ret;
5989}
5990
5991struct parent_paths_ctx {
5992        struct list_head *refs;
5993        struct send_ctx *sctx;
5994};
5995
5996static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5997                             void *ctx)
5998{
5999        struct parent_paths_ctx *ppctx = ctx;
6000
6001        return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6002                          ppctx->refs);
6003}
6004
6005/*
6006 * Issue unlink operations for all paths of the current inode found in the
6007 * parent snapshot.
6008 */
6009static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6010{
6011        LIST_HEAD(deleted_refs);
6012        struct btrfs_path *path;
6013        struct btrfs_key key;
6014        struct parent_paths_ctx ctx;
6015        int ret;
6016
6017        path = alloc_path_for_send();
6018        if (!path)
6019                return -ENOMEM;
6020
6021        key.objectid = sctx->cur_ino;
6022        key.type = BTRFS_INODE_REF_KEY;
6023        key.offset = 0;
6024        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6025        if (ret < 0)
6026                goto out;
6027
6028        ctx.refs = &deleted_refs;
6029        ctx.sctx = sctx;
6030
6031        while (true) {
6032                struct extent_buffer *eb = path->nodes[0];
6033                int slot = path->slots[0];
6034
6035                if (slot >= btrfs_header_nritems(eb)) {
6036                        ret = btrfs_next_leaf(sctx->parent_root, path);
6037                        if (ret < 0)
6038                                goto out;
6039                        else if (ret > 0)
6040                                break;
6041                        continue;
6042                }
6043
6044                btrfs_item_key_to_cpu(eb, &key, slot);
6045                if (key.objectid != sctx->cur_ino)
6046                        break;
6047                if (key.type != BTRFS_INODE_REF_KEY &&
6048                    key.type != BTRFS_INODE_EXTREF_KEY)
6049                        break;
6050
6051                ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6052                                        record_parent_ref, &ctx);
6053                if (ret < 0)
6054                        goto out;
6055
6056                path->slots[0]++;
6057        }
6058
6059        while (!list_empty(&deleted_refs)) {
6060                struct recorded_ref *ref;
6061
6062                ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6063                ret = send_unlink(sctx, ref->full_path);
6064                if (ret < 0)
6065                        goto out;
6066                fs_path_free(ref->full_path);
6067                list_del(&ref->list);
6068                kfree(ref);
6069        }
6070        ret = 0;
6071out:
6072        btrfs_free_path(path);
6073        if (ret)
6074                __free_recorded_refs(&deleted_refs);
6075        return ret;
6076}
6077
6078static int changed_inode(struct send_ctx *sctx,
6079                         enum btrfs_compare_tree_result result)
6080{
6081        int ret = 0;
6082        struct btrfs_key *key = sctx->cmp_key;
6083        struct btrfs_inode_item *left_ii = NULL;
6084        struct btrfs_inode_item *right_ii = NULL;
6085        u64 left_gen = 0;
6086        u64 right_gen = 0;
6087
6088        sctx->cur_ino = key->objectid;
6089        sctx->cur_inode_new_gen = 0;
6090        sctx->cur_inode_last_extent = (u64)-1;
6091        sctx->cur_inode_next_write_offset = 0;
6092        sctx->ignore_cur_inode = false;
6093
6094        /*
6095         * Set send_progress to current inode. This will tell all get_cur_xxx
6096         * functions that the current inode's refs are not updated yet. Later,
6097         * when process_recorded_refs is finished, it is set to cur_ino + 1.
6098         */
6099        sctx->send_progress = sctx->cur_ino;
6100
6101        if (result == BTRFS_COMPARE_TREE_NEW ||
6102            result == BTRFS_COMPARE_TREE_CHANGED) {
6103                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6104                                sctx->left_path->slots[0],
6105                                struct btrfs_inode_item);
6106                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6107                                left_ii);
6108        } else {
6109                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6110                                sctx->right_path->slots[0],
6111                                struct btrfs_inode_item);
6112                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6113                                right_ii);
6114        }
6115        if (result == BTRFS_COMPARE_TREE_CHANGED) {
6116                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6117                                sctx->right_path->slots[0],
6118                                struct btrfs_inode_item);
6119
6120                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6121                                right_ii);
6122
6123                /*
6124                 * The cur_ino = root dir case is special here. We can't treat
6125                 * the inode as deleted+reused because it would generate a
6126                 * stream that tries to delete/mkdir the root dir.
6127                 */
6128                if (left_gen != right_gen &&
6129                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6130                        sctx->cur_inode_new_gen = 1;
6131        }
6132
6133        /*
6134         * Normally we do not find inodes with a link count of zero (orphans)
6135         * because the most common case is to create a snapshot and use it
6136         * for a send operation. However other less common use cases involve
6137         * using a subvolume and send it after turning it to RO mode just
6138         * after deleting all hard links of a file while holding an open
6139         * file descriptor against it or turning a RO snapshot into RW mode,
6140         * keep an open file descriptor against a file, delete it and then
6141         * turn the snapshot back to RO mode before using it for a send
6142         * operation. So if we find such cases, ignore the inode and all its
6143         * items completely if it's a new inode, or if it's a changed inode
6144         * make sure all its previous paths (from the parent snapshot) are all
6145         * unlinked and all other the inode items are ignored.
6146         */
6147        if (result == BTRFS_COMPARE_TREE_NEW ||
6148            result == BTRFS_COMPARE_TREE_CHANGED) {
6149                u32 nlinks;
6150
6151                nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6152                if (nlinks == 0) {
6153                        sctx->ignore_cur_inode = true;
6154                        if (result == BTRFS_COMPARE_TREE_CHANGED)
6155                                ret = btrfs_unlink_all_paths(sctx);
6156                        goto out;
6157                }
6158        }
6159
6160        if (result == BTRFS_COMPARE_TREE_NEW) {
6161                sctx->cur_inode_gen = left_gen;
6162                sctx->cur_inode_new = 1;
6163                sctx->cur_inode_deleted = 0;
6164                sctx->cur_inode_size = btrfs_inode_size(
6165                                sctx->left_path->nodes[0], left_ii);
6166                sctx->cur_inode_mode = btrfs_inode_mode(
6167                                sctx->left_path->nodes[0], left_ii);
6168                sctx->cur_inode_rdev = btrfs_inode_rdev(
6169                                sctx->left_path->nodes[0], left_ii);
6170                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6171                        ret = send_create_inode_if_needed(sctx);
6172        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6173                sctx->cur_inode_gen = right_gen;
6174                sctx->cur_inode_new = 0;
6175                sctx->cur_inode_deleted = 1;
6176                sctx->cur_inode_size = btrfs_inode_size(
6177                                sctx->right_path->nodes[0], right_ii);
6178                sctx->cur_inode_mode = btrfs_inode_mode(
6179                                sctx->right_path->nodes[0], right_ii);
6180        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6181                /*
6182                 * We need to do some special handling in case the inode was
6183                 * reported as changed with a changed generation number. This
6184                 * means that the original inode was deleted and new inode
6185                 * reused the same inum. So we have to treat the old inode as
6186                 * deleted and the new one as new.
6187                 */
6188                if (sctx->cur_inode_new_gen) {
6189                        /*
6190                         * First, process the inode as if it was deleted.
6191                         */
6192                        sctx->cur_inode_gen = right_gen;
6193                        sctx->cur_inode_new = 0;
6194                        sctx->cur_inode_deleted = 1;
6195                        sctx->cur_inode_size = btrfs_inode_size(
6196                                        sctx->right_path->nodes[0], right_ii);
6197                        sctx->cur_inode_mode = btrfs_inode_mode(
6198                                        sctx->right_path->nodes[0], right_ii);
6199                        ret = process_all_refs(sctx,
6200                                        BTRFS_COMPARE_TREE_DELETED);
6201                        if (ret < 0)
6202                                goto out;
6203
6204                        /*
6205                         * Now process the inode as if it was new.
6206                         */
6207                        sctx->cur_inode_gen = left_gen;
6208                        sctx->cur_inode_new = 1;
6209                        sctx->cur_inode_deleted = 0;
6210                        sctx->cur_inode_size = btrfs_inode_size(
6211                                        sctx->left_path->nodes[0], left_ii);
6212                        sctx->cur_inode_mode = btrfs_inode_mode(
6213                                        sctx->left_path->nodes[0], left_ii);
6214                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6215                                        sctx->left_path->nodes[0], left_ii);
6216                        ret = send_create_inode_if_needed(sctx);
6217                        if (ret < 0)
6218                                goto out;
6219
6220                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6221                        if (ret < 0)
6222                                goto out;
6223                        /*
6224                         * Advance send_progress now as we did not get into
6225                         * process_recorded_refs_if_needed in the new_gen case.
6226                         */
6227                        sctx->send_progress = sctx->cur_ino + 1;
6228
6229                        /*
6230                         * Now process all extents and xattrs of the inode as if
6231                         * they were all new.
6232                         */
6233                        ret = process_all_extents(sctx);
6234                        if (ret < 0)
6235                                goto out;
6236                        ret = process_all_new_xattrs(sctx);
6237                        if (ret < 0)
6238                                goto out;
6239                } else {
6240                        sctx->cur_inode_gen = left_gen;
6241                        sctx->cur_inode_new = 0;
6242                        sctx->cur_inode_new_gen = 0;
6243                        sctx->cur_inode_deleted = 0;
6244                        sctx->cur_inode_size = btrfs_inode_size(
6245                                        sctx->left_path->nodes[0], left_ii);
6246                        sctx->cur_inode_mode = btrfs_inode_mode(
6247                                        sctx->left_path->nodes[0], left_ii);
6248                }
6249        }
6250
6251out:
6252        return ret;
6253}
6254
6255/*
6256 * We have to process new refs before deleted refs, but compare_trees gives us
6257 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6258 * first and later process them in process_recorded_refs.
6259 * For the cur_inode_new_gen case, we skip recording completely because
6260 * changed_inode did already initiate processing of refs. The reason for this is
6261 * that in this case, compare_tree actually compares the refs of 2 different
6262 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6263 * refs of the right tree as deleted and all refs of the left tree as new.
6264 */
6265static int changed_ref(struct send_ctx *sctx,
6266                       enum btrfs_compare_tree_result result)
6267{
6268        int ret = 0;
6269
6270        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6271                inconsistent_snapshot_error(sctx, result, "reference");
6272                return -EIO;
6273        }
6274
6275        if (!sctx->cur_inode_new_gen &&
6276            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6277                if (result == BTRFS_COMPARE_TREE_NEW)
6278                        ret = record_new_ref(sctx);
6279                else if (result == BTRFS_COMPARE_TREE_DELETED)
6280                        ret = record_deleted_ref(sctx);
6281                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6282                        ret = record_changed_ref(sctx);
6283        }
6284
6285        return ret;
6286}
6287
6288/*
6289 * Process new/deleted/changed xattrs. We skip processing in the
6290 * cur_inode_new_gen case because changed_inode did already initiate processing
6291 * of xattrs. The reason is the same as in changed_ref
6292 */
6293static int changed_xattr(struct send_ctx *sctx,
6294                         enum btrfs_compare_tree_result result)
6295{
6296        int ret = 0;
6297
6298        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6299                inconsistent_snapshot_error(sctx, result, "xattr");
6300                return -EIO;
6301        }
6302
6303        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6304                if (result == BTRFS_COMPARE_TREE_NEW)
6305                        ret = process_new_xattr(sctx);
6306                else if (result == BTRFS_COMPARE_TREE_DELETED)
6307                        ret = process_deleted_xattr(sctx);
6308                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6309                        ret = process_changed_xattr(sctx);
6310        }
6311
6312        return ret;
6313}
6314
6315/*
6316 * Process new/deleted/changed extents. We skip processing in the
6317 * cur_inode_new_gen case because changed_inode did already initiate processing
6318 * of extents. The reason is the same as in changed_ref
6319 */
6320static int changed_extent(struct send_ctx *sctx,
6321                          enum btrfs_compare_tree_result result)
6322{
6323        int ret = 0;
6324
6325        /*
6326         * We have found an extent item that changed without the inode item
6327         * having changed. This can happen either after relocation (where the
6328         * disk_bytenr of an extent item is replaced at
6329         * relocation.c:replace_file_extents()) or after deduplication into a
6330         * file in both the parent and send snapshots (where an extent item can
6331         * get modified or replaced with a new one). Note that deduplication
6332         * updates the inode item, but it only changes the iversion (sequence
6333         * field in the inode item) of the inode, so if a file is deduplicated
6334         * the same amount of times in both the parent and send snapshots, its
6335         * iversion becames the same in both snapshots, whence the inode item is
6336         * the same on both snapshots.
6337         */
6338        if (sctx->cur_ino != sctx->cmp_key->objectid)
6339                return 0;
6340
6341        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6342                if (result != BTRFS_COMPARE_TREE_DELETED)
6343                        ret = process_extent(sctx, sctx->left_path,
6344                                        sctx->cmp_key);
6345        }
6346
6347        return ret;
6348}
6349
6350static int dir_changed(struct send_ctx *sctx, u64 dir)
6351{
6352        u64 orig_gen, new_gen;
6353        int ret;
6354
6355        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6356                             NULL, NULL);
6357        if (ret)
6358                return ret;
6359
6360        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6361                             NULL, NULL, NULL);
6362        if (ret)
6363                return ret;
6364
6365        return (orig_gen != new_gen) ? 1 : 0;
6366}
6367
6368static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6369                        struct btrfs_key *key)
6370{
6371        struct btrfs_inode_extref *extref;
6372        struct extent_buffer *leaf;
6373        u64 dirid = 0, last_dirid = 0;
6374        unsigned long ptr;
6375        u32 item_size;
6376        u32 cur_offset = 0;
6377        int ref_name_len;
6378        int ret = 0;
6379
6380        /* Easy case, just check this one dirid */
6381        if (key->type == BTRFS_INODE_REF_KEY) {
6382                dirid = key->offset;
6383
6384                ret = dir_changed(sctx, dirid);
6385                goto out;
6386        }
6387
6388        leaf = path->nodes[0];
6389        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6390        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6391        while (cur_offset < item_size) {
6392                extref = (struct btrfs_inode_extref *)(ptr +
6393                                                       cur_offset);
6394                dirid = btrfs_inode_extref_parent(leaf, extref);
6395                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6396                cur_offset += ref_name_len + sizeof(*extref);
6397                if (dirid == last_dirid)
6398                        continue;
6399                ret = dir_changed(sctx, dirid);
6400                if (ret)
6401                        break;
6402                last_dirid = dirid;
6403        }
6404out:
6405        return ret;
6406}
6407
6408/*
6409 * Updates compare related fields in sctx and simply forwards to the actual
6410 * changed_xxx functions.
6411 */
6412static int changed_cb(struct btrfs_path *left_path,
6413                      struct btrfs_path *right_path,
6414                      struct btrfs_key *key,
6415                      enum btrfs_compare_tree_result result,
6416                      void *ctx)
6417{
6418        int ret = 0;
6419        struct send_ctx *sctx = ctx;
6420
6421        if (result == BTRFS_COMPARE_TREE_SAME) {
6422                if (key->type == BTRFS_INODE_REF_KEY ||
6423                    key->type == BTRFS_INODE_EXTREF_KEY) {
6424                        ret = compare_refs(sctx, left_path, key);
6425                        if (!ret)
6426                                return 0;
6427                        if (ret < 0)
6428                                return ret;
6429                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6430                        return maybe_send_hole(sctx, left_path, key);
6431                } else {
6432                        return 0;
6433                }
6434                result = BTRFS_COMPARE_TREE_CHANGED;
6435                ret = 0;
6436        }
6437
6438        sctx->left_path = left_path;
6439        sctx->right_path = right_path;
6440        sctx->cmp_key = key;
6441
6442        ret = finish_inode_if_needed(sctx, 0);
6443        if (ret < 0)
6444                goto out;
6445
6446        /* Ignore non-FS objects */
6447        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6448            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6449                goto out;
6450
6451        if (key->type == BTRFS_INODE_ITEM_KEY) {
6452                ret = changed_inode(sctx, result);
6453        } else if (!sctx->ignore_cur_inode) {
6454                if (key->type == BTRFS_INODE_REF_KEY ||
6455                    key->type == BTRFS_INODE_EXTREF_KEY)
6456                        ret = changed_ref(sctx, result);
6457                else if (key->type == BTRFS_XATTR_ITEM_KEY)
6458                        ret = changed_xattr(sctx, result);
6459                else if (key->type == BTRFS_EXTENT_DATA_KEY)
6460                        ret = changed_extent(sctx, result);
6461        }
6462
6463out:
6464        return ret;
6465}
6466
6467static int full_send_tree(struct send_ctx *sctx)
6468{
6469        int ret;
6470        struct btrfs_root *send_root = sctx->send_root;
6471        struct btrfs_key key;
6472        struct btrfs_path *path;
6473        struct extent_buffer *eb;
6474        int slot;
6475
6476        path = alloc_path_for_send();
6477        if (!path)
6478                return -ENOMEM;
6479
6480        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6481        key.type = BTRFS_INODE_ITEM_KEY;
6482        key.offset = 0;
6483
6484        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6485        if (ret < 0)
6486                goto out;
6487        if (ret)
6488                goto out_finish;
6489
6490        while (1) {
6491                eb = path->nodes[0];
6492                slot = path->slots[0];
6493                btrfs_item_key_to_cpu(eb, &key, slot);
6494
6495                ret = changed_cb(path, NULL, &key,
6496                                 BTRFS_COMPARE_TREE_NEW, sctx);
6497                if (ret < 0)
6498                        goto out;
6499
6500                ret = btrfs_next_item(send_root, path);
6501                if (ret < 0)
6502                        goto out;
6503                if (ret) {
6504                        ret  = 0;
6505                        break;
6506                }
6507        }
6508
6509out_finish:
6510        ret = finish_inode_if_needed(sctx, 1);
6511
6512out:
6513        btrfs_free_path(path);
6514        return ret;
6515}
6516
6517static int send_subvol(struct send_ctx *sctx)
6518{
6519        int ret;
6520
6521        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6522                ret = send_header(sctx);
6523                if (ret < 0)
6524                        goto out;
6525        }
6526
6527        ret = send_subvol_begin(sctx);
6528        if (ret < 0)
6529                goto out;
6530
6531        if (sctx->parent_root) {
6532                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6533                                changed_cb, sctx);
6534                if (ret < 0)
6535                        goto out;
6536                ret = finish_inode_if_needed(sctx, 1);
6537                if (ret < 0)
6538                        goto out;
6539        } else {
6540                ret = full_send_tree(sctx);
6541                if (ret < 0)
6542                        goto out;
6543        }
6544
6545out:
6546        free_recorded_refs(sctx);
6547        return ret;
6548}
6549
6550/*
6551 * If orphan cleanup did remove any orphans from a root, it means the tree
6552 * was modified and therefore the commit root is not the same as the current
6553 * root anymore. This is a problem, because send uses the commit root and
6554 * therefore can see inode items that don't exist in the current root anymore,
6555 * and for example make calls to btrfs_iget, which will do tree lookups based
6556 * on the current root and not on the commit root. Those lookups will fail,
6557 * returning a -ESTALE error, and making send fail with that error. So make
6558 * sure a send does not see any orphans we have just removed, and that it will
6559 * see the same inodes regardless of whether a transaction commit happened
6560 * before it started (meaning that the commit root will be the same as the
6561 * current root) or not.
6562 */
6563static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6564{
6565        int i;
6566        struct btrfs_trans_handle *trans = NULL;
6567
6568again:
6569        if (sctx->parent_root &&
6570            sctx->parent_root->node != sctx->parent_root->commit_root)
6571                goto commit_trans;
6572
6573        for (i = 0; i < sctx->clone_roots_cnt; i++)
6574                if (sctx->clone_roots[i].root->node !=
6575                    sctx->clone_roots[i].root->commit_root)
6576                        goto commit_trans;
6577
6578        if (trans)
6579                return btrfs_end_transaction(trans);
6580
6581        return 0;
6582
6583commit_trans:
6584        /* Use any root, all fs roots will get their commit roots updated. */
6585        if (!trans) {
6586                trans = btrfs_join_transaction(sctx->send_root);
6587                if (IS_ERR(trans))
6588                        return PTR_ERR(trans);
6589                goto again;
6590        }
6591
6592        return btrfs_commit_transaction(trans);
6593}
6594
6595/*
6596 * Make sure any existing dellaloc is flushed for any root used by a send
6597 * operation so that we do not miss any data and we do not race with writeback
6598 * finishing and changing a tree while send is using the tree. This could
6599 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
6600 * a send operation then uses the subvolume.
6601 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
6602 */
6603static int flush_delalloc_roots(struct send_ctx *sctx)
6604{
6605        struct btrfs_root *root = sctx->parent_root;
6606        int ret;
6607        int i;
6608
6609        if (root) {
6610                ret = btrfs_start_delalloc_snapshot(root);
6611                if (ret)
6612                        return ret;
6613                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6614        }
6615
6616        for (i = 0; i < sctx->clone_roots_cnt; i++) {
6617                root = sctx->clone_roots[i].root;
6618                ret = btrfs_start_delalloc_snapshot(root);
6619                if (ret)
6620                        return ret;
6621                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6622        }
6623
6624        return 0;
6625}
6626
6627static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6628{
6629        spin_lock(&root->root_item_lock);
6630        root->send_in_progress--;
6631        /*
6632         * Not much left to do, we don't know why it's unbalanced and
6633         * can't blindly reset it to 0.
6634         */
6635        if (root->send_in_progress < 0)
6636                btrfs_err(root->fs_info,
6637                          "send_in_progress unbalanced %d root %llu",
6638                          root->send_in_progress, root->root_key.objectid);
6639        spin_unlock(&root->root_item_lock);
6640}
6641
6642static void dedupe_in_progress_warn(const struct btrfs_root *root)
6643{
6644        btrfs_warn_rl(root->fs_info,
6645"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
6646                      root->root_key.objectid, root->dedupe_in_progress);
6647}
6648
6649long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6650{
6651        int ret = 0;
6652        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6653        struct btrfs_fs_info *fs_info = send_root->fs_info;
6654        struct btrfs_root *clone_root;
6655        struct btrfs_key key;
6656        struct send_ctx *sctx = NULL;
6657        u32 i;
6658        u64 *clone_sources_tmp = NULL;
6659        int clone_sources_to_rollback = 0;
6660        unsigned alloc_size;
6661        int sort_clone_roots = 0;
6662        int index;
6663
6664        if (!capable(CAP_SYS_ADMIN))
6665                return -EPERM;
6666
6667        /*
6668         * The subvolume must remain read-only during send, protect against
6669         * making it RW. This also protects against deletion.
6670         */
6671        spin_lock(&send_root->root_item_lock);
6672        if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
6673                dedupe_in_progress_warn(send_root);
6674                spin_unlock(&send_root->root_item_lock);
6675                return -EAGAIN;
6676        }
6677        send_root->send_in_progress++;
6678        spin_unlock(&send_root->root_item_lock);
6679
6680        /*
6681         * This is done when we lookup the root, it should already be complete
6682         * by the time we get here.
6683         */
6684        WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6685
6686        /*
6687         * Userspace tools do the checks and warn the user if it's
6688         * not RO.
6689         */
6690        if (!btrfs_root_readonly(send_root)) {
6691                ret = -EPERM;
6692                goto out;
6693        }
6694
6695        /*
6696         * Check that we don't overflow at later allocations, we request
6697         * clone_sources_count + 1 items, and compare to unsigned long inside
6698         * access_ok.
6699         */
6700        if (arg->clone_sources_count >
6701            ULONG_MAX / sizeof(struct clone_root) - 1) {
6702                ret = -EINVAL;
6703                goto out;
6704        }
6705
6706        if (!access_ok(arg->clone_sources,
6707                        sizeof(*arg->clone_sources) *
6708                        arg->clone_sources_count)) {
6709                ret = -EFAULT;
6710                goto out;
6711        }
6712
6713        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6714                ret = -EINVAL;
6715                goto out;
6716        }
6717
6718        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6719        if (!sctx) {
6720                ret = -ENOMEM;
6721                goto out;
6722        }
6723
6724        INIT_LIST_HEAD(&sctx->new_refs);
6725        INIT_LIST_HEAD(&sctx->deleted_refs);
6726        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6727        INIT_LIST_HEAD(&sctx->name_cache_list);
6728
6729        sctx->flags = arg->flags;
6730
6731        sctx->send_filp = fget(arg->send_fd);
6732        if (!sctx->send_filp) {
6733                ret = -EBADF;
6734                goto out;
6735        }
6736
6737        sctx->send_root = send_root;
6738        /*
6739         * Unlikely but possible, if the subvolume is marked for deletion but
6740         * is slow to remove the directory entry, send can still be started
6741         */
6742        if (btrfs_root_dead(sctx->send_root)) {
6743                ret = -EPERM;
6744                goto out;
6745        }
6746
6747        sctx->clone_roots_cnt = arg->clone_sources_count;
6748
6749        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6750        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6751        if (!sctx->send_buf) {
6752                ret = -ENOMEM;
6753                goto out;
6754        }
6755
6756        sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6757        if (!sctx->read_buf) {
6758                ret = -ENOMEM;
6759                goto out;
6760        }
6761
6762        sctx->pending_dir_moves = RB_ROOT;
6763        sctx->waiting_dir_moves = RB_ROOT;
6764        sctx->orphan_dirs = RB_ROOT;
6765
6766        alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6767
6768        sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6769        if (!sctx->clone_roots) {
6770                ret = -ENOMEM;
6771                goto out;
6772        }
6773
6774        alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6775
6776        if (arg->clone_sources_count) {
6777                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6778                if (!clone_sources_tmp) {
6779                        ret = -ENOMEM;
6780                        goto out;
6781                }
6782
6783                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6784                                alloc_size);
6785                if (ret) {
6786                        ret = -EFAULT;
6787                        goto out;
6788                }
6789
6790                for (i = 0; i < arg->clone_sources_count; i++) {
6791                        key.objectid = clone_sources_tmp[i];
6792                        key.type = BTRFS_ROOT_ITEM_KEY;
6793                        key.offset = (u64)-1;
6794
6795                        index = srcu_read_lock(&fs_info->subvol_srcu);
6796
6797                        clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6798                        if (IS_ERR(clone_root)) {
6799                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6800                                ret = PTR_ERR(clone_root);
6801                                goto out;
6802                        }
6803                        spin_lock(&clone_root->root_item_lock);
6804                        if (!btrfs_root_readonly(clone_root) ||
6805                            btrfs_root_dead(clone_root)) {
6806                                spin_unlock(&clone_root->root_item_lock);
6807                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6808                                ret = -EPERM;
6809                                goto out;
6810                        }
6811                        if (clone_root->dedupe_in_progress) {
6812                                dedupe_in_progress_warn(clone_root);
6813                                spin_unlock(&clone_root->root_item_lock);
6814                                srcu_read_unlock(&fs_info->subvol_srcu, index);
6815                                ret = -EAGAIN;
6816                                goto out;
6817                        }
6818                        clone_root->send_in_progress++;
6819                        spin_unlock(&clone_root->root_item_lock);
6820                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6821
6822                        sctx->clone_roots[i].root = clone_root;
6823                        clone_sources_to_rollback = i + 1;
6824                }
6825                kvfree(clone_sources_tmp);
6826                clone_sources_tmp = NULL;
6827        }
6828
6829        if (arg->parent_root) {
6830                key.objectid = arg->parent_root;
6831                key.type = BTRFS_ROOT_ITEM_KEY;
6832                key.offset = (u64)-1;
6833
6834                index = srcu_read_lock(&fs_info->subvol_srcu);
6835
6836                sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6837                if (IS_ERR(sctx->parent_root)) {
6838                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6839                        ret = PTR_ERR(sctx->parent_root);
6840                        goto out;
6841                }
6842
6843                spin_lock(&sctx->parent_root->root_item_lock);
6844                sctx->parent_root->send_in_progress++;
6845                if (!btrfs_root_readonly(sctx->parent_root) ||
6846                                btrfs_root_dead(sctx->parent_root)) {
6847                        spin_unlock(&sctx->parent_root->root_item_lock);
6848                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6849                        ret = -EPERM;
6850                        goto out;
6851                }
6852                if (sctx->parent_root->dedupe_in_progress) {
6853                        dedupe_in_progress_warn(sctx->parent_root);
6854                        spin_unlock(&sctx->parent_root->root_item_lock);
6855                        srcu_read_unlock(&fs_info->subvol_srcu, index);
6856                        ret = -EAGAIN;
6857                        goto out;
6858                }
6859                spin_unlock(&sctx->parent_root->root_item_lock);
6860
6861                srcu_read_unlock(&fs_info->subvol_srcu, index);
6862        }
6863
6864        /*
6865         * Clones from send_root are allowed, but only if the clone source
6866         * is behind the current send position. This is checked while searching
6867         * for possible clone sources.
6868         */
6869        sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6870
6871        /* We do a bsearch later */
6872        sort(sctx->clone_roots, sctx->clone_roots_cnt,
6873                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6874                        NULL);
6875        sort_clone_roots = 1;
6876
6877        ret = flush_delalloc_roots(sctx);
6878        if (ret)
6879                goto out;
6880
6881        ret = ensure_commit_roots_uptodate(sctx);
6882        if (ret)
6883                goto out;
6884
6885        mutex_lock(&fs_info->balance_mutex);
6886        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
6887                mutex_unlock(&fs_info->balance_mutex);
6888                btrfs_warn_rl(fs_info,
6889                "cannot run send because a balance operation is in progress");
6890                ret = -EAGAIN;
6891                goto out;
6892        }
6893        fs_info->send_in_progress++;
6894        mutex_unlock(&fs_info->balance_mutex);
6895
6896        current->journal_info = BTRFS_SEND_TRANS_STUB;
6897        ret = send_subvol(sctx);
6898        current->journal_info = NULL;
6899        mutex_lock(&fs_info->balance_mutex);
6900        fs_info->send_in_progress--;
6901        mutex_unlock(&fs_info->balance_mutex);
6902        if (ret < 0)
6903                goto out;
6904
6905        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6906                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6907                if (ret < 0)
6908                        goto out;
6909                ret = send_cmd(sctx);
6910                if (ret < 0)
6911                        goto out;
6912        }
6913
6914out:
6915        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6916        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6917                struct rb_node *n;
6918                struct pending_dir_move *pm;
6919
6920                n = rb_first(&sctx->pending_dir_moves);
6921                pm = rb_entry(n, struct pending_dir_move, node);
6922                while (!list_empty(&pm->list)) {
6923                        struct pending_dir_move *pm2;
6924
6925                        pm2 = list_first_entry(&pm->list,
6926                                               struct pending_dir_move, list);
6927                        free_pending_move(sctx, pm2);
6928                }
6929                free_pending_move(sctx, pm);
6930        }
6931
6932        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6933        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6934                struct rb_node *n;
6935                struct waiting_dir_move *dm;
6936
6937                n = rb_first(&sctx->waiting_dir_moves);
6938                dm = rb_entry(n, struct waiting_dir_move, node);
6939                rb_erase(&dm->node, &sctx->waiting_dir_moves);
6940                kfree(dm);
6941        }
6942
6943        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6944        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6945                struct rb_node *n;
6946                struct orphan_dir_info *odi;
6947
6948                n = rb_first(&sctx->orphan_dirs);
6949                odi = rb_entry(n, struct orphan_dir_info, node);
6950                free_orphan_dir_info(sctx, odi);
6951        }
6952
6953        if (sort_clone_roots) {
6954                for (i = 0; i < sctx->clone_roots_cnt; i++)
6955                        btrfs_root_dec_send_in_progress(
6956                                        sctx->clone_roots[i].root);
6957        } else {
6958                for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6959                        btrfs_root_dec_send_in_progress(
6960                                        sctx->clone_roots[i].root);
6961
6962                btrfs_root_dec_send_in_progress(send_root);
6963        }
6964        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6965                btrfs_root_dec_send_in_progress(sctx->parent_root);
6966
6967        kvfree(clone_sources_tmp);
6968
6969        if (sctx) {
6970                if (sctx->send_filp)
6971                        fput(sctx->send_filp);
6972
6973                kvfree(sctx->clone_roots);
6974                kvfree(sctx->send_buf);
6975                kvfree(sctx->read_buf);
6976
6977                name_cache_free(sctx);
6978
6979                kfree(sctx);
6980        }
6981
6982        return ret;
6983}
6984