linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/slab.h>
   8#include <linux/sched.h>
   9#include <linux/writeback.h>
  10#include <linux/pagemap.h>
  11#include <linux/blkdev.h>
  12#include <linux/uuid.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "locking.h"
  17#include "tree-log.h"
  18#include "inode-map.h"
  19#include "volumes.h"
  20#include "dev-replace.h"
  21#include "qgroup.h"
  22
  23#define BTRFS_ROOT_TRANS_TAG 0
  24
  25static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
  26        [TRANS_STATE_RUNNING]           = 0U,
  27        [TRANS_STATE_BLOCKED]           =  __TRANS_START,
  28        [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
  29        [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
  30                                           __TRANS_ATTACH |
  31                                           __TRANS_JOIN |
  32                                           __TRANS_JOIN_NOSTART),
  33        [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
  34                                           __TRANS_ATTACH |
  35                                           __TRANS_JOIN |
  36                                           __TRANS_JOIN_NOLOCK |
  37                                           __TRANS_JOIN_NOSTART),
  38        [TRANS_STATE_COMPLETED]         = (__TRANS_START |
  39                                           __TRANS_ATTACH |
  40                                           __TRANS_JOIN |
  41                                           __TRANS_JOIN_NOLOCK |
  42                                           __TRANS_JOIN_NOSTART),
  43};
  44
  45void btrfs_put_transaction(struct btrfs_transaction *transaction)
  46{
  47        WARN_ON(refcount_read(&transaction->use_count) == 0);
  48        if (refcount_dec_and_test(&transaction->use_count)) {
  49                BUG_ON(!list_empty(&transaction->list));
  50                WARN_ON(!RB_EMPTY_ROOT(
  51                                &transaction->delayed_refs.href_root.rb_root));
  52                if (transaction->delayed_refs.pending_csums)
  53                        btrfs_err(transaction->fs_info,
  54                                  "pending csums is %llu",
  55                                  transaction->delayed_refs.pending_csums);
  56                /*
  57                 * If any block groups are found in ->deleted_bgs then it's
  58                 * because the transaction was aborted and a commit did not
  59                 * happen (things failed before writing the new superblock
  60                 * and calling btrfs_finish_extent_commit()), so we can not
  61                 * discard the physical locations of the block groups.
  62                 */
  63                while (!list_empty(&transaction->deleted_bgs)) {
  64                        struct btrfs_block_group_cache *cache;
  65
  66                        cache = list_first_entry(&transaction->deleted_bgs,
  67                                                 struct btrfs_block_group_cache,
  68                                                 bg_list);
  69                        list_del_init(&cache->bg_list);
  70                        btrfs_put_block_group_trimming(cache);
  71                        btrfs_put_block_group(cache);
  72                }
  73                WARN_ON(!list_empty(&transaction->dev_update_list));
  74                kfree(transaction);
  75        }
  76}
  77
  78static noinline void switch_commit_roots(struct btrfs_transaction *trans)
  79{
  80        struct btrfs_fs_info *fs_info = trans->fs_info;
  81        struct btrfs_root *root, *tmp;
  82
  83        down_write(&fs_info->commit_root_sem);
  84        list_for_each_entry_safe(root, tmp, &trans->switch_commits,
  85                                 dirty_list) {
  86                list_del_init(&root->dirty_list);
  87                free_extent_buffer(root->commit_root);
  88                root->commit_root = btrfs_root_node(root);
  89                if (is_fstree(root->root_key.objectid))
  90                        btrfs_unpin_free_ino(root);
  91                extent_io_tree_release(&root->dirty_log_pages);
  92                btrfs_qgroup_clean_swapped_blocks(root);
  93        }
  94
  95        /* We can free old roots now. */
  96        spin_lock(&trans->dropped_roots_lock);
  97        while (!list_empty(&trans->dropped_roots)) {
  98                root = list_first_entry(&trans->dropped_roots,
  99                                        struct btrfs_root, root_list);
 100                list_del_init(&root->root_list);
 101                spin_unlock(&trans->dropped_roots_lock);
 102                btrfs_drop_and_free_fs_root(fs_info, root);
 103                spin_lock(&trans->dropped_roots_lock);
 104        }
 105        spin_unlock(&trans->dropped_roots_lock);
 106        up_write(&fs_info->commit_root_sem);
 107}
 108
 109static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
 110                                         unsigned int type)
 111{
 112        if (type & TRANS_EXTWRITERS)
 113                atomic_inc(&trans->num_extwriters);
 114}
 115
 116static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
 117                                         unsigned int type)
 118{
 119        if (type & TRANS_EXTWRITERS)
 120                atomic_dec(&trans->num_extwriters);
 121}
 122
 123static inline void extwriter_counter_init(struct btrfs_transaction *trans,
 124                                          unsigned int type)
 125{
 126        atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
 127}
 128
 129static inline int extwriter_counter_read(struct btrfs_transaction *trans)
 130{
 131        return atomic_read(&trans->num_extwriters);
 132}
 133
 134/*
 135 * To be called after all the new block groups attached to the transaction
 136 * handle have been created (btrfs_create_pending_block_groups()).
 137 */
 138void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 139{
 140        struct btrfs_fs_info *fs_info = trans->fs_info;
 141
 142        if (!trans->chunk_bytes_reserved)
 143                return;
 144
 145        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 146
 147        btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
 148                                trans->chunk_bytes_reserved);
 149        trans->chunk_bytes_reserved = 0;
 150}
 151
 152/*
 153 * either allocate a new transaction or hop into the existing one
 154 */
 155static noinline int join_transaction(struct btrfs_fs_info *fs_info,
 156                                     unsigned int type)
 157{
 158        struct btrfs_transaction *cur_trans;
 159
 160        spin_lock(&fs_info->trans_lock);
 161loop:
 162        /* The file system has been taken offline. No new transactions. */
 163        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 164                spin_unlock(&fs_info->trans_lock);
 165                return -EROFS;
 166        }
 167
 168        cur_trans = fs_info->running_transaction;
 169        if (cur_trans) {
 170                if (cur_trans->aborted) {
 171                        spin_unlock(&fs_info->trans_lock);
 172                        return cur_trans->aborted;
 173                }
 174                if (btrfs_blocked_trans_types[cur_trans->state] & type) {
 175                        spin_unlock(&fs_info->trans_lock);
 176                        return -EBUSY;
 177                }
 178                refcount_inc(&cur_trans->use_count);
 179                atomic_inc(&cur_trans->num_writers);
 180                extwriter_counter_inc(cur_trans, type);
 181                spin_unlock(&fs_info->trans_lock);
 182                return 0;
 183        }
 184        spin_unlock(&fs_info->trans_lock);
 185
 186        /*
 187         * If we are ATTACH, we just want to catch the current transaction,
 188         * and commit it. If there is no transaction, just return ENOENT.
 189         */
 190        if (type == TRANS_ATTACH)
 191                return -ENOENT;
 192
 193        /*
 194         * JOIN_NOLOCK only happens during the transaction commit, so
 195         * it is impossible that ->running_transaction is NULL
 196         */
 197        BUG_ON(type == TRANS_JOIN_NOLOCK);
 198
 199        cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
 200        if (!cur_trans)
 201                return -ENOMEM;
 202
 203        spin_lock(&fs_info->trans_lock);
 204        if (fs_info->running_transaction) {
 205                /*
 206                 * someone started a transaction after we unlocked.  Make sure
 207                 * to redo the checks above
 208                 */
 209                kfree(cur_trans);
 210                goto loop;
 211        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 212                spin_unlock(&fs_info->trans_lock);
 213                kfree(cur_trans);
 214                return -EROFS;
 215        }
 216
 217        cur_trans->fs_info = fs_info;
 218        atomic_set(&cur_trans->num_writers, 1);
 219        extwriter_counter_init(cur_trans, type);
 220        init_waitqueue_head(&cur_trans->writer_wait);
 221        init_waitqueue_head(&cur_trans->commit_wait);
 222        cur_trans->state = TRANS_STATE_RUNNING;
 223        /*
 224         * One for this trans handle, one so it will live on until we
 225         * commit the transaction.
 226         */
 227        refcount_set(&cur_trans->use_count, 2);
 228        cur_trans->flags = 0;
 229        cur_trans->start_time = ktime_get_seconds();
 230
 231        memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
 232
 233        cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
 234        cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
 235        atomic_set(&cur_trans->delayed_refs.num_entries, 0);
 236
 237        /*
 238         * although the tree mod log is per file system and not per transaction,
 239         * the log must never go across transaction boundaries.
 240         */
 241        smp_mb();
 242        if (!list_empty(&fs_info->tree_mod_seq_list))
 243                WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
 244        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 245                WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
 246        atomic64_set(&fs_info->tree_mod_seq, 0);
 247
 248        spin_lock_init(&cur_trans->delayed_refs.lock);
 249
 250        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 251        INIT_LIST_HEAD(&cur_trans->dev_update_list);
 252        INIT_LIST_HEAD(&cur_trans->switch_commits);
 253        INIT_LIST_HEAD(&cur_trans->dirty_bgs);
 254        INIT_LIST_HEAD(&cur_trans->io_bgs);
 255        INIT_LIST_HEAD(&cur_trans->dropped_roots);
 256        mutex_init(&cur_trans->cache_write_mutex);
 257        spin_lock_init(&cur_trans->dirty_bgs_lock);
 258        INIT_LIST_HEAD(&cur_trans->deleted_bgs);
 259        spin_lock_init(&cur_trans->dropped_roots_lock);
 260        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 261        extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
 262                        IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
 263        fs_info->generation++;
 264        cur_trans->transid = fs_info->generation;
 265        fs_info->running_transaction = cur_trans;
 266        cur_trans->aborted = 0;
 267        spin_unlock(&fs_info->trans_lock);
 268
 269        return 0;
 270}
 271
 272/*
 273 * this does all the record keeping required to make sure that a reference
 274 * counted root is properly recorded in a given transaction.  This is required
 275 * to make sure the old root from before we joined the transaction is deleted
 276 * when the transaction commits
 277 */
 278static int record_root_in_trans(struct btrfs_trans_handle *trans,
 279                               struct btrfs_root *root,
 280                               int force)
 281{
 282        struct btrfs_fs_info *fs_info = root->fs_info;
 283
 284        if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 285            root->last_trans < trans->transid) || force) {
 286                WARN_ON(root == fs_info->extent_root);
 287                WARN_ON(!force && root->commit_root != root->node);
 288
 289                /*
 290                 * see below for IN_TRANS_SETUP usage rules
 291                 * we have the reloc mutex held now, so there
 292                 * is only one writer in this function
 293                 */
 294                set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 295
 296                /* make sure readers find IN_TRANS_SETUP before
 297                 * they find our root->last_trans update
 298                 */
 299                smp_wmb();
 300
 301                spin_lock(&fs_info->fs_roots_radix_lock);
 302                if (root->last_trans == trans->transid && !force) {
 303                        spin_unlock(&fs_info->fs_roots_radix_lock);
 304                        return 0;
 305                }
 306                radix_tree_tag_set(&fs_info->fs_roots_radix,
 307                                   (unsigned long)root->root_key.objectid,
 308                                   BTRFS_ROOT_TRANS_TAG);
 309                spin_unlock(&fs_info->fs_roots_radix_lock);
 310                root->last_trans = trans->transid;
 311
 312                /* this is pretty tricky.  We don't want to
 313                 * take the relocation lock in btrfs_record_root_in_trans
 314                 * unless we're really doing the first setup for this root in
 315                 * this transaction.
 316                 *
 317                 * Normally we'd use root->last_trans as a flag to decide
 318                 * if we want to take the expensive mutex.
 319                 *
 320                 * But, we have to set root->last_trans before we
 321                 * init the relocation root, otherwise, we trip over warnings
 322                 * in ctree.c.  The solution used here is to flag ourselves
 323                 * with root IN_TRANS_SETUP.  When this is 1, we're still
 324                 * fixing up the reloc trees and everyone must wait.
 325                 *
 326                 * When this is zero, they can trust root->last_trans and fly
 327                 * through btrfs_record_root_in_trans without having to take the
 328                 * lock.  smp_wmb() makes sure that all the writes above are
 329                 * done before we pop in the zero below
 330                 */
 331                btrfs_init_reloc_root(trans, root);
 332                smp_mb__before_atomic();
 333                clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
 334        }
 335        return 0;
 336}
 337
 338
 339void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
 340                            struct btrfs_root *root)
 341{
 342        struct btrfs_fs_info *fs_info = root->fs_info;
 343        struct btrfs_transaction *cur_trans = trans->transaction;
 344
 345        /* Add ourselves to the transaction dropped list */
 346        spin_lock(&cur_trans->dropped_roots_lock);
 347        list_add_tail(&root->root_list, &cur_trans->dropped_roots);
 348        spin_unlock(&cur_trans->dropped_roots_lock);
 349
 350        /* Make sure we don't try to update the root at commit time */
 351        spin_lock(&fs_info->fs_roots_radix_lock);
 352        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 353                             (unsigned long)root->root_key.objectid,
 354                             BTRFS_ROOT_TRANS_TAG);
 355        spin_unlock(&fs_info->fs_roots_radix_lock);
 356}
 357
 358int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 359                               struct btrfs_root *root)
 360{
 361        struct btrfs_fs_info *fs_info = root->fs_info;
 362
 363        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 364                return 0;
 365
 366        /*
 367         * see record_root_in_trans for comments about IN_TRANS_SETUP usage
 368         * and barriers
 369         */
 370        smp_rmb();
 371        if (root->last_trans == trans->transid &&
 372            !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
 373                return 0;
 374
 375        mutex_lock(&fs_info->reloc_mutex);
 376        record_root_in_trans(trans, root, 0);
 377        mutex_unlock(&fs_info->reloc_mutex);
 378
 379        return 0;
 380}
 381
 382static inline int is_transaction_blocked(struct btrfs_transaction *trans)
 383{
 384        return (trans->state >= TRANS_STATE_BLOCKED &&
 385                trans->state < TRANS_STATE_UNBLOCKED &&
 386                !trans->aborted);
 387}
 388
 389/* wait for commit against the current transaction to become unblocked
 390 * when this is done, it is safe to start a new transaction, but the current
 391 * transaction might not be fully on disk.
 392 */
 393static void wait_current_trans(struct btrfs_fs_info *fs_info)
 394{
 395        struct btrfs_transaction *cur_trans;
 396
 397        spin_lock(&fs_info->trans_lock);
 398        cur_trans = fs_info->running_transaction;
 399        if (cur_trans && is_transaction_blocked(cur_trans)) {
 400                refcount_inc(&cur_trans->use_count);
 401                spin_unlock(&fs_info->trans_lock);
 402
 403                wait_event(fs_info->transaction_wait,
 404                           cur_trans->state >= TRANS_STATE_UNBLOCKED ||
 405                           cur_trans->aborted);
 406                btrfs_put_transaction(cur_trans);
 407        } else {
 408                spin_unlock(&fs_info->trans_lock);
 409        }
 410}
 411
 412static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
 413{
 414        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
 415                return 0;
 416
 417        if (type == TRANS_START)
 418                return 1;
 419
 420        return 0;
 421}
 422
 423static inline bool need_reserve_reloc_root(struct btrfs_root *root)
 424{
 425        struct btrfs_fs_info *fs_info = root->fs_info;
 426
 427        if (!fs_info->reloc_ctl ||
 428            !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 429            root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 430            root->reloc_root)
 431                return false;
 432
 433        return true;
 434}
 435
 436static struct btrfs_trans_handle *
 437start_transaction(struct btrfs_root *root, unsigned int num_items,
 438                  unsigned int type, enum btrfs_reserve_flush_enum flush,
 439                  bool enforce_qgroups)
 440{
 441        struct btrfs_fs_info *fs_info = root->fs_info;
 442        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 443        struct btrfs_trans_handle *h;
 444        struct btrfs_transaction *cur_trans;
 445        u64 num_bytes = 0;
 446        u64 qgroup_reserved = 0;
 447        bool reloc_reserved = false;
 448        int ret;
 449
 450        /* Send isn't supposed to start transactions. */
 451        ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
 452
 453        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 454                return ERR_PTR(-EROFS);
 455
 456        if (current->journal_info) {
 457                WARN_ON(type & TRANS_EXTWRITERS);
 458                h = current->journal_info;
 459                refcount_inc(&h->use_count);
 460                WARN_ON(refcount_read(&h->use_count) > 2);
 461                h->orig_rsv = h->block_rsv;
 462                h->block_rsv = NULL;
 463                goto got_it;
 464        }
 465
 466        /*
 467         * Do the reservation before we join the transaction so we can do all
 468         * the appropriate flushing if need be.
 469         */
 470        if (num_items && root != fs_info->chunk_root) {
 471                struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
 472                u64 delayed_refs_bytes = 0;
 473
 474                qgroup_reserved = num_items * fs_info->nodesize;
 475                ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
 476                                enforce_qgroups);
 477                if (ret)
 478                        return ERR_PTR(ret);
 479
 480                /*
 481                 * We want to reserve all the bytes we may need all at once, so
 482                 * we only do 1 enospc flushing cycle per transaction start.  We
 483                 * accomplish this by simply assuming we'll do 2 x num_items
 484                 * worth of delayed refs updates in this trans handle, and
 485                 * refill that amount for whatever is missing in the reserve.
 486                 */
 487                num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 488                if (delayed_refs_rsv->full == 0) {
 489                        delayed_refs_bytes = num_bytes;
 490                        num_bytes <<= 1;
 491                }
 492
 493                /*
 494                 * Do the reservation for the relocation root creation
 495                 */
 496                if (need_reserve_reloc_root(root)) {
 497                        num_bytes += fs_info->nodesize;
 498                        reloc_reserved = true;
 499                }
 500
 501                ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
 502                if (ret)
 503                        goto reserve_fail;
 504                if (delayed_refs_bytes) {
 505                        btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
 506                                                          delayed_refs_bytes);
 507                        num_bytes -= delayed_refs_bytes;
 508                }
 509        } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
 510                   !delayed_refs_rsv->full) {
 511                /*
 512                 * Some people call with btrfs_start_transaction(root, 0)
 513                 * because they can be throttled, but have some other mechanism
 514                 * for reserving space.  We still want these guys to refill the
 515                 * delayed block_rsv so just add 1 items worth of reservation
 516                 * here.
 517                 */
 518                ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
 519                if (ret)
 520                        goto reserve_fail;
 521        }
 522again:
 523        h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
 524        if (!h) {
 525                ret = -ENOMEM;
 526                goto alloc_fail;
 527        }
 528
 529        /*
 530         * If we are JOIN_NOLOCK we're already committing a transaction and
 531         * waiting on this guy, so we don't need to do the sb_start_intwrite
 532         * because we're already holding a ref.  We need this because we could
 533         * have raced in and did an fsync() on a file which can kick a commit
 534         * and then we deadlock with somebody doing a freeze.
 535         *
 536         * If we are ATTACH, it means we just want to catch the current
 537         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 538         */
 539        if (type & __TRANS_FREEZABLE)
 540                sb_start_intwrite(fs_info->sb);
 541
 542        if (may_wait_transaction(fs_info, type))
 543                wait_current_trans(fs_info);
 544
 545        do {
 546                ret = join_transaction(fs_info, type);
 547                if (ret == -EBUSY) {
 548                        wait_current_trans(fs_info);
 549                        if (unlikely(type == TRANS_ATTACH ||
 550                                     type == TRANS_JOIN_NOSTART))
 551                                ret = -ENOENT;
 552                }
 553        } while (ret == -EBUSY);
 554
 555        if (ret < 0)
 556                goto join_fail;
 557
 558        cur_trans = fs_info->running_transaction;
 559
 560        h->transid = cur_trans->transid;
 561        h->transaction = cur_trans;
 562        h->root = root;
 563        refcount_set(&h->use_count, 1);
 564        h->fs_info = root->fs_info;
 565
 566        h->type = type;
 567        h->can_flush_pending_bgs = true;
 568        INIT_LIST_HEAD(&h->new_bgs);
 569
 570        smp_mb();
 571        if (cur_trans->state >= TRANS_STATE_BLOCKED &&
 572            may_wait_transaction(fs_info, type)) {
 573                current->journal_info = h;
 574                btrfs_commit_transaction(h);
 575                goto again;
 576        }
 577
 578        if (num_bytes) {
 579                trace_btrfs_space_reservation(fs_info, "transaction",
 580                                              h->transid, num_bytes, 1);
 581                h->block_rsv = &fs_info->trans_block_rsv;
 582                h->bytes_reserved = num_bytes;
 583                h->reloc_reserved = reloc_reserved;
 584        }
 585
 586got_it:
 587        btrfs_record_root_in_trans(h, root);
 588
 589        if (!current->journal_info)
 590                current->journal_info = h;
 591        return h;
 592
 593join_fail:
 594        if (type & __TRANS_FREEZABLE)
 595                sb_end_intwrite(fs_info->sb);
 596        kmem_cache_free(btrfs_trans_handle_cachep, h);
 597alloc_fail:
 598        if (num_bytes)
 599                btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
 600                                        num_bytes);
 601reserve_fail:
 602        btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
 603        return ERR_PTR(ret);
 604}
 605
 606struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 607                                                   unsigned int num_items)
 608{
 609        return start_transaction(root, num_items, TRANS_START,
 610                                 BTRFS_RESERVE_FLUSH_ALL, true);
 611}
 612
 613struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
 614                                        struct btrfs_root *root,
 615                                        unsigned int num_items,
 616                                        int min_factor)
 617{
 618        struct btrfs_fs_info *fs_info = root->fs_info;
 619        struct btrfs_trans_handle *trans;
 620        u64 num_bytes;
 621        int ret;
 622
 623        /*
 624         * We have two callers: unlink and block group removal.  The
 625         * former should succeed even if we will temporarily exceed
 626         * quota and the latter operates on the extent root so
 627         * qgroup enforcement is ignored anyway.
 628         */
 629        trans = start_transaction(root, num_items, TRANS_START,
 630                                  BTRFS_RESERVE_FLUSH_ALL, false);
 631        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
 632                return trans;
 633
 634        trans = btrfs_start_transaction(root, 0);
 635        if (IS_ERR(trans))
 636                return trans;
 637
 638        num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
 639        ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
 640                                       num_bytes, min_factor);
 641        if (ret) {
 642                btrfs_end_transaction(trans);
 643                return ERR_PTR(ret);
 644        }
 645
 646        trans->block_rsv = &fs_info->trans_block_rsv;
 647        trans->bytes_reserved = num_bytes;
 648        trace_btrfs_space_reservation(fs_info, "transaction",
 649                                      trans->transid, num_bytes, 1);
 650
 651        return trans;
 652}
 653
 654struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 655{
 656        return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
 657                                 true);
 658}
 659
 660struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 661{
 662        return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
 663                                 BTRFS_RESERVE_NO_FLUSH, true);
 664}
 665
 666/*
 667 * Similar to regular join but it never starts a transaction when none is
 668 * running or after waiting for the current one to finish.
 669 */
 670struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
 671{
 672        return start_transaction(root, 0, TRANS_JOIN_NOSTART,
 673                                 BTRFS_RESERVE_NO_FLUSH, true);
 674}
 675
 676/*
 677 * btrfs_attach_transaction() - catch the running transaction
 678 *
 679 * It is used when we want to commit the current the transaction, but
 680 * don't want to start a new one.
 681 *
 682 * Note: If this function return -ENOENT, it just means there is no
 683 * running transaction. But it is possible that the inactive transaction
 684 * is still in the memory, not fully on disk. If you hope there is no
 685 * inactive transaction in the fs when -ENOENT is returned, you should
 686 * invoke
 687 *     btrfs_attach_transaction_barrier()
 688 */
 689struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 690{
 691        return start_transaction(root, 0, TRANS_ATTACH,
 692                                 BTRFS_RESERVE_NO_FLUSH, true);
 693}
 694
 695/*
 696 * btrfs_attach_transaction_barrier() - catch the running transaction
 697 *
 698 * It is similar to the above function, the difference is this one
 699 * will wait for all the inactive transactions until they fully
 700 * complete.
 701 */
 702struct btrfs_trans_handle *
 703btrfs_attach_transaction_barrier(struct btrfs_root *root)
 704{
 705        struct btrfs_trans_handle *trans;
 706
 707        trans = start_transaction(root, 0, TRANS_ATTACH,
 708                                  BTRFS_RESERVE_NO_FLUSH, true);
 709        if (trans == ERR_PTR(-ENOENT))
 710                btrfs_wait_for_commit(root->fs_info, 0);
 711
 712        return trans;
 713}
 714
 715/* wait for a transaction commit to be fully complete */
 716static noinline void wait_for_commit(struct btrfs_transaction *commit)
 717{
 718        wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
 719}
 720
 721int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
 722{
 723        struct btrfs_transaction *cur_trans = NULL, *t;
 724        int ret = 0;
 725
 726        if (transid) {
 727                if (transid <= fs_info->last_trans_committed)
 728                        goto out;
 729
 730                /* find specified transaction */
 731                spin_lock(&fs_info->trans_lock);
 732                list_for_each_entry(t, &fs_info->trans_list, list) {
 733                        if (t->transid == transid) {
 734                                cur_trans = t;
 735                                refcount_inc(&cur_trans->use_count);
 736                                ret = 0;
 737                                break;
 738                        }
 739                        if (t->transid > transid) {
 740                                ret = 0;
 741                                break;
 742                        }
 743                }
 744                spin_unlock(&fs_info->trans_lock);
 745
 746                /*
 747                 * The specified transaction doesn't exist, or we
 748                 * raced with btrfs_commit_transaction
 749                 */
 750                if (!cur_trans) {
 751                        if (transid > fs_info->last_trans_committed)
 752                                ret = -EINVAL;
 753                        goto out;
 754                }
 755        } else {
 756                /* find newest transaction that is committing | committed */
 757                spin_lock(&fs_info->trans_lock);
 758                list_for_each_entry_reverse(t, &fs_info->trans_list,
 759                                            list) {
 760                        if (t->state >= TRANS_STATE_COMMIT_START) {
 761                                if (t->state == TRANS_STATE_COMPLETED)
 762                                        break;
 763                                cur_trans = t;
 764                                refcount_inc(&cur_trans->use_count);
 765                                break;
 766                        }
 767                }
 768                spin_unlock(&fs_info->trans_lock);
 769                if (!cur_trans)
 770                        goto out;  /* nothing committing|committed */
 771        }
 772
 773        wait_for_commit(cur_trans);
 774        btrfs_put_transaction(cur_trans);
 775out:
 776        return ret;
 777}
 778
 779void btrfs_throttle(struct btrfs_fs_info *fs_info)
 780{
 781        wait_current_trans(fs_info);
 782}
 783
 784static int should_end_transaction(struct btrfs_trans_handle *trans)
 785{
 786        struct btrfs_fs_info *fs_info = trans->fs_info;
 787
 788        if (btrfs_check_space_for_delayed_refs(fs_info))
 789                return 1;
 790
 791        return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
 792}
 793
 794int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
 795{
 796        struct btrfs_transaction *cur_trans = trans->transaction;
 797
 798        smp_mb();
 799        if (cur_trans->state >= TRANS_STATE_BLOCKED ||
 800            cur_trans->delayed_refs.flushing)
 801                return 1;
 802
 803        return should_end_transaction(trans);
 804}
 805
 806static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
 807
 808{
 809        struct btrfs_fs_info *fs_info = trans->fs_info;
 810
 811        if (!trans->block_rsv) {
 812                ASSERT(!trans->bytes_reserved);
 813                return;
 814        }
 815
 816        if (!trans->bytes_reserved)
 817                return;
 818
 819        ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
 820        trace_btrfs_space_reservation(fs_info, "transaction",
 821                                      trans->transid, trans->bytes_reserved, 0);
 822        btrfs_block_rsv_release(fs_info, trans->block_rsv,
 823                                trans->bytes_reserved);
 824        trans->bytes_reserved = 0;
 825}
 826
 827static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 828                                   int throttle)
 829{
 830        struct btrfs_fs_info *info = trans->fs_info;
 831        struct btrfs_transaction *cur_trans = trans->transaction;
 832        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 833        int err = 0;
 834
 835        if (refcount_read(&trans->use_count) > 1) {
 836                refcount_dec(&trans->use_count);
 837                trans->block_rsv = trans->orig_rsv;
 838                return 0;
 839        }
 840
 841        btrfs_trans_release_metadata(trans);
 842        trans->block_rsv = NULL;
 843
 844        btrfs_create_pending_block_groups(trans);
 845
 846        btrfs_trans_release_chunk_metadata(trans);
 847
 848        if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
 849                if (throttle)
 850                        return btrfs_commit_transaction(trans);
 851                else
 852                        wake_up_process(info->transaction_kthread);
 853        }
 854
 855        if (trans->type & __TRANS_FREEZABLE)
 856                sb_end_intwrite(info->sb);
 857
 858        WARN_ON(cur_trans != info->running_transaction);
 859        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 860        atomic_dec(&cur_trans->num_writers);
 861        extwriter_counter_dec(cur_trans, trans->type);
 862
 863        cond_wake_up(&cur_trans->writer_wait);
 864        btrfs_put_transaction(cur_trans);
 865
 866        if (current->journal_info == trans)
 867                current->journal_info = NULL;
 868
 869        if (throttle)
 870                btrfs_run_delayed_iputs(info);
 871
 872        if (trans->aborted ||
 873            test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
 874                wake_up_process(info->transaction_kthread);
 875                err = -EIO;
 876        }
 877
 878        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 879        return err;
 880}
 881
 882int btrfs_end_transaction(struct btrfs_trans_handle *trans)
 883{
 884        return __btrfs_end_transaction(trans, 0);
 885}
 886
 887int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
 888{
 889        return __btrfs_end_transaction(trans, 1);
 890}
 891
 892/*
 893 * when btree blocks are allocated, they have some corresponding bits set for
 894 * them in one of two extent_io trees.  This is used to make sure all of
 895 * those extents are sent to disk but does not wait on them
 896 */
 897int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
 898                               struct extent_io_tree *dirty_pages, int mark)
 899{
 900        int err = 0;
 901        int werr = 0;
 902        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 903        struct extent_state *cached_state = NULL;
 904        u64 start = 0;
 905        u64 end;
 906
 907        atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 908        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 909                                      mark, &cached_state)) {
 910                bool wait_writeback = false;
 911
 912                err = convert_extent_bit(dirty_pages, start, end,
 913                                         EXTENT_NEED_WAIT,
 914                                         mark, &cached_state);
 915                /*
 916                 * convert_extent_bit can return -ENOMEM, which is most of the
 917                 * time a temporary error. So when it happens, ignore the error
 918                 * and wait for writeback of this range to finish - because we
 919                 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
 920                 * to __btrfs_wait_marked_extents() would not know that
 921                 * writeback for this range started and therefore wouldn't
 922                 * wait for it to finish - we don't want to commit a
 923                 * superblock that points to btree nodes/leafs for which
 924                 * writeback hasn't finished yet (and without errors).
 925                 * We cleanup any entries left in the io tree when committing
 926                 * the transaction (through extent_io_tree_release()).
 927                 */
 928                if (err == -ENOMEM) {
 929                        err = 0;
 930                        wait_writeback = true;
 931                }
 932                if (!err)
 933                        err = filemap_fdatawrite_range(mapping, start, end);
 934                if (err)
 935                        werr = err;
 936                else if (wait_writeback)
 937                        werr = filemap_fdatawait_range(mapping, start, end);
 938                free_extent_state(cached_state);
 939                cached_state = NULL;
 940                cond_resched();
 941                start = end + 1;
 942        }
 943        atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
 944        return werr;
 945}
 946
 947/*
 948 * when btree blocks are allocated, they have some corresponding bits set for
 949 * them in one of two extent_io trees.  This is used to make sure all of
 950 * those extents are on disk for transaction or log commit.  We wait
 951 * on all the pages and clear them from the dirty pages state tree
 952 */
 953static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
 954                                       struct extent_io_tree *dirty_pages)
 955{
 956        int err = 0;
 957        int werr = 0;
 958        struct address_space *mapping = fs_info->btree_inode->i_mapping;
 959        struct extent_state *cached_state = NULL;
 960        u64 start = 0;
 961        u64 end;
 962
 963        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 964                                      EXTENT_NEED_WAIT, &cached_state)) {
 965                /*
 966                 * Ignore -ENOMEM errors returned by clear_extent_bit().
 967                 * When committing the transaction, we'll remove any entries
 968                 * left in the io tree. For a log commit, we don't remove them
 969                 * after committing the log because the tree can be accessed
 970                 * concurrently - we do it only at transaction commit time when
 971                 * it's safe to do it (through extent_io_tree_release()).
 972                 */
 973                err = clear_extent_bit(dirty_pages, start, end,
 974                                       EXTENT_NEED_WAIT, 0, 0, &cached_state);
 975                if (err == -ENOMEM)
 976                        err = 0;
 977                if (!err)
 978                        err = filemap_fdatawait_range(mapping, start, end);
 979                if (err)
 980                        werr = err;
 981                free_extent_state(cached_state);
 982                cached_state = NULL;
 983                cond_resched();
 984                start = end + 1;
 985        }
 986        if (err)
 987                werr = err;
 988        return werr;
 989}
 990
 991int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
 992                       struct extent_io_tree *dirty_pages)
 993{
 994        bool errors = false;
 995        int err;
 996
 997        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
 998        if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
 999                errors = true;
1000
1001        if (errors && !err)
1002                err = -EIO;
1003        return err;
1004}
1005
1006int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1007{
1008        struct btrfs_fs_info *fs_info = log_root->fs_info;
1009        struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1010        bool errors = false;
1011        int err;
1012
1013        ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1014
1015        err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1016        if ((mark & EXTENT_DIRTY) &&
1017            test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1018                errors = true;
1019
1020        if ((mark & EXTENT_NEW) &&
1021            test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1022                errors = true;
1023
1024        if (errors && !err)
1025                err = -EIO;
1026        return err;
1027}
1028
1029/*
1030 * When btree blocks are allocated the corresponding extents are marked dirty.
1031 * This function ensures such extents are persisted on disk for transaction or
1032 * log commit.
1033 *
1034 * @trans: transaction whose dirty pages we'd like to write
1035 */
1036static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1037{
1038        int ret;
1039        int ret2;
1040        struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1041        struct btrfs_fs_info *fs_info = trans->fs_info;
1042        struct blk_plug plug;
1043
1044        blk_start_plug(&plug);
1045        ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1046        blk_finish_plug(&plug);
1047        ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1048
1049        extent_io_tree_release(&trans->transaction->dirty_pages);
1050
1051        if (ret)
1052                return ret;
1053        else if (ret2)
1054                return ret2;
1055        else
1056                return 0;
1057}
1058
1059/*
1060 * this is used to update the root pointer in the tree of tree roots.
1061 *
1062 * But, in the case of the extent allocation tree, updating the root
1063 * pointer may allocate blocks which may change the root of the extent
1064 * allocation tree.
1065 *
1066 * So, this loops and repeats and makes sure the cowonly root didn't
1067 * change while the root pointer was being updated in the metadata.
1068 */
1069static int update_cowonly_root(struct btrfs_trans_handle *trans,
1070                               struct btrfs_root *root)
1071{
1072        int ret;
1073        u64 old_root_bytenr;
1074        u64 old_root_used;
1075        struct btrfs_fs_info *fs_info = root->fs_info;
1076        struct btrfs_root *tree_root = fs_info->tree_root;
1077
1078        old_root_used = btrfs_root_used(&root->root_item);
1079
1080        while (1) {
1081                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1082                if (old_root_bytenr == root->node->start &&
1083                    old_root_used == btrfs_root_used(&root->root_item))
1084                        break;
1085
1086                btrfs_set_root_node(&root->root_item, root->node);
1087                ret = btrfs_update_root(trans, tree_root,
1088                                        &root->root_key,
1089                                        &root->root_item);
1090                if (ret)
1091                        return ret;
1092
1093                old_root_used = btrfs_root_used(&root->root_item);
1094        }
1095
1096        return 0;
1097}
1098
1099/*
1100 * update all the cowonly tree roots on disk
1101 *
1102 * The error handling in this function may not be obvious. Any of the
1103 * failures will cause the file system to go offline. We still need
1104 * to clean up the delayed refs.
1105 */
1106static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1107{
1108        struct btrfs_fs_info *fs_info = trans->fs_info;
1109        struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1110        struct list_head *io_bgs = &trans->transaction->io_bgs;
1111        struct list_head *next;
1112        struct extent_buffer *eb;
1113        int ret;
1114
1115        eb = btrfs_lock_root_node(fs_info->tree_root);
1116        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1117                              0, &eb);
1118        btrfs_tree_unlock(eb);
1119        free_extent_buffer(eb);
1120
1121        if (ret)
1122                return ret;
1123
1124        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1125        if (ret)
1126                return ret;
1127
1128        ret = btrfs_run_dev_stats(trans);
1129        if (ret)
1130                return ret;
1131        ret = btrfs_run_dev_replace(trans);
1132        if (ret)
1133                return ret;
1134        ret = btrfs_run_qgroups(trans);
1135        if (ret)
1136                return ret;
1137
1138        ret = btrfs_setup_space_cache(trans);
1139        if (ret)
1140                return ret;
1141
1142        /* run_qgroups might have added some more refs */
1143        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1144        if (ret)
1145                return ret;
1146again:
1147        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1148                struct btrfs_root *root;
1149                next = fs_info->dirty_cowonly_roots.next;
1150                list_del_init(next);
1151                root = list_entry(next, struct btrfs_root, dirty_list);
1152                clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1153
1154                if (root != fs_info->extent_root)
1155                        list_add_tail(&root->dirty_list,
1156                                      &trans->transaction->switch_commits);
1157                ret = update_cowonly_root(trans, root);
1158                if (ret)
1159                        return ret;
1160                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1161                if (ret)
1162                        return ret;
1163        }
1164
1165        while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1166                ret = btrfs_write_dirty_block_groups(trans);
1167                if (ret)
1168                        return ret;
1169                ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1170                if (ret)
1171                        return ret;
1172        }
1173
1174        if (!list_empty(&fs_info->dirty_cowonly_roots))
1175                goto again;
1176
1177        list_add_tail(&fs_info->extent_root->dirty_list,
1178                      &trans->transaction->switch_commits);
1179
1180        /* Update dev-replace pointer once everything is committed */
1181        fs_info->dev_replace.committed_cursor_left =
1182                fs_info->dev_replace.cursor_left_last_write_of_item;
1183
1184        return 0;
1185}
1186
1187/*
1188 * dead roots are old snapshots that need to be deleted.  This allocates
1189 * a dirty root struct and adds it into the list of dead roots that need to
1190 * be deleted
1191 */
1192void btrfs_add_dead_root(struct btrfs_root *root)
1193{
1194        struct btrfs_fs_info *fs_info = root->fs_info;
1195
1196        spin_lock(&fs_info->trans_lock);
1197        if (list_empty(&root->root_list))
1198                list_add_tail(&root->root_list, &fs_info->dead_roots);
1199        spin_unlock(&fs_info->trans_lock);
1200}
1201
1202/*
1203 * update all the cowonly tree roots on disk
1204 */
1205static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1206{
1207        struct btrfs_fs_info *fs_info = trans->fs_info;
1208        struct btrfs_root *gang[8];
1209        int i;
1210        int ret;
1211        int err = 0;
1212
1213        spin_lock(&fs_info->fs_roots_radix_lock);
1214        while (1) {
1215                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1216                                                 (void **)gang, 0,
1217                                                 ARRAY_SIZE(gang),
1218                                                 BTRFS_ROOT_TRANS_TAG);
1219                if (ret == 0)
1220                        break;
1221                for (i = 0; i < ret; i++) {
1222                        struct btrfs_root *root = gang[i];
1223                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
1224                                        (unsigned long)root->root_key.objectid,
1225                                        BTRFS_ROOT_TRANS_TAG);
1226                        spin_unlock(&fs_info->fs_roots_radix_lock);
1227
1228                        btrfs_free_log(trans, root);
1229                        btrfs_update_reloc_root(trans, root);
1230
1231                        btrfs_save_ino_cache(root, trans);
1232
1233                        /* see comments in should_cow_block() */
1234                        clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1235                        smp_mb__after_atomic();
1236
1237                        if (root->commit_root != root->node) {
1238                                list_add_tail(&root->dirty_list,
1239                                        &trans->transaction->switch_commits);
1240                                btrfs_set_root_node(&root->root_item,
1241                                                    root->node);
1242                        }
1243
1244                        err = btrfs_update_root(trans, fs_info->tree_root,
1245                                                &root->root_key,
1246                                                &root->root_item);
1247                        spin_lock(&fs_info->fs_roots_radix_lock);
1248                        if (err)
1249                                break;
1250                        btrfs_qgroup_free_meta_all_pertrans(root);
1251                }
1252        }
1253        spin_unlock(&fs_info->fs_roots_radix_lock);
1254        return err;
1255}
1256
1257/*
1258 * defrag a given btree.
1259 * Every leaf in the btree is read and defragged.
1260 */
1261int btrfs_defrag_root(struct btrfs_root *root)
1262{
1263        struct btrfs_fs_info *info = root->fs_info;
1264        struct btrfs_trans_handle *trans;
1265        int ret;
1266
1267        if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1268                return 0;
1269
1270        while (1) {
1271                trans = btrfs_start_transaction(root, 0);
1272                if (IS_ERR(trans))
1273                        return PTR_ERR(trans);
1274
1275                ret = btrfs_defrag_leaves(trans, root);
1276
1277                btrfs_end_transaction(trans);
1278                btrfs_btree_balance_dirty(info);
1279                cond_resched();
1280
1281                if (btrfs_fs_closing(info) || ret != -EAGAIN)
1282                        break;
1283
1284                if (btrfs_defrag_cancelled(info)) {
1285                        btrfs_debug(info, "defrag_root cancelled");
1286                        ret = -EAGAIN;
1287                        break;
1288                }
1289        }
1290        clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1291        return ret;
1292}
1293
1294/*
1295 * Do all special snapshot related qgroup dirty hack.
1296 *
1297 * Will do all needed qgroup inherit and dirty hack like switch commit
1298 * roots inside one transaction and write all btree into disk, to make
1299 * qgroup works.
1300 */
1301static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1302                                   struct btrfs_root *src,
1303                                   struct btrfs_root *parent,
1304                                   struct btrfs_qgroup_inherit *inherit,
1305                                   u64 dst_objectid)
1306{
1307        struct btrfs_fs_info *fs_info = src->fs_info;
1308        int ret;
1309
1310        /*
1311         * Save some performance in the case that qgroups are not
1312         * enabled. If this check races with the ioctl, rescan will
1313         * kick in anyway.
1314         */
1315        if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1316                return 0;
1317
1318        /*
1319         * Ensure dirty @src will be committed.  Or, after coming
1320         * commit_fs_roots() and switch_commit_roots(), any dirty but not
1321         * recorded root will never be updated again, causing an outdated root
1322         * item.
1323         */
1324        record_root_in_trans(trans, src, 1);
1325
1326        /*
1327         * We are going to commit transaction, see btrfs_commit_transaction()
1328         * comment for reason locking tree_log_mutex
1329         */
1330        mutex_lock(&fs_info->tree_log_mutex);
1331
1332        ret = commit_fs_roots(trans);
1333        if (ret)
1334                goto out;
1335        ret = btrfs_qgroup_account_extents(trans);
1336        if (ret < 0)
1337                goto out;
1338
1339        /* Now qgroup are all updated, we can inherit it to new qgroups */
1340        ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1341                                   inherit);
1342        if (ret < 0)
1343                goto out;
1344
1345        /*
1346         * Now we do a simplified commit transaction, which will:
1347         * 1) commit all subvolume and extent tree
1348         *    To ensure all subvolume and extent tree have a valid
1349         *    commit_root to accounting later insert_dir_item()
1350         * 2) write all btree blocks onto disk
1351         *    This is to make sure later btree modification will be cowed
1352         *    Or commit_root can be populated and cause wrong qgroup numbers
1353         * In this simplified commit, we don't really care about other trees
1354         * like chunk and root tree, as they won't affect qgroup.
1355         * And we don't write super to avoid half committed status.
1356         */
1357        ret = commit_cowonly_roots(trans);
1358        if (ret)
1359                goto out;
1360        switch_commit_roots(trans->transaction);
1361        ret = btrfs_write_and_wait_transaction(trans);
1362        if (ret)
1363                btrfs_handle_fs_error(fs_info, ret,
1364                        "Error while writing out transaction for qgroup");
1365
1366out:
1367        mutex_unlock(&fs_info->tree_log_mutex);
1368
1369        /*
1370         * Force parent root to be updated, as we recorded it before so its
1371         * last_trans == cur_transid.
1372         * Or it won't be committed again onto disk after later
1373         * insert_dir_item()
1374         */
1375        if (!ret)
1376                record_root_in_trans(trans, parent, 1);
1377        return ret;
1378}
1379
1380/*
1381 * new snapshots need to be created at a very specific time in the
1382 * transaction commit.  This does the actual creation.
1383 *
1384 * Note:
1385 * If the error which may affect the commitment of the current transaction
1386 * happens, we should return the error number. If the error which just affect
1387 * the creation of the pending snapshots, just return 0.
1388 */
1389static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1390                                   struct btrfs_pending_snapshot *pending)
1391{
1392
1393        struct btrfs_fs_info *fs_info = trans->fs_info;
1394        struct btrfs_key key;
1395        struct btrfs_root_item *new_root_item;
1396        struct btrfs_root *tree_root = fs_info->tree_root;
1397        struct btrfs_root *root = pending->root;
1398        struct btrfs_root *parent_root;
1399        struct btrfs_block_rsv *rsv;
1400        struct inode *parent_inode;
1401        struct btrfs_path *path;
1402        struct btrfs_dir_item *dir_item;
1403        struct dentry *dentry;
1404        struct extent_buffer *tmp;
1405        struct extent_buffer *old;
1406        struct timespec64 cur_time;
1407        int ret = 0;
1408        u64 to_reserve = 0;
1409        u64 index = 0;
1410        u64 objectid;
1411        u64 root_flags;
1412        uuid_le new_uuid;
1413
1414        ASSERT(pending->path);
1415        path = pending->path;
1416
1417        ASSERT(pending->root_item);
1418        new_root_item = pending->root_item;
1419
1420        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1421        if (pending->error)
1422                goto no_free_objectid;
1423
1424        /*
1425         * Make qgroup to skip current new snapshot's qgroupid, as it is
1426         * accounted by later btrfs_qgroup_inherit().
1427         */
1428        btrfs_set_skip_qgroup(trans, objectid);
1429
1430        btrfs_reloc_pre_snapshot(pending, &to_reserve);
1431
1432        if (to_reserve > 0) {
1433                pending->error = btrfs_block_rsv_add(root,
1434                                                     &pending->block_rsv,
1435                                                     to_reserve,
1436                                                     BTRFS_RESERVE_NO_FLUSH);
1437                if (pending->error)
1438                        goto clear_skip_qgroup;
1439        }
1440
1441        key.objectid = objectid;
1442        key.offset = (u64)-1;
1443        key.type = BTRFS_ROOT_ITEM_KEY;
1444
1445        rsv = trans->block_rsv;
1446        trans->block_rsv = &pending->block_rsv;
1447        trans->bytes_reserved = trans->block_rsv->reserved;
1448        trace_btrfs_space_reservation(fs_info, "transaction",
1449                                      trans->transid,
1450                                      trans->bytes_reserved, 1);
1451        dentry = pending->dentry;
1452        parent_inode = pending->dir;
1453        parent_root = BTRFS_I(parent_inode)->root;
1454        record_root_in_trans(trans, parent_root, 0);
1455
1456        cur_time = current_time(parent_inode);
1457
1458        /*
1459         * insert the directory item
1460         */
1461        ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1462        BUG_ON(ret); /* -ENOMEM */
1463
1464        /* check if there is a file/dir which has the same name. */
1465        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1466                                         btrfs_ino(BTRFS_I(parent_inode)),
1467                                         dentry->d_name.name,
1468                                         dentry->d_name.len, 0);
1469        if (dir_item != NULL && !IS_ERR(dir_item)) {
1470                pending->error = -EEXIST;
1471                goto dir_item_existed;
1472        } else if (IS_ERR(dir_item)) {
1473                ret = PTR_ERR(dir_item);
1474                btrfs_abort_transaction(trans, ret);
1475                goto fail;
1476        }
1477        btrfs_release_path(path);
1478
1479        /*
1480         * pull in the delayed directory update
1481         * and the delayed inode item
1482         * otherwise we corrupt the FS during
1483         * snapshot
1484         */
1485        ret = btrfs_run_delayed_items(trans);
1486        if (ret) {      /* Transaction aborted */
1487                btrfs_abort_transaction(trans, ret);
1488                goto fail;
1489        }
1490
1491        record_root_in_trans(trans, root, 0);
1492        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1493        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1494        btrfs_check_and_init_root_item(new_root_item);
1495
1496        root_flags = btrfs_root_flags(new_root_item);
1497        if (pending->readonly)
1498                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1499        else
1500                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1501        btrfs_set_root_flags(new_root_item, root_flags);
1502
1503        btrfs_set_root_generation_v2(new_root_item,
1504                        trans->transid);
1505        uuid_le_gen(&new_uuid);
1506        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1507        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1508                        BTRFS_UUID_SIZE);
1509        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1510                memset(new_root_item->received_uuid, 0,
1511                       sizeof(new_root_item->received_uuid));
1512                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1513                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1514                btrfs_set_root_stransid(new_root_item, 0);
1515                btrfs_set_root_rtransid(new_root_item, 0);
1516        }
1517        btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1518        btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1519        btrfs_set_root_otransid(new_root_item, trans->transid);
1520
1521        old = btrfs_lock_root_node(root);
1522        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1523        if (ret) {
1524                btrfs_tree_unlock(old);
1525                free_extent_buffer(old);
1526                btrfs_abort_transaction(trans, ret);
1527                goto fail;
1528        }
1529
1530        btrfs_set_lock_blocking_write(old);
1531
1532        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1533        /* clean up in any case */
1534        btrfs_tree_unlock(old);
1535        free_extent_buffer(old);
1536        if (ret) {
1537                btrfs_abort_transaction(trans, ret);
1538                goto fail;
1539        }
1540        /* see comments in should_cow_block() */
1541        set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1542        smp_wmb();
1543
1544        btrfs_set_root_node(new_root_item, tmp);
1545        /* record when the snapshot was created in key.offset */
1546        key.offset = trans->transid;
1547        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1548        btrfs_tree_unlock(tmp);
1549        free_extent_buffer(tmp);
1550        if (ret) {
1551                btrfs_abort_transaction(trans, ret);
1552                goto fail;
1553        }
1554
1555        /*
1556         * insert root back/forward references
1557         */
1558        ret = btrfs_add_root_ref(trans, objectid,
1559                                 parent_root->root_key.objectid,
1560                                 btrfs_ino(BTRFS_I(parent_inode)), index,
1561                                 dentry->d_name.name, dentry->d_name.len);
1562        if (ret) {
1563                btrfs_abort_transaction(trans, ret);
1564                goto fail;
1565        }
1566
1567        key.offset = (u64)-1;
1568        pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1569        if (IS_ERR(pending->snap)) {
1570                ret = PTR_ERR(pending->snap);
1571                btrfs_abort_transaction(trans, ret);
1572                goto fail;
1573        }
1574
1575        ret = btrfs_reloc_post_snapshot(trans, pending);
1576        if (ret) {
1577                btrfs_abort_transaction(trans, ret);
1578                goto fail;
1579        }
1580
1581        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1582        if (ret) {
1583                btrfs_abort_transaction(trans, ret);
1584                goto fail;
1585        }
1586
1587        /*
1588         * Do special qgroup accounting for snapshot, as we do some qgroup
1589         * snapshot hack to do fast snapshot.
1590         * To co-operate with that hack, we do hack again.
1591         * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1592         */
1593        ret = qgroup_account_snapshot(trans, root, parent_root,
1594                                      pending->inherit, objectid);
1595        if (ret < 0)
1596                goto fail;
1597
1598        ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1599                                    dentry->d_name.len, BTRFS_I(parent_inode),
1600                                    &key, BTRFS_FT_DIR, index);
1601        /* We have check then name at the beginning, so it is impossible. */
1602        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1603        if (ret) {
1604                btrfs_abort_transaction(trans, ret);
1605                goto fail;
1606        }
1607
1608        btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1609                                         dentry->d_name.len * 2);
1610        parent_inode->i_mtime = parent_inode->i_ctime =
1611                current_time(parent_inode);
1612        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1613        if (ret) {
1614                btrfs_abort_transaction(trans, ret);
1615                goto fail;
1616        }
1617        ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1618                                  objectid);
1619        if (ret) {
1620                btrfs_abort_transaction(trans, ret);
1621                goto fail;
1622        }
1623        if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1624                ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1625                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1626                                          objectid);
1627                if (ret && ret != -EEXIST) {
1628                        btrfs_abort_transaction(trans, ret);
1629                        goto fail;
1630                }
1631        }
1632
1633        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1634        if (ret) {
1635                btrfs_abort_transaction(trans, ret);
1636                goto fail;
1637        }
1638
1639fail:
1640        pending->error = ret;
1641dir_item_existed:
1642        trans->block_rsv = rsv;
1643        trans->bytes_reserved = 0;
1644clear_skip_qgroup:
1645        btrfs_clear_skip_qgroup(trans);
1646no_free_objectid:
1647        kfree(new_root_item);
1648        pending->root_item = NULL;
1649        btrfs_free_path(path);
1650        pending->path = NULL;
1651
1652        return ret;
1653}
1654
1655/*
1656 * create all the snapshots we've scheduled for creation
1657 */
1658static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1659{
1660        struct btrfs_pending_snapshot *pending, *next;
1661        struct list_head *head = &trans->transaction->pending_snapshots;
1662        int ret = 0;
1663
1664        list_for_each_entry_safe(pending, next, head, list) {
1665                list_del(&pending->list);
1666                ret = create_pending_snapshot(trans, pending);
1667                if (ret)
1668                        break;
1669        }
1670        return ret;
1671}
1672
1673static void update_super_roots(struct btrfs_fs_info *fs_info)
1674{
1675        struct btrfs_root_item *root_item;
1676        struct btrfs_super_block *super;
1677
1678        super = fs_info->super_copy;
1679
1680        root_item = &fs_info->chunk_root->root_item;
1681        super->chunk_root = root_item->bytenr;
1682        super->chunk_root_generation = root_item->generation;
1683        super->chunk_root_level = root_item->level;
1684
1685        root_item = &fs_info->tree_root->root_item;
1686        super->root = root_item->bytenr;
1687        super->generation = root_item->generation;
1688        super->root_level = root_item->level;
1689        if (btrfs_test_opt(fs_info, SPACE_CACHE))
1690                super->cache_generation = root_item->generation;
1691        if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1692                super->uuid_tree_generation = root_item->generation;
1693}
1694
1695int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1696{
1697        struct btrfs_transaction *trans;
1698        int ret = 0;
1699
1700        spin_lock(&info->trans_lock);
1701        trans = info->running_transaction;
1702        if (trans)
1703                ret = (trans->state >= TRANS_STATE_COMMIT_START);
1704        spin_unlock(&info->trans_lock);
1705        return ret;
1706}
1707
1708int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1709{
1710        struct btrfs_transaction *trans;
1711        int ret = 0;
1712
1713        spin_lock(&info->trans_lock);
1714        trans = info->running_transaction;
1715        if (trans)
1716                ret = is_transaction_blocked(trans);
1717        spin_unlock(&info->trans_lock);
1718        return ret;
1719}
1720
1721/*
1722 * wait for the current transaction commit to start and block subsequent
1723 * transaction joins
1724 */
1725static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1726                                            struct btrfs_transaction *trans)
1727{
1728        wait_event(fs_info->transaction_blocked_wait,
1729                   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1730}
1731
1732/*
1733 * wait for the current transaction to start and then become unblocked.
1734 * caller holds ref.
1735 */
1736static void wait_current_trans_commit_start_and_unblock(
1737                                        struct btrfs_fs_info *fs_info,
1738                                        struct btrfs_transaction *trans)
1739{
1740        wait_event(fs_info->transaction_wait,
1741                   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1742}
1743
1744/*
1745 * commit transactions asynchronously. once btrfs_commit_transaction_async
1746 * returns, any subsequent transaction will not be allowed to join.
1747 */
1748struct btrfs_async_commit {
1749        struct btrfs_trans_handle *newtrans;
1750        struct work_struct work;
1751};
1752
1753static void do_async_commit(struct work_struct *work)
1754{
1755        struct btrfs_async_commit *ac =
1756                container_of(work, struct btrfs_async_commit, work);
1757
1758        /*
1759         * We've got freeze protection passed with the transaction.
1760         * Tell lockdep about it.
1761         */
1762        if (ac->newtrans->type & __TRANS_FREEZABLE)
1763                __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1764
1765        current->journal_info = ac->newtrans;
1766
1767        btrfs_commit_transaction(ac->newtrans);
1768        kfree(ac);
1769}
1770
1771int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1772                                   int wait_for_unblock)
1773{
1774        struct btrfs_fs_info *fs_info = trans->fs_info;
1775        struct btrfs_async_commit *ac;
1776        struct btrfs_transaction *cur_trans;
1777
1778        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1779        if (!ac)
1780                return -ENOMEM;
1781
1782        INIT_WORK(&ac->work, do_async_commit);
1783        ac->newtrans = btrfs_join_transaction(trans->root);
1784        if (IS_ERR(ac->newtrans)) {
1785                int err = PTR_ERR(ac->newtrans);
1786                kfree(ac);
1787                return err;
1788        }
1789
1790        /* take transaction reference */
1791        cur_trans = trans->transaction;
1792        refcount_inc(&cur_trans->use_count);
1793
1794        btrfs_end_transaction(trans);
1795
1796        /*
1797         * Tell lockdep we've released the freeze rwsem, since the
1798         * async commit thread will be the one to unlock it.
1799         */
1800        if (ac->newtrans->type & __TRANS_FREEZABLE)
1801                __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1802
1803        schedule_work(&ac->work);
1804
1805        /* wait for transaction to start and unblock */
1806        if (wait_for_unblock)
1807                wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1808        else
1809                wait_current_trans_commit_start(fs_info, cur_trans);
1810
1811        if (current->journal_info == trans)
1812                current->journal_info = NULL;
1813
1814        btrfs_put_transaction(cur_trans);
1815        return 0;
1816}
1817
1818
1819static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1820{
1821        struct btrfs_fs_info *fs_info = trans->fs_info;
1822        struct btrfs_transaction *cur_trans = trans->transaction;
1823
1824        WARN_ON(refcount_read(&trans->use_count) > 1);
1825
1826        btrfs_abort_transaction(trans, err);
1827
1828        spin_lock(&fs_info->trans_lock);
1829
1830        /*
1831         * If the transaction is removed from the list, it means this
1832         * transaction has been committed successfully, so it is impossible
1833         * to call the cleanup function.
1834         */
1835        BUG_ON(list_empty(&cur_trans->list));
1836
1837        list_del_init(&cur_trans->list);
1838        if (cur_trans == fs_info->running_transaction) {
1839                cur_trans->state = TRANS_STATE_COMMIT_DOING;
1840                spin_unlock(&fs_info->trans_lock);
1841                wait_event(cur_trans->writer_wait,
1842                           atomic_read(&cur_trans->num_writers) == 1);
1843
1844                spin_lock(&fs_info->trans_lock);
1845        }
1846        spin_unlock(&fs_info->trans_lock);
1847
1848        btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1849
1850        spin_lock(&fs_info->trans_lock);
1851        if (cur_trans == fs_info->running_transaction)
1852                fs_info->running_transaction = NULL;
1853        spin_unlock(&fs_info->trans_lock);
1854
1855        if (trans->type & __TRANS_FREEZABLE)
1856                sb_end_intwrite(fs_info->sb);
1857        btrfs_put_transaction(cur_trans);
1858        btrfs_put_transaction(cur_trans);
1859
1860        trace_btrfs_transaction_commit(trans->root);
1861
1862        if (current->journal_info == trans)
1863                current->journal_info = NULL;
1864        btrfs_scrub_cancel(fs_info);
1865
1866        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1867}
1868
1869/*
1870 * Release reserved delayed ref space of all pending block groups of the
1871 * transaction and remove them from the list
1872 */
1873static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1874{
1875       struct btrfs_fs_info *fs_info = trans->fs_info;
1876       struct btrfs_block_group_cache *block_group, *tmp;
1877
1878       list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1879               btrfs_delayed_refs_rsv_release(fs_info, 1);
1880               list_del_init(&block_group->bg_list);
1881       }
1882}
1883
1884static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1885{
1886        struct btrfs_fs_info *fs_info = trans->fs_info;
1887
1888        /*
1889         * We use writeback_inodes_sb here because if we used
1890         * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1891         * Currently are holding the fs freeze lock, if we do an async flush
1892         * we'll do btrfs_join_transaction() and deadlock because we need to
1893         * wait for the fs freeze lock.  Using the direct flushing we benefit
1894         * from already being in a transaction and our join_transaction doesn't
1895         * have to re-take the fs freeze lock.
1896         */
1897        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1898                writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1899        } else {
1900                struct btrfs_pending_snapshot *pending;
1901                struct list_head *head = &trans->transaction->pending_snapshots;
1902
1903                /*
1904                 * Flush dellaloc for any root that is going to be snapshotted.
1905                 * This is done to avoid a corrupted version of files, in the
1906                 * snapshots, that had both buffered and direct IO writes (even
1907                 * if they were done sequentially) due to an unordered update of
1908                 * the inode's size on disk.
1909                 */
1910                list_for_each_entry(pending, head, list) {
1911                        int ret;
1912
1913                        ret = btrfs_start_delalloc_snapshot(pending->root);
1914                        if (ret)
1915                                return ret;
1916                }
1917        }
1918        return 0;
1919}
1920
1921static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1922{
1923        struct btrfs_fs_info *fs_info = trans->fs_info;
1924
1925        if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1926                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1927        } else {
1928                struct btrfs_pending_snapshot *pending;
1929                struct list_head *head = &trans->transaction->pending_snapshots;
1930
1931                /*
1932                 * Wait for any dellaloc that we started previously for the roots
1933                 * that are going to be snapshotted. This is to avoid a corrupted
1934                 * version of files in the snapshots that had both buffered and
1935                 * direct IO writes (even if they were done sequentially).
1936                 */
1937                list_for_each_entry(pending, head, list)
1938                        btrfs_wait_ordered_extents(pending->root,
1939                                                   U64_MAX, 0, U64_MAX);
1940        }
1941}
1942
1943int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1944{
1945        struct btrfs_fs_info *fs_info = trans->fs_info;
1946        struct btrfs_transaction *cur_trans = trans->transaction;
1947        struct btrfs_transaction *prev_trans = NULL;
1948        int ret;
1949
1950        /* Stop the commit early if ->aborted is set */
1951        if (unlikely(READ_ONCE(cur_trans->aborted))) {
1952                ret = cur_trans->aborted;
1953                btrfs_end_transaction(trans);
1954                return ret;
1955        }
1956
1957        btrfs_trans_release_metadata(trans);
1958        trans->block_rsv = NULL;
1959
1960        /* make a pass through all the delayed refs we have so far
1961         * any runnings procs may add more while we are here
1962         */
1963        ret = btrfs_run_delayed_refs(trans, 0);
1964        if (ret) {
1965                btrfs_end_transaction(trans);
1966                return ret;
1967        }
1968
1969        cur_trans = trans->transaction;
1970
1971        /*
1972         * set the flushing flag so procs in this transaction have to
1973         * start sending their work down.
1974         */
1975        cur_trans->delayed_refs.flushing = 1;
1976        smp_wmb();
1977
1978        btrfs_create_pending_block_groups(trans);
1979
1980        ret = btrfs_run_delayed_refs(trans, 0);
1981        if (ret) {
1982                btrfs_end_transaction(trans);
1983                return ret;
1984        }
1985
1986        if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1987                int run_it = 0;
1988
1989                /* this mutex is also taken before trying to set
1990                 * block groups readonly.  We need to make sure
1991                 * that nobody has set a block group readonly
1992                 * after a extents from that block group have been
1993                 * allocated for cache files.  btrfs_set_block_group_ro
1994                 * will wait for the transaction to commit if it
1995                 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1996                 *
1997                 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1998                 * only one process starts all the block group IO.  It wouldn't
1999                 * hurt to have more than one go through, but there's no
2000                 * real advantage to it either.
2001                 */
2002                mutex_lock(&fs_info->ro_block_group_mutex);
2003                if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2004                                      &cur_trans->flags))
2005                        run_it = 1;
2006                mutex_unlock(&fs_info->ro_block_group_mutex);
2007
2008                if (run_it) {
2009                        ret = btrfs_start_dirty_block_groups(trans);
2010                        if (ret) {
2011                                btrfs_end_transaction(trans);
2012                                return ret;
2013                        }
2014                }
2015        }
2016
2017        spin_lock(&fs_info->trans_lock);
2018        if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2019                spin_unlock(&fs_info->trans_lock);
2020                refcount_inc(&cur_trans->use_count);
2021                ret = btrfs_end_transaction(trans);
2022
2023                wait_for_commit(cur_trans);
2024
2025                if (unlikely(cur_trans->aborted))
2026                        ret = cur_trans->aborted;
2027
2028                btrfs_put_transaction(cur_trans);
2029
2030                return ret;
2031        }
2032
2033        cur_trans->state = TRANS_STATE_COMMIT_START;
2034        wake_up(&fs_info->transaction_blocked_wait);
2035
2036        if (cur_trans->list.prev != &fs_info->trans_list) {
2037                prev_trans = list_entry(cur_trans->list.prev,
2038                                        struct btrfs_transaction, list);
2039                if (prev_trans->state != TRANS_STATE_COMPLETED) {
2040                        refcount_inc(&prev_trans->use_count);
2041                        spin_unlock(&fs_info->trans_lock);
2042
2043                        wait_for_commit(prev_trans);
2044                        ret = prev_trans->aborted;
2045
2046                        btrfs_put_transaction(prev_trans);
2047                        if (ret)
2048                                goto cleanup_transaction;
2049                } else {
2050                        spin_unlock(&fs_info->trans_lock);
2051                }
2052        } else {
2053                spin_unlock(&fs_info->trans_lock);
2054                /*
2055                 * The previous transaction was aborted and was already removed
2056                 * from the list of transactions at fs_info->trans_list. So we
2057                 * abort to prevent writing a new superblock that reflects a
2058                 * corrupt state (pointing to trees with unwritten nodes/leafs).
2059                 */
2060                if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2061                        ret = -EROFS;
2062                        goto cleanup_transaction;
2063                }
2064        }
2065
2066        extwriter_counter_dec(cur_trans, trans->type);
2067
2068        ret = btrfs_start_delalloc_flush(trans);
2069        if (ret)
2070                goto cleanup_transaction;
2071
2072        ret = btrfs_run_delayed_items(trans);
2073        if (ret)
2074                goto cleanup_transaction;
2075
2076        wait_event(cur_trans->writer_wait,
2077                   extwriter_counter_read(cur_trans) == 0);
2078
2079        /* some pending stuffs might be added after the previous flush. */
2080        ret = btrfs_run_delayed_items(trans);
2081        if (ret)
2082                goto cleanup_transaction;
2083
2084        btrfs_wait_delalloc_flush(trans);
2085
2086        btrfs_scrub_pause(fs_info);
2087        /*
2088         * Ok now we need to make sure to block out any other joins while we
2089         * commit the transaction.  We could have started a join before setting
2090         * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2091         */
2092        spin_lock(&fs_info->trans_lock);
2093        cur_trans->state = TRANS_STATE_COMMIT_DOING;
2094        spin_unlock(&fs_info->trans_lock);
2095        wait_event(cur_trans->writer_wait,
2096                   atomic_read(&cur_trans->num_writers) == 1);
2097
2098        /* ->aborted might be set after the previous check, so check it */
2099        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2100                ret = cur_trans->aborted;
2101                goto scrub_continue;
2102        }
2103        /*
2104         * the reloc mutex makes sure that we stop
2105         * the balancing code from coming in and moving
2106         * extents around in the middle of the commit
2107         */
2108        mutex_lock(&fs_info->reloc_mutex);
2109
2110        /*
2111         * We needn't worry about the delayed items because we will
2112         * deal with them in create_pending_snapshot(), which is the
2113         * core function of the snapshot creation.
2114         */
2115        ret = create_pending_snapshots(trans);
2116        if (ret) {
2117                mutex_unlock(&fs_info->reloc_mutex);
2118                goto scrub_continue;
2119        }
2120
2121        /*
2122         * We insert the dir indexes of the snapshots and update the inode
2123         * of the snapshots' parents after the snapshot creation, so there
2124         * are some delayed items which are not dealt with. Now deal with
2125         * them.
2126         *
2127         * We needn't worry that this operation will corrupt the snapshots,
2128         * because all the tree which are snapshoted will be forced to COW
2129         * the nodes and leaves.
2130         */
2131        ret = btrfs_run_delayed_items(trans);
2132        if (ret) {
2133                mutex_unlock(&fs_info->reloc_mutex);
2134                goto scrub_continue;
2135        }
2136
2137        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2138        if (ret) {
2139                mutex_unlock(&fs_info->reloc_mutex);
2140                goto scrub_continue;
2141        }
2142
2143        /*
2144         * make sure none of the code above managed to slip in a
2145         * delayed item
2146         */
2147        btrfs_assert_delayed_root_empty(fs_info);
2148
2149        WARN_ON(cur_trans != trans->transaction);
2150
2151        /* btrfs_commit_tree_roots is responsible for getting the
2152         * various roots consistent with each other.  Every pointer
2153         * in the tree of tree roots has to point to the most up to date
2154         * root for every subvolume and other tree.  So, we have to keep
2155         * the tree logging code from jumping in and changing any
2156         * of the trees.
2157         *
2158         * At this point in the commit, there can't be any tree-log
2159         * writers, but a little lower down we drop the trans mutex
2160         * and let new people in.  By holding the tree_log_mutex
2161         * from now until after the super is written, we avoid races
2162         * with the tree-log code.
2163         */
2164        mutex_lock(&fs_info->tree_log_mutex);
2165
2166        ret = commit_fs_roots(trans);
2167        if (ret) {
2168                mutex_unlock(&fs_info->tree_log_mutex);
2169                mutex_unlock(&fs_info->reloc_mutex);
2170                goto scrub_continue;
2171        }
2172
2173        /*
2174         * Since the transaction is done, we can apply the pending changes
2175         * before the next transaction.
2176         */
2177        btrfs_apply_pending_changes(fs_info);
2178
2179        /* commit_fs_roots gets rid of all the tree log roots, it is now
2180         * safe to free the root of tree log roots
2181         */
2182        btrfs_free_log_root_tree(trans, fs_info);
2183
2184        /*
2185         * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2186         * new delayed refs. Must handle them or qgroup can be wrong.
2187         */
2188        ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2189        if (ret) {
2190                mutex_unlock(&fs_info->tree_log_mutex);
2191                mutex_unlock(&fs_info->reloc_mutex);
2192                goto scrub_continue;
2193        }
2194
2195        /*
2196         * Since fs roots are all committed, we can get a quite accurate
2197         * new_roots. So let's do quota accounting.
2198         */
2199        ret = btrfs_qgroup_account_extents(trans);
2200        if (ret < 0) {
2201                mutex_unlock(&fs_info->tree_log_mutex);
2202                mutex_unlock(&fs_info->reloc_mutex);
2203                goto scrub_continue;
2204        }
2205
2206        ret = commit_cowonly_roots(trans);
2207        if (ret) {
2208                mutex_unlock(&fs_info->tree_log_mutex);
2209                mutex_unlock(&fs_info->reloc_mutex);
2210                goto scrub_continue;
2211        }
2212
2213        /*
2214         * The tasks which save the space cache and inode cache may also
2215         * update ->aborted, check it.
2216         */
2217        if (unlikely(READ_ONCE(cur_trans->aborted))) {
2218                ret = cur_trans->aborted;
2219                mutex_unlock(&fs_info->tree_log_mutex);
2220                mutex_unlock(&fs_info->reloc_mutex);
2221                goto scrub_continue;
2222        }
2223
2224        btrfs_prepare_extent_commit(fs_info);
2225
2226        cur_trans = fs_info->running_transaction;
2227
2228        btrfs_set_root_node(&fs_info->tree_root->root_item,
2229                            fs_info->tree_root->node);
2230        list_add_tail(&fs_info->tree_root->dirty_list,
2231                      &cur_trans->switch_commits);
2232
2233        btrfs_set_root_node(&fs_info->chunk_root->root_item,
2234                            fs_info->chunk_root->node);
2235        list_add_tail(&fs_info->chunk_root->dirty_list,
2236                      &cur_trans->switch_commits);
2237
2238        switch_commit_roots(cur_trans);
2239
2240        ASSERT(list_empty(&cur_trans->dirty_bgs));
2241        ASSERT(list_empty(&cur_trans->io_bgs));
2242        update_super_roots(fs_info);
2243
2244        btrfs_set_super_log_root(fs_info->super_copy, 0);
2245        btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2246        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2247               sizeof(*fs_info->super_copy));
2248
2249        btrfs_commit_device_sizes(cur_trans);
2250
2251        clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2252        clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2253
2254        btrfs_trans_release_chunk_metadata(trans);
2255
2256        spin_lock(&fs_info->trans_lock);
2257        cur_trans->state = TRANS_STATE_UNBLOCKED;
2258        fs_info->running_transaction = NULL;
2259        spin_unlock(&fs_info->trans_lock);
2260        mutex_unlock(&fs_info->reloc_mutex);
2261
2262        wake_up(&fs_info->transaction_wait);
2263
2264        ret = btrfs_write_and_wait_transaction(trans);
2265        if (ret) {
2266                btrfs_handle_fs_error(fs_info, ret,
2267                                      "Error while writing out transaction");
2268                mutex_unlock(&fs_info->tree_log_mutex);
2269                goto scrub_continue;
2270        }
2271
2272        ret = write_all_supers(fs_info, 0);
2273        /*
2274         * the super is written, we can safely allow the tree-loggers
2275         * to go about their business
2276         */
2277        mutex_unlock(&fs_info->tree_log_mutex);
2278        if (ret)
2279                goto scrub_continue;
2280
2281        btrfs_finish_extent_commit(trans);
2282
2283        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2284                btrfs_clear_space_info_full(fs_info);
2285
2286        fs_info->last_trans_committed = cur_trans->transid;
2287        /*
2288         * We needn't acquire the lock here because there is no other task
2289         * which can change it.
2290         */
2291        cur_trans->state = TRANS_STATE_COMPLETED;
2292        wake_up(&cur_trans->commit_wait);
2293        clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2294
2295        spin_lock(&fs_info->trans_lock);
2296        list_del_init(&cur_trans->list);
2297        spin_unlock(&fs_info->trans_lock);
2298
2299        btrfs_put_transaction(cur_trans);
2300        btrfs_put_transaction(cur_trans);
2301
2302        if (trans->type & __TRANS_FREEZABLE)
2303                sb_end_intwrite(fs_info->sb);
2304
2305        trace_btrfs_transaction_commit(trans->root);
2306
2307        btrfs_scrub_continue(fs_info);
2308
2309        if (current->journal_info == trans)
2310                current->journal_info = NULL;
2311
2312        kmem_cache_free(btrfs_trans_handle_cachep, trans);
2313
2314        return ret;
2315
2316scrub_continue:
2317        btrfs_scrub_continue(fs_info);
2318cleanup_transaction:
2319        btrfs_trans_release_metadata(trans);
2320        btrfs_cleanup_pending_block_groups(trans);
2321        btrfs_trans_release_chunk_metadata(trans);
2322        trans->block_rsv = NULL;
2323        btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2324        if (current->journal_info == trans)
2325                current->journal_info = NULL;
2326        cleanup_transaction(trans, ret);
2327
2328        return ret;
2329}
2330
2331/*
2332 * return < 0 if error
2333 * 0 if there are no more dead_roots at the time of call
2334 * 1 there are more to be processed, call me again
2335 *
2336 * The return value indicates there are certainly more snapshots to delete, but
2337 * if there comes a new one during processing, it may return 0. We don't mind,
2338 * because btrfs_commit_super will poke cleaner thread and it will process it a
2339 * few seconds later.
2340 */
2341int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2342{
2343        int ret;
2344        struct btrfs_fs_info *fs_info = root->fs_info;
2345
2346        spin_lock(&fs_info->trans_lock);
2347        if (list_empty(&fs_info->dead_roots)) {
2348                spin_unlock(&fs_info->trans_lock);
2349                return 0;
2350        }
2351        root = list_first_entry(&fs_info->dead_roots,
2352                        struct btrfs_root, root_list);
2353        list_del_init(&root->root_list);
2354        spin_unlock(&fs_info->trans_lock);
2355
2356        btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2357
2358        btrfs_kill_all_delayed_nodes(root);
2359
2360        if (btrfs_header_backref_rev(root->node) <
2361                        BTRFS_MIXED_BACKREF_REV)
2362                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2363        else
2364                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2365
2366        return (ret < 0) ? 0 : 1;
2367}
2368
2369void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2370{
2371        unsigned long prev;
2372        unsigned long bit;
2373
2374        prev = xchg(&fs_info->pending_changes, 0);
2375        if (!prev)
2376                return;
2377
2378        bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2379        if (prev & bit)
2380                btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2381        prev &= ~bit;
2382
2383        bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2384        if (prev & bit)
2385                btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2386        prev &= ~bit;
2387
2388        bit = 1 << BTRFS_PENDING_COMMIT;
2389        if (prev & bit)
2390                btrfs_debug(fs_info, "pending commit done");
2391        prev &= ~bit;
2392
2393        if (prev)
2394                btrfs_warn(fs_info,
2395                        "unknown pending changes left 0x%lx, ignoring", prev);
2396}
2397