linux/fs/eventpoll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  fs/eventpoll.c (Efficient event retrieval implementation)
   4 *  Copyright (C) 2001,...,2009  Davide Libenzi
   5 *
   6 *  Davide Libenzi <davidel@xmailserver.org>
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/sched/signal.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/signal.h>
  15#include <linux/errno.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/poll.h>
  19#include <linux/string.h>
  20#include <linux/list.h>
  21#include <linux/hash.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscalls.h>
  24#include <linux/rbtree.h>
  25#include <linux/wait.h>
  26#include <linux/eventpoll.h>
  27#include <linux/mount.h>
  28#include <linux/bitops.h>
  29#include <linux/mutex.h>
  30#include <linux/anon_inodes.h>
  31#include <linux/device.h>
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/mman.h>
  35#include <linux/atomic.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/compat.h>
  39#include <linux/rculist.h>
  40#include <net/busy_poll.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (rwlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a rwlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66 * It is also acquired when inserting an epoll fd onto another epoll
  67 * fd. We do this so that we walk the epoll tree and ensure that this
  68 * insertion does not create a cycle of epoll file descriptors, which
  69 * could lead to deadlock. We need a global mutex to prevent two
  70 * simultaneous inserts (A into B and B into A) from racing and
  71 * constructing a cycle without either insert observing that it is
  72 * going to.
  73 * It is necessary to acquire multiple "ep->mtx"es at once in the
  74 * case when one epoll fd is added to another. In this case, we
  75 * always acquire the locks in the order of nesting (i.e. after
  76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77 * before e2->mtx). Since we disallow cycles of epoll file
  78 * descriptors, this ensures that the mutexes are well-ordered. In
  79 * order to communicate this nesting to lockdep, when walking a tree
  80 * of epoll file descriptors, we use the current recursion depth as
  81 * the lockdep subkey.
  82 * It is possible to drop the "ep->mtx" and to use the global
  83 * mutex "epmutex" (together with "ep->lock") to have it working,
  84 * but having "ep->mtx" will make the interface more scalable.
  85 * Events that require holding "epmutex" are very rare, while for
  86 * normal operations the epoll private "ep->mtx" will guarantee
  87 * a better scalability.
  88 */
  89
  90/* Epoll private bits inside the event mask */
  91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92
  93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94
  95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97
  98/* Maximum number of nesting allowed inside epoll sets */
  99#define EP_MAX_NESTS 4
 100
 101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102
 103#define EP_UNACTIVE_PTR ((void *) -1L)
 104
 105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106
 107struct epoll_filefd {
 108        struct file *file;
 109        int fd;
 110} __packed;
 111
 112/*
 113 * Structure used to track possible nested calls, for too deep recursions
 114 * and loop cycles.
 115 */
 116struct nested_call_node {
 117        struct list_head llink;
 118        void *cookie;
 119        void *ctx;
 120};
 121
 122/*
 123 * This structure is used as collector for nested calls, to check for
 124 * maximum recursion dept and loop cycles.
 125 */
 126struct nested_calls {
 127        struct list_head tasks_call_list;
 128        spinlock_t lock;
 129};
 130
 131/*
 132 * Each file descriptor added to the eventpoll interface will
 133 * have an entry of this type linked to the "rbr" RB tree.
 134 * Avoid increasing the size of this struct, there can be many thousands
 135 * of these on a server and we do not want this to take another cache line.
 136 */
 137struct epitem {
 138        union {
 139                /* RB tree node links this structure to the eventpoll RB tree */
 140                struct rb_node rbn;
 141                /* Used to free the struct epitem */
 142                struct rcu_head rcu;
 143        };
 144
 145        /* List header used to link this structure to the eventpoll ready list */
 146        struct list_head rdllink;
 147
 148        /*
 149         * Works together "struct eventpoll"->ovflist in keeping the
 150         * single linked chain of items.
 151         */
 152        struct epitem *next;
 153
 154        /* The file descriptor information this item refers to */
 155        struct epoll_filefd ffd;
 156
 157        /* Number of active wait queue attached to poll operations */
 158        int nwait;
 159
 160        /* List containing poll wait queues */
 161        struct list_head pwqlist;
 162
 163        /* The "container" of this item */
 164        struct eventpoll *ep;
 165
 166        /* List header used to link this item to the "struct file" items list */
 167        struct list_head fllink;
 168
 169        /* wakeup_source used when EPOLLWAKEUP is set */
 170        struct wakeup_source __rcu *ws;
 171
 172        /* The structure that describe the interested events and the source fd */
 173        struct epoll_event event;
 174};
 175
 176/*
 177 * This structure is stored inside the "private_data" member of the file
 178 * structure and represents the main data structure for the eventpoll
 179 * interface.
 180 */
 181struct eventpoll {
 182        /*
 183         * This mutex is used to ensure that files are not removed
 184         * while epoll is using them. This is held during the event
 185         * collection loop, the file cleanup path, the epoll file exit
 186         * code and the ctl operations.
 187         */
 188        struct mutex mtx;
 189
 190        /* Wait queue used by sys_epoll_wait() */
 191        wait_queue_head_t wq;
 192
 193        /* Wait queue used by file->poll() */
 194        wait_queue_head_t poll_wait;
 195
 196        /* List of ready file descriptors */
 197        struct list_head rdllist;
 198
 199        /* Lock which protects rdllist and ovflist */
 200        rwlock_t lock;
 201
 202        /* RB tree root used to store monitored fd structs */
 203        struct rb_root_cached rbr;
 204
 205        /*
 206         * This is a single linked list that chains all the "struct epitem" that
 207         * happened while transferring ready events to userspace w/out
 208         * holding ->lock.
 209         */
 210        struct epitem *ovflist;
 211
 212        /* wakeup_source used when ep_scan_ready_list is running */
 213        struct wakeup_source *ws;
 214
 215        /* The user that created the eventpoll descriptor */
 216        struct user_struct *user;
 217
 218        struct file *file;
 219
 220        /* used to optimize loop detection check */
 221        int visited;
 222        struct list_head visited_list_link;
 223
 224#ifdef CONFIG_NET_RX_BUSY_POLL
 225        /* used to track busy poll napi_id */
 226        unsigned int napi_id;
 227#endif
 228};
 229
 230/* Wait structure used by the poll hooks */
 231struct eppoll_entry {
 232        /* List header used to link this structure to the "struct epitem" */
 233        struct list_head llink;
 234
 235        /* The "base" pointer is set to the container "struct epitem" */
 236        struct epitem *base;
 237
 238        /*
 239         * Wait queue item that will be linked to the target file wait
 240         * queue head.
 241         */
 242        wait_queue_entry_t wait;
 243
 244        /* The wait queue head that linked the "wait" wait queue item */
 245        wait_queue_head_t *whead;
 246};
 247
 248/* Wrapper struct used by poll queueing */
 249struct ep_pqueue {
 250        poll_table pt;
 251        struct epitem *epi;
 252};
 253
 254/* Used by the ep_send_events() function as callback private data */
 255struct ep_send_events_data {
 256        int maxevents;
 257        struct epoll_event __user *events;
 258        int res;
 259};
 260
 261/*
 262 * Configuration options available inside /proc/sys/fs/epoll/
 263 */
 264/* Maximum number of epoll watched descriptors, per user */
 265static long max_user_watches __read_mostly;
 266
 267/*
 268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 269 */
 270static DEFINE_MUTEX(epmutex);
 271
 272/* Used to check for epoll file descriptor inclusion loops */
 273static struct nested_calls poll_loop_ncalls;
 274
 275/* Slab cache used to allocate "struct epitem" */
 276static struct kmem_cache *epi_cache __read_mostly;
 277
 278/* Slab cache used to allocate "struct eppoll_entry" */
 279static struct kmem_cache *pwq_cache __read_mostly;
 280
 281/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
 282static LIST_HEAD(visited_list);
 283
 284/*
 285 * List of files with newly added links, where we may need to limit the number
 286 * of emanating paths. Protected by the epmutex.
 287 */
 288static LIST_HEAD(tfile_check_list);
 289
 290#ifdef CONFIG_SYSCTL
 291
 292#include <linux/sysctl.h>
 293
 294static long long_zero;
 295static long long_max = LONG_MAX;
 296
 297struct ctl_table epoll_table[] = {
 298        {
 299                .procname       = "max_user_watches",
 300                .data           = &max_user_watches,
 301                .maxlen         = sizeof(max_user_watches),
 302                .mode           = 0644,
 303                .proc_handler   = proc_doulongvec_minmax,
 304                .extra1         = &long_zero,
 305                .extra2         = &long_max,
 306        },
 307        { }
 308};
 309#endif /* CONFIG_SYSCTL */
 310
 311static const struct file_operations eventpoll_fops;
 312
 313static inline int is_file_epoll(struct file *f)
 314{
 315        return f->f_op == &eventpoll_fops;
 316}
 317
 318/* Setup the structure that is used as key for the RB tree */
 319static inline void ep_set_ffd(struct epoll_filefd *ffd,
 320                              struct file *file, int fd)
 321{
 322        ffd->file = file;
 323        ffd->fd = fd;
 324}
 325
 326/* Compare RB tree keys */
 327static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 328                             struct epoll_filefd *p2)
 329{
 330        return (p1->file > p2->file ? +1:
 331                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 332}
 333
 334/* Tells us if the item is currently linked */
 335static inline int ep_is_linked(struct epitem *epi)
 336{
 337        return !list_empty(&epi->rdllink);
 338}
 339
 340static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 341{
 342        return container_of(p, struct eppoll_entry, wait);
 343}
 344
 345/* Get the "struct epitem" from a wait queue pointer */
 346static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 347{
 348        return container_of(p, struct eppoll_entry, wait)->base;
 349}
 350
 351/* Get the "struct epitem" from an epoll queue wrapper */
 352static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 353{
 354        return container_of(p, struct ep_pqueue, pt)->epi;
 355}
 356
 357/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 358static inline int ep_op_has_event(int op)
 359{
 360        return op != EPOLL_CTL_DEL;
 361}
 362
 363/* Initialize the poll safe wake up structure */
 364static void ep_nested_calls_init(struct nested_calls *ncalls)
 365{
 366        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 367        spin_lock_init(&ncalls->lock);
 368}
 369
 370/**
 371 * ep_events_available - Checks if ready events might be available.
 372 *
 373 * @ep: Pointer to the eventpoll context.
 374 *
 375 * Returns: Returns a value different than zero if ready events are available,
 376 *          or zero otherwise.
 377 */
 378static inline int ep_events_available(struct eventpoll *ep)
 379{
 380        return !list_empty_careful(&ep->rdllist) ||
 381                READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 382}
 383
 384#ifdef CONFIG_NET_RX_BUSY_POLL
 385static bool ep_busy_loop_end(void *p, unsigned long start_time)
 386{
 387        struct eventpoll *ep = p;
 388
 389        return ep_events_available(ep) || busy_loop_timeout(start_time);
 390}
 391
 392/*
 393 * Busy poll if globally on and supporting sockets found && no events,
 394 * busy loop will return if need_resched or ep_events_available.
 395 *
 396 * we must do our busy polling with irqs enabled
 397 */
 398static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 399{
 400        unsigned int napi_id = READ_ONCE(ep->napi_id);
 401
 402        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 403                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 404}
 405
 406static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 407{
 408        if (ep->napi_id)
 409                ep->napi_id = 0;
 410}
 411
 412/*
 413 * Set epoll busy poll NAPI ID from sk.
 414 */
 415static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 416{
 417        struct eventpoll *ep;
 418        unsigned int napi_id;
 419        struct socket *sock;
 420        struct sock *sk;
 421        int err;
 422
 423        if (!net_busy_loop_on())
 424                return;
 425
 426        sock = sock_from_file(epi->ffd.file, &err);
 427        if (!sock)
 428                return;
 429
 430        sk = sock->sk;
 431        if (!sk)
 432                return;
 433
 434        napi_id = READ_ONCE(sk->sk_napi_id);
 435        ep = epi->ep;
 436
 437        /* Non-NAPI IDs can be rejected
 438         *      or
 439         * Nothing to do if we already have this ID
 440         */
 441        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 442                return;
 443
 444        /* record NAPI ID for use in next busy poll */
 445        ep->napi_id = napi_id;
 446}
 447
 448#else
 449
 450static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
 451{
 452}
 453
 454static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 455{
 456}
 457
 458static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 459{
 460}
 461
 462#endif /* CONFIG_NET_RX_BUSY_POLL */
 463
 464/**
 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 466 *                  that the recursion limit is not exceeded, and that
 467 *                  the same nested call (by the meaning of same cookie) is
 468 *                  no re-entered.
 469 *
 470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 471 * @nproc: Nested call core function pointer.
 472 * @priv: Opaque data to be passed to the @nproc callback.
 473 * @cookie: Cookie to be used to identify this nested call.
 474 * @ctx: This instance context.
 475 *
 476 * Returns: Returns the code returned by the @nproc callback, or -1 if
 477 *          the maximum recursion limit has been exceeded.
 478 */
 479static int ep_call_nested(struct nested_calls *ncalls,
 480                          int (*nproc)(void *, void *, int), void *priv,
 481                          void *cookie, void *ctx)
 482{
 483        int error, call_nests = 0;
 484        unsigned long flags;
 485        struct list_head *lsthead = &ncalls->tasks_call_list;
 486        struct nested_call_node *tncur;
 487        struct nested_call_node tnode;
 488
 489        spin_lock_irqsave(&ncalls->lock, flags);
 490
 491        /*
 492         * Try to see if the current task is already inside this wakeup call.
 493         * We use a list here, since the population inside this set is always
 494         * very much limited.
 495         */
 496        list_for_each_entry(tncur, lsthead, llink) {
 497                if (tncur->ctx == ctx &&
 498                    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
 499                        /*
 500                         * Ops ... loop detected or maximum nest level reached.
 501                         * We abort this wake by breaking the cycle itself.
 502                         */
 503                        error = -1;
 504                        goto out_unlock;
 505                }
 506        }
 507
 508        /* Add the current task and cookie to the list */
 509        tnode.ctx = ctx;
 510        tnode.cookie = cookie;
 511        list_add(&tnode.llink, lsthead);
 512
 513        spin_unlock_irqrestore(&ncalls->lock, flags);
 514
 515        /* Call the nested function */
 516        error = (*nproc)(priv, cookie, call_nests);
 517
 518        /* Remove the current task from the list */
 519        spin_lock_irqsave(&ncalls->lock, flags);
 520        list_del(&tnode.llink);
 521out_unlock:
 522        spin_unlock_irqrestore(&ncalls->lock, flags);
 523
 524        return error;
 525}
 526
 527/*
 528 * As described in commit 0ccf831cb lockdep: annotate epoll
 529 * the use of wait queues used by epoll is done in a very controlled
 530 * manner. Wake ups can nest inside each other, but are never done
 531 * with the same locking. For example:
 532 *
 533 *   dfd = socket(...);
 534 *   efd1 = epoll_create();
 535 *   efd2 = epoll_create();
 536 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 537 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 538 *
 539 * When a packet arrives to the device underneath "dfd", the net code will
 540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 541 * callback wakeup entry on that queue, and the wake_up() performed by the
 542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 543 * (efd1) notices that it may have some event ready, so it needs to wake up
 544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 545 * that ends up in another wake_up(), after having checked about the
 546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 547 * avoid stack blasting.
 548 *
 549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 550 * this special case of epoll.
 551 */
 552#ifdef CONFIG_DEBUG_LOCK_ALLOC
 553
 554static struct nested_calls poll_safewake_ncalls;
 555
 556static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
 557{
 558        unsigned long flags;
 559        wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
 560
 561        spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
 562        wake_up_locked_poll(wqueue, EPOLLIN);
 563        spin_unlock_irqrestore(&wqueue->lock, flags);
 564
 565        return 0;
 566}
 567
 568static void ep_poll_safewake(wait_queue_head_t *wq)
 569{
 570        int this_cpu = get_cpu();
 571
 572        ep_call_nested(&poll_safewake_ncalls,
 573                       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 574
 575        put_cpu();
 576}
 577
 578#else
 579
 580static void ep_poll_safewake(wait_queue_head_t *wq)
 581{
 582        wake_up_poll(wq, EPOLLIN);
 583}
 584
 585#endif
 586
 587static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 588{
 589        wait_queue_head_t *whead;
 590
 591        rcu_read_lock();
 592        /*
 593         * If it is cleared by POLLFREE, it should be rcu-safe.
 594         * If we read NULL we need a barrier paired with
 595         * smp_store_release() in ep_poll_callback(), otherwise
 596         * we rely on whead->lock.
 597         */
 598        whead = smp_load_acquire(&pwq->whead);
 599        if (whead)
 600                remove_wait_queue(whead, &pwq->wait);
 601        rcu_read_unlock();
 602}
 603
 604/*
 605 * This function unregisters poll callbacks from the associated file
 606 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 607 * ep_free).
 608 */
 609static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 610{
 611        struct list_head *lsthead = &epi->pwqlist;
 612        struct eppoll_entry *pwq;
 613
 614        while (!list_empty(lsthead)) {
 615                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 616
 617                list_del(&pwq->llink);
 618                ep_remove_wait_queue(pwq);
 619                kmem_cache_free(pwq_cache, pwq);
 620        }
 621}
 622
 623/* call only when ep->mtx is held */
 624static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 625{
 626        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 627}
 628
 629/* call only when ep->mtx is held */
 630static inline void ep_pm_stay_awake(struct epitem *epi)
 631{
 632        struct wakeup_source *ws = ep_wakeup_source(epi);
 633
 634        if (ws)
 635                __pm_stay_awake(ws);
 636}
 637
 638static inline bool ep_has_wakeup_source(struct epitem *epi)
 639{
 640        return rcu_access_pointer(epi->ws) ? true : false;
 641}
 642
 643/* call when ep->mtx cannot be held (ep_poll_callback) */
 644static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 645{
 646        struct wakeup_source *ws;
 647
 648        rcu_read_lock();
 649        ws = rcu_dereference(epi->ws);
 650        if (ws)
 651                __pm_stay_awake(ws);
 652        rcu_read_unlock();
 653}
 654
 655/**
 656 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 657 *                      the scan code, to call f_op->poll(). Also allows for
 658 *                      O(NumReady) performance.
 659 *
 660 * @ep: Pointer to the epoll private data structure.
 661 * @sproc: Pointer to the scan callback.
 662 * @priv: Private opaque data passed to the @sproc callback.
 663 * @depth: The current depth of recursive f_op->poll calls.
 664 * @ep_locked: caller already holds ep->mtx
 665 *
 666 * Returns: The same integer error code returned by the @sproc callback.
 667 */
 668static __poll_t ep_scan_ready_list(struct eventpoll *ep,
 669                              __poll_t (*sproc)(struct eventpoll *,
 670                                           struct list_head *, void *),
 671                              void *priv, int depth, bool ep_locked)
 672{
 673        __poll_t res;
 674        int pwake = 0;
 675        struct epitem *epi, *nepi;
 676        LIST_HEAD(txlist);
 677
 678        lockdep_assert_irqs_enabled();
 679
 680        /*
 681         * We need to lock this because we could be hit by
 682         * eventpoll_release_file() and epoll_ctl().
 683         */
 684
 685        if (!ep_locked)
 686                mutex_lock_nested(&ep->mtx, depth);
 687
 688        /*
 689         * Steal the ready list, and re-init the original one to the
 690         * empty list. Also, set ep->ovflist to NULL so that events
 691         * happening while looping w/out locks, are not lost. We cannot
 692         * have the poll callback to queue directly on ep->rdllist,
 693         * because we want the "sproc" callback to be able to do it
 694         * in a lockless way.
 695         */
 696        write_lock_irq(&ep->lock);
 697        list_splice_init(&ep->rdllist, &txlist);
 698        WRITE_ONCE(ep->ovflist, NULL);
 699        write_unlock_irq(&ep->lock);
 700
 701        /*
 702         * Now call the callback function.
 703         */
 704        res = (*sproc)(ep, &txlist, priv);
 705
 706        write_lock_irq(&ep->lock);
 707        /*
 708         * During the time we spent inside the "sproc" callback, some
 709         * other events might have been queued by the poll callback.
 710         * We re-insert them inside the main ready-list here.
 711         */
 712        for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 713             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 714                /*
 715                 * We need to check if the item is already in the list.
 716                 * During the "sproc" callback execution time, items are
 717                 * queued into ->ovflist but the "txlist" might already
 718                 * contain them, and the list_splice() below takes care of them.
 719                 */
 720                if (!ep_is_linked(epi)) {
 721                        /*
 722                         * ->ovflist is LIFO, so we have to reverse it in order
 723                         * to keep in FIFO.
 724                         */
 725                        list_add(&epi->rdllink, &ep->rdllist);
 726                        ep_pm_stay_awake(epi);
 727                }
 728        }
 729        /*
 730         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 731         * releasing the lock, events will be queued in the normal way inside
 732         * ep->rdllist.
 733         */
 734        WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 735
 736        /*
 737         * Quickly re-inject items left on "txlist".
 738         */
 739        list_splice(&txlist, &ep->rdllist);
 740        __pm_relax(ep->ws);
 741
 742        if (!list_empty(&ep->rdllist)) {
 743                /*
 744                 * Wake up (if active) both the eventpoll wait list and
 745                 * the ->poll() wait list (delayed after we release the lock).
 746                 */
 747                if (waitqueue_active(&ep->wq))
 748                        wake_up(&ep->wq);
 749                if (waitqueue_active(&ep->poll_wait))
 750                        pwake++;
 751        }
 752        write_unlock_irq(&ep->lock);
 753
 754        if (!ep_locked)
 755                mutex_unlock(&ep->mtx);
 756
 757        /* We have to call this outside the lock */
 758        if (pwake)
 759                ep_poll_safewake(&ep->poll_wait);
 760
 761        return res;
 762}
 763
 764static void epi_rcu_free(struct rcu_head *head)
 765{
 766        struct epitem *epi = container_of(head, struct epitem, rcu);
 767        kmem_cache_free(epi_cache, epi);
 768}
 769
 770/*
 771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 772 * all the associated resources. Must be called with "mtx" held.
 773 */
 774static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 775{
 776        struct file *file = epi->ffd.file;
 777
 778        lockdep_assert_irqs_enabled();
 779
 780        /*
 781         * Removes poll wait queue hooks.
 782         */
 783        ep_unregister_pollwait(ep, epi);
 784
 785        /* Remove the current item from the list of epoll hooks */
 786        spin_lock(&file->f_lock);
 787        list_del_rcu(&epi->fllink);
 788        spin_unlock(&file->f_lock);
 789
 790        rb_erase_cached(&epi->rbn, &ep->rbr);
 791
 792        write_lock_irq(&ep->lock);
 793        if (ep_is_linked(epi))
 794                list_del_init(&epi->rdllink);
 795        write_unlock_irq(&ep->lock);
 796
 797        wakeup_source_unregister(ep_wakeup_source(epi));
 798        /*
 799         * At this point it is safe to free the eventpoll item. Use the union
 800         * field epi->rcu, since we are trying to minimize the size of
 801         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 802         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 803         * use of the rbn field.
 804         */
 805        call_rcu(&epi->rcu, epi_rcu_free);
 806
 807        atomic_long_dec(&ep->user->epoll_watches);
 808
 809        return 0;
 810}
 811
 812static void ep_free(struct eventpoll *ep)
 813{
 814        struct rb_node *rbp;
 815        struct epitem *epi;
 816
 817        /* We need to release all tasks waiting for these file */
 818        if (waitqueue_active(&ep->poll_wait))
 819                ep_poll_safewake(&ep->poll_wait);
 820
 821        /*
 822         * We need to lock this because we could be hit by
 823         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 824         * We do not need to hold "ep->mtx" here because the epoll file
 825         * is on the way to be removed and no one has references to it
 826         * anymore. The only hit might come from eventpoll_release_file() but
 827         * holding "epmutex" is sufficient here.
 828         */
 829        mutex_lock(&epmutex);
 830
 831        /*
 832         * Walks through the whole tree by unregistering poll callbacks.
 833         */
 834        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 835                epi = rb_entry(rbp, struct epitem, rbn);
 836
 837                ep_unregister_pollwait(ep, epi);
 838                cond_resched();
 839        }
 840
 841        /*
 842         * Walks through the whole tree by freeing each "struct epitem". At this
 843         * point we are sure no poll callbacks will be lingering around, and also by
 844         * holding "epmutex" we can be sure that no file cleanup code will hit
 845         * us during this operation. So we can avoid the lock on "ep->lock".
 846         * We do not need to lock ep->mtx, either, we only do it to prevent
 847         * a lockdep warning.
 848         */
 849        mutex_lock(&ep->mtx);
 850        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 851                epi = rb_entry(rbp, struct epitem, rbn);
 852                ep_remove(ep, epi);
 853                cond_resched();
 854        }
 855        mutex_unlock(&ep->mtx);
 856
 857        mutex_unlock(&epmutex);
 858        mutex_destroy(&ep->mtx);
 859        free_uid(ep->user);
 860        wakeup_source_unregister(ep->ws);
 861        kfree(ep);
 862}
 863
 864static int ep_eventpoll_release(struct inode *inode, struct file *file)
 865{
 866        struct eventpoll *ep = file->private_data;
 867
 868        if (ep)
 869                ep_free(ep);
 870
 871        return 0;
 872}
 873
 874static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 875                               void *priv);
 876static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 877                                 poll_table *pt);
 878
 879/*
 880 * Differs from ep_eventpoll_poll() in that internal callers already have
 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 882 * is correctly annotated.
 883 */
 884static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 885                                 int depth)
 886{
 887        struct eventpoll *ep;
 888        bool locked;
 889
 890        pt->_key = epi->event.events;
 891        if (!is_file_epoll(epi->ffd.file))
 892                return vfs_poll(epi->ffd.file, pt) & epi->event.events;
 893
 894        ep = epi->ffd.file->private_data;
 895        poll_wait(epi->ffd.file, &ep->poll_wait, pt);
 896        locked = pt && (pt->_qproc == ep_ptable_queue_proc);
 897
 898        return ep_scan_ready_list(epi->ffd.file->private_data,
 899                                  ep_read_events_proc, &depth, depth,
 900                                  locked) & epi->event.events;
 901}
 902
 903static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 904                               void *priv)
 905{
 906        struct epitem *epi, *tmp;
 907        poll_table pt;
 908        int depth = *(int *)priv;
 909
 910        init_poll_funcptr(&pt, NULL);
 911        depth++;
 912
 913        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 914                if (ep_item_poll(epi, &pt, depth)) {
 915                        return EPOLLIN | EPOLLRDNORM;
 916                } else {
 917                        /*
 918                         * Item has been dropped into the ready list by the poll
 919                         * callback, but it's not actually ready, as far as
 920                         * caller requested events goes. We can remove it here.
 921                         */
 922                        __pm_relax(ep_wakeup_source(epi));
 923                        list_del_init(&epi->rdllink);
 924                }
 925        }
 926
 927        return 0;
 928}
 929
 930static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 931{
 932        struct eventpoll *ep = file->private_data;
 933        int depth = 0;
 934
 935        /* Insert inside our poll wait queue */
 936        poll_wait(file, &ep->poll_wait, wait);
 937
 938        /*
 939         * Proceed to find out if wanted events are really available inside
 940         * the ready list.
 941         */
 942        return ep_scan_ready_list(ep, ep_read_events_proc,
 943                                  &depth, depth, false);
 944}
 945
 946#ifdef CONFIG_PROC_FS
 947static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 948{
 949        struct eventpoll *ep = f->private_data;
 950        struct rb_node *rbp;
 951
 952        mutex_lock(&ep->mtx);
 953        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 954                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 955                struct inode *inode = file_inode(epi->ffd.file);
 956
 957                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 958                           " pos:%lli ino:%lx sdev:%x\n",
 959                           epi->ffd.fd, epi->event.events,
 960                           (long long)epi->event.data,
 961                           (long long)epi->ffd.file->f_pos,
 962                           inode->i_ino, inode->i_sb->s_dev);
 963                if (seq_has_overflowed(m))
 964                        break;
 965        }
 966        mutex_unlock(&ep->mtx);
 967}
 968#endif
 969
 970/* File callbacks that implement the eventpoll file behaviour */
 971static const struct file_operations eventpoll_fops = {
 972#ifdef CONFIG_PROC_FS
 973        .show_fdinfo    = ep_show_fdinfo,
 974#endif
 975        .release        = ep_eventpoll_release,
 976        .poll           = ep_eventpoll_poll,
 977        .llseek         = noop_llseek,
 978};
 979
 980/*
 981 * This is called from eventpoll_release() to unlink files from the eventpoll
 982 * interface. We need to have this facility to cleanup correctly files that are
 983 * closed without being removed from the eventpoll interface.
 984 */
 985void eventpoll_release_file(struct file *file)
 986{
 987        struct eventpoll *ep;
 988        struct epitem *epi, *next;
 989
 990        /*
 991         * We don't want to get "file->f_lock" because it is not
 992         * necessary. It is not necessary because we're in the "struct file"
 993         * cleanup path, and this means that no one is using this file anymore.
 994         * So, for example, epoll_ctl() cannot hit here since if we reach this
 995         * point, the file counter already went to zero and fget() would fail.
 996         * The only hit might come from ep_free() but by holding the mutex
 997         * will correctly serialize the operation. We do need to acquire
 998         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 999         * from anywhere but ep_free().
1000         *
1001         * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002         */
1003        mutex_lock(&epmutex);
1004        list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1005                ep = epi->ep;
1006                mutex_lock_nested(&ep->mtx, 0);
1007                ep_remove(ep, epi);
1008                mutex_unlock(&ep->mtx);
1009        }
1010        mutex_unlock(&epmutex);
1011}
1012
1013static int ep_alloc(struct eventpoll **pep)
1014{
1015        int error;
1016        struct user_struct *user;
1017        struct eventpoll *ep;
1018
1019        user = get_current_user();
1020        error = -ENOMEM;
1021        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1022        if (unlikely(!ep))
1023                goto free_uid;
1024
1025        mutex_init(&ep->mtx);
1026        rwlock_init(&ep->lock);
1027        init_waitqueue_head(&ep->wq);
1028        init_waitqueue_head(&ep->poll_wait);
1029        INIT_LIST_HEAD(&ep->rdllist);
1030        ep->rbr = RB_ROOT_CACHED;
1031        ep->ovflist = EP_UNACTIVE_PTR;
1032        ep->user = user;
1033
1034        *pep = ep;
1035
1036        return 0;
1037
1038free_uid:
1039        free_uid(user);
1040        return error;
1041}
1042
1043/*
1044 * Search the file inside the eventpoll tree. The RB tree operations
1045 * are protected by the "mtx" mutex, and ep_find() must be called with
1046 * "mtx" held.
1047 */
1048static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1049{
1050        int kcmp;
1051        struct rb_node *rbp;
1052        struct epitem *epi, *epir = NULL;
1053        struct epoll_filefd ffd;
1054
1055        ep_set_ffd(&ffd, file, fd);
1056        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1057                epi = rb_entry(rbp, struct epitem, rbn);
1058                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1059                if (kcmp > 0)
1060                        rbp = rbp->rb_right;
1061                else if (kcmp < 0)
1062                        rbp = rbp->rb_left;
1063                else {
1064                        epir = epi;
1065                        break;
1066                }
1067        }
1068
1069        return epir;
1070}
1071
1072#ifdef CONFIG_CHECKPOINT_RESTORE
1073static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1074{
1075        struct rb_node *rbp;
1076        struct epitem *epi;
1077
1078        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079                epi = rb_entry(rbp, struct epitem, rbn);
1080                if (epi->ffd.fd == tfd) {
1081                        if (toff == 0)
1082                                return epi;
1083                        else
1084                                toff--;
1085                }
1086                cond_resched();
1087        }
1088
1089        return NULL;
1090}
1091
1092struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1093                                     unsigned long toff)
1094{
1095        struct file *file_raw;
1096        struct eventpoll *ep;
1097        struct epitem *epi;
1098
1099        if (!is_file_epoll(file))
1100                return ERR_PTR(-EINVAL);
1101
1102        ep = file->private_data;
1103
1104        mutex_lock(&ep->mtx);
1105        epi = ep_find_tfd(ep, tfd, toff);
1106        if (epi)
1107                file_raw = epi->ffd.file;
1108        else
1109                file_raw = ERR_PTR(-ENOENT);
1110        mutex_unlock(&ep->mtx);
1111
1112        return file_raw;
1113}
1114#endif /* CONFIG_CHECKPOINT_RESTORE */
1115
1116/**
1117 * Adds a new entry to the tail of the list in a lockless way, i.e.
1118 * multiple CPUs are allowed to call this function concurrently.
1119 *
1120 * Beware: it is necessary to prevent any other modifications of the
1121 *         existing list until all changes are completed, in other words
1122 *         concurrent list_add_tail_lockless() calls should be protected
1123 *         with a read lock, where write lock acts as a barrier which
1124 *         makes sure all list_add_tail_lockless() calls are fully
1125 *         completed.
1126 *
1127 *        Also an element can be locklessly added to the list only in one
1128 *        direction i.e. either to the tail either to the head, otherwise
1129 *        concurrent access will corrupt the list.
1130 *
1131 * Returns %false if element has been already added to the list, %true
1132 * otherwise.
1133 */
1134static inline bool list_add_tail_lockless(struct list_head *new,
1135                                          struct list_head *head)
1136{
1137        struct list_head *prev;
1138
1139        /*
1140         * This is simple 'new->next = head' operation, but cmpxchg()
1141         * is used in order to detect that same element has been just
1142         * added to the list from another CPU: the winner observes
1143         * new->next == new.
1144         */
1145        if (cmpxchg(&new->next, new, head) != new)
1146                return false;
1147
1148        /*
1149         * Initially ->next of a new element must be updated with the head
1150         * (we are inserting to the tail) and only then pointers are atomically
1151         * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1152         * updated before pointers are actually swapped and pointers are
1153         * swapped before prev->next is updated.
1154         */
1155
1156        prev = xchg(&head->prev, new);
1157
1158        /*
1159         * It is safe to modify prev->next and new->prev, because a new element
1160         * is added only to the tail and new->next is updated before XCHG.
1161         */
1162
1163        prev->next = new;
1164        new->prev = prev;
1165
1166        return true;
1167}
1168
1169/**
1170 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1171 * i.e. multiple CPUs are allowed to call this function concurrently.
1172 *
1173 * Returns %false if epi element has been already chained, %true otherwise.
1174 */
1175static inline bool chain_epi_lockless(struct epitem *epi)
1176{
1177        struct eventpoll *ep = epi->ep;
1178
1179        /* Check that the same epi has not been just chained from another CPU */
1180        if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1181                return false;
1182
1183        /* Atomically exchange tail */
1184        epi->next = xchg(&ep->ovflist, epi);
1185
1186        return true;
1187}
1188
1189/*
1190 * This is the callback that is passed to the wait queue wakeup
1191 * mechanism. It is called by the stored file descriptors when they
1192 * have events to report.
1193 *
1194 * This callback takes a read lock in order not to content with concurrent
1195 * events from another file descriptors, thus all modifications to ->rdllist
1196 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1197 * ep_scan_ready_list(), which stops all list modifications and guarantees
1198 * that lists state is seen correctly.
1199 *
1200 * Another thing worth to mention is that ep_poll_callback() can be called
1201 * concurrently for the same @epi from different CPUs if poll table was inited
1202 * with several wait queues entries.  Plural wakeup from different CPUs of a
1203 * single wait queue is serialized by wq.lock, but the case when multiple wait
1204 * queues are used should be detected accordingly.  This is detected using
1205 * cmpxchg() operation.
1206 */
1207static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1208{
1209        int pwake = 0;
1210        struct epitem *epi = ep_item_from_wait(wait);
1211        struct eventpoll *ep = epi->ep;
1212        __poll_t pollflags = key_to_poll(key);
1213        unsigned long flags;
1214        int ewake = 0;
1215
1216        read_lock_irqsave(&ep->lock, flags);
1217
1218        ep_set_busy_poll_napi_id(epi);
1219
1220        /*
1221         * If the event mask does not contain any poll(2) event, we consider the
1222         * descriptor to be disabled. This condition is likely the effect of the
1223         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1224         * until the next EPOLL_CTL_MOD will be issued.
1225         */
1226        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1227                goto out_unlock;
1228
1229        /*
1230         * Check the events coming with the callback. At this stage, not
1231         * every device reports the events in the "key" parameter of the
1232         * callback. We need to be able to handle both cases here, hence the
1233         * test for "key" != NULL before the event match test.
1234         */
1235        if (pollflags && !(pollflags & epi->event.events))
1236                goto out_unlock;
1237
1238        /*
1239         * If we are transferring events to userspace, we can hold no locks
1240         * (because we're accessing user memory, and because of linux f_op->poll()
1241         * semantics). All the events that happen during that period of time are
1242         * chained in ep->ovflist and requeued later on.
1243         */
1244        if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1245                if (epi->next == EP_UNACTIVE_PTR &&
1246                    chain_epi_lockless(epi))
1247                        ep_pm_stay_awake_rcu(epi);
1248                goto out_unlock;
1249        }
1250
1251        /* If this file is already in the ready list we exit soon */
1252        if (!ep_is_linked(epi) &&
1253            list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1254                ep_pm_stay_awake_rcu(epi);
1255        }
1256
1257        /*
1258         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1259         * wait list.
1260         */
1261        if (waitqueue_active(&ep->wq)) {
1262                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1263                                        !(pollflags & POLLFREE)) {
1264                        switch (pollflags & EPOLLINOUT_BITS) {
1265                        case EPOLLIN:
1266                                if (epi->event.events & EPOLLIN)
1267                                        ewake = 1;
1268                                break;
1269                        case EPOLLOUT:
1270                                if (epi->event.events & EPOLLOUT)
1271                                        ewake = 1;
1272                                break;
1273                        case 0:
1274                                ewake = 1;
1275                                break;
1276                        }
1277                }
1278                wake_up(&ep->wq);
1279        }
1280        if (waitqueue_active(&ep->poll_wait))
1281                pwake++;
1282
1283out_unlock:
1284        read_unlock_irqrestore(&ep->lock, flags);
1285
1286        /* We have to call this outside the lock */
1287        if (pwake)
1288                ep_poll_safewake(&ep->poll_wait);
1289
1290        if (!(epi->event.events & EPOLLEXCLUSIVE))
1291                ewake = 1;
1292
1293        if (pollflags & POLLFREE) {
1294                /*
1295                 * If we race with ep_remove_wait_queue() it can miss
1296                 * ->whead = NULL and do another remove_wait_queue() after
1297                 * us, so we can't use __remove_wait_queue().
1298                 */
1299                list_del_init(&wait->entry);
1300                /*
1301                 * ->whead != NULL protects us from the race with ep_free()
1302                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1303                 * held by the caller. Once we nullify it, nothing protects
1304                 * ep/epi or even wait.
1305                 */
1306                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1307        }
1308
1309        return ewake;
1310}
1311
1312/*
1313 * This is the callback that is used to add our wait queue to the
1314 * target file wakeup lists.
1315 */
1316static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1317                                 poll_table *pt)
1318{
1319        struct epitem *epi = ep_item_from_epqueue(pt);
1320        struct eppoll_entry *pwq;
1321
1322        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1323                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1324                pwq->whead = whead;
1325                pwq->base = epi;
1326                if (epi->event.events & EPOLLEXCLUSIVE)
1327                        add_wait_queue_exclusive(whead, &pwq->wait);
1328                else
1329                        add_wait_queue(whead, &pwq->wait);
1330                list_add_tail(&pwq->llink, &epi->pwqlist);
1331                epi->nwait++;
1332        } else {
1333                /* We have to signal that an error occurred */
1334                epi->nwait = -1;
1335        }
1336}
1337
1338static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1339{
1340        int kcmp;
1341        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1342        struct epitem *epic;
1343        bool leftmost = true;
1344
1345        while (*p) {
1346                parent = *p;
1347                epic = rb_entry(parent, struct epitem, rbn);
1348                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1349                if (kcmp > 0) {
1350                        p = &parent->rb_right;
1351                        leftmost = false;
1352                } else
1353                        p = &parent->rb_left;
1354        }
1355        rb_link_node(&epi->rbn, parent, p);
1356        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1357}
1358
1359
1360
1361#define PATH_ARR_SIZE 5
1362/*
1363 * These are the number paths of length 1 to 5, that we are allowing to emanate
1364 * from a single file of interest. For example, we allow 1000 paths of length
1365 * 1, to emanate from each file of interest. This essentially represents the
1366 * potential wakeup paths, which need to be limited in order to avoid massive
1367 * uncontrolled wakeup storms. The common use case should be a single ep which
1368 * is connected to n file sources. In this case each file source has 1 path
1369 * of length 1. Thus, the numbers below should be more than sufficient. These
1370 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1371 * and delete can't add additional paths. Protected by the epmutex.
1372 */
1373static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1374static int path_count[PATH_ARR_SIZE];
1375
1376static int path_count_inc(int nests)
1377{
1378        /* Allow an arbitrary number of depth 1 paths */
1379        if (nests == 0)
1380                return 0;
1381
1382        if (++path_count[nests] > path_limits[nests])
1383                return -1;
1384        return 0;
1385}
1386
1387static void path_count_init(void)
1388{
1389        int i;
1390
1391        for (i = 0; i < PATH_ARR_SIZE; i++)
1392                path_count[i] = 0;
1393}
1394
1395static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1396{
1397        int error = 0;
1398        struct file *file = priv;
1399        struct file *child_file;
1400        struct epitem *epi;
1401
1402        /* CTL_DEL can remove links here, but that can't increase our count */
1403        rcu_read_lock();
1404        list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1405                child_file = epi->ep->file;
1406                if (is_file_epoll(child_file)) {
1407                        if (list_empty(&child_file->f_ep_links)) {
1408                                if (path_count_inc(call_nests)) {
1409                                        error = -1;
1410                                        break;
1411                                }
1412                        } else {
1413                                error = ep_call_nested(&poll_loop_ncalls,
1414                                                        reverse_path_check_proc,
1415                                                        child_file, child_file,
1416                                                        current);
1417                        }
1418                        if (error != 0)
1419                                break;
1420                } else {
1421                        printk(KERN_ERR "reverse_path_check_proc: "
1422                                "file is not an ep!\n");
1423                }
1424        }
1425        rcu_read_unlock();
1426        return error;
1427}
1428
1429/**
1430 * reverse_path_check - The tfile_check_list is list of file *, which have
1431 *                      links that are proposed to be newly added. We need to
1432 *                      make sure that those added links don't add too many
1433 *                      paths such that we will spend all our time waking up
1434 *                      eventpoll objects.
1435 *
1436 * Returns: Returns zero if the proposed links don't create too many paths,
1437 *          -1 otherwise.
1438 */
1439static int reverse_path_check(void)
1440{
1441        int error = 0;
1442        struct file *current_file;
1443
1444        /* let's call this for all tfiles */
1445        list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1446                path_count_init();
1447                error = ep_call_nested(&poll_loop_ncalls,
1448                                        reverse_path_check_proc, current_file,
1449                                        current_file, current);
1450                if (error)
1451                        break;
1452        }
1453        return error;
1454}
1455
1456static int ep_create_wakeup_source(struct epitem *epi)
1457{
1458        const char *name;
1459        struct wakeup_source *ws;
1460
1461        if (!epi->ep->ws) {
1462                epi->ep->ws = wakeup_source_register("eventpoll");
1463                if (!epi->ep->ws)
1464                        return -ENOMEM;
1465        }
1466
1467        name = epi->ffd.file->f_path.dentry->d_name.name;
1468        ws = wakeup_source_register(name);
1469
1470        if (!ws)
1471                return -ENOMEM;
1472        rcu_assign_pointer(epi->ws, ws);
1473
1474        return 0;
1475}
1476
1477/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1478static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1479{
1480        struct wakeup_source *ws = ep_wakeup_source(epi);
1481
1482        RCU_INIT_POINTER(epi->ws, NULL);
1483
1484        /*
1485         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1486         * used internally by wakeup_source_remove, too (called by
1487         * wakeup_source_unregister), so we cannot use call_rcu
1488         */
1489        synchronize_rcu();
1490        wakeup_source_unregister(ws);
1491}
1492
1493/*
1494 * Must be called with "mtx" held.
1495 */
1496static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1497                     struct file *tfile, int fd, int full_check)
1498{
1499        int error, pwake = 0;
1500        __poll_t revents;
1501        long user_watches;
1502        struct epitem *epi;
1503        struct ep_pqueue epq;
1504
1505        lockdep_assert_irqs_enabled();
1506
1507        user_watches = atomic_long_read(&ep->user->epoll_watches);
1508        if (unlikely(user_watches >= max_user_watches))
1509                return -ENOSPC;
1510        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1511                return -ENOMEM;
1512
1513        /* Item initialization follow here ... */
1514        INIT_LIST_HEAD(&epi->rdllink);
1515        INIT_LIST_HEAD(&epi->fllink);
1516        INIT_LIST_HEAD(&epi->pwqlist);
1517        epi->ep = ep;
1518        ep_set_ffd(&epi->ffd, tfile, fd);
1519        epi->event = *event;
1520        epi->nwait = 0;
1521        epi->next = EP_UNACTIVE_PTR;
1522        if (epi->event.events & EPOLLWAKEUP) {
1523                error = ep_create_wakeup_source(epi);
1524                if (error)
1525                        goto error_create_wakeup_source;
1526        } else {
1527                RCU_INIT_POINTER(epi->ws, NULL);
1528        }
1529
1530        /* Initialize the poll table using the queue callback */
1531        epq.epi = epi;
1532        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1533
1534        /*
1535         * Attach the item to the poll hooks and get current event bits.
1536         * We can safely use the file* here because its usage count has
1537         * been increased by the caller of this function. Note that after
1538         * this operation completes, the poll callback can start hitting
1539         * the new item.
1540         */
1541        revents = ep_item_poll(epi, &epq.pt, 1);
1542
1543        /*
1544         * We have to check if something went wrong during the poll wait queue
1545         * install process. Namely an allocation for a wait queue failed due
1546         * high memory pressure.
1547         */
1548        error = -ENOMEM;
1549        if (epi->nwait < 0)
1550                goto error_unregister;
1551
1552        /* Add the current item to the list of active epoll hook for this file */
1553        spin_lock(&tfile->f_lock);
1554        list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1555        spin_unlock(&tfile->f_lock);
1556
1557        /*
1558         * Add the current item to the RB tree. All RB tree operations are
1559         * protected by "mtx", and ep_insert() is called with "mtx" held.
1560         */
1561        ep_rbtree_insert(ep, epi);
1562
1563        /* now check if we've created too many backpaths */
1564        error = -EINVAL;
1565        if (full_check && reverse_path_check())
1566                goto error_remove_epi;
1567
1568        /* We have to drop the new item inside our item list to keep track of it */
1569        write_lock_irq(&ep->lock);
1570
1571        /* record NAPI ID of new item if present */
1572        ep_set_busy_poll_napi_id(epi);
1573
1574        /* If the file is already "ready" we drop it inside the ready list */
1575        if (revents && !ep_is_linked(epi)) {
1576                list_add_tail(&epi->rdllink, &ep->rdllist);
1577                ep_pm_stay_awake(epi);
1578
1579                /* Notify waiting tasks that events are available */
1580                if (waitqueue_active(&ep->wq))
1581                        wake_up(&ep->wq);
1582                if (waitqueue_active(&ep->poll_wait))
1583                        pwake++;
1584        }
1585
1586        write_unlock_irq(&ep->lock);
1587
1588        atomic_long_inc(&ep->user->epoll_watches);
1589
1590        /* We have to call this outside the lock */
1591        if (pwake)
1592                ep_poll_safewake(&ep->poll_wait);
1593
1594        return 0;
1595
1596error_remove_epi:
1597        spin_lock(&tfile->f_lock);
1598        list_del_rcu(&epi->fllink);
1599        spin_unlock(&tfile->f_lock);
1600
1601        rb_erase_cached(&epi->rbn, &ep->rbr);
1602
1603error_unregister:
1604        ep_unregister_pollwait(ep, epi);
1605
1606        /*
1607         * We need to do this because an event could have been arrived on some
1608         * allocated wait queue. Note that we don't care about the ep->ovflist
1609         * list, since that is used/cleaned only inside a section bound by "mtx".
1610         * And ep_insert() is called with "mtx" held.
1611         */
1612        write_lock_irq(&ep->lock);
1613        if (ep_is_linked(epi))
1614                list_del_init(&epi->rdllink);
1615        write_unlock_irq(&ep->lock);
1616
1617        wakeup_source_unregister(ep_wakeup_source(epi));
1618
1619error_create_wakeup_source:
1620        kmem_cache_free(epi_cache, epi);
1621
1622        return error;
1623}
1624
1625/*
1626 * Modify the interest event mask by dropping an event if the new mask
1627 * has a match in the current file status. Must be called with "mtx" held.
1628 */
1629static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1630                     const struct epoll_event *event)
1631{
1632        int pwake = 0;
1633        poll_table pt;
1634
1635        lockdep_assert_irqs_enabled();
1636
1637        init_poll_funcptr(&pt, NULL);
1638
1639        /*
1640         * Set the new event interest mask before calling f_op->poll();
1641         * otherwise we might miss an event that happens between the
1642         * f_op->poll() call and the new event set registering.
1643         */
1644        epi->event.events = event->events; /* need barrier below */
1645        epi->event.data = event->data; /* protected by mtx */
1646        if (epi->event.events & EPOLLWAKEUP) {
1647                if (!ep_has_wakeup_source(epi))
1648                        ep_create_wakeup_source(epi);
1649        } else if (ep_has_wakeup_source(epi)) {
1650                ep_destroy_wakeup_source(epi);
1651        }
1652
1653        /*
1654         * The following barrier has two effects:
1655         *
1656         * 1) Flush epi changes above to other CPUs.  This ensures
1657         *    we do not miss events from ep_poll_callback if an
1658         *    event occurs immediately after we call f_op->poll().
1659         *    We need this because we did not take ep->lock while
1660         *    changing epi above (but ep_poll_callback does take
1661         *    ep->lock).
1662         *
1663         * 2) We also need to ensure we do not miss _past_ events
1664         *    when calling f_op->poll().  This barrier also
1665         *    pairs with the barrier in wq_has_sleeper (see
1666         *    comments for wq_has_sleeper).
1667         *
1668         * This barrier will now guarantee ep_poll_callback or f_op->poll
1669         * (or both) will notice the readiness of an item.
1670         */
1671        smp_mb();
1672
1673        /*
1674         * Get current event bits. We can safely use the file* here because
1675         * its usage count has been increased by the caller of this function.
1676         * If the item is "hot" and it is not registered inside the ready
1677         * list, push it inside.
1678         */
1679        if (ep_item_poll(epi, &pt, 1)) {
1680                write_lock_irq(&ep->lock);
1681                if (!ep_is_linked(epi)) {
1682                        list_add_tail(&epi->rdllink, &ep->rdllist);
1683                        ep_pm_stay_awake(epi);
1684
1685                        /* Notify waiting tasks that events are available */
1686                        if (waitqueue_active(&ep->wq))
1687                                wake_up(&ep->wq);
1688                        if (waitqueue_active(&ep->poll_wait))
1689                                pwake++;
1690                }
1691                write_unlock_irq(&ep->lock);
1692        }
1693
1694        /* We have to call this outside the lock */
1695        if (pwake)
1696                ep_poll_safewake(&ep->poll_wait);
1697
1698        return 0;
1699}
1700
1701static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1702                               void *priv)
1703{
1704        struct ep_send_events_data *esed = priv;
1705        __poll_t revents;
1706        struct epitem *epi, *tmp;
1707        struct epoll_event __user *uevent = esed->events;
1708        struct wakeup_source *ws;
1709        poll_table pt;
1710
1711        init_poll_funcptr(&pt, NULL);
1712        esed->res = 0;
1713
1714        /*
1715         * We can loop without lock because we are passed a task private list.
1716         * Items cannot vanish during the loop because ep_scan_ready_list() is
1717         * holding "mtx" during this call.
1718         */
1719        lockdep_assert_held(&ep->mtx);
1720
1721        list_for_each_entry_safe(epi, tmp, head, rdllink) {
1722                if (esed->res >= esed->maxevents)
1723                        break;
1724
1725                /*
1726                 * Activate ep->ws before deactivating epi->ws to prevent
1727                 * triggering auto-suspend here (in case we reactive epi->ws
1728                 * below).
1729                 *
1730                 * This could be rearranged to delay the deactivation of epi->ws
1731                 * instead, but then epi->ws would temporarily be out of sync
1732                 * with ep_is_linked().
1733                 */
1734                ws = ep_wakeup_source(epi);
1735                if (ws) {
1736                        if (ws->active)
1737                                __pm_stay_awake(ep->ws);
1738                        __pm_relax(ws);
1739                }
1740
1741                list_del_init(&epi->rdllink);
1742
1743                /*
1744                 * If the event mask intersect the caller-requested one,
1745                 * deliver the event to userspace. Again, ep_scan_ready_list()
1746                 * is holding ep->mtx, so no operations coming from userspace
1747                 * can change the item.
1748                 */
1749                revents = ep_item_poll(epi, &pt, 1);
1750                if (!revents)
1751                        continue;
1752
1753                if (__put_user(revents, &uevent->events) ||
1754                    __put_user(epi->event.data, &uevent->data)) {
1755                        list_add(&epi->rdllink, head);
1756                        ep_pm_stay_awake(epi);
1757                        if (!esed->res)
1758                                esed->res = -EFAULT;
1759                        return 0;
1760                }
1761                esed->res++;
1762                uevent++;
1763                if (epi->event.events & EPOLLONESHOT)
1764                        epi->event.events &= EP_PRIVATE_BITS;
1765                else if (!(epi->event.events & EPOLLET)) {
1766                        /*
1767                         * If this file has been added with Level
1768                         * Trigger mode, we need to insert back inside
1769                         * the ready list, so that the next call to
1770                         * epoll_wait() will check again the events
1771                         * availability. At this point, no one can insert
1772                         * into ep->rdllist besides us. The epoll_ctl()
1773                         * callers are locked out by
1774                         * ep_scan_ready_list() holding "mtx" and the
1775                         * poll callback will queue them in ep->ovflist.
1776                         */
1777                        list_add_tail(&epi->rdllink, &ep->rdllist);
1778                        ep_pm_stay_awake(epi);
1779                }
1780        }
1781
1782        return 0;
1783}
1784
1785static int ep_send_events(struct eventpoll *ep,
1786                          struct epoll_event __user *events, int maxevents)
1787{
1788        struct ep_send_events_data esed;
1789
1790        esed.maxevents = maxevents;
1791        esed.events = events;
1792
1793        ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1794        return esed.res;
1795}
1796
1797static inline struct timespec64 ep_set_mstimeout(long ms)
1798{
1799        struct timespec64 now, ts = {
1800                .tv_sec = ms / MSEC_PER_SEC,
1801                .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1802        };
1803
1804        ktime_get_ts64(&now);
1805        return timespec64_add_safe(now, ts);
1806}
1807
1808/**
1809 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1810 *           event buffer.
1811 *
1812 * @ep: Pointer to the eventpoll context.
1813 * @events: Pointer to the userspace buffer where the ready events should be
1814 *          stored.
1815 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816 * @timeout: Maximum timeout for the ready events fetch operation, in
1817 *           milliseconds. If the @timeout is zero, the function will not block,
1818 *           while if the @timeout is less than zero, the function will block
1819 *           until at least one event has been retrieved (or an error
1820 *           occurred).
1821 *
1822 * Returns: Returns the number of ready events which have been fetched, or an
1823 *          error code, in case of error.
1824 */
1825static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1826                   int maxevents, long timeout)
1827{
1828        int res = 0, eavail, timed_out = 0;
1829        u64 slack = 0;
1830        bool waiter = false;
1831        wait_queue_entry_t wait;
1832        ktime_t expires, *to = NULL;
1833
1834        lockdep_assert_irqs_enabled();
1835
1836        if (timeout > 0) {
1837                struct timespec64 end_time = ep_set_mstimeout(timeout);
1838
1839                slack = select_estimate_accuracy(&end_time);
1840                to = &expires;
1841                *to = timespec64_to_ktime(end_time);
1842        } else if (timeout == 0) {
1843                /*
1844                 * Avoid the unnecessary trip to the wait queue loop, if the
1845                 * caller specified a non blocking operation. We still need
1846                 * lock because we could race and not see an epi being added
1847                 * to the ready list while in irq callback. Thus incorrectly
1848                 * returning 0 back to userspace.
1849                 */
1850                timed_out = 1;
1851
1852                write_lock_irq(&ep->lock);
1853                eavail = ep_events_available(ep);
1854                write_unlock_irq(&ep->lock);
1855
1856                goto send_events;
1857        }
1858
1859fetch_events:
1860
1861        if (!ep_events_available(ep))
1862                ep_busy_loop(ep, timed_out);
1863
1864        eavail = ep_events_available(ep);
1865        if (eavail)
1866                goto send_events;
1867
1868        /*
1869         * Busy poll timed out.  Drop NAPI ID for now, we can add
1870         * it back in when we have moved a socket with a valid NAPI
1871         * ID onto the ready list.
1872         */
1873        ep_reset_busy_poll_napi_id(ep);
1874
1875        /*
1876         * We don't have any available event to return to the caller.  We need
1877         * to sleep here, and we will be woken by ep_poll_callback() when events
1878         * become available.
1879         */
1880        if (!waiter) {
1881                waiter = true;
1882                init_waitqueue_entry(&wait, current);
1883
1884                spin_lock_irq(&ep->wq.lock);
1885                __add_wait_queue_exclusive(&ep->wq, &wait);
1886                spin_unlock_irq(&ep->wq.lock);
1887        }
1888
1889        for (;;) {
1890                /*
1891                 * We don't want to sleep if the ep_poll_callback() sends us
1892                 * a wakeup in between. That's why we set the task state
1893                 * to TASK_INTERRUPTIBLE before doing the checks.
1894                 */
1895                set_current_state(TASK_INTERRUPTIBLE);
1896                /*
1897                 * Always short-circuit for fatal signals to allow
1898                 * threads to make a timely exit without the chance of
1899                 * finding more events available and fetching
1900                 * repeatedly.
1901                 */
1902                if (fatal_signal_pending(current)) {
1903                        res = -EINTR;
1904                        break;
1905                }
1906
1907                eavail = ep_events_available(ep);
1908                if (eavail)
1909                        break;
1910                if (signal_pending(current)) {
1911                        res = -EINTR;
1912                        break;
1913                }
1914
1915                if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1916                        timed_out = 1;
1917                        break;
1918                }
1919        }
1920
1921        __set_current_state(TASK_RUNNING);
1922
1923send_events:
1924        /*
1925         * Try to transfer events to user space. In case we get 0 events and
1926         * there's still timeout left over, we go trying again in search of
1927         * more luck.
1928         */
1929        if (!res && eavail &&
1930            !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1931                goto fetch_events;
1932
1933        if (waiter) {
1934                spin_lock_irq(&ep->wq.lock);
1935                __remove_wait_queue(&ep->wq, &wait);
1936                spin_unlock_irq(&ep->wq.lock);
1937        }
1938
1939        return res;
1940}
1941
1942/**
1943 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1944 *                      API, to verify that adding an epoll file inside another
1945 *                      epoll structure, does not violate the constraints, in
1946 *                      terms of closed loops, or too deep chains (which can
1947 *                      result in excessive stack usage).
1948 *
1949 * @priv: Pointer to the epoll file to be currently checked.
1950 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1951 *          data structure pointer.
1952 * @call_nests: Current dept of the @ep_call_nested() call stack.
1953 *
1954 * Returns: Returns zero if adding the epoll @file inside current epoll
1955 *          structure @ep does not violate the constraints, or -1 otherwise.
1956 */
1957static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1958{
1959        int error = 0;
1960        struct file *file = priv;
1961        struct eventpoll *ep = file->private_data;
1962        struct eventpoll *ep_tovisit;
1963        struct rb_node *rbp;
1964        struct epitem *epi;
1965
1966        mutex_lock_nested(&ep->mtx, call_nests + 1);
1967        ep->visited = 1;
1968        list_add(&ep->visited_list_link, &visited_list);
1969        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1970                epi = rb_entry(rbp, struct epitem, rbn);
1971                if (unlikely(is_file_epoll(epi->ffd.file))) {
1972                        ep_tovisit = epi->ffd.file->private_data;
1973                        if (ep_tovisit->visited)
1974                                continue;
1975                        error = ep_call_nested(&poll_loop_ncalls,
1976                                        ep_loop_check_proc, epi->ffd.file,
1977                                        ep_tovisit, current);
1978                        if (error != 0)
1979                                break;
1980                } else {
1981                        /*
1982                         * If we've reached a file that is not associated with
1983                         * an ep, then we need to check if the newly added
1984                         * links are going to add too many wakeup paths. We do
1985                         * this by adding it to the tfile_check_list, if it's
1986                         * not already there, and calling reverse_path_check()
1987                         * during ep_insert().
1988                         */
1989                        if (list_empty(&epi->ffd.file->f_tfile_llink))
1990                                list_add(&epi->ffd.file->f_tfile_llink,
1991                                         &tfile_check_list);
1992                }
1993        }
1994        mutex_unlock(&ep->mtx);
1995
1996        return error;
1997}
1998
1999/**
2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2001 *                 another epoll file (represented by @ep) does not create
2002 *                 closed loops or too deep chains.
2003 *
2004 * @ep: Pointer to the epoll private data structure.
2005 * @file: Pointer to the epoll file to be checked.
2006 *
2007 * Returns: Returns zero if adding the epoll @file inside current epoll
2008 *          structure @ep does not violate the constraints, or -1 otherwise.
2009 */
2010static int ep_loop_check(struct eventpoll *ep, struct file *file)
2011{
2012        int ret;
2013        struct eventpoll *ep_cur, *ep_next;
2014
2015        ret = ep_call_nested(&poll_loop_ncalls,
2016                              ep_loop_check_proc, file, ep, current);
2017        /* clear visited list */
2018        list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2019                                                        visited_list_link) {
2020                ep_cur->visited = 0;
2021                list_del(&ep_cur->visited_list_link);
2022        }
2023        return ret;
2024}
2025
2026static void clear_tfile_check_list(void)
2027{
2028        struct file *file;
2029
2030        /* first clear the tfile_check_list */
2031        while (!list_empty(&tfile_check_list)) {
2032                file = list_first_entry(&tfile_check_list, struct file,
2033                                        f_tfile_llink);
2034                list_del_init(&file->f_tfile_llink);
2035        }
2036        INIT_LIST_HEAD(&tfile_check_list);
2037}
2038
2039/*
2040 * Open an eventpoll file descriptor.
2041 */
2042static int do_epoll_create(int flags)
2043{
2044        int error, fd;
2045        struct eventpoll *ep = NULL;
2046        struct file *file;
2047
2048        /* Check the EPOLL_* constant for consistency.  */
2049        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2050
2051        if (flags & ~EPOLL_CLOEXEC)
2052                return -EINVAL;
2053        /*
2054         * Create the internal data structure ("struct eventpoll").
2055         */
2056        error = ep_alloc(&ep);
2057        if (error < 0)
2058                return error;
2059        /*
2060         * Creates all the items needed to setup an eventpoll file. That is,
2061         * a file structure and a free file descriptor.
2062         */
2063        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2064        if (fd < 0) {
2065                error = fd;
2066                goto out_free_ep;
2067        }
2068        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2069                                 O_RDWR | (flags & O_CLOEXEC));
2070        if (IS_ERR(file)) {
2071                error = PTR_ERR(file);
2072                goto out_free_fd;
2073        }
2074        ep->file = file;
2075        fd_install(fd, file);
2076        return fd;
2077
2078out_free_fd:
2079        put_unused_fd(fd);
2080out_free_ep:
2081        ep_free(ep);
2082        return error;
2083}
2084
2085SYSCALL_DEFINE1(epoll_create1, int, flags)
2086{
2087        return do_epoll_create(flags);
2088}
2089
2090SYSCALL_DEFINE1(epoll_create, int, size)
2091{
2092        if (size <= 0)
2093                return -EINVAL;
2094
2095        return do_epoll_create(0);
2096}
2097
2098/*
2099 * The following function implements the controller interface for
2100 * the eventpoll file that enables the insertion/removal/change of
2101 * file descriptors inside the interest set.
2102 */
2103SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2104                struct epoll_event __user *, event)
2105{
2106        int error;
2107        int full_check = 0;
2108        struct fd f, tf;
2109        struct eventpoll *ep;
2110        struct epitem *epi;
2111        struct epoll_event epds;
2112        struct eventpoll *tep = NULL;
2113
2114        error = -EFAULT;
2115        if (ep_op_has_event(op) &&
2116            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2117                goto error_return;
2118
2119        error = -EBADF;
2120        f = fdget(epfd);
2121        if (!f.file)
2122                goto error_return;
2123
2124        /* Get the "struct file *" for the target file */
2125        tf = fdget(fd);
2126        if (!tf.file)
2127                goto error_fput;
2128
2129        /* The target file descriptor must support poll */
2130        error = -EPERM;
2131        if (!file_can_poll(tf.file))
2132                goto error_tgt_fput;
2133
2134        /* Check if EPOLLWAKEUP is allowed */
2135        if (ep_op_has_event(op))
2136                ep_take_care_of_epollwakeup(&epds);
2137
2138        /*
2139         * We have to check that the file structure underneath the file descriptor
2140         * the user passed to us _is_ an eventpoll file. And also we do not permit
2141         * adding an epoll file descriptor inside itself.
2142         */
2143        error = -EINVAL;
2144        if (f.file == tf.file || !is_file_epoll(f.file))
2145                goto error_tgt_fput;
2146
2147        /*
2148         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2149         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2150         * Also, we do not currently supported nested exclusive wakeups.
2151         */
2152        if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2153                if (op == EPOLL_CTL_MOD)
2154                        goto error_tgt_fput;
2155                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2156                                (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2157                        goto error_tgt_fput;
2158        }
2159
2160        /*
2161         * At this point it is safe to assume that the "private_data" contains
2162         * our own data structure.
2163         */
2164        ep = f.file->private_data;
2165
2166        /*
2167         * When we insert an epoll file descriptor, inside another epoll file
2168         * descriptor, there is the change of creating closed loops, which are
2169         * better be handled here, than in more critical paths. While we are
2170         * checking for loops we also determine the list of files reachable
2171         * and hang them on the tfile_check_list, so we can check that we
2172         * haven't created too many possible wakeup paths.
2173         *
2174         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2175         * the epoll file descriptor is attaching directly to a wakeup source,
2176         * unless the epoll file descriptor is nested. The purpose of taking the
2177         * 'epmutex' on add is to prevent complex toplogies such as loops and
2178         * deep wakeup paths from forming in parallel through multiple
2179         * EPOLL_CTL_ADD operations.
2180         */
2181        mutex_lock_nested(&ep->mtx, 0);
2182        if (op == EPOLL_CTL_ADD) {
2183                if (!list_empty(&f.file->f_ep_links) ||
2184                                                is_file_epoll(tf.file)) {
2185                        full_check = 1;
2186                        mutex_unlock(&ep->mtx);
2187                        mutex_lock(&epmutex);
2188                        if (is_file_epoll(tf.file)) {
2189                                error = -ELOOP;
2190                                if (ep_loop_check(ep, tf.file) != 0) {
2191                                        clear_tfile_check_list();
2192                                        goto error_tgt_fput;
2193                                }
2194                        } else
2195                                list_add(&tf.file->f_tfile_llink,
2196                                                        &tfile_check_list);
2197                        mutex_lock_nested(&ep->mtx, 0);
2198                        if (is_file_epoll(tf.file)) {
2199                                tep = tf.file->private_data;
2200                                mutex_lock_nested(&tep->mtx, 1);
2201                        }
2202                }
2203        }
2204
2205        /*
2206         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2207         * above, we can be sure to be able to use the item looked up by
2208         * ep_find() till we release the mutex.
2209         */
2210        epi = ep_find(ep, tf.file, fd);
2211
2212        error = -EINVAL;
2213        switch (op) {
2214        case EPOLL_CTL_ADD:
2215                if (!epi) {
2216                        epds.events |= EPOLLERR | EPOLLHUP;
2217                        error = ep_insert(ep, &epds, tf.file, fd, full_check);
2218                } else
2219                        error = -EEXIST;
2220                if (full_check)
2221                        clear_tfile_check_list();
2222                break;
2223        case EPOLL_CTL_DEL:
2224                if (epi)
2225                        error = ep_remove(ep, epi);
2226                else
2227                        error = -ENOENT;
2228                break;
2229        case EPOLL_CTL_MOD:
2230                if (epi) {
2231                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2232                                epds.events |= EPOLLERR | EPOLLHUP;
2233                                error = ep_modify(ep, epi, &epds);
2234                        }
2235                } else
2236                        error = -ENOENT;
2237                break;
2238        }
2239        if (tep != NULL)
2240                mutex_unlock(&tep->mtx);
2241        mutex_unlock(&ep->mtx);
2242
2243error_tgt_fput:
2244        if (full_check)
2245                mutex_unlock(&epmutex);
2246
2247        fdput(tf);
2248error_fput:
2249        fdput(f);
2250error_return:
2251
2252        return error;
2253}
2254
2255/*
2256 * Implement the event wait interface for the eventpoll file. It is the kernel
2257 * part of the user space epoll_wait(2).
2258 */
2259static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2260                         int maxevents, int timeout)
2261{
2262        int error;
2263        struct fd f;
2264        struct eventpoll *ep;
2265
2266        /* The maximum number of event must be greater than zero */
2267        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2268                return -EINVAL;
2269
2270        /* Verify that the area passed by the user is writeable */
2271        if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2272                return -EFAULT;
2273
2274        /* Get the "struct file *" for the eventpoll file */
2275        f = fdget(epfd);
2276        if (!f.file)
2277                return -EBADF;
2278
2279        /*
2280         * We have to check that the file structure underneath the fd
2281         * the user passed to us _is_ an eventpoll file.
2282         */
2283        error = -EINVAL;
2284        if (!is_file_epoll(f.file))
2285                goto error_fput;
2286
2287        /*
2288         * At this point it is safe to assume that the "private_data" contains
2289         * our own data structure.
2290         */
2291        ep = f.file->private_data;
2292
2293        /* Time to fish for events ... */
2294        error = ep_poll(ep, events, maxevents, timeout);
2295
2296error_fput:
2297        fdput(f);
2298        return error;
2299}
2300
2301SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2302                int, maxevents, int, timeout)
2303{
2304        return do_epoll_wait(epfd, events, maxevents, timeout);
2305}
2306
2307/*
2308 * Implement the event wait interface for the eventpoll file. It is the kernel
2309 * part of the user space epoll_pwait(2).
2310 */
2311SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2312                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2313                size_t, sigsetsize)
2314{
2315        int error;
2316
2317        /*
2318         * If the caller wants a certain signal mask to be set during the wait,
2319         * we apply it here.
2320         */
2321        error = set_user_sigmask(sigmask, sigsetsize);
2322        if (error)
2323                return error;
2324
2325        error = do_epoll_wait(epfd, events, maxevents, timeout);
2326        restore_saved_sigmask_unless(error == -EINTR);
2327
2328        return error;
2329}
2330
2331#ifdef CONFIG_COMPAT
2332COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2333                        struct epoll_event __user *, events,
2334                        int, maxevents, int, timeout,
2335                        const compat_sigset_t __user *, sigmask,
2336                        compat_size_t, sigsetsize)
2337{
2338        long err;
2339
2340        /*
2341         * If the caller wants a certain signal mask to be set during the wait,
2342         * we apply it here.
2343         */
2344        err = set_compat_user_sigmask(sigmask, sigsetsize);
2345        if (err)
2346                return err;
2347
2348        err = do_epoll_wait(epfd, events, maxevents, timeout);
2349        restore_saved_sigmask_unless(err == -EINTR);
2350
2351        return err;
2352}
2353#endif
2354
2355static int __init eventpoll_init(void)
2356{
2357        struct sysinfo si;
2358
2359        si_meminfo(&si);
2360        /*
2361         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2362         */
2363        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2364                EP_ITEM_COST;
2365        BUG_ON(max_user_watches < 0);
2366
2367        /*
2368         * Initialize the structure used to perform epoll file descriptor
2369         * inclusion loops checks.
2370         */
2371        ep_nested_calls_init(&poll_loop_ncalls);
2372
2373#ifdef CONFIG_DEBUG_LOCK_ALLOC
2374        /* Initialize the structure used to perform safe poll wait head wake ups */
2375        ep_nested_calls_init(&poll_safewake_ncalls);
2376#endif
2377
2378        /*
2379         * We can have many thousands of epitems, so prevent this from
2380         * using an extra cache line on 64-bit (and smaller) CPUs
2381         */
2382        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2383
2384        /* Allocates slab cache used to allocate "struct epitem" items */
2385        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2386                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2387
2388        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2389        pwq_cache = kmem_cache_create("eventpoll_pwq",
2390                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2391
2392        return 0;
2393}
2394fs_initcall(eventpoll_init);
2395