linux/fs/dax.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/genhd.h>
  15#include <linux/highmem.h>
  16#include <linux/memcontrol.h>
  17#include <linux/mm.h>
  18#include <linux/mutex.h>
  19#include <linux/pagevec.h>
  20#include <linux/sched.h>
  21#include <linux/sched/signal.h>
  22#include <linux/uio.h>
  23#include <linux/vmstat.h>
  24#include <linux/pfn_t.h>
  25#include <linux/sizes.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/iomap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35        if (pe_size == PE_SIZE_PTE)
  36                return PAGE_SHIFT - PAGE_SHIFT;
  37        if (pe_size == PE_SIZE_PMD)
  38                return PMD_SHIFT - PAGE_SHIFT;
  39        if (pe_size == PE_SIZE_PUD)
  40                return PUD_SHIFT - PAGE_SHIFT;
  41        return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59        int i;
  60
  61        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62                init_waitqueue_head(wait_table + i);
  63        return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT       (4)
  78#define DAX_LOCKED      (1UL << 0)
  79#define DAX_PMD         (1UL << 1)
  80#define DAX_ZERO_PAGE   (1UL << 2)
  81#define DAX_EMPTY       (1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85        return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90        return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95        return xa_to_value(entry) & DAX_LOCKED;
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
  99{
 100        if (xa_to_value(entry) & DAX_PMD)
 101                return PMD_ORDER;
 102        return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107        return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112        return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117        return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122        return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131        return entry == XA_RETRY_ENTRY;
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138        struct xarray *xa;
 139        pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143        wait_queue_entry_t wait;
 144        struct exceptional_entry_key key;
 145};
 146
 147static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 148                void *entry, struct exceptional_entry_key *key)
 149{
 150        unsigned long hash;
 151        unsigned long index = xas->xa_index;
 152
 153        /*
 154         * If 'entry' is a PMD, align the 'index' that we use for the wait
 155         * queue to the start of that PMD.  This ensures that all offsets in
 156         * the range covered by the PMD map to the same bit lock.
 157         */
 158        if (dax_is_pmd_entry(entry))
 159                index &= ~PG_PMD_COLOUR;
 160        key->xa = xas->xa;
 161        key->entry_start = index;
 162
 163        hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 164        return wait_table + hash;
 165}
 166
 167static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 168                unsigned int mode, int sync, void *keyp)
 169{
 170        struct exceptional_entry_key *key = keyp;
 171        struct wait_exceptional_entry_queue *ewait =
 172                container_of(wait, struct wait_exceptional_entry_queue, wait);
 173
 174        if (key->xa != ewait->key.xa ||
 175            key->entry_start != ewait->key.entry_start)
 176                return 0;
 177        return autoremove_wake_function(wait, mode, sync, NULL);
 178}
 179
 180/*
 181 * @entry may no longer be the entry at the index in the mapping.
 182 * The important information it's conveying is whether the entry at
 183 * this index used to be a PMD entry.
 184 */
 185static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
 186{
 187        struct exceptional_entry_key key;
 188        wait_queue_head_t *wq;
 189
 190        wq = dax_entry_waitqueue(xas, entry, &key);
 191
 192        /*
 193         * Checking for locked entry and prepare_to_wait_exclusive() happens
 194         * under the i_pages lock, ditto for entry handling in our callers.
 195         * So at this point all tasks that could have seen our entry locked
 196         * must be in the waitqueue and the following check will see them.
 197         */
 198        if (waitqueue_active(wq))
 199                __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 200}
 201
 202/*
 203 * Look up entry in page cache, wait for it to become unlocked if it
 204 * is a DAX entry and return it.  The caller must subsequently call
 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 206 * if it did.  The entry returned may have a larger order than @order.
 207 * If @order is larger than the order of the entry found in i_pages, this
 208 * function returns a dax_is_conflict entry.
 209 *
 210 * Must be called with the i_pages lock held.
 211 */
 212static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 213{
 214        void *entry;
 215        struct wait_exceptional_entry_queue ewait;
 216        wait_queue_head_t *wq;
 217
 218        init_wait(&ewait.wait);
 219        ewait.wait.func = wake_exceptional_entry_func;
 220
 221        for (;;) {
 222                entry = xas_find_conflict(xas);
 223                if (dax_entry_order(entry) < order)
 224                        return XA_RETRY_ENTRY;
 225                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
 226                                !dax_is_locked(entry))
 227                        return entry;
 228
 229                wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 230                prepare_to_wait_exclusive(wq, &ewait.wait,
 231                                          TASK_UNINTERRUPTIBLE);
 232                xas_unlock_irq(xas);
 233                xas_reset(xas);
 234                schedule();
 235                finish_wait(wq, &ewait.wait);
 236                xas_lock_irq(xas);
 237        }
 238}
 239
 240/*
 241 * The only thing keeping the address space around is the i_pages lock
 242 * (it's cycled in clear_inode() after removing the entries from i_pages)
 243 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 244 */
 245static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 246{
 247        struct wait_exceptional_entry_queue ewait;
 248        wait_queue_head_t *wq;
 249
 250        init_wait(&ewait.wait);
 251        ewait.wait.func = wake_exceptional_entry_func;
 252
 253        wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 254        /*
 255         * Unlike get_unlocked_entry() there is no guarantee that this
 256         * path ever successfully retrieves an unlocked entry before an
 257         * inode dies. Perform a non-exclusive wait in case this path
 258         * never successfully performs its own wake up.
 259         */
 260        prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 261        xas_unlock_irq(xas);
 262        schedule();
 263        finish_wait(wq, &ewait.wait);
 264}
 265
 266static void put_unlocked_entry(struct xa_state *xas, void *entry)
 267{
 268        /* If we were the only waiter woken, wake the next one */
 269        if (entry && !dax_is_conflict(entry))
 270                dax_wake_entry(xas, entry, false);
 271}
 272
 273/*
 274 * We used the xa_state to get the entry, but then we locked the entry and
 275 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 276 * before use.
 277 */
 278static void dax_unlock_entry(struct xa_state *xas, void *entry)
 279{
 280        void *old;
 281
 282        BUG_ON(dax_is_locked(entry));
 283        xas_reset(xas);
 284        xas_lock_irq(xas);
 285        old = xas_store(xas, entry);
 286        xas_unlock_irq(xas);
 287        BUG_ON(!dax_is_locked(old));
 288        dax_wake_entry(xas, entry, false);
 289}
 290
 291/*
 292 * Return: The entry stored at this location before it was locked.
 293 */
 294static void *dax_lock_entry(struct xa_state *xas, void *entry)
 295{
 296        unsigned long v = xa_to_value(entry);
 297        return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 298}
 299
 300static unsigned long dax_entry_size(void *entry)
 301{
 302        if (dax_is_zero_entry(entry))
 303                return 0;
 304        else if (dax_is_empty_entry(entry))
 305                return 0;
 306        else if (dax_is_pmd_entry(entry))
 307                return PMD_SIZE;
 308        else
 309                return PAGE_SIZE;
 310}
 311
 312static unsigned long dax_end_pfn(void *entry)
 313{
 314        return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 315}
 316
 317/*
 318 * Iterate through all mapped pfns represented by an entry, i.e. skip
 319 * 'empty' and 'zero' entries.
 320 */
 321#define for_each_mapped_pfn(entry, pfn) \
 322        for (pfn = dax_to_pfn(entry); \
 323                        pfn < dax_end_pfn(entry); pfn++)
 324
 325/*
 326 * TODO: for reflink+dax we need a way to associate a single page with
 327 * multiple address_space instances at different linear_page_index()
 328 * offsets.
 329 */
 330static void dax_associate_entry(void *entry, struct address_space *mapping,
 331                struct vm_area_struct *vma, unsigned long address)
 332{
 333        unsigned long size = dax_entry_size(entry), pfn, index;
 334        int i = 0;
 335
 336        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 337                return;
 338
 339        index = linear_page_index(vma, address & ~(size - 1));
 340        for_each_mapped_pfn(entry, pfn) {
 341                struct page *page = pfn_to_page(pfn);
 342
 343                WARN_ON_ONCE(page->mapping);
 344                page->mapping = mapping;
 345                page->index = index + i++;
 346        }
 347}
 348
 349static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 350                bool trunc)
 351{
 352        unsigned long pfn;
 353
 354        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 355                return;
 356
 357        for_each_mapped_pfn(entry, pfn) {
 358                struct page *page = pfn_to_page(pfn);
 359
 360                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 361                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 362                page->mapping = NULL;
 363                page->index = 0;
 364        }
 365}
 366
 367static struct page *dax_busy_page(void *entry)
 368{
 369        unsigned long pfn;
 370
 371        for_each_mapped_pfn(entry, pfn) {
 372                struct page *page = pfn_to_page(pfn);
 373
 374                if (page_ref_count(page) > 1)
 375                        return page;
 376        }
 377        return NULL;
 378}
 379
 380/*
 381 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 382 * @page: The page whose entry we want to lock
 383 *
 384 * Context: Process context.
 385 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 386 * not be locked.
 387 */
 388dax_entry_t dax_lock_page(struct page *page)
 389{
 390        XA_STATE(xas, NULL, 0);
 391        void *entry;
 392
 393        /* Ensure page->mapping isn't freed while we look at it */
 394        rcu_read_lock();
 395        for (;;) {
 396                struct address_space *mapping = READ_ONCE(page->mapping);
 397
 398                entry = NULL;
 399                if (!mapping || !dax_mapping(mapping))
 400                        break;
 401
 402                /*
 403                 * In the device-dax case there's no need to lock, a
 404                 * struct dev_pagemap pin is sufficient to keep the
 405                 * inode alive, and we assume we have dev_pagemap pin
 406                 * otherwise we would not have a valid pfn_to_page()
 407                 * translation.
 408                 */
 409                entry = (void *)~0UL;
 410                if (S_ISCHR(mapping->host->i_mode))
 411                        break;
 412
 413                xas.xa = &mapping->i_pages;
 414                xas_lock_irq(&xas);
 415                if (mapping != page->mapping) {
 416                        xas_unlock_irq(&xas);
 417                        continue;
 418                }
 419                xas_set(&xas, page->index);
 420                entry = xas_load(&xas);
 421                if (dax_is_locked(entry)) {
 422                        rcu_read_unlock();
 423                        wait_entry_unlocked(&xas, entry);
 424                        rcu_read_lock();
 425                        continue;
 426                }
 427                dax_lock_entry(&xas, entry);
 428                xas_unlock_irq(&xas);
 429                break;
 430        }
 431        rcu_read_unlock();
 432        return (dax_entry_t)entry;
 433}
 434
 435void dax_unlock_page(struct page *page, dax_entry_t cookie)
 436{
 437        struct address_space *mapping = page->mapping;
 438        XA_STATE(xas, &mapping->i_pages, page->index);
 439
 440        if (S_ISCHR(mapping->host->i_mode))
 441                return;
 442
 443        dax_unlock_entry(&xas, (void *)cookie);
 444}
 445
 446/*
 447 * Find page cache entry at given index. If it is a DAX entry, return it
 448 * with the entry locked. If the page cache doesn't contain an entry at
 449 * that index, add a locked empty entry.
 450 *
 451 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 452 * either return that locked entry or will return VM_FAULT_FALLBACK.
 453 * This will happen if there are any PTE entries within the PMD range
 454 * that we are requesting.
 455 *
 456 * We always favor PTE entries over PMD entries. There isn't a flow where we
 457 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 458 * insertion will fail if it finds any PTE entries already in the tree, and a
 459 * PTE insertion will cause an existing PMD entry to be unmapped and
 460 * downgraded to PTE entries.  This happens for both PMD zero pages as
 461 * well as PMD empty entries.
 462 *
 463 * The exception to this downgrade path is for PMD entries that have
 464 * real storage backing them.  We will leave these real PMD entries in
 465 * the tree, and PTE writes will simply dirty the entire PMD entry.
 466 *
 467 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 468 * persistent memory the benefit is doubtful. We can add that later if we can
 469 * show it helps.
 470 *
 471 * On error, this function does not return an ERR_PTR.  Instead it returns
 472 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 473 * overlap with xarray value entries.
 474 */
 475static void *grab_mapping_entry(struct xa_state *xas,
 476                struct address_space *mapping, unsigned int order)
 477{
 478        unsigned long index = xas->xa_index;
 479        bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
 480        void *entry;
 481
 482retry:
 483        xas_lock_irq(xas);
 484        entry = get_unlocked_entry(xas, order);
 485
 486        if (entry) {
 487                if (dax_is_conflict(entry))
 488                        goto fallback;
 489                if (!xa_is_value(entry)) {
 490                        xas_set_err(xas, EIO);
 491                        goto out_unlock;
 492                }
 493
 494                if (order == 0) {
 495                        if (dax_is_pmd_entry(entry) &&
 496                            (dax_is_zero_entry(entry) ||
 497                             dax_is_empty_entry(entry))) {
 498                                pmd_downgrade = true;
 499                        }
 500                }
 501        }
 502
 503        if (pmd_downgrade) {
 504                /*
 505                 * Make sure 'entry' remains valid while we drop
 506                 * the i_pages lock.
 507                 */
 508                dax_lock_entry(xas, entry);
 509
 510                /*
 511                 * Besides huge zero pages the only other thing that gets
 512                 * downgraded are empty entries which don't need to be
 513                 * unmapped.
 514                 */
 515                if (dax_is_zero_entry(entry)) {
 516                        xas_unlock_irq(xas);
 517                        unmap_mapping_pages(mapping,
 518                                        xas->xa_index & ~PG_PMD_COLOUR,
 519                                        PG_PMD_NR, false);
 520                        xas_reset(xas);
 521                        xas_lock_irq(xas);
 522                }
 523
 524                dax_disassociate_entry(entry, mapping, false);
 525                xas_store(xas, NULL);   /* undo the PMD join */
 526                dax_wake_entry(xas, entry, true);
 527                mapping->nrexceptional--;
 528                entry = NULL;
 529                xas_set(xas, index);
 530        }
 531
 532        if (entry) {
 533                dax_lock_entry(xas, entry);
 534        } else {
 535                unsigned long flags = DAX_EMPTY;
 536
 537                if (order > 0)
 538                        flags |= DAX_PMD;
 539                entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 540                dax_lock_entry(xas, entry);
 541                if (xas_error(xas))
 542                        goto out_unlock;
 543                mapping->nrexceptional++;
 544        }
 545
 546out_unlock:
 547        xas_unlock_irq(xas);
 548        if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 549                goto retry;
 550        if (xas->xa_node == XA_ERROR(-ENOMEM))
 551                return xa_mk_internal(VM_FAULT_OOM);
 552        if (xas_error(xas))
 553                return xa_mk_internal(VM_FAULT_SIGBUS);
 554        return entry;
 555fallback:
 556        xas_unlock_irq(xas);
 557        return xa_mk_internal(VM_FAULT_FALLBACK);
 558}
 559
 560/**
 561 * dax_layout_busy_page - find first pinned page in @mapping
 562 * @mapping: address space to scan for a page with ref count > 1
 563 *
 564 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 565 * 'onlined' to the page allocator so they are considered idle when
 566 * page->count == 1. A filesystem uses this interface to determine if
 567 * any page in the mapping is busy, i.e. for DMA, or other
 568 * get_user_pages() usages.
 569 *
 570 * It is expected that the filesystem is holding locks to block the
 571 * establishment of new mappings in this address_space. I.e. it expects
 572 * to be able to run unmap_mapping_range() and subsequently not race
 573 * mapping_mapped() becoming true.
 574 */
 575struct page *dax_layout_busy_page(struct address_space *mapping)
 576{
 577        XA_STATE(xas, &mapping->i_pages, 0);
 578        void *entry;
 579        unsigned int scanned = 0;
 580        struct page *page = NULL;
 581
 582        /*
 583         * In the 'limited' case get_user_pages() for dax is disabled.
 584         */
 585        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 586                return NULL;
 587
 588        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 589                return NULL;
 590
 591        /*
 592         * If we race get_user_pages_fast() here either we'll see the
 593         * elevated page count in the iteration and wait, or
 594         * get_user_pages_fast() will see that the page it took a reference
 595         * against is no longer mapped in the page tables and bail to the
 596         * get_user_pages() slow path.  The slow path is protected by
 597         * pte_lock() and pmd_lock(). New references are not taken without
 598         * holding those locks, and unmap_mapping_range() will not zero the
 599         * pte or pmd without holding the respective lock, so we are
 600         * guaranteed to either see new references or prevent new
 601         * references from being established.
 602         */
 603        unmap_mapping_range(mapping, 0, 0, 0);
 604
 605        xas_lock_irq(&xas);
 606        xas_for_each(&xas, entry, ULONG_MAX) {
 607                if (WARN_ON_ONCE(!xa_is_value(entry)))
 608                        continue;
 609                if (unlikely(dax_is_locked(entry)))
 610                        entry = get_unlocked_entry(&xas, 0);
 611                if (entry)
 612                        page = dax_busy_page(entry);
 613                put_unlocked_entry(&xas, entry);
 614                if (page)
 615                        break;
 616                if (++scanned % XA_CHECK_SCHED)
 617                        continue;
 618
 619                xas_pause(&xas);
 620                xas_unlock_irq(&xas);
 621                cond_resched();
 622                xas_lock_irq(&xas);
 623        }
 624        xas_unlock_irq(&xas);
 625        return page;
 626}
 627EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 628
 629static int __dax_invalidate_entry(struct address_space *mapping,
 630                                          pgoff_t index, bool trunc)
 631{
 632        XA_STATE(xas, &mapping->i_pages, index);
 633        int ret = 0;
 634        void *entry;
 635
 636        xas_lock_irq(&xas);
 637        entry = get_unlocked_entry(&xas, 0);
 638        if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 639                goto out;
 640        if (!trunc &&
 641            (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 642             xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 643                goto out;
 644        dax_disassociate_entry(entry, mapping, trunc);
 645        xas_store(&xas, NULL);
 646        mapping->nrexceptional--;
 647        ret = 1;
 648out:
 649        put_unlocked_entry(&xas, entry);
 650        xas_unlock_irq(&xas);
 651        return ret;
 652}
 653
 654/*
 655 * Delete DAX entry at @index from @mapping.  Wait for it
 656 * to be unlocked before deleting it.
 657 */
 658int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 659{
 660        int ret = __dax_invalidate_entry(mapping, index, true);
 661
 662        /*
 663         * This gets called from truncate / punch_hole path. As such, the caller
 664         * must hold locks protecting against concurrent modifications of the
 665         * page cache (usually fs-private i_mmap_sem for writing). Since the
 666         * caller has seen a DAX entry for this index, we better find it
 667         * at that index as well...
 668         */
 669        WARN_ON_ONCE(!ret);
 670        return ret;
 671}
 672
 673/*
 674 * Invalidate DAX entry if it is clean.
 675 */
 676int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 677                                      pgoff_t index)
 678{
 679        return __dax_invalidate_entry(mapping, index, false);
 680}
 681
 682static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
 683                sector_t sector, size_t size, struct page *to,
 684                unsigned long vaddr)
 685{
 686        void *vto, *kaddr;
 687        pgoff_t pgoff;
 688        long rc;
 689        int id;
 690
 691        rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 692        if (rc)
 693                return rc;
 694
 695        id = dax_read_lock();
 696        rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
 697        if (rc < 0) {
 698                dax_read_unlock(id);
 699                return rc;
 700        }
 701        vto = kmap_atomic(to);
 702        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 703        kunmap_atomic(vto);
 704        dax_read_unlock(id);
 705        return 0;
 706}
 707
 708/*
 709 * By this point grab_mapping_entry() has ensured that we have a locked entry
 710 * of the appropriate size so we don't have to worry about downgrading PMDs to
 711 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 712 * already in the tree, we will skip the insertion and just dirty the PMD as
 713 * appropriate.
 714 */
 715static void *dax_insert_entry(struct xa_state *xas,
 716                struct address_space *mapping, struct vm_fault *vmf,
 717                void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 718{
 719        void *new_entry = dax_make_entry(pfn, flags);
 720
 721        if (dirty)
 722                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 723
 724        if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 725                unsigned long index = xas->xa_index;
 726                /* we are replacing a zero page with block mapping */
 727                if (dax_is_pmd_entry(entry))
 728                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 729                                        PG_PMD_NR, false);
 730                else /* pte entry */
 731                        unmap_mapping_pages(mapping, index, 1, false);
 732        }
 733
 734        xas_reset(xas);
 735        xas_lock_irq(xas);
 736        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 737                void *old;
 738
 739                dax_disassociate_entry(entry, mapping, false);
 740                dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 741                /*
 742                 * Only swap our new entry into the page cache if the current
 743                 * entry is a zero page or an empty entry.  If a normal PTE or
 744                 * PMD entry is already in the cache, we leave it alone.  This
 745                 * means that if we are trying to insert a PTE and the
 746                 * existing entry is a PMD, we will just leave the PMD in the
 747                 * tree and dirty it if necessary.
 748                 */
 749                old = dax_lock_entry(xas, new_entry);
 750                WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 751                                        DAX_LOCKED));
 752                entry = new_entry;
 753        } else {
 754                xas_load(xas);  /* Walk the xa_state */
 755        }
 756
 757        if (dirty)
 758                xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 759
 760        xas_unlock_irq(xas);
 761        return entry;
 762}
 763
 764static inline
 765unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 766{
 767        unsigned long address;
 768
 769        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 770        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 771        return address;
 772}
 773
 774/* Walk all mappings of a given index of a file and writeprotect them */
 775static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 776                unsigned long pfn)
 777{
 778        struct vm_area_struct *vma;
 779        pte_t pte, *ptep = NULL;
 780        pmd_t *pmdp = NULL;
 781        spinlock_t *ptl;
 782
 783        i_mmap_lock_read(mapping);
 784        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 785                struct mmu_notifier_range range;
 786                unsigned long address;
 787
 788                cond_resched();
 789
 790                if (!(vma->vm_flags & VM_SHARED))
 791                        continue;
 792
 793                address = pgoff_address(index, vma);
 794
 795                /*
 796                 * Note because we provide range to follow_pte_pmd it will
 797                 * call mmu_notifier_invalidate_range_start() on our behalf
 798                 * before taking any lock.
 799                 */
 800                if (follow_pte_pmd(vma->vm_mm, address, &range,
 801                                   &ptep, &pmdp, &ptl))
 802                        continue;
 803
 804                /*
 805                 * No need to call mmu_notifier_invalidate_range() as we are
 806                 * downgrading page table protection not changing it to point
 807                 * to a new page.
 808                 *
 809                 * See Documentation/vm/mmu_notifier.rst
 810                 */
 811                if (pmdp) {
 812#ifdef CONFIG_FS_DAX_PMD
 813                        pmd_t pmd;
 814
 815                        if (pfn != pmd_pfn(*pmdp))
 816                                goto unlock_pmd;
 817                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 818                                goto unlock_pmd;
 819
 820                        flush_cache_page(vma, address, pfn);
 821                        pmd = pmdp_invalidate(vma, address, pmdp);
 822                        pmd = pmd_wrprotect(pmd);
 823                        pmd = pmd_mkclean(pmd);
 824                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 825unlock_pmd:
 826#endif
 827                        spin_unlock(ptl);
 828                } else {
 829                        if (pfn != pte_pfn(*ptep))
 830                                goto unlock_pte;
 831                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 832                                goto unlock_pte;
 833
 834                        flush_cache_page(vma, address, pfn);
 835                        pte = ptep_clear_flush(vma, address, ptep);
 836                        pte = pte_wrprotect(pte);
 837                        pte = pte_mkclean(pte);
 838                        set_pte_at(vma->vm_mm, address, ptep, pte);
 839unlock_pte:
 840                        pte_unmap_unlock(ptep, ptl);
 841                }
 842
 843                mmu_notifier_invalidate_range_end(&range);
 844        }
 845        i_mmap_unlock_read(mapping);
 846}
 847
 848static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 849                struct address_space *mapping, void *entry)
 850{
 851        unsigned long pfn, index, count;
 852        long ret = 0;
 853
 854        /*
 855         * A page got tagged dirty in DAX mapping? Something is seriously
 856         * wrong.
 857         */
 858        if (WARN_ON(!xa_is_value(entry)))
 859                return -EIO;
 860
 861        if (unlikely(dax_is_locked(entry))) {
 862                void *old_entry = entry;
 863
 864                entry = get_unlocked_entry(xas, 0);
 865
 866                /* Entry got punched out / reallocated? */
 867                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 868                        goto put_unlocked;
 869                /*
 870                 * Entry got reallocated elsewhere? No need to writeback.
 871                 * We have to compare pfns as we must not bail out due to
 872                 * difference in lockbit or entry type.
 873                 */
 874                if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 875                        goto put_unlocked;
 876                if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 877                                        dax_is_zero_entry(entry))) {
 878                        ret = -EIO;
 879                        goto put_unlocked;
 880                }
 881
 882                /* Another fsync thread may have already done this entry */
 883                if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 884                        goto put_unlocked;
 885        }
 886
 887        /* Lock the entry to serialize with page faults */
 888        dax_lock_entry(xas, entry);
 889
 890        /*
 891         * We can clear the tag now but we have to be careful so that concurrent
 892         * dax_writeback_one() calls for the same index cannot finish before we
 893         * actually flush the caches. This is achieved as the calls will look
 894         * at the entry only under the i_pages lock and once they do that
 895         * they will see the entry locked and wait for it to unlock.
 896         */
 897        xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 898        xas_unlock_irq(xas);
 899
 900        /*
 901         * If dax_writeback_mapping_range() was given a wbc->range_start
 902         * in the middle of a PMD, the 'index' we use needs to be
 903         * aligned to the start of the PMD.
 904         * This allows us to flush for PMD_SIZE and not have to worry about
 905         * partial PMD writebacks.
 906         */
 907        pfn = dax_to_pfn(entry);
 908        count = 1UL << dax_entry_order(entry);
 909        index = xas->xa_index & ~(count - 1);
 910
 911        dax_entry_mkclean(mapping, index, pfn);
 912        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 913        /*
 914         * After we have flushed the cache, we can clear the dirty tag. There
 915         * cannot be new dirty data in the pfn after the flush has completed as
 916         * the pfn mappings are writeprotected and fault waits for mapping
 917         * entry lock.
 918         */
 919        xas_reset(xas);
 920        xas_lock_irq(xas);
 921        xas_store(xas, entry);
 922        xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 923        dax_wake_entry(xas, entry, false);
 924
 925        trace_dax_writeback_one(mapping->host, index, count);
 926        return ret;
 927
 928 put_unlocked:
 929        put_unlocked_entry(xas, entry);
 930        return ret;
 931}
 932
 933/*
 934 * Flush the mapping to the persistent domain within the byte range of [start,
 935 * end]. This is required by data integrity operations to ensure file data is
 936 * on persistent storage prior to completion of the operation.
 937 */
 938int dax_writeback_mapping_range(struct address_space *mapping,
 939                struct block_device *bdev, struct writeback_control *wbc)
 940{
 941        XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 942        struct inode *inode = mapping->host;
 943        pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 944        struct dax_device *dax_dev;
 945        void *entry;
 946        int ret = 0;
 947        unsigned int scanned = 0;
 948
 949        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 950                return -EIO;
 951
 952        if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 953                return 0;
 954
 955        dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 956        if (!dax_dev)
 957                return -EIO;
 958
 959        trace_dax_writeback_range(inode, xas.xa_index, end_index);
 960
 961        tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 962
 963        xas_lock_irq(&xas);
 964        xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 965                ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 966                if (ret < 0) {
 967                        mapping_set_error(mapping, ret);
 968                        break;
 969                }
 970                if (++scanned % XA_CHECK_SCHED)
 971                        continue;
 972
 973                xas_pause(&xas);
 974                xas_unlock_irq(&xas);
 975                cond_resched();
 976                xas_lock_irq(&xas);
 977        }
 978        xas_unlock_irq(&xas);
 979        put_dax(dax_dev);
 980        trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
 981        return ret;
 982}
 983EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 984
 985static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 986{
 987        return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
 988}
 989
 990static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
 991                         pfn_t *pfnp)
 992{
 993        const sector_t sector = dax_iomap_sector(iomap, pos);
 994        pgoff_t pgoff;
 995        int id, rc;
 996        long length;
 997
 998        rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
 999        if (rc)
1000                return rc;
1001        id = dax_read_lock();
1002        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1003                                   NULL, pfnp);
1004        if (length < 0) {
1005                rc = length;
1006                goto out;
1007        }
1008        rc = -EINVAL;
1009        if (PFN_PHYS(length) < size)
1010                goto out;
1011        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1012                goto out;
1013        /* For larger pages we need devmap */
1014        if (length > 1 && !pfn_t_devmap(*pfnp))
1015                goto out;
1016        rc = 0;
1017out:
1018        dax_read_unlock(id);
1019        return rc;
1020}
1021
1022/*
1023 * The user has performed a load from a hole in the file.  Allocating a new
1024 * page in the file would cause excessive storage usage for workloads with
1025 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1026 * If this page is ever written to we will re-fault and change the mapping to
1027 * point to real DAX storage instead.
1028 */
1029static vm_fault_t dax_load_hole(struct xa_state *xas,
1030                struct address_space *mapping, void **entry,
1031                struct vm_fault *vmf)
1032{
1033        struct inode *inode = mapping->host;
1034        unsigned long vaddr = vmf->address;
1035        pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1036        vm_fault_t ret;
1037
1038        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1039                        DAX_ZERO_PAGE, false);
1040
1041        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1042        trace_dax_load_hole(inode, vmf, ret);
1043        return ret;
1044}
1045
1046static bool dax_range_is_aligned(struct block_device *bdev,
1047                                 unsigned int offset, unsigned int length)
1048{
1049        unsigned short sector_size = bdev_logical_block_size(bdev);
1050
1051        if (!IS_ALIGNED(offset, sector_size))
1052                return false;
1053        if (!IS_ALIGNED(length, sector_size))
1054                return false;
1055
1056        return true;
1057}
1058
1059int __dax_zero_page_range(struct block_device *bdev,
1060                struct dax_device *dax_dev, sector_t sector,
1061                unsigned int offset, unsigned int size)
1062{
1063        if (dax_range_is_aligned(bdev, offset, size)) {
1064                sector_t start_sector = sector + (offset >> 9);
1065
1066                return blkdev_issue_zeroout(bdev, start_sector,
1067                                size >> 9, GFP_NOFS, 0);
1068        } else {
1069                pgoff_t pgoff;
1070                long rc, id;
1071                void *kaddr;
1072
1073                rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1074                if (rc)
1075                        return rc;
1076
1077                id = dax_read_lock();
1078                rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1079                if (rc < 0) {
1080                        dax_read_unlock(id);
1081                        return rc;
1082                }
1083                memset(kaddr + offset, 0, size);
1084                dax_flush(dax_dev, kaddr + offset, size);
1085                dax_read_unlock(id);
1086        }
1087        return 0;
1088}
1089EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1090
1091static loff_t
1092dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1093                struct iomap *iomap)
1094{
1095        struct block_device *bdev = iomap->bdev;
1096        struct dax_device *dax_dev = iomap->dax_dev;
1097        struct iov_iter *iter = data;
1098        loff_t end = pos + length, done = 0;
1099        ssize_t ret = 0;
1100        size_t xfer;
1101        int id;
1102
1103        if (iov_iter_rw(iter) == READ) {
1104                end = min(end, i_size_read(inode));
1105                if (pos >= end)
1106                        return 0;
1107
1108                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1109                        return iov_iter_zero(min(length, end - pos), iter);
1110        }
1111
1112        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1113                return -EIO;
1114
1115        /*
1116         * Write can allocate block for an area which has a hole page mapped
1117         * into page tables. We have to tear down these mappings so that data
1118         * written by write(2) is visible in mmap.
1119         */
1120        if (iomap->flags & IOMAP_F_NEW) {
1121                invalidate_inode_pages2_range(inode->i_mapping,
1122                                              pos >> PAGE_SHIFT,
1123                                              (end - 1) >> PAGE_SHIFT);
1124        }
1125
1126        id = dax_read_lock();
1127        while (pos < end) {
1128                unsigned offset = pos & (PAGE_SIZE - 1);
1129                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1130                const sector_t sector = dax_iomap_sector(iomap, pos);
1131                ssize_t map_len;
1132                pgoff_t pgoff;
1133                void *kaddr;
1134
1135                if (fatal_signal_pending(current)) {
1136                        ret = -EINTR;
1137                        break;
1138                }
1139
1140                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1141                if (ret)
1142                        break;
1143
1144                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1145                                &kaddr, NULL);
1146                if (map_len < 0) {
1147                        ret = map_len;
1148                        break;
1149                }
1150
1151                map_len = PFN_PHYS(map_len);
1152                kaddr += offset;
1153                map_len -= offset;
1154                if (map_len > end - pos)
1155                        map_len = end - pos;
1156
1157                /*
1158                 * The userspace address for the memory copy has already been
1159                 * validated via access_ok() in either vfs_read() or
1160                 * vfs_write(), depending on which operation we are doing.
1161                 */
1162                if (iov_iter_rw(iter) == WRITE)
1163                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1164                                        map_len, iter);
1165                else
1166                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1167                                        map_len, iter);
1168
1169                pos += xfer;
1170                length -= xfer;
1171                done += xfer;
1172
1173                if (xfer == 0)
1174                        ret = -EFAULT;
1175                if (xfer < map_len)
1176                        break;
1177        }
1178        dax_read_unlock(id);
1179
1180        return done ? done : ret;
1181}
1182
1183/**
1184 * dax_iomap_rw - Perform I/O to a DAX file
1185 * @iocb:       The control block for this I/O
1186 * @iter:       The addresses to do I/O from or to
1187 * @ops:        iomap ops passed from the file system
1188 *
1189 * This function performs read and write operations to directly mapped
1190 * persistent memory.  The callers needs to take care of read/write exclusion
1191 * and evicting any page cache pages in the region under I/O.
1192 */
1193ssize_t
1194dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1195                const struct iomap_ops *ops)
1196{
1197        struct address_space *mapping = iocb->ki_filp->f_mapping;
1198        struct inode *inode = mapping->host;
1199        loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1200        unsigned flags = 0;
1201
1202        if (iov_iter_rw(iter) == WRITE) {
1203                lockdep_assert_held_write(&inode->i_rwsem);
1204                flags |= IOMAP_WRITE;
1205        } else {
1206                lockdep_assert_held(&inode->i_rwsem);
1207        }
1208
1209        while (iov_iter_count(iter)) {
1210                ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1211                                iter, dax_iomap_actor);
1212                if (ret <= 0)
1213                        break;
1214                pos += ret;
1215                done += ret;
1216        }
1217
1218        iocb->ki_pos += done;
1219        return done ? done : ret;
1220}
1221EXPORT_SYMBOL_GPL(dax_iomap_rw);
1222
1223static vm_fault_t dax_fault_return(int error)
1224{
1225        if (error == 0)
1226                return VM_FAULT_NOPAGE;
1227        return vmf_error(error);
1228}
1229
1230/*
1231 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232 * flushed on write-faults (non-cow), but not read-faults.
1233 */
1234static bool dax_fault_is_synchronous(unsigned long flags,
1235                struct vm_area_struct *vma, struct iomap *iomap)
1236{
1237        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238                && (iomap->flags & IOMAP_F_DIRTY);
1239}
1240
1241static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1242                               int *iomap_errp, const struct iomap_ops *ops)
1243{
1244        struct vm_area_struct *vma = vmf->vma;
1245        struct address_space *mapping = vma->vm_file->f_mapping;
1246        XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1247        struct inode *inode = mapping->host;
1248        unsigned long vaddr = vmf->address;
1249        loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1250        struct iomap iomap = { 0 };
1251        unsigned flags = IOMAP_FAULT;
1252        int error, major = 0;
1253        bool write = vmf->flags & FAULT_FLAG_WRITE;
1254        bool sync;
1255        vm_fault_t ret = 0;
1256        void *entry;
1257        pfn_t pfn;
1258
1259        trace_dax_pte_fault(inode, vmf, ret);
1260        /*
1261         * Check whether offset isn't beyond end of file now. Caller is supposed
1262         * to hold locks serializing us with truncate / punch hole so this is
1263         * a reliable test.
1264         */
1265        if (pos >= i_size_read(inode)) {
1266                ret = VM_FAULT_SIGBUS;
1267                goto out;
1268        }
1269
1270        if (write && !vmf->cow_page)
1271                flags |= IOMAP_WRITE;
1272
1273        entry = grab_mapping_entry(&xas, mapping, 0);
1274        if (xa_is_internal(entry)) {
1275                ret = xa_to_internal(entry);
1276                goto out;
1277        }
1278
1279        /*
1280         * It is possible, particularly with mixed reads & writes to private
1281         * mappings, that we have raced with a PMD fault that overlaps with
1282         * the PTE we need to set up.  If so just return and the fault will be
1283         * retried.
1284         */
1285        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1286                ret = VM_FAULT_NOPAGE;
1287                goto unlock_entry;
1288        }
1289
1290        /*
1291         * Note that we don't bother to use iomap_apply here: DAX required
1292         * the file system block size to be equal the page size, which means
1293         * that we never have to deal with more than a single extent here.
1294         */
1295        error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1296        if (iomap_errp)
1297                *iomap_errp = error;
1298        if (error) {
1299                ret = dax_fault_return(error);
1300                goto unlock_entry;
1301        }
1302        if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1303                error = -EIO;   /* fs corruption? */
1304                goto error_finish_iomap;
1305        }
1306
1307        if (vmf->cow_page) {
1308                sector_t sector = dax_iomap_sector(&iomap, pos);
1309
1310                switch (iomap.type) {
1311                case IOMAP_HOLE:
1312                case IOMAP_UNWRITTEN:
1313                        clear_user_highpage(vmf->cow_page, vaddr);
1314                        break;
1315                case IOMAP_MAPPED:
1316                        error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317                                        sector, PAGE_SIZE, vmf->cow_page, vaddr);
1318                        break;
1319                default:
1320                        WARN_ON_ONCE(1);
1321                        error = -EIO;
1322                        break;
1323                }
1324
1325                if (error)
1326                        goto error_finish_iomap;
1327
1328                __SetPageUptodate(vmf->cow_page);
1329                ret = finish_fault(vmf);
1330                if (!ret)
1331                        ret = VM_FAULT_DONE_COW;
1332                goto finish_iomap;
1333        }
1334
1335        sync = dax_fault_is_synchronous(flags, vma, &iomap);
1336
1337        switch (iomap.type) {
1338        case IOMAP_MAPPED:
1339                if (iomap.flags & IOMAP_F_NEW) {
1340                        count_vm_event(PGMAJFAULT);
1341                        count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1342                        major = VM_FAULT_MAJOR;
1343                }
1344                error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345                if (error < 0)
1346                        goto error_finish_iomap;
1347
1348                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1349                                                 0, write && !sync);
1350
1351                /*
1352                 * If we are doing synchronous page fault and inode needs fsync,
1353                 * we can insert PTE into page tables only after that happens.
1354                 * Skip insertion for now and return the pfn so that caller can
1355                 * insert it after fsync is done.
1356                 */
1357                if (sync) {
1358                        if (WARN_ON_ONCE(!pfnp)) {
1359                                error = -EIO;
1360                                goto error_finish_iomap;
1361                        }
1362                        *pfnp = pfn;
1363                        ret = VM_FAULT_NEEDDSYNC | major;
1364                        goto finish_iomap;
1365                }
1366                trace_dax_insert_mapping(inode, vmf, entry);
1367                if (write)
1368                        ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1369                else
1370                        ret = vmf_insert_mixed(vma, vaddr, pfn);
1371
1372                goto finish_iomap;
1373        case IOMAP_UNWRITTEN:
1374        case IOMAP_HOLE:
1375                if (!write) {
1376                        ret = dax_load_hole(&xas, mapping, &entry, vmf);
1377                        goto finish_iomap;
1378                }
1379                /*FALLTHRU*/
1380        default:
1381                WARN_ON_ONCE(1);
1382                error = -EIO;
1383                break;
1384        }
1385
1386 error_finish_iomap:
1387        ret = dax_fault_return(error);
1388 finish_iomap:
1389        if (ops->iomap_end) {
1390                int copied = PAGE_SIZE;
1391
1392                if (ret & VM_FAULT_ERROR)
1393                        copied = 0;
1394                /*
1395                 * The fault is done by now and there's no way back (other
1396                 * thread may be already happily using PTE we have installed).
1397                 * Just ignore error from ->iomap_end since we cannot do much
1398                 * with it.
1399                 */
1400                ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1401        }
1402 unlock_entry:
1403        dax_unlock_entry(&xas, entry);
1404 out:
1405        trace_dax_pte_fault_done(inode, vmf, ret);
1406        return ret | major;
1407}
1408
1409#ifdef CONFIG_FS_DAX_PMD
1410static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411                struct iomap *iomap, void **entry)
1412{
1413        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414        unsigned long pmd_addr = vmf->address & PMD_MASK;
1415        struct vm_area_struct *vma = vmf->vma;
1416        struct inode *inode = mapping->host;
1417        pgtable_t pgtable = NULL;
1418        struct page *zero_page;
1419        spinlock_t *ptl;
1420        pmd_t pmd_entry;
1421        pfn_t pfn;
1422
1423        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1424
1425        if (unlikely(!zero_page))
1426                goto fallback;
1427
1428        pfn = page_to_pfn_t(zero_page);
1429        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1430                        DAX_PMD | DAX_ZERO_PAGE, false);
1431
1432        if (arch_needs_pgtable_deposit()) {
1433                pgtable = pte_alloc_one(vma->vm_mm);
1434                if (!pgtable)
1435                        return VM_FAULT_OOM;
1436        }
1437
1438        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1439        if (!pmd_none(*(vmf->pmd))) {
1440                spin_unlock(ptl);
1441                goto fallback;
1442        }
1443
1444        if (pgtable) {
1445                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1446                mm_inc_nr_ptes(vma->vm_mm);
1447        }
1448        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1449        pmd_entry = pmd_mkhuge(pmd_entry);
1450        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1451        spin_unlock(ptl);
1452        trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1453        return VM_FAULT_NOPAGE;
1454
1455fallback:
1456        if (pgtable)
1457                pte_free(vma->vm_mm, pgtable);
1458        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1459        return VM_FAULT_FALLBACK;
1460}
1461
1462static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1463                               const struct iomap_ops *ops)
1464{
1465        struct vm_area_struct *vma = vmf->vma;
1466        struct address_space *mapping = vma->vm_file->f_mapping;
1467        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1468        unsigned long pmd_addr = vmf->address & PMD_MASK;
1469        bool write = vmf->flags & FAULT_FLAG_WRITE;
1470        bool sync;
1471        unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1472        struct inode *inode = mapping->host;
1473        vm_fault_t result = VM_FAULT_FALLBACK;
1474        struct iomap iomap = { 0 };
1475        pgoff_t max_pgoff;
1476        void *entry;
1477        loff_t pos;
1478        int error;
1479        pfn_t pfn;
1480
1481        /*
1482         * Check whether offset isn't beyond end of file now. Caller is
1483         * supposed to hold locks serializing us with truncate / punch hole so
1484         * this is a reliable test.
1485         */
1486        max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1487
1488        trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1489
1490        /*
1491         * Make sure that the faulting address's PMD offset (color) matches
1492         * the PMD offset from the start of the file.  This is necessary so
1493         * that a PMD range in the page table overlaps exactly with a PMD
1494         * range in the page cache.
1495         */
1496        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1497            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1498                goto fallback;
1499
1500        /* Fall back to PTEs if we're going to COW */
1501        if (write && !(vma->vm_flags & VM_SHARED))
1502                goto fallback;
1503
1504        /* If the PMD would extend outside the VMA */
1505        if (pmd_addr < vma->vm_start)
1506                goto fallback;
1507        if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1508                goto fallback;
1509
1510        if (xas.xa_index >= max_pgoff) {
1511                result = VM_FAULT_SIGBUS;
1512                goto out;
1513        }
1514
1515        /* If the PMD would extend beyond the file size */
1516        if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1517                goto fallback;
1518
1519        /*
1520         * grab_mapping_entry() will make sure we get an empty PMD entry,
1521         * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1522         * entry is already in the array, for instance), it will return
1523         * VM_FAULT_FALLBACK.
1524         */
1525        entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1526        if (xa_is_internal(entry)) {
1527                result = xa_to_internal(entry);
1528                goto fallback;
1529        }
1530
1531        /*
1532         * It is possible, particularly with mixed reads & writes to private
1533         * mappings, that we have raced with a PTE fault that overlaps with
1534         * the PMD we need to set up.  If so just return and the fault will be
1535         * retried.
1536         */
1537        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1538                        !pmd_devmap(*vmf->pmd)) {
1539                result = 0;
1540                goto unlock_entry;
1541        }
1542
1543        /*
1544         * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1545         * setting up a mapping, so really we're using iomap_begin() as a way
1546         * to look up our filesystem block.
1547         */
1548        pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1549        error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1550        if (error)
1551                goto unlock_entry;
1552
1553        if (iomap.offset + iomap.length < pos + PMD_SIZE)
1554                goto finish_iomap;
1555
1556        sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1557
1558        switch (iomap.type) {
1559        case IOMAP_MAPPED:
1560                error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1561                if (error < 0)
1562                        goto finish_iomap;
1563
1564                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1565                                                DAX_PMD, write && !sync);
1566
1567                /*
1568                 * If we are doing synchronous page fault and inode needs fsync,
1569                 * we can insert PMD into page tables only after that happens.
1570                 * Skip insertion for now and return the pfn so that caller can
1571                 * insert it after fsync is done.
1572                 */
1573                if (sync) {
1574                        if (WARN_ON_ONCE(!pfnp))
1575                                goto finish_iomap;
1576                        *pfnp = pfn;
1577                        result = VM_FAULT_NEEDDSYNC;
1578                        goto finish_iomap;
1579                }
1580
1581                trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1582                result = vmf_insert_pfn_pmd(vmf, pfn, write);
1583                break;
1584        case IOMAP_UNWRITTEN:
1585        case IOMAP_HOLE:
1586                if (WARN_ON_ONCE(write))
1587                        break;
1588                result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1589                break;
1590        default:
1591                WARN_ON_ONCE(1);
1592                break;
1593        }
1594
1595 finish_iomap:
1596        if (ops->iomap_end) {
1597                int copied = PMD_SIZE;
1598
1599                if (result == VM_FAULT_FALLBACK)
1600                        copied = 0;
1601                /*
1602                 * The fault is done by now and there's no way back (other
1603                 * thread may be already happily using PMD we have installed).
1604                 * Just ignore error from ->iomap_end since we cannot do much
1605                 * with it.
1606                 */
1607                ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1608                                &iomap);
1609        }
1610 unlock_entry:
1611        dax_unlock_entry(&xas, entry);
1612 fallback:
1613        if (result == VM_FAULT_FALLBACK) {
1614                split_huge_pmd(vma, vmf->pmd, vmf->address);
1615                count_vm_event(THP_FAULT_FALLBACK);
1616        }
1617out:
1618        trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1619        return result;
1620}
1621#else
1622static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1623                               const struct iomap_ops *ops)
1624{
1625        return VM_FAULT_FALLBACK;
1626}
1627#endif /* CONFIG_FS_DAX_PMD */
1628
1629/**
1630 * dax_iomap_fault - handle a page fault on a DAX file
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of the page to fault in
1633 * @pfnp: PFN to insert for synchronous faults if fsync is required
1634 * @iomap_errp: Storage for detailed error code in case of error
1635 * @ops: Iomap ops passed from the file system
1636 *
1637 * When a page fault occurs, filesystems may call this helper in
1638 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639 * has done all the necessary locking for page fault to proceed
1640 * successfully.
1641 */
1642vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1643                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1644{
1645        switch (pe_size) {
1646        case PE_SIZE_PTE:
1647                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1648        case PE_SIZE_PMD:
1649                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1650        default:
1651                return VM_FAULT_FALLBACK;
1652        }
1653}
1654EXPORT_SYMBOL_GPL(dax_iomap_fault);
1655
1656/*
1657 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658 * @vmf: The description of the fault
1659 * @pfn: PFN to insert
1660 * @order: Order of entry to insert.
1661 *
1662 * This function inserts a writeable PTE or PMD entry into the page tables
1663 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1664 */
1665static vm_fault_t
1666dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1667{
1668        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1669        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670        void *entry;
1671        vm_fault_t ret;
1672
1673        xas_lock_irq(&xas);
1674        entry = get_unlocked_entry(&xas, order);
1675        /* Did we race with someone splitting entry or so? */
1676        if (!entry || dax_is_conflict(entry) ||
1677            (order == 0 && !dax_is_pte_entry(entry))) {
1678                put_unlocked_entry(&xas, entry);
1679                xas_unlock_irq(&xas);
1680                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1681                                                      VM_FAULT_NOPAGE);
1682                return VM_FAULT_NOPAGE;
1683        }
1684        xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1685        dax_lock_entry(&xas, entry);
1686        xas_unlock_irq(&xas);
1687        if (order == 0)
1688                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1689#ifdef CONFIG_FS_DAX_PMD
1690        else if (order == PMD_ORDER)
1691                ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1692#endif
1693        else
1694                ret = VM_FAULT_FALLBACK;
1695        dax_unlock_entry(&xas, entry);
1696        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1697        return ret;
1698}
1699
1700/**
1701 * dax_finish_sync_fault - finish synchronous page fault
1702 * @vmf: The description of the fault
1703 * @pe_size: Size of entry to be inserted
1704 * @pfn: PFN to insert
1705 *
1706 * This function ensures that the file range touched by the page fault is
1707 * stored persistently on the media and handles inserting of appropriate page
1708 * table entry.
1709 */
1710vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1711                enum page_entry_size pe_size, pfn_t pfn)
1712{
1713        int err;
1714        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1715        unsigned int order = pe_order(pe_size);
1716        size_t len = PAGE_SIZE << order;
1717
1718        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1719        if (err)
1720                return VM_FAULT_SIGBUS;
1721        return dax_insert_pfn_mkwrite(vmf, pfn, order);
1722}
1723EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1724