linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * eCryptfs: Linux filesystem encryption layer
   4 *
   5 * Copyright (C) 1997-2004 Erez Zadok
   6 * Copyright (C) 2001-2004 Stony Brook University
   7 * Copyright (C) 2004-2007 International Business Machines Corp.
   8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   9 *              Michael C. Thompson <mcthomps@us.ibm.com>
  10 */
  11
  12#include <crypto/hash.h>
  13#include <crypto/skcipher.h>
  14#include <linux/fs.h>
  15#include <linux/mount.h>
  16#include <linux/pagemap.h>
  17#include <linux/random.h>
  18#include <linux/compiler.h>
  19#include <linux/key.h>
  20#include <linux/namei.h>
  21#include <linux/file.h>
  22#include <linux/scatterlist.h>
  23#include <linux/slab.h>
  24#include <asm/unaligned.h>
  25#include <linux/kernel.h>
  26#include <linux/xattr.h>
  27#include "ecryptfs_kernel.h"
  28
  29#define DECRYPT         0
  30#define ENCRYPT         1
  31
  32/**
  33 * ecryptfs_from_hex
  34 * @dst: Buffer to take the bytes from src hex; must be at least of
  35 *       size (src_size / 2)
  36 * @src: Buffer to be converted from a hex string representation to raw value
  37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  38 */
  39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  40{
  41        int x;
  42        char tmp[3] = { 0, };
  43
  44        for (x = 0; x < dst_size; x++) {
  45                tmp[0] = src[x * 2];
  46                tmp[1] = src[x * 2 + 1];
  47                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  48        }
  49}
  50
  51static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  52                                char *src, int len, char *dst)
  53{
  54        SHASH_DESC_ON_STACK(desc, tfm);
  55        int err;
  56
  57        desc->tfm = tfm;
  58        err = crypto_shash_digest(desc, src, len, dst);
  59        shash_desc_zero(desc);
  60        return err;
  61}
  62
  63/**
  64 * ecryptfs_calculate_md5 - calculates the md5 of @src
  65 * @dst: Pointer to 16 bytes of allocated memory
  66 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  67 * @src: Data to be md5'd
  68 * @len: Length of @src
  69 *
  70 * Uses the allocated crypto context that crypt_stat references to
  71 * generate the MD5 sum of the contents of src.
  72 */
  73static int ecryptfs_calculate_md5(char *dst,
  74                                  struct ecryptfs_crypt_stat *crypt_stat,
  75                                  char *src, int len)
  76{
  77        struct crypto_shash *tfm;
  78        int rc = 0;
  79
  80        tfm = crypt_stat->hash_tfm;
  81        rc = ecryptfs_hash_digest(tfm, src, len, dst);
  82        if (rc) {
  83                printk(KERN_ERR
  84                       "%s: Error computing crypto hash; rc = [%d]\n",
  85                       __func__, rc);
  86                goto out;
  87        }
  88out:
  89        return rc;
  90}
  91
  92static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  93                                                  char *cipher_name,
  94                                                  char *chaining_modifier)
  95{
  96        int cipher_name_len = strlen(cipher_name);
  97        int chaining_modifier_len = strlen(chaining_modifier);
  98        int algified_name_len;
  99        int rc;
 100
 101        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 102        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 103        if (!(*algified_name)) {
 104                rc = -ENOMEM;
 105                goto out;
 106        }
 107        snprintf((*algified_name), algified_name_len, "%s(%s)",
 108                 chaining_modifier, cipher_name);
 109        rc = 0;
 110out:
 111        return rc;
 112}
 113
 114/**
 115 * ecryptfs_derive_iv
 116 * @iv: destination for the derived iv vale
 117 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 118 * @offset: Offset of the extent whose IV we are to derive
 119 *
 120 * Generate the initialization vector from the given root IV and page
 121 * offset.
 122 *
 123 * Returns zero on success; non-zero on error.
 124 */
 125int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 126                       loff_t offset)
 127{
 128        int rc = 0;
 129        char dst[MD5_DIGEST_SIZE];
 130        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 131
 132        if (unlikely(ecryptfs_verbosity > 0)) {
 133                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 134                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 135        }
 136        /* TODO: It is probably secure to just cast the least
 137         * significant bits of the root IV into an unsigned long and
 138         * add the offset to that rather than go through all this
 139         * hashing business. -Halcrow */
 140        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 141        memset((src + crypt_stat->iv_bytes), 0, 16);
 142        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 143        if (unlikely(ecryptfs_verbosity > 0)) {
 144                ecryptfs_printk(KERN_DEBUG, "source:\n");
 145                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 146        }
 147        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 148                                    (crypt_stat->iv_bytes + 16));
 149        if (rc) {
 150                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 151                                "MD5 while generating IV for a page\n");
 152                goto out;
 153        }
 154        memcpy(iv, dst, crypt_stat->iv_bytes);
 155        if (unlikely(ecryptfs_verbosity > 0)) {
 156                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 157                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 158        }
 159out:
 160        return rc;
 161}
 162
 163/**
 164 * ecryptfs_init_crypt_stat
 165 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 166 *
 167 * Initialize the crypt_stat structure.
 168 */
 169int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 170{
 171        struct crypto_shash *tfm;
 172        int rc;
 173
 174        tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 175        if (IS_ERR(tfm)) {
 176                rc = PTR_ERR(tfm);
 177                ecryptfs_printk(KERN_ERR, "Error attempting to "
 178                                "allocate crypto context; rc = [%d]\n",
 179                                rc);
 180                return rc;
 181        }
 182
 183        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 184        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 185        mutex_init(&crypt_stat->keysig_list_mutex);
 186        mutex_init(&crypt_stat->cs_mutex);
 187        mutex_init(&crypt_stat->cs_tfm_mutex);
 188        crypt_stat->hash_tfm = tfm;
 189        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 190
 191        return 0;
 192}
 193
 194/**
 195 * ecryptfs_destroy_crypt_stat
 196 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 197 *
 198 * Releases all memory associated with a crypt_stat struct.
 199 */
 200void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 201{
 202        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 203
 204        crypto_free_skcipher(crypt_stat->tfm);
 205        crypto_free_shash(crypt_stat->hash_tfm);
 206        list_for_each_entry_safe(key_sig, key_sig_tmp,
 207                                 &crypt_stat->keysig_list, crypt_stat_list) {
 208                list_del(&key_sig->crypt_stat_list);
 209                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 210        }
 211        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 212}
 213
 214void ecryptfs_destroy_mount_crypt_stat(
 215        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 216{
 217        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 218
 219        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 220                return;
 221        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 222        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 223                                 &mount_crypt_stat->global_auth_tok_list,
 224                                 mount_crypt_stat_list) {
 225                list_del(&auth_tok->mount_crypt_stat_list);
 226                if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 227                        key_put(auth_tok->global_auth_tok_key);
 228                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 229        }
 230        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 231        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 232}
 233
 234/**
 235 * virt_to_scatterlist
 236 * @addr: Virtual address
 237 * @size: Size of data; should be an even multiple of the block size
 238 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 239 *      the number of scatterlist structs required in array
 240 * @sg_size: Max array size
 241 *
 242 * Fills in a scatterlist array with page references for a passed
 243 * virtual address.
 244 *
 245 * Returns the number of scatterlist structs in array used
 246 */
 247int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 248                        int sg_size)
 249{
 250        int i = 0;
 251        struct page *pg;
 252        int offset;
 253        int remainder_of_page;
 254
 255        sg_init_table(sg, sg_size);
 256
 257        while (size > 0 && i < sg_size) {
 258                pg = virt_to_page(addr);
 259                offset = offset_in_page(addr);
 260                sg_set_page(&sg[i], pg, 0, offset);
 261                remainder_of_page = PAGE_SIZE - offset;
 262                if (size >= remainder_of_page) {
 263                        sg[i].length = remainder_of_page;
 264                        addr += remainder_of_page;
 265                        size -= remainder_of_page;
 266                } else {
 267                        sg[i].length = size;
 268                        addr += size;
 269                        size = 0;
 270                }
 271                i++;
 272        }
 273        if (size > 0)
 274                return -ENOMEM;
 275        return i;
 276}
 277
 278struct extent_crypt_result {
 279        struct completion completion;
 280        int rc;
 281};
 282
 283static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 284{
 285        struct extent_crypt_result *ecr = req->data;
 286
 287        if (rc == -EINPROGRESS)
 288                return;
 289
 290        ecr->rc = rc;
 291        complete(&ecr->completion);
 292}
 293
 294/**
 295 * crypt_scatterlist
 296 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 297 * @dst_sg: Destination of the data after performing the crypto operation
 298 * @src_sg: Data to be encrypted or decrypted
 299 * @size: Length of data
 300 * @iv: IV to use
 301 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 302 *
 303 * Returns the number of bytes encrypted or decrypted; negative value on error
 304 */
 305static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 306                             struct scatterlist *dst_sg,
 307                             struct scatterlist *src_sg, int size,
 308                             unsigned char *iv, int op)
 309{
 310        struct skcipher_request *req = NULL;
 311        struct extent_crypt_result ecr;
 312        int rc = 0;
 313
 314        BUG_ON(!crypt_stat || !crypt_stat->tfm
 315               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 316        if (unlikely(ecryptfs_verbosity > 0)) {
 317                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 318                                crypt_stat->key_size);
 319                ecryptfs_dump_hex(crypt_stat->key,
 320                                  crypt_stat->key_size);
 321        }
 322
 323        init_completion(&ecr.completion);
 324
 325        mutex_lock(&crypt_stat->cs_tfm_mutex);
 326        req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 327        if (!req) {
 328                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 329                rc = -ENOMEM;
 330                goto out;
 331        }
 332
 333        skcipher_request_set_callback(req,
 334                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 335                        extent_crypt_complete, &ecr);
 336        /* Consider doing this once, when the file is opened */
 337        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 338                rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 339                                            crypt_stat->key_size);
 340                if (rc) {
 341                        ecryptfs_printk(KERN_ERR,
 342                                        "Error setting key; rc = [%d]\n",
 343                                        rc);
 344                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 345                        rc = -EINVAL;
 346                        goto out;
 347                }
 348                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 349        }
 350        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 351        skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 352        rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 353                             crypto_skcipher_decrypt(req);
 354        if (rc == -EINPROGRESS || rc == -EBUSY) {
 355                struct extent_crypt_result *ecr = req->base.data;
 356
 357                wait_for_completion(&ecr->completion);
 358                rc = ecr->rc;
 359                reinit_completion(&ecr->completion);
 360        }
 361out:
 362        skcipher_request_free(req);
 363        return rc;
 364}
 365
 366/**
 367 * lower_offset_for_page
 368 *
 369 * Convert an eCryptfs page index into a lower byte offset
 370 */
 371static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 372                                    struct page *page)
 373{
 374        return ecryptfs_lower_header_size(crypt_stat) +
 375               ((loff_t)page->index << PAGE_SHIFT);
 376}
 377
 378/**
 379 * crypt_extent
 380 * @crypt_stat: crypt_stat containing cryptographic context for the
 381 *              encryption operation
 382 * @dst_page: The page to write the result into
 383 * @src_page: The page to read from
 384 * @extent_offset: Page extent offset for use in generating IV
 385 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 386 *
 387 * Encrypts or decrypts one extent of data.
 388 *
 389 * Return zero on success; non-zero otherwise
 390 */
 391static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 392                        struct page *dst_page,
 393                        struct page *src_page,
 394                        unsigned long extent_offset, int op)
 395{
 396        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 397        loff_t extent_base;
 398        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 399        struct scatterlist src_sg, dst_sg;
 400        size_t extent_size = crypt_stat->extent_size;
 401        int rc;
 402
 403        extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 404        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 405                                (extent_base + extent_offset));
 406        if (rc) {
 407                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 408                        "extent [0x%.16llx]; rc = [%d]\n",
 409                        (unsigned long long)(extent_base + extent_offset), rc);
 410                goto out;
 411        }
 412
 413        sg_init_table(&src_sg, 1);
 414        sg_init_table(&dst_sg, 1);
 415
 416        sg_set_page(&src_sg, src_page, extent_size,
 417                    extent_offset * extent_size);
 418        sg_set_page(&dst_sg, dst_page, extent_size,
 419                    extent_offset * extent_size);
 420
 421        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 422                               extent_iv, op);
 423        if (rc < 0) {
 424                printk(KERN_ERR "%s: Error attempting to crypt page with "
 425                       "page_index = [%ld], extent_offset = [%ld]; "
 426                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 427                goto out;
 428        }
 429        rc = 0;
 430out:
 431        return rc;
 432}
 433
 434/**
 435 * ecryptfs_encrypt_page
 436 * @page: Page mapped from the eCryptfs inode for the file; contains
 437 *        decrypted content that needs to be encrypted (to a temporary
 438 *        page; not in place) and written out to the lower file
 439 *
 440 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 441 * that eCryptfs pages may straddle the lower pages -- for instance,
 442 * if the file was created on a machine with an 8K page size
 443 * (resulting in an 8K header), and then the file is copied onto a
 444 * host with a 32K page size, then when reading page 0 of the eCryptfs
 445 * file, 24K of page 0 of the lower file will be read and decrypted,
 446 * and then 8K of page 1 of the lower file will be read and decrypted.
 447 *
 448 * Returns zero on success; negative on error
 449 */
 450int ecryptfs_encrypt_page(struct page *page)
 451{
 452        struct inode *ecryptfs_inode;
 453        struct ecryptfs_crypt_stat *crypt_stat;
 454        char *enc_extent_virt;
 455        struct page *enc_extent_page = NULL;
 456        loff_t extent_offset;
 457        loff_t lower_offset;
 458        int rc = 0;
 459
 460        ecryptfs_inode = page->mapping->host;
 461        crypt_stat =
 462                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 463        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 464        enc_extent_page = alloc_page(GFP_USER);
 465        if (!enc_extent_page) {
 466                rc = -ENOMEM;
 467                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 468                                "encrypted extent\n");
 469                goto out;
 470        }
 471
 472        for (extent_offset = 0;
 473             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 474             extent_offset++) {
 475                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 476                                  extent_offset, ENCRYPT);
 477                if (rc) {
 478                        printk(KERN_ERR "%s: Error encrypting extent; "
 479                               "rc = [%d]\n", __func__, rc);
 480                        goto out;
 481                }
 482        }
 483
 484        lower_offset = lower_offset_for_page(crypt_stat, page);
 485        enc_extent_virt = kmap(enc_extent_page);
 486        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 487                                  PAGE_SIZE);
 488        kunmap(enc_extent_page);
 489        if (rc < 0) {
 490                ecryptfs_printk(KERN_ERR,
 491                        "Error attempting to write lower page; rc = [%d]\n",
 492                        rc);
 493                goto out;
 494        }
 495        rc = 0;
 496out:
 497        if (enc_extent_page) {
 498                __free_page(enc_extent_page);
 499        }
 500        return rc;
 501}
 502
 503/**
 504 * ecryptfs_decrypt_page
 505 * @page: Page mapped from the eCryptfs inode for the file; data read
 506 *        and decrypted from the lower file will be written into this
 507 *        page
 508 *
 509 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 510 * that eCryptfs pages may straddle the lower pages -- for instance,
 511 * if the file was created on a machine with an 8K page size
 512 * (resulting in an 8K header), and then the file is copied onto a
 513 * host with a 32K page size, then when reading page 0 of the eCryptfs
 514 * file, 24K of page 0 of the lower file will be read and decrypted,
 515 * and then 8K of page 1 of the lower file will be read and decrypted.
 516 *
 517 * Returns zero on success; negative on error
 518 */
 519int ecryptfs_decrypt_page(struct page *page)
 520{
 521        struct inode *ecryptfs_inode;
 522        struct ecryptfs_crypt_stat *crypt_stat;
 523        char *page_virt;
 524        unsigned long extent_offset;
 525        loff_t lower_offset;
 526        int rc = 0;
 527
 528        ecryptfs_inode = page->mapping->host;
 529        crypt_stat =
 530                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 531        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 532
 533        lower_offset = lower_offset_for_page(crypt_stat, page);
 534        page_virt = kmap(page);
 535        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 536                                 ecryptfs_inode);
 537        kunmap(page);
 538        if (rc < 0) {
 539                ecryptfs_printk(KERN_ERR,
 540                        "Error attempting to read lower page; rc = [%d]\n",
 541                        rc);
 542                goto out;
 543        }
 544
 545        for (extent_offset = 0;
 546             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 547             extent_offset++) {
 548                rc = crypt_extent(crypt_stat, page, page,
 549                                  extent_offset, DECRYPT);
 550                if (rc) {
 551                        printk(KERN_ERR "%s: Error encrypting extent; "
 552                               "rc = [%d]\n", __func__, rc);
 553                        goto out;
 554                }
 555        }
 556out:
 557        return rc;
 558}
 559
 560#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 561
 562/**
 563 * ecryptfs_init_crypt_ctx
 564 * @crypt_stat: Uninitialized crypt stats structure
 565 *
 566 * Initialize the crypto context.
 567 *
 568 * TODO: Performance: Keep a cache of initialized cipher contexts;
 569 * only init if needed
 570 */
 571int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 572{
 573        char *full_alg_name;
 574        int rc = -EINVAL;
 575
 576        ecryptfs_printk(KERN_DEBUG,
 577                        "Initializing cipher [%s]; strlen = [%d]; "
 578                        "key_size_bits = [%zd]\n",
 579                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 580                        crypt_stat->key_size << 3);
 581        mutex_lock(&crypt_stat->cs_tfm_mutex);
 582        if (crypt_stat->tfm) {
 583                rc = 0;
 584                goto out_unlock;
 585        }
 586        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 587                                                    crypt_stat->cipher, "cbc");
 588        if (rc)
 589                goto out_unlock;
 590        crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 591        if (IS_ERR(crypt_stat->tfm)) {
 592                rc = PTR_ERR(crypt_stat->tfm);
 593                crypt_stat->tfm = NULL;
 594                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 595                                "Error initializing cipher [%s]\n",
 596                                full_alg_name);
 597                goto out_free;
 598        }
 599        crypto_skcipher_set_flags(crypt_stat->tfm,
 600                                  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
 601        rc = 0;
 602out_free:
 603        kfree(full_alg_name);
 604out_unlock:
 605        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 606        return rc;
 607}
 608
 609static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 610{
 611        int extent_size_tmp;
 612
 613        crypt_stat->extent_mask = 0xFFFFFFFF;
 614        crypt_stat->extent_shift = 0;
 615        if (crypt_stat->extent_size == 0)
 616                return;
 617        extent_size_tmp = crypt_stat->extent_size;
 618        while ((extent_size_tmp & 0x01) == 0) {
 619                extent_size_tmp >>= 1;
 620                crypt_stat->extent_mask <<= 1;
 621                crypt_stat->extent_shift++;
 622        }
 623}
 624
 625void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 626{
 627        /* Default values; may be overwritten as we are parsing the
 628         * packets. */
 629        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 630        set_extent_mask_and_shift(crypt_stat);
 631        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 632        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 633                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 634        else {
 635                if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 636                        crypt_stat->metadata_size =
 637                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 638                else
 639                        crypt_stat->metadata_size = PAGE_SIZE;
 640        }
 641}
 642
 643/**
 644 * ecryptfs_compute_root_iv
 645 * @crypt_stats
 646 *
 647 * On error, sets the root IV to all 0's.
 648 */
 649int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 650{
 651        int rc = 0;
 652        char dst[MD5_DIGEST_SIZE];
 653
 654        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 655        BUG_ON(crypt_stat->iv_bytes <= 0);
 656        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 657                rc = -EINVAL;
 658                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 659                                "cannot generate root IV\n");
 660                goto out;
 661        }
 662        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 663                                    crypt_stat->key_size);
 664        if (rc) {
 665                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 666                                "MD5 while generating root IV\n");
 667                goto out;
 668        }
 669        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 670out:
 671        if (rc) {
 672                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 673                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 674        }
 675        return rc;
 676}
 677
 678static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 679{
 680        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 681        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 682        ecryptfs_compute_root_iv(crypt_stat);
 683        if (unlikely(ecryptfs_verbosity > 0)) {
 684                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 685                ecryptfs_dump_hex(crypt_stat->key,
 686                                  crypt_stat->key_size);
 687        }
 688}
 689
 690/**
 691 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 692 * @crypt_stat: The inode's cryptographic context
 693 * @mount_crypt_stat: The mount point's cryptographic context
 694 *
 695 * This function propagates the mount-wide flags to individual inode
 696 * flags.
 697 */
 698static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 699        struct ecryptfs_crypt_stat *crypt_stat,
 700        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 701{
 702        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 703                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 704        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 705                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 706        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 707                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 708                if (mount_crypt_stat->flags
 709                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 710                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 711                else if (mount_crypt_stat->flags
 712                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 713                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 714        }
 715}
 716
 717static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 718        struct ecryptfs_crypt_stat *crypt_stat,
 719        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 720{
 721        struct ecryptfs_global_auth_tok *global_auth_tok;
 722        int rc = 0;
 723
 724        mutex_lock(&crypt_stat->keysig_list_mutex);
 725        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 726
 727        list_for_each_entry(global_auth_tok,
 728                            &mount_crypt_stat->global_auth_tok_list,
 729                            mount_crypt_stat_list) {
 730                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 731                        continue;
 732                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 733                if (rc) {
 734                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 735                        goto out;
 736                }
 737        }
 738
 739out:
 740        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 741        mutex_unlock(&crypt_stat->keysig_list_mutex);
 742        return rc;
 743}
 744
 745/**
 746 * ecryptfs_set_default_crypt_stat_vals
 747 * @crypt_stat: The inode's cryptographic context
 748 * @mount_crypt_stat: The mount point's cryptographic context
 749 *
 750 * Default values in the event that policy does not override them.
 751 */
 752static void ecryptfs_set_default_crypt_stat_vals(
 753        struct ecryptfs_crypt_stat *crypt_stat,
 754        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 755{
 756        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 757                                                      mount_crypt_stat);
 758        ecryptfs_set_default_sizes(crypt_stat);
 759        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 760        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 761        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 762        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 763        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 764}
 765
 766/**
 767 * ecryptfs_new_file_context
 768 * @ecryptfs_inode: The eCryptfs inode
 769 *
 770 * If the crypto context for the file has not yet been established,
 771 * this is where we do that.  Establishing a new crypto context
 772 * involves the following decisions:
 773 *  - What cipher to use?
 774 *  - What set of authentication tokens to use?
 775 * Here we just worry about getting enough information into the
 776 * authentication tokens so that we know that they are available.
 777 * We associate the available authentication tokens with the new file
 778 * via the set of signatures in the crypt_stat struct.  Later, when
 779 * the headers are actually written out, we may again defer to
 780 * userspace to perform the encryption of the session key; for the
 781 * foreseeable future, this will be the case with public key packets.
 782 *
 783 * Returns zero on success; non-zero otherwise
 784 */
 785int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 786{
 787        struct ecryptfs_crypt_stat *crypt_stat =
 788            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 789        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 790            &ecryptfs_superblock_to_private(
 791                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 792        int cipher_name_len;
 793        int rc = 0;
 794
 795        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 796        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 797        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 798                                                      mount_crypt_stat);
 799        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 800                                                         mount_crypt_stat);
 801        if (rc) {
 802                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 803                       "to the inode key sigs; rc = [%d]\n", rc);
 804                goto out;
 805        }
 806        cipher_name_len =
 807                strlen(mount_crypt_stat->global_default_cipher_name);
 808        memcpy(crypt_stat->cipher,
 809               mount_crypt_stat->global_default_cipher_name,
 810               cipher_name_len);
 811        crypt_stat->cipher[cipher_name_len] = '\0';
 812        crypt_stat->key_size =
 813                mount_crypt_stat->global_default_cipher_key_size;
 814        ecryptfs_generate_new_key(crypt_stat);
 815        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 816        if (rc)
 817                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 818                                "context for cipher [%s]: rc = [%d]\n",
 819                                crypt_stat->cipher, rc);
 820out:
 821        return rc;
 822}
 823
 824/**
 825 * ecryptfs_validate_marker - check for the ecryptfs marker
 826 * @data: The data block in which to check
 827 *
 828 * Returns zero if marker found; -EINVAL if not found
 829 */
 830static int ecryptfs_validate_marker(char *data)
 831{
 832        u32 m_1, m_2;
 833
 834        m_1 = get_unaligned_be32(data);
 835        m_2 = get_unaligned_be32(data + 4);
 836        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 837                return 0;
 838        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 839                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 840                        MAGIC_ECRYPTFS_MARKER);
 841        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 842                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 843        return -EINVAL;
 844}
 845
 846struct ecryptfs_flag_map_elem {
 847        u32 file_flag;
 848        u32 local_flag;
 849};
 850
 851/* Add support for additional flags by adding elements here. */
 852static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 853        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 854        {0x00000002, ECRYPTFS_ENCRYPTED},
 855        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 856        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 857};
 858
 859/**
 860 * ecryptfs_process_flags
 861 * @crypt_stat: The cryptographic context
 862 * @page_virt: Source data to be parsed
 863 * @bytes_read: Updated with the number of bytes read
 864 */
 865static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 866                                  char *page_virt, int *bytes_read)
 867{
 868        int i;
 869        u32 flags;
 870
 871        flags = get_unaligned_be32(page_virt);
 872        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 873                if (flags & ecryptfs_flag_map[i].file_flag) {
 874                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 875                } else
 876                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 877        /* Version is in top 8 bits of the 32-bit flag vector */
 878        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 879        (*bytes_read) = 4;
 880}
 881
 882/**
 883 * write_ecryptfs_marker
 884 * @page_virt: The pointer to in a page to begin writing the marker
 885 * @written: Number of bytes written
 886 *
 887 * Marker = 0x3c81b7f5
 888 */
 889static void write_ecryptfs_marker(char *page_virt, size_t *written)
 890{
 891        u32 m_1, m_2;
 892
 893        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 894        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 895        put_unaligned_be32(m_1, page_virt);
 896        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 897        put_unaligned_be32(m_2, page_virt);
 898        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 899}
 900
 901void ecryptfs_write_crypt_stat_flags(char *page_virt,
 902                                     struct ecryptfs_crypt_stat *crypt_stat,
 903                                     size_t *written)
 904{
 905        u32 flags = 0;
 906        int i;
 907
 908        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 909                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 910                        flags |= ecryptfs_flag_map[i].file_flag;
 911        /* Version is in top 8 bits of the 32-bit flag vector */
 912        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 913        put_unaligned_be32(flags, page_virt);
 914        (*written) = 4;
 915}
 916
 917struct ecryptfs_cipher_code_str_map_elem {
 918        char cipher_str[16];
 919        u8 cipher_code;
 920};
 921
 922/* Add support for additional ciphers by adding elements here. The
 923 * cipher_code is whatever OpenPGP applications use to identify the
 924 * ciphers. List in order of probability. */
 925static struct ecryptfs_cipher_code_str_map_elem
 926ecryptfs_cipher_code_str_map[] = {
 927        {"aes",RFC2440_CIPHER_AES_128 },
 928        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 929        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 930        {"cast5", RFC2440_CIPHER_CAST_5},
 931        {"twofish", RFC2440_CIPHER_TWOFISH},
 932        {"cast6", RFC2440_CIPHER_CAST_6},
 933        {"aes", RFC2440_CIPHER_AES_192},
 934        {"aes", RFC2440_CIPHER_AES_256}
 935};
 936
 937/**
 938 * ecryptfs_code_for_cipher_string
 939 * @cipher_name: The string alias for the cipher
 940 * @key_bytes: Length of key in bytes; used for AES code selection
 941 *
 942 * Returns zero on no match, or the cipher code on match
 943 */
 944u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 945{
 946        int i;
 947        u8 code = 0;
 948        struct ecryptfs_cipher_code_str_map_elem *map =
 949                ecryptfs_cipher_code_str_map;
 950
 951        if (strcmp(cipher_name, "aes") == 0) {
 952                switch (key_bytes) {
 953                case 16:
 954                        code = RFC2440_CIPHER_AES_128;
 955                        break;
 956                case 24:
 957                        code = RFC2440_CIPHER_AES_192;
 958                        break;
 959                case 32:
 960                        code = RFC2440_CIPHER_AES_256;
 961                }
 962        } else {
 963                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 964                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 965                                code = map[i].cipher_code;
 966                                break;
 967                        }
 968        }
 969        return code;
 970}
 971
 972/**
 973 * ecryptfs_cipher_code_to_string
 974 * @str: Destination to write out the cipher name
 975 * @cipher_code: The code to convert to cipher name string
 976 *
 977 * Returns zero on success
 978 */
 979int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 980{
 981        int rc = 0;
 982        int i;
 983
 984        str[0] = '\0';
 985        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 986                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 987                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 988        if (str[0] == '\0') {
 989                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 990                                "[%d]\n", cipher_code);
 991                rc = -EINVAL;
 992        }
 993        return rc;
 994}
 995
 996int ecryptfs_read_and_validate_header_region(struct inode *inode)
 997{
 998        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
 999        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1000        int rc;
1001
1002        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1003                                 inode);
1004        if (rc < 0)
1005                return rc;
1006        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1007                return -EINVAL;
1008        rc = ecryptfs_validate_marker(marker);
1009        if (!rc)
1010                ecryptfs_i_size_init(file_size, inode);
1011        return rc;
1012}
1013
1014void
1015ecryptfs_write_header_metadata(char *virt,
1016                               struct ecryptfs_crypt_stat *crypt_stat,
1017                               size_t *written)
1018{
1019        u32 header_extent_size;
1020        u16 num_header_extents_at_front;
1021
1022        header_extent_size = (u32)crypt_stat->extent_size;
1023        num_header_extents_at_front =
1024                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1025        put_unaligned_be32(header_extent_size, virt);
1026        virt += 4;
1027        put_unaligned_be16(num_header_extents_at_front, virt);
1028        (*written) = 6;
1029}
1030
1031struct kmem_cache *ecryptfs_header_cache;
1032
1033/**
1034 * ecryptfs_write_headers_virt
1035 * @page_virt: The virtual address to write the headers to
1036 * @max: The size of memory allocated at page_virt
1037 * @size: Set to the number of bytes written by this function
1038 * @crypt_stat: The cryptographic context
1039 * @ecryptfs_dentry: The eCryptfs dentry
1040 *
1041 * Format version: 1
1042 *
1043 *   Header Extent:
1044 *     Octets 0-7:        Unencrypted file size (big-endian)
1045 *     Octets 8-15:       eCryptfs special marker
1046 *     Octets 16-19:      Flags
1047 *      Octet 16:         File format version number (between 0 and 255)
1048 *      Octets 17-18:     Reserved
1049 *      Octet 19:         Bit 1 (lsb): Reserved
1050 *                        Bit 2: Encrypted?
1051 *                        Bits 3-8: Reserved
1052 *     Octets 20-23:      Header extent size (big-endian)
1053 *     Octets 24-25:      Number of header extents at front of file
1054 *                        (big-endian)
1055 *     Octet  26:         Begin RFC 2440 authentication token packet set
1056 *   Data Extent 0:
1057 *     Lower data (CBC encrypted)
1058 *   Data Extent 1:
1059 *     Lower data (CBC encrypted)
1060 *   ...
1061 *
1062 * Returns zero on success
1063 */
1064static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1065                                       size_t *size,
1066                                       struct ecryptfs_crypt_stat *crypt_stat,
1067                                       struct dentry *ecryptfs_dentry)
1068{
1069        int rc;
1070        size_t written;
1071        size_t offset;
1072
1073        offset = ECRYPTFS_FILE_SIZE_BYTES;
1074        write_ecryptfs_marker((page_virt + offset), &written);
1075        offset += written;
1076        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1077                                        &written);
1078        offset += written;
1079        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1080                                       &written);
1081        offset += written;
1082        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1083                                              ecryptfs_dentry, &written,
1084                                              max - offset);
1085        if (rc)
1086                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1087                                "set; rc = [%d]\n", rc);
1088        if (size) {
1089                offset += written;
1090                *size = offset;
1091        }
1092        return rc;
1093}
1094
1095static int
1096ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1097                                    char *virt, size_t virt_len)
1098{
1099        int rc;
1100
1101        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1102                                  0, virt_len);
1103        if (rc < 0)
1104                printk(KERN_ERR "%s: Error attempting to write header "
1105                       "information to lower file; rc = [%d]\n", __func__, rc);
1106        else
1107                rc = 0;
1108        return rc;
1109}
1110
1111static int
1112ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1113                                 struct inode *ecryptfs_inode,
1114                                 char *page_virt, size_t size)
1115{
1116        int rc;
1117        struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1118        struct inode *lower_inode = d_inode(lower_dentry);
1119
1120        if (!(lower_inode->i_opflags & IOP_XATTR)) {
1121                rc = -EOPNOTSUPP;
1122                goto out;
1123        }
1124
1125        inode_lock(lower_inode);
1126        rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1127                            page_virt, size, 0);
1128        if (!rc && ecryptfs_inode)
1129                fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1130        inode_unlock(lower_inode);
1131out:
1132        return rc;
1133}
1134
1135static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1136                                               unsigned int order)
1137{
1138        struct page *page;
1139
1140        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1141        if (page)
1142                return (unsigned long) page_address(page);
1143        return 0;
1144}
1145
1146/**
1147 * ecryptfs_write_metadata
1148 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149 * @ecryptfs_inode: The newly created eCryptfs inode
1150 *
1151 * Write the file headers out.  This will likely involve a userspace
1152 * callout, in which the session key is encrypted with one or more
1153 * public keys and/or the passphrase necessary to do the encryption is
1154 * retrieved via a prompt.  Exactly what happens at this point should
1155 * be policy-dependent.
1156 *
1157 * Returns zero on success; non-zero on error
1158 */
1159int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1160                            struct inode *ecryptfs_inode)
1161{
1162        struct ecryptfs_crypt_stat *crypt_stat =
1163                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1164        unsigned int order;
1165        char *virt;
1166        size_t virt_len;
1167        size_t size = 0;
1168        int rc = 0;
1169
1170        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1171                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1172                        printk(KERN_ERR "Key is invalid; bailing out\n");
1173                        rc = -EINVAL;
1174                        goto out;
1175                }
1176        } else {
1177                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1178                       __func__);
1179                rc = -EINVAL;
1180                goto out;
1181        }
1182        virt_len = crypt_stat->metadata_size;
1183        order = get_order(virt_len);
1184        /* Released in this function */
1185        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1186        if (!virt) {
1187                printk(KERN_ERR "%s: Out of memory\n", __func__);
1188                rc = -ENOMEM;
1189                goto out;
1190        }
1191        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1193                                         ecryptfs_dentry);
1194        if (unlikely(rc)) {
1195                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1196                       __func__, rc);
1197                goto out_free;
1198        }
1199        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1200                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1201                                                      virt, size);
1202        else
1203                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1204                                                         virt_len);
1205        if (rc) {
1206                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1207                       "rc = [%d]\n", __func__, rc);
1208                goto out_free;
1209        }
1210out_free:
1211        free_pages((unsigned long)virt, order);
1212out:
1213        return rc;
1214}
1215
1216#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1218static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1219                                 char *virt, int *bytes_read,
1220                                 int validate_header_size)
1221{
1222        int rc = 0;
1223        u32 header_extent_size;
1224        u16 num_header_extents_at_front;
1225
1226        header_extent_size = get_unaligned_be32(virt);
1227        virt += sizeof(__be32);
1228        num_header_extents_at_front = get_unaligned_be16(virt);
1229        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1230                                     * (size_t)header_extent_size));
1231        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1232        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1233            && (crypt_stat->metadata_size
1234                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1235                rc = -EINVAL;
1236                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1237                       crypt_stat->metadata_size);
1238        }
1239        return rc;
1240}
1241
1242/**
1243 * set_default_header_data
1244 * @crypt_stat: The cryptographic context
1245 *
1246 * For version 0 file format; this function is only for backwards
1247 * compatibility for files created with the prior versions of
1248 * eCryptfs.
1249 */
1250static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1251{
1252        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1253}
1254
1255void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1256{
1257        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1258        struct ecryptfs_crypt_stat *crypt_stat;
1259        u64 file_size;
1260
1261        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1262        mount_crypt_stat =
1263                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1264        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1265                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1266                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1267                        file_size += crypt_stat->metadata_size;
1268        } else
1269                file_size = get_unaligned_be64(page_virt);
1270        i_size_write(inode, (loff_t)file_size);
1271        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1272}
1273
1274/**
1275 * ecryptfs_read_headers_virt
1276 * @page_virt: The virtual address into which to read the headers
1277 * @crypt_stat: The cryptographic context
1278 * @ecryptfs_dentry: The eCryptfs dentry
1279 * @validate_header_size: Whether to validate the header size while reading
1280 *
1281 * Read/parse the header data. The header format is detailed in the
1282 * comment block for the ecryptfs_write_headers_virt() function.
1283 *
1284 * Returns zero on success
1285 */
1286static int ecryptfs_read_headers_virt(char *page_virt,
1287                                      struct ecryptfs_crypt_stat *crypt_stat,
1288                                      struct dentry *ecryptfs_dentry,
1289                                      int validate_header_size)
1290{
1291        int rc = 0;
1292        int offset;
1293        int bytes_read;
1294
1295        ecryptfs_set_default_sizes(crypt_stat);
1296        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1297                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1298        offset = ECRYPTFS_FILE_SIZE_BYTES;
1299        rc = ecryptfs_validate_marker(page_virt + offset);
1300        if (rc)
1301                goto out;
1302        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1303                ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1304        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1305        ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1306        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1307                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1308                                "file version [%d] is supported by this "
1309                                "version of eCryptfs\n",
1310                                crypt_stat->file_version,
1311                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1312                rc = -EINVAL;
1313                goto out;
1314        }
1315        offset += bytes_read;
1316        if (crypt_stat->file_version >= 1) {
1317                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1318                                           &bytes_read, validate_header_size);
1319                if (rc) {
1320                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1321                                        "metadata; rc = [%d]\n", rc);
1322                }
1323                offset += bytes_read;
1324        } else
1325                set_default_header_data(crypt_stat);
1326        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1327                                       ecryptfs_dentry);
1328out:
1329        return rc;
1330}
1331
1332/**
1333 * ecryptfs_read_xattr_region
1334 * @page_virt: The vitual address into which to read the xattr data
1335 * @ecryptfs_inode: The eCryptfs inode
1336 *
1337 * Attempts to read the crypto metadata from the extended attribute
1338 * region of the lower file.
1339 *
1340 * Returns zero on success; non-zero on error
1341 */
1342int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1343{
1344        struct dentry *lower_dentry =
1345                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1346        ssize_t size;
1347        int rc = 0;
1348
1349        size = ecryptfs_getxattr_lower(lower_dentry,
1350                                       ecryptfs_inode_to_lower(ecryptfs_inode),
1351                                       ECRYPTFS_XATTR_NAME,
1352                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1353        if (size < 0) {
1354                if (unlikely(ecryptfs_verbosity > 0))
1355                        printk(KERN_INFO "Error attempting to read the [%s] "
1356                               "xattr from the lower file; return value = "
1357                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1358                rc = -EINVAL;
1359                goto out;
1360        }
1361out:
1362        return rc;
1363}
1364
1365int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1366                                            struct inode *inode)
1367{
1368        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1369        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1370        int rc;
1371
1372        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1373                                     ecryptfs_inode_to_lower(inode),
1374                                     ECRYPTFS_XATTR_NAME, file_size,
1375                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1376        if (rc < 0)
1377                return rc;
1378        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1379                return -EINVAL;
1380        rc = ecryptfs_validate_marker(marker);
1381        if (!rc)
1382                ecryptfs_i_size_init(file_size, inode);
1383        return rc;
1384}
1385
1386/**
1387 * ecryptfs_read_metadata
1388 *
1389 * Common entry point for reading file metadata. From here, we could
1390 * retrieve the header information from the header region of the file,
1391 * the xattr region of the file, or some other repository that is
1392 * stored separately from the file itself. The current implementation
1393 * supports retrieving the metadata information from the file contents
1394 * and from the xattr region.
1395 *
1396 * Returns zero if valid headers found and parsed; non-zero otherwise
1397 */
1398int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1399{
1400        int rc;
1401        char *page_virt;
1402        struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1403        struct ecryptfs_crypt_stat *crypt_stat =
1404            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1405        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1406                &ecryptfs_superblock_to_private(
1407                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1408
1409        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1410                                                      mount_crypt_stat);
1411        /* Read the first page from the underlying file */
1412        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1413        if (!page_virt) {
1414                rc = -ENOMEM;
1415                goto out;
1416        }
1417        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1418                                 ecryptfs_inode);
1419        if (rc >= 0)
1420                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421                                                ecryptfs_dentry,
1422                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1423        if (rc) {
1424                /* metadata is not in the file header, so try xattrs */
1425                memset(page_virt, 0, PAGE_SIZE);
1426                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1427                if (rc) {
1428                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1429                               "file header region or xattr region, inode %lu\n",
1430                                ecryptfs_inode->i_ino);
1431                        rc = -EINVAL;
1432                        goto out;
1433                }
1434                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1435                                                ecryptfs_dentry,
1436                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1437                if (rc) {
1438                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439                               "file xattr region either, inode %lu\n",
1440                                ecryptfs_inode->i_ino);
1441                        rc = -EINVAL;
1442                }
1443                if (crypt_stat->mount_crypt_stat->flags
1444                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1445                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1446                } else {
1447                        printk(KERN_WARNING "Attempt to access file with "
1448                               "crypto metadata only in the extended attribute "
1449                               "region, but eCryptfs was mounted without "
1450                               "xattr support enabled. eCryptfs will not treat "
1451                               "this like an encrypted file, inode %lu\n",
1452                                ecryptfs_inode->i_ino);
1453                        rc = -EINVAL;
1454                }
1455        }
1456out:
1457        if (page_virt) {
1458                memset(page_virt, 0, PAGE_SIZE);
1459                kmem_cache_free(ecryptfs_header_cache, page_virt);
1460        }
1461        return rc;
1462}
1463
1464/**
1465 * ecryptfs_encrypt_filename - encrypt filename
1466 *
1467 * CBC-encrypts the filename. We do not want to encrypt the same
1468 * filename with the same key and IV, which may happen with hard
1469 * links, so we prepend random bits to each filename.
1470 *
1471 * Returns zero on success; non-zero otherwise
1472 */
1473static int
1474ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1475                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1476{
1477        int rc = 0;
1478
1479        filename->encrypted_filename = NULL;
1480        filename->encrypted_filename_size = 0;
1481        if (mount_crypt_stat && (mount_crypt_stat->flags
1482                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1483                size_t packet_size;
1484                size_t remaining_bytes;
1485
1486                rc = ecryptfs_write_tag_70_packet(
1487                        NULL, NULL,
1488                        &filename->encrypted_filename_size,
1489                        mount_crypt_stat, NULL,
1490                        filename->filename_size);
1491                if (rc) {
1492                        printk(KERN_ERR "%s: Error attempting to get packet "
1493                               "size for tag 72; rc = [%d]\n", __func__,
1494                               rc);
1495                        filename->encrypted_filename_size = 0;
1496                        goto out;
1497                }
1498                filename->encrypted_filename =
1499                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1500                if (!filename->encrypted_filename) {
1501                        rc = -ENOMEM;
1502                        goto out;
1503                }
1504                remaining_bytes = filename->encrypted_filename_size;
1505                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1506                                                  &remaining_bytes,
1507                                                  &packet_size,
1508                                                  mount_crypt_stat,
1509                                                  filename->filename,
1510                                                  filename->filename_size);
1511                if (rc) {
1512                        printk(KERN_ERR "%s: Error attempting to generate "
1513                               "tag 70 packet; rc = [%d]\n", __func__,
1514                               rc);
1515                        kfree(filename->encrypted_filename);
1516                        filename->encrypted_filename = NULL;
1517                        filename->encrypted_filename_size = 0;
1518                        goto out;
1519                }
1520                filename->encrypted_filename_size = packet_size;
1521        } else {
1522                printk(KERN_ERR "%s: No support for requested filename "
1523                       "encryption method in this release\n", __func__);
1524                rc = -EOPNOTSUPP;
1525                goto out;
1526        }
1527out:
1528        return rc;
1529}
1530
1531static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1532                                  const char *name, size_t name_size)
1533{
1534        int rc = 0;
1535
1536        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1537        if (!(*copied_name)) {
1538                rc = -ENOMEM;
1539                goto out;
1540        }
1541        memcpy((void *)(*copied_name), (void *)name, name_size);
1542        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1543                                                 * in printing out the
1544                                                 * string in debug
1545                                                 * messages */
1546        (*copied_name_size) = name_size;
1547out:
1548        return rc;
1549}
1550
1551/**
1552 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553 * @key_tfm: Crypto context for key material, set by this function
1554 * @cipher_name: Name of the cipher
1555 * @key_size: Size of the key in bytes
1556 *
1557 * Returns zero on success. Any crypto_tfm structs allocated here
1558 * should be released by other functions, such as on a superblock put
1559 * event, regardless of whether this function succeeds for fails.
1560 */
1561static int
1562ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1563                            char *cipher_name, size_t *key_size)
1564{
1565        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1566        char *full_alg_name = NULL;
1567        int rc;
1568
1569        *key_tfm = NULL;
1570        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1571                rc = -EINVAL;
1572                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1573                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1574                goto out;
1575        }
1576        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1577                                                    "ecb");
1578        if (rc)
1579                goto out;
1580        *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1581        if (IS_ERR(*key_tfm)) {
1582                rc = PTR_ERR(*key_tfm);
1583                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1584                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1585                goto out;
1586        }
1587        crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1588        if (*key_size == 0)
1589                *key_size = crypto_skcipher_default_keysize(*key_tfm);
1590        get_random_bytes(dummy_key, *key_size);
1591        rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1592        if (rc) {
1593                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1594                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1595                       rc);
1596                rc = -EINVAL;
1597                goto out;
1598        }
1599out:
1600        kfree(full_alg_name);
1601        return rc;
1602}
1603
1604struct kmem_cache *ecryptfs_key_tfm_cache;
1605static struct list_head key_tfm_list;
1606struct mutex key_tfm_list_mutex;
1607
1608int __init ecryptfs_init_crypto(void)
1609{
1610        mutex_init(&key_tfm_list_mutex);
1611        INIT_LIST_HEAD(&key_tfm_list);
1612        return 0;
1613}
1614
1615/**
1616 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1617 *
1618 * Called only at module unload time
1619 */
1620int ecryptfs_destroy_crypto(void)
1621{
1622        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1623
1624        mutex_lock(&key_tfm_list_mutex);
1625        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1626                                 key_tfm_list) {
1627                list_del(&key_tfm->key_tfm_list);
1628                crypto_free_skcipher(key_tfm->key_tfm);
1629                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1630        }
1631        mutex_unlock(&key_tfm_list_mutex);
1632        return 0;
1633}
1634
1635int
1636ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1637                         size_t key_size)
1638{
1639        struct ecryptfs_key_tfm *tmp_tfm;
1640        int rc = 0;
1641
1642        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1643
1644        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1645        if (key_tfm)
1646                (*key_tfm) = tmp_tfm;
1647        if (!tmp_tfm) {
1648                rc = -ENOMEM;
1649                goto out;
1650        }
1651        mutex_init(&tmp_tfm->key_tfm_mutex);
1652        strncpy(tmp_tfm->cipher_name, cipher_name,
1653                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1654        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1655        tmp_tfm->key_size = key_size;
1656        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1657                                         tmp_tfm->cipher_name,
1658                                         &tmp_tfm->key_size);
1659        if (rc) {
1660                printk(KERN_ERR "Error attempting to initialize key TFM "
1661                       "cipher with name = [%s]; rc = [%d]\n",
1662                       tmp_tfm->cipher_name, rc);
1663                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1664                if (key_tfm)
1665                        (*key_tfm) = NULL;
1666                goto out;
1667        }
1668        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1669out:
1670        return rc;
1671}
1672
1673/**
1674 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675 * @cipher_name: the name of the cipher to search for
1676 * @key_tfm: set to corresponding tfm if found
1677 *
1678 * Searches for cached key_tfm matching @cipher_name
1679 * Must be called with &key_tfm_list_mutex held
1680 * Returns 1 if found, with @key_tfm set
1681 * Returns 0 if not found, with @key_tfm set to NULL
1682 */
1683int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1684{
1685        struct ecryptfs_key_tfm *tmp_key_tfm;
1686
1687        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1688
1689        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1690                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1691                        if (key_tfm)
1692                                (*key_tfm) = tmp_key_tfm;
1693                        return 1;
1694                }
1695        }
1696        if (key_tfm)
1697                (*key_tfm) = NULL;
1698        return 0;
1699}
1700
1701/**
1702 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1703 *
1704 * @tfm: set to cached tfm found, or new tfm created
1705 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706 * @cipher_name: the name of the cipher to search for and/or add
1707 *
1708 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709 * Searches for cached item first, and creates new if not found.
1710 * Returns 0 on success, non-zero if adding new cipher failed
1711 */
1712int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1713                                               struct mutex **tfm_mutex,
1714                                               char *cipher_name)
1715{
1716        struct ecryptfs_key_tfm *key_tfm;
1717        int rc = 0;
1718
1719        (*tfm) = NULL;
1720        (*tfm_mutex) = NULL;
1721
1722        mutex_lock(&key_tfm_list_mutex);
1723        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1724                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1725                if (rc) {
1726                        printk(KERN_ERR "Error adding new key_tfm to list; "
1727                                        "rc = [%d]\n", rc);
1728                        goto out;
1729                }
1730        }
1731        (*tfm) = key_tfm->key_tfm;
1732        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1733out:
1734        mutex_unlock(&key_tfm_list_mutex);
1735        return rc;
1736}
1737
1738/* 64 characters forming a 6-bit target field */
1739static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1740                                                 "EFGHIJKLMNOPQRST"
1741                                                 "UVWXYZabcdefghij"
1742                                                 "klmnopqrstuvwxyz");
1743
1744/* We could either offset on every reverse map or just pad some 0x00's
1745 * at the front here */
1746static const unsigned char filename_rev_map[256] = {
1747        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1763};
1764
1765/**
1766 * ecryptfs_encode_for_filename
1767 * @dst: Destination location for encoded filename
1768 * @dst_size: Size of the encoded filename in bytes
1769 * @src: Source location for the filename to encode
1770 * @src_size: Size of the source in bytes
1771 */
1772static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1773                                  unsigned char *src, size_t src_size)
1774{
1775        size_t num_blocks;
1776        size_t block_num = 0;
1777        size_t dst_offset = 0;
1778        unsigned char last_block[3];
1779
1780        if (src_size == 0) {
1781                (*dst_size) = 0;
1782                goto out;
1783        }
1784        num_blocks = (src_size / 3);
1785        if ((src_size % 3) == 0) {
1786                memcpy(last_block, (&src[src_size - 3]), 3);
1787        } else {
1788                num_blocks++;
1789                last_block[2] = 0x00;
1790                switch (src_size % 3) {
1791                case 1:
1792                        last_block[0] = src[src_size - 1];
1793                        last_block[1] = 0x00;
1794                        break;
1795                case 2:
1796                        last_block[0] = src[src_size - 2];
1797                        last_block[1] = src[src_size - 1];
1798                }
1799        }
1800        (*dst_size) = (num_blocks * 4);
1801        if (!dst)
1802                goto out;
1803        while (block_num < num_blocks) {
1804                unsigned char *src_block;
1805                unsigned char dst_block[4];
1806
1807                if (block_num == (num_blocks - 1))
1808                        src_block = last_block;
1809                else
1810                        src_block = &src[block_num * 3];
1811                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1812                dst_block[1] = (((src_block[0] << 4) & 0x30)
1813                                | ((src_block[1] >> 4) & 0x0F));
1814                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1815                                | ((src_block[2] >> 6) & 0x03));
1816                dst_block[3] = (src_block[2] & 0x3F);
1817                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1818                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1819                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1820                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1821                block_num++;
1822        }
1823out:
1824        return;
1825}
1826
1827static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1828{
1829        /* Not exact; conservatively long. Every block of 4
1830         * encoded characters decodes into a block of 3
1831         * decoded characters. This segment of code provides
1832         * the caller with the maximum amount of allocated
1833         * space that @dst will need to point to in a
1834         * subsequent call. */
1835        return ((encoded_size + 1) * 3) / 4;
1836}
1837
1838/**
1839 * ecryptfs_decode_from_filename
1840 * @dst: If NULL, this function only sets @dst_size and returns. If
1841 *       non-NULL, this function decodes the encoded octets in @src
1842 *       into the memory that @dst points to.
1843 * @dst_size: Set to the size of the decoded string.
1844 * @src: The encoded set of octets to decode.
1845 * @src_size: The size of the encoded set of octets to decode.
1846 */
1847static void
1848ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1849                              const unsigned char *src, size_t src_size)
1850{
1851        u8 current_bit_offset = 0;
1852        size_t src_byte_offset = 0;
1853        size_t dst_byte_offset = 0;
1854
1855        if (!dst) {
1856                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1857                goto out;
1858        }
1859        while (src_byte_offset < src_size) {
1860                unsigned char src_byte =
1861                                filename_rev_map[(int)src[src_byte_offset]];
1862
1863                switch (current_bit_offset) {
1864                case 0:
1865                        dst[dst_byte_offset] = (src_byte << 2);
1866                        current_bit_offset = 6;
1867                        break;
1868                case 6:
1869                        dst[dst_byte_offset++] |= (src_byte >> 4);
1870                        dst[dst_byte_offset] = ((src_byte & 0xF)
1871                                                 << 4);
1872                        current_bit_offset = 4;
1873                        break;
1874                case 4:
1875                        dst[dst_byte_offset++] |= (src_byte >> 2);
1876                        dst[dst_byte_offset] = (src_byte << 6);
1877                        current_bit_offset = 2;
1878                        break;
1879                case 2:
1880                        dst[dst_byte_offset++] |= (src_byte);
1881                        current_bit_offset = 0;
1882                        break;
1883                }
1884                src_byte_offset++;
1885        }
1886        (*dst_size) = dst_byte_offset;
1887out:
1888        return;
1889}
1890
1891/**
1892 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894 * @name: The plaintext name
1895 * @length: The length of the plaintext
1896 * @encoded_name: The encypted name
1897 *
1898 * Encrypts and encodes a filename into something that constitutes a
1899 * valid filename for a filesystem, with printable characters.
1900 *
1901 * We assume that we have a properly initialized crypto context,
1902 * pointed to by crypt_stat->tfm.
1903 *
1904 * Returns zero on success; non-zero on otherwise
1905 */
1906int ecryptfs_encrypt_and_encode_filename(
1907        char **encoded_name,
1908        size_t *encoded_name_size,
1909        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1910        const char *name, size_t name_size)
1911{
1912        size_t encoded_name_no_prefix_size;
1913        int rc = 0;
1914
1915        (*encoded_name) = NULL;
1916        (*encoded_name_size) = 0;
1917        if (mount_crypt_stat && (mount_crypt_stat->flags
1918                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1919                struct ecryptfs_filename *filename;
1920
1921                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1922                if (!filename) {
1923                        rc = -ENOMEM;
1924                        goto out;
1925                }
1926                filename->filename = (char *)name;
1927                filename->filename_size = name_size;
1928                rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1929                if (rc) {
1930                        printk(KERN_ERR "%s: Error attempting to encrypt "
1931                               "filename; rc = [%d]\n", __func__, rc);
1932                        kfree(filename);
1933                        goto out;
1934                }
1935                ecryptfs_encode_for_filename(
1936                        NULL, &encoded_name_no_prefix_size,
1937                        filename->encrypted_filename,
1938                        filename->encrypted_filename_size);
1939                if (mount_crypt_stat
1940                        && (mount_crypt_stat->flags
1941                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1942                        (*encoded_name_size) =
1943                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944                                 + encoded_name_no_prefix_size);
1945                else
1946                        (*encoded_name_size) =
1947                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948                                 + encoded_name_no_prefix_size);
1949                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1950                if (!(*encoded_name)) {
1951                        rc = -ENOMEM;
1952                        kfree(filename->encrypted_filename);
1953                        kfree(filename);
1954                        goto out;
1955                }
1956                if (mount_crypt_stat
1957                        && (mount_crypt_stat->flags
1958                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1959                        memcpy((*encoded_name),
1960                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1961                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1962                        ecryptfs_encode_for_filename(
1963                            ((*encoded_name)
1964                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1965                            &encoded_name_no_prefix_size,
1966                            filename->encrypted_filename,
1967                            filename->encrypted_filename_size);
1968                        (*encoded_name_size) =
1969                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970                                 + encoded_name_no_prefix_size);
1971                        (*encoded_name)[(*encoded_name_size)] = '\0';
1972                } else {
1973                        rc = -EOPNOTSUPP;
1974                }
1975                if (rc) {
1976                        printk(KERN_ERR "%s: Error attempting to encode "
1977                               "encrypted filename; rc = [%d]\n", __func__,
1978                               rc);
1979                        kfree((*encoded_name));
1980                        (*encoded_name) = NULL;
1981                        (*encoded_name_size) = 0;
1982                }
1983                kfree(filename->encrypted_filename);
1984                kfree(filename);
1985        } else {
1986                rc = ecryptfs_copy_filename(encoded_name,
1987                                            encoded_name_size,
1988                                            name, name_size);
1989        }
1990out:
1991        return rc;
1992}
1993
1994static bool is_dot_dotdot(const char *name, size_t name_size)
1995{
1996        if (name_size == 1 && name[0] == '.')
1997                return true;
1998        else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1999                return true;
2000
2001        return false;
2002}
2003
2004/**
2005 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006 * @plaintext_name: The plaintext name
2007 * @plaintext_name_size: The plaintext name size
2008 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009 * @name: The filename in cipher text
2010 * @name_size: The cipher text name size
2011 *
2012 * Decrypts and decodes the filename.
2013 *
2014 * Returns zero on error; non-zero otherwise
2015 */
2016int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2017                                         size_t *plaintext_name_size,
2018                                         struct super_block *sb,
2019                                         const char *name, size_t name_size)
2020{
2021        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2022                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2023        char *decoded_name;
2024        size_t decoded_name_size;
2025        size_t packet_size;
2026        int rc = 0;
2027
2028        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2029            !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2030                if (is_dot_dotdot(name, name_size)) {
2031                        rc = ecryptfs_copy_filename(plaintext_name,
2032                                                    plaintext_name_size,
2033                                                    name, name_size);
2034                        goto out;
2035                }
2036
2037                if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2038                    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2039                            ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2040                        rc = -EINVAL;
2041                        goto out;
2042                }
2043
2044                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2045                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2046                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2047                                              name, name_size);
2048                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2049                if (!decoded_name) {
2050                        rc = -ENOMEM;
2051                        goto out;
2052                }
2053                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2054                                              name, name_size);
2055                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2056                                                  plaintext_name_size,
2057                                                  &packet_size,
2058                                                  mount_crypt_stat,
2059                                                  decoded_name,
2060                                                  decoded_name_size);
2061                if (rc) {
2062                        ecryptfs_printk(KERN_DEBUG,
2063                                        "%s: Could not parse tag 70 packet from filename\n",
2064                                        __func__);
2065                        goto out_free;
2066                }
2067        } else {
2068                rc = ecryptfs_copy_filename(plaintext_name,
2069                                            plaintext_name_size,
2070                                            name, name_size);
2071                goto out;
2072        }
2073out_free:
2074        kfree(decoded_name);
2075out:
2076        return rc;
2077}
2078
2079#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2080
2081int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2082                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2083{
2084        struct crypto_skcipher *tfm;
2085        struct mutex *tfm_mutex;
2086        size_t cipher_blocksize;
2087        int rc;
2088
2089        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2090                (*namelen) = lower_namelen;
2091                return 0;
2092        }
2093
2094        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2095                        mount_crypt_stat->global_default_fn_cipher_name);
2096        if (unlikely(rc)) {
2097                (*namelen) = 0;
2098                return rc;
2099        }
2100
2101        mutex_lock(tfm_mutex);
2102        cipher_blocksize = crypto_skcipher_blocksize(tfm);
2103        mutex_unlock(tfm_mutex);
2104
2105        /* Return an exact amount for the common cases */
2106        if (lower_namelen == NAME_MAX
2107            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2108                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2109                return 0;
2110        }
2111
2112        /* Return a safe estimate for the uncommon cases */
2113        (*namelen) = lower_namelen;
2114        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2115        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2116        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2117        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2118        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2119        /* Worst case is that the filename is padded nearly a full block size */
2120        (*namelen) -= cipher_blocksize - 1;
2121
2122        if ((*namelen) < 0)
2123                (*namelen) = 0;
2124
2125        return 0;
2126}
2127