linux/fs/exec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/file.h>
  28#include <linux/fdtable.h>
  29#include <linux/mm.h>
  30#include <linux/vmacache.h>
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
  58#include <linux/tracehook.h>
  59#include <linux/kmod.h>
  60#include <linux/fsnotify.h>
  61#include <linux/fs_struct.h>
  62#include <linux/pipe_fs_i.h>
  63#include <linux/oom.h>
  64#include <linux/compat.h>
  65#include <linux/vmalloc.h>
  66
  67#include <linux/uaccess.h>
  68#include <asm/mmu_context.h>
  69#include <asm/tlb.h>
  70
  71#include <trace/events/task.h>
  72#include "internal.h"
  73
  74#include <trace/events/sched.h>
  75
  76int suid_dumpable = 0;
  77
  78static LIST_HEAD(formats);
  79static DEFINE_RWLOCK(binfmt_lock);
  80
  81void __register_binfmt(struct linux_binfmt * fmt, int insert)
  82{
  83        BUG_ON(!fmt);
  84        if (WARN_ON(!fmt->load_binary))
  85                return;
  86        write_lock(&binfmt_lock);
  87        insert ? list_add(&fmt->lh, &formats) :
  88                 list_add_tail(&fmt->lh, &formats);
  89        write_unlock(&binfmt_lock);
  90}
  91
  92EXPORT_SYMBOL(__register_binfmt);
  93
  94void unregister_binfmt(struct linux_binfmt * fmt)
  95{
  96        write_lock(&binfmt_lock);
  97        list_del(&fmt->lh);
  98        write_unlock(&binfmt_lock);
  99}
 100
 101EXPORT_SYMBOL(unregister_binfmt);
 102
 103static inline void put_binfmt(struct linux_binfmt * fmt)
 104{
 105        module_put(fmt->module);
 106}
 107
 108bool path_noexec(const struct path *path)
 109{
 110        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 111               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 112}
 113
 114#ifdef CONFIG_USELIB
 115/*
 116 * Note that a shared library must be both readable and executable due to
 117 * security reasons.
 118 *
 119 * Also note that we take the address to load from from the file itself.
 120 */
 121SYSCALL_DEFINE1(uselib, const char __user *, library)
 122{
 123        struct linux_binfmt *fmt;
 124        struct file *file;
 125        struct filename *tmp = getname(library);
 126        int error = PTR_ERR(tmp);
 127        static const struct open_flags uselib_flags = {
 128                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 129                .acc_mode = MAY_READ | MAY_EXEC,
 130                .intent = LOOKUP_OPEN,
 131                .lookup_flags = LOOKUP_FOLLOW,
 132        };
 133
 134        if (IS_ERR(tmp))
 135                goto out;
 136
 137        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 138        putname(tmp);
 139        error = PTR_ERR(file);
 140        if (IS_ERR(file))
 141                goto out;
 142
 143        error = -EINVAL;
 144        if (!S_ISREG(file_inode(file)->i_mode))
 145                goto exit;
 146
 147        error = -EACCES;
 148        if (path_noexec(&file->f_path))
 149                goto exit;
 150
 151        fsnotify_open(file);
 152
 153        error = -ENOEXEC;
 154
 155        read_lock(&binfmt_lock);
 156        list_for_each_entry(fmt, &formats, lh) {
 157                if (!fmt->load_shlib)
 158                        continue;
 159                if (!try_module_get(fmt->module))
 160                        continue;
 161                read_unlock(&binfmt_lock);
 162                error = fmt->load_shlib(file);
 163                read_lock(&binfmt_lock);
 164                put_binfmt(fmt);
 165                if (error != -ENOEXEC)
 166                        break;
 167        }
 168        read_unlock(&binfmt_lock);
 169exit:
 170        fput(file);
 171out:
 172        return error;
 173}
 174#endif /* #ifdef CONFIG_USELIB */
 175
 176#ifdef CONFIG_MMU
 177/*
 178 * The nascent bprm->mm is not visible until exec_mmap() but it can
 179 * use a lot of memory, account these pages in current->mm temporary
 180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 181 * change the counter back via acct_arg_size(0).
 182 */
 183static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 184{
 185        struct mm_struct *mm = current->mm;
 186        long diff = (long)(pages - bprm->vma_pages);
 187
 188        if (!mm || !diff)
 189                return;
 190
 191        bprm->vma_pages = pages;
 192        add_mm_counter(mm, MM_ANONPAGES, diff);
 193}
 194
 195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 196                int write)
 197{
 198        struct page *page;
 199        int ret;
 200        unsigned int gup_flags = FOLL_FORCE;
 201
 202#ifdef CONFIG_STACK_GROWSUP
 203        if (write) {
 204                ret = expand_downwards(bprm->vma, pos);
 205                if (ret < 0)
 206                        return NULL;
 207        }
 208#endif
 209
 210        if (write)
 211                gup_flags |= FOLL_WRITE;
 212
 213        /*
 214         * We are doing an exec().  'current' is the process
 215         * doing the exec and bprm->mm is the new process's mm.
 216         */
 217        ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
 218                        &page, NULL, NULL);
 219        if (ret <= 0)
 220                return NULL;
 221
 222        if (write)
 223                acct_arg_size(bprm, vma_pages(bprm->vma));
 224
 225        return page;
 226}
 227
 228static void put_arg_page(struct page *page)
 229{
 230        put_page(page);
 231}
 232
 233static void free_arg_pages(struct linux_binprm *bprm)
 234{
 235}
 236
 237static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 238                struct page *page)
 239{
 240        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 241}
 242
 243static int __bprm_mm_init(struct linux_binprm *bprm)
 244{
 245        int err;
 246        struct vm_area_struct *vma = NULL;
 247        struct mm_struct *mm = bprm->mm;
 248
 249        bprm->vma = vma = vm_area_alloc(mm);
 250        if (!vma)
 251                return -ENOMEM;
 252        vma_set_anonymous(vma);
 253
 254        if (down_write_killable(&mm->mmap_sem)) {
 255                err = -EINTR;
 256                goto err_free;
 257        }
 258
 259        /*
 260         * Place the stack at the largest stack address the architecture
 261         * supports. Later, we'll move this to an appropriate place. We don't
 262         * use STACK_TOP because that can depend on attributes which aren't
 263         * configured yet.
 264         */
 265        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 266        vma->vm_end = STACK_TOP_MAX;
 267        vma->vm_start = vma->vm_end - PAGE_SIZE;
 268        vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 269        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 270
 271        err = insert_vm_struct(mm, vma);
 272        if (err)
 273                goto err;
 274
 275        mm->stack_vm = mm->total_vm = 1;
 276        arch_bprm_mm_init(mm, vma);
 277        up_write(&mm->mmap_sem);
 278        bprm->p = vma->vm_end - sizeof(void *);
 279        return 0;
 280err:
 281        up_write(&mm->mmap_sem);
 282err_free:
 283        bprm->vma = NULL;
 284        vm_area_free(vma);
 285        return err;
 286}
 287
 288static bool valid_arg_len(struct linux_binprm *bprm, long len)
 289{
 290        return len <= MAX_ARG_STRLEN;
 291}
 292
 293#else
 294
 295static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 296{
 297}
 298
 299static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 300                int write)
 301{
 302        struct page *page;
 303
 304        page = bprm->page[pos / PAGE_SIZE];
 305        if (!page && write) {
 306                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 307                if (!page)
 308                        return NULL;
 309                bprm->page[pos / PAGE_SIZE] = page;
 310        }
 311
 312        return page;
 313}
 314
 315static void put_arg_page(struct page *page)
 316{
 317}
 318
 319static void free_arg_page(struct linux_binprm *bprm, int i)
 320{
 321        if (bprm->page[i]) {
 322                __free_page(bprm->page[i]);
 323                bprm->page[i] = NULL;
 324        }
 325}
 326
 327static void free_arg_pages(struct linux_binprm *bprm)
 328{
 329        int i;
 330
 331        for (i = 0; i < MAX_ARG_PAGES; i++)
 332                free_arg_page(bprm, i);
 333}
 334
 335static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 336                struct page *page)
 337{
 338}
 339
 340static int __bprm_mm_init(struct linux_binprm *bprm)
 341{
 342        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 343        return 0;
 344}
 345
 346static bool valid_arg_len(struct linux_binprm *bprm, long len)
 347{
 348        return len <= bprm->p;
 349}
 350
 351#endif /* CONFIG_MMU */
 352
 353/*
 354 * Create a new mm_struct and populate it with a temporary stack
 355 * vm_area_struct.  We don't have enough context at this point to set the stack
 356 * flags, permissions, and offset, so we use temporary values.  We'll update
 357 * them later in setup_arg_pages().
 358 */
 359static int bprm_mm_init(struct linux_binprm *bprm)
 360{
 361        int err;
 362        struct mm_struct *mm = NULL;
 363
 364        bprm->mm = mm = mm_alloc();
 365        err = -ENOMEM;
 366        if (!mm)
 367                goto err;
 368
 369        /* Save current stack limit for all calculations made during exec. */
 370        task_lock(current->group_leader);
 371        bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 372        task_unlock(current->group_leader);
 373
 374        err = __bprm_mm_init(bprm);
 375        if (err)
 376                goto err;
 377
 378        return 0;
 379
 380err:
 381        if (mm) {
 382                bprm->mm = NULL;
 383                mmdrop(mm);
 384        }
 385
 386        return err;
 387}
 388
 389struct user_arg_ptr {
 390#ifdef CONFIG_COMPAT
 391        bool is_compat;
 392#endif
 393        union {
 394                const char __user *const __user *native;
 395#ifdef CONFIG_COMPAT
 396                const compat_uptr_t __user *compat;
 397#endif
 398        } ptr;
 399};
 400
 401static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 402{
 403        const char __user *native;
 404
 405#ifdef CONFIG_COMPAT
 406        if (unlikely(argv.is_compat)) {
 407                compat_uptr_t compat;
 408
 409                if (get_user(compat, argv.ptr.compat + nr))
 410                        return ERR_PTR(-EFAULT);
 411
 412                return compat_ptr(compat);
 413        }
 414#endif
 415
 416        if (get_user(native, argv.ptr.native + nr))
 417                return ERR_PTR(-EFAULT);
 418
 419        return native;
 420}
 421
 422/*
 423 * count() counts the number of strings in array ARGV.
 424 */
 425static int count(struct user_arg_ptr argv, int max)
 426{
 427        int i = 0;
 428
 429        if (argv.ptr.native != NULL) {
 430                for (;;) {
 431                        const char __user *p = get_user_arg_ptr(argv, i);
 432
 433                        if (!p)
 434                                break;
 435
 436                        if (IS_ERR(p))
 437                                return -EFAULT;
 438
 439                        if (i >= max)
 440                                return -E2BIG;
 441                        ++i;
 442
 443                        if (fatal_signal_pending(current))
 444                                return -ERESTARTNOHAND;
 445                        cond_resched();
 446                }
 447        }
 448        return i;
 449}
 450
 451static int prepare_arg_pages(struct linux_binprm *bprm,
 452                        struct user_arg_ptr argv, struct user_arg_ptr envp)
 453{
 454        unsigned long limit, ptr_size;
 455
 456        bprm->argc = count(argv, MAX_ARG_STRINGS);
 457        if (bprm->argc < 0)
 458                return bprm->argc;
 459
 460        bprm->envc = count(envp, MAX_ARG_STRINGS);
 461        if (bprm->envc < 0)
 462                return bprm->envc;
 463
 464        /*
 465         * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 466         * (whichever is smaller) for the argv+env strings.
 467         * This ensures that:
 468         *  - the remaining binfmt code will not run out of stack space,
 469         *  - the program will have a reasonable amount of stack left
 470         *    to work from.
 471         */
 472        limit = _STK_LIM / 4 * 3;
 473        limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 474        /*
 475         * We've historically supported up to 32 pages (ARG_MAX)
 476         * of argument strings even with small stacks
 477         */
 478        limit = max_t(unsigned long, limit, ARG_MAX);
 479        /*
 480         * We must account for the size of all the argv and envp pointers to
 481         * the argv and envp strings, since they will also take up space in
 482         * the stack. They aren't stored until much later when we can't
 483         * signal to the parent that the child has run out of stack space.
 484         * Instead, calculate it here so it's possible to fail gracefully.
 485         */
 486        ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
 487        if (limit <= ptr_size)
 488                return -E2BIG;
 489        limit -= ptr_size;
 490
 491        bprm->argmin = bprm->p - limit;
 492        return 0;
 493}
 494
 495/*
 496 * 'copy_strings()' copies argument/environment strings from the old
 497 * processes's memory to the new process's stack.  The call to get_user_pages()
 498 * ensures the destination page is created and not swapped out.
 499 */
 500static int copy_strings(int argc, struct user_arg_ptr argv,
 501                        struct linux_binprm *bprm)
 502{
 503        struct page *kmapped_page = NULL;
 504        char *kaddr = NULL;
 505        unsigned long kpos = 0;
 506        int ret;
 507
 508        while (argc-- > 0) {
 509                const char __user *str;
 510                int len;
 511                unsigned long pos;
 512
 513                ret = -EFAULT;
 514                str = get_user_arg_ptr(argv, argc);
 515                if (IS_ERR(str))
 516                        goto out;
 517
 518                len = strnlen_user(str, MAX_ARG_STRLEN);
 519                if (!len)
 520                        goto out;
 521
 522                ret = -E2BIG;
 523                if (!valid_arg_len(bprm, len))
 524                        goto out;
 525
 526                /* We're going to work our way backwords. */
 527                pos = bprm->p;
 528                str += len;
 529                bprm->p -= len;
 530#ifdef CONFIG_MMU
 531                if (bprm->p < bprm->argmin)
 532                        goto out;
 533#endif
 534
 535                while (len > 0) {
 536                        int offset, bytes_to_copy;
 537
 538                        if (fatal_signal_pending(current)) {
 539                                ret = -ERESTARTNOHAND;
 540                                goto out;
 541                        }
 542                        cond_resched();
 543
 544                        offset = pos % PAGE_SIZE;
 545                        if (offset == 0)
 546                                offset = PAGE_SIZE;
 547
 548                        bytes_to_copy = offset;
 549                        if (bytes_to_copy > len)
 550                                bytes_to_copy = len;
 551
 552                        offset -= bytes_to_copy;
 553                        pos -= bytes_to_copy;
 554                        str -= bytes_to_copy;
 555                        len -= bytes_to_copy;
 556
 557                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 558                                struct page *page;
 559
 560                                page = get_arg_page(bprm, pos, 1);
 561                                if (!page) {
 562                                        ret = -E2BIG;
 563                                        goto out;
 564                                }
 565
 566                                if (kmapped_page) {
 567                                        flush_kernel_dcache_page(kmapped_page);
 568                                        kunmap(kmapped_page);
 569                                        put_arg_page(kmapped_page);
 570                                }
 571                                kmapped_page = page;
 572                                kaddr = kmap(kmapped_page);
 573                                kpos = pos & PAGE_MASK;
 574                                flush_arg_page(bprm, kpos, kmapped_page);
 575                        }
 576                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 577                                ret = -EFAULT;
 578                                goto out;
 579                        }
 580                }
 581        }
 582        ret = 0;
 583out:
 584        if (kmapped_page) {
 585                flush_kernel_dcache_page(kmapped_page);
 586                kunmap(kmapped_page);
 587                put_arg_page(kmapped_page);
 588        }
 589        return ret;
 590}
 591
 592/*
 593 * Like copy_strings, but get argv and its values from kernel memory.
 594 */
 595int copy_strings_kernel(int argc, const char *const *__argv,
 596                        struct linux_binprm *bprm)
 597{
 598        int r;
 599        mm_segment_t oldfs = get_fs();
 600        struct user_arg_ptr argv = {
 601                .ptr.native = (const char __user *const  __user *)__argv,
 602        };
 603
 604        set_fs(KERNEL_DS);
 605        r = copy_strings(argc, argv, bprm);
 606        set_fs(oldfs);
 607
 608        return r;
 609}
 610EXPORT_SYMBOL(copy_strings_kernel);
 611
 612#ifdef CONFIG_MMU
 613
 614/*
 615 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 616 * the binfmt code determines where the new stack should reside, we shift it to
 617 * its final location.  The process proceeds as follows:
 618 *
 619 * 1) Use shift to calculate the new vma endpoints.
 620 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 621 *    arguments passed to subsequent functions are consistent.
 622 * 3) Move vma's page tables to the new range.
 623 * 4) Free up any cleared pgd range.
 624 * 5) Shrink the vma to cover only the new range.
 625 */
 626static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 627{
 628        struct mm_struct *mm = vma->vm_mm;
 629        unsigned long old_start = vma->vm_start;
 630        unsigned long old_end = vma->vm_end;
 631        unsigned long length = old_end - old_start;
 632        unsigned long new_start = old_start - shift;
 633        unsigned long new_end = old_end - shift;
 634        struct mmu_gather tlb;
 635
 636        BUG_ON(new_start > new_end);
 637
 638        /*
 639         * ensure there are no vmas between where we want to go
 640         * and where we are
 641         */
 642        if (vma != find_vma(mm, new_start))
 643                return -EFAULT;
 644
 645        /*
 646         * cover the whole range: [new_start, old_end)
 647         */
 648        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 649                return -ENOMEM;
 650
 651        /*
 652         * move the page tables downwards, on failure we rely on
 653         * process cleanup to remove whatever mess we made.
 654         */
 655        if (length != move_page_tables(vma, old_start,
 656                                       vma, new_start, length, false))
 657                return -ENOMEM;
 658
 659        lru_add_drain();
 660        tlb_gather_mmu(&tlb, mm, old_start, old_end);
 661        if (new_end > old_start) {
 662                /*
 663                 * when the old and new regions overlap clear from new_end.
 664                 */
 665                free_pgd_range(&tlb, new_end, old_end, new_end,
 666                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 667        } else {
 668                /*
 669                 * otherwise, clean from old_start; this is done to not touch
 670                 * the address space in [new_end, old_start) some architectures
 671                 * have constraints on va-space that make this illegal (IA64) -
 672                 * for the others its just a little faster.
 673                 */
 674                free_pgd_range(&tlb, old_start, old_end, new_end,
 675                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 676        }
 677        tlb_finish_mmu(&tlb, old_start, old_end);
 678
 679        /*
 680         * Shrink the vma to just the new range.  Always succeeds.
 681         */
 682        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 683
 684        return 0;
 685}
 686
 687/*
 688 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 689 * the stack is optionally relocated, and some extra space is added.
 690 */
 691int setup_arg_pages(struct linux_binprm *bprm,
 692                    unsigned long stack_top,
 693                    int executable_stack)
 694{
 695        unsigned long ret;
 696        unsigned long stack_shift;
 697        struct mm_struct *mm = current->mm;
 698        struct vm_area_struct *vma = bprm->vma;
 699        struct vm_area_struct *prev = NULL;
 700        unsigned long vm_flags;
 701        unsigned long stack_base;
 702        unsigned long stack_size;
 703        unsigned long stack_expand;
 704        unsigned long rlim_stack;
 705
 706#ifdef CONFIG_STACK_GROWSUP
 707        /* Limit stack size */
 708        stack_base = bprm->rlim_stack.rlim_max;
 709        if (stack_base > STACK_SIZE_MAX)
 710                stack_base = STACK_SIZE_MAX;
 711
 712        /* Add space for stack randomization. */
 713        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 714
 715        /* Make sure we didn't let the argument array grow too large. */
 716        if (vma->vm_end - vma->vm_start > stack_base)
 717                return -ENOMEM;
 718
 719        stack_base = PAGE_ALIGN(stack_top - stack_base);
 720
 721        stack_shift = vma->vm_start - stack_base;
 722        mm->arg_start = bprm->p - stack_shift;
 723        bprm->p = vma->vm_end - stack_shift;
 724#else
 725        stack_top = arch_align_stack(stack_top);
 726        stack_top = PAGE_ALIGN(stack_top);
 727
 728        if (unlikely(stack_top < mmap_min_addr) ||
 729            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 730                return -ENOMEM;
 731
 732        stack_shift = vma->vm_end - stack_top;
 733
 734        bprm->p -= stack_shift;
 735        mm->arg_start = bprm->p;
 736#endif
 737
 738        if (bprm->loader)
 739                bprm->loader -= stack_shift;
 740        bprm->exec -= stack_shift;
 741
 742        if (down_write_killable(&mm->mmap_sem))
 743                return -EINTR;
 744
 745        vm_flags = VM_STACK_FLAGS;
 746
 747        /*
 748         * Adjust stack execute permissions; explicitly enable for
 749         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 750         * (arch default) otherwise.
 751         */
 752        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 753                vm_flags |= VM_EXEC;
 754        else if (executable_stack == EXSTACK_DISABLE_X)
 755                vm_flags &= ~VM_EXEC;
 756        vm_flags |= mm->def_flags;
 757        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 758
 759        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 760                        vm_flags);
 761        if (ret)
 762                goto out_unlock;
 763        BUG_ON(prev != vma);
 764
 765        /* Move stack pages down in memory. */
 766        if (stack_shift) {
 767                ret = shift_arg_pages(vma, stack_shift);
 768                if (ret)
 769                        goto out_unlock;
 770        }
 771
 772        /* mprotect_fixup is overkill to remove the temporary stack flags */
 773        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 774
 775        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 776        stack_size = vma->vm_end - vma->vm_start;
 777        /*
 778         * Align this down to a page boundary as expand_stack
 779         * will align it up.
 780         */
 781        rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 782#ifdef CONFIG_STACK_GROWSUP
 783        if (stack_size + stack_expand > rlim_stack)
 784                stack_base = vma->vm_start + rlim_stack;
 785        else
 786                stack_base = vma->vm_end + stack_expand;
 787#else
 788        if (stack_size + stack_expand > rlim_stack)
 789                stack_base = vma->vm_end - rlim_stack;
 790        else
 791                stack_base = vma->vm_start - stack_expand;
 792#endif
 793        current->mm->start_stack = bprm->p;
 794        ret = expand_stack(vma, stack_base);
 795        if (ret)
 796                ret = -EFAULT;
 797
 798out_unlock:
 799        up_write(&mm->mmap_sem);
 800        return ret;
 801}
 802EXPORT_SYMBOL(setup_arg_pages);
 803
 804#else
 805
 806/*
 807 * Transfer the program arguments and environment from the holding pages
 808 * onto the stack. The provided stack pointer is adjusted accordingly.
 809 */
 810int transfer_args_to_stack(struct linux_binprm *bprm,
 811                           unsigned long *sp_location)
 812{
 813        unsigned long index, stop, sp;
 814        int ret = 0;
 815
 816        stop = bprm->p >> PAGE_SHIFT;
 817        sp = *sp_location;
 818
 819        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 820                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 821                char *src = kmap(bprm->page[index]) + offset;
 822                sp -= PAGE_SIZE - offset;
 823                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 824                        ret = -EFAULT;
 825                kunmap(bprm->page[index]);
 826                if (ret)
 827                        goto out;
 828        }
 829
 830        *sp_location = sp;
 831
 832out:
 833        return ret;
 834}
 835EXPORT_SYMBOL(transfer_args_to_stack);
 836
 837#endif /* CONFIG_MMU */
 838
 839static struct file *do_open_execat(int fd, struct filename *name, int flags)
 840{
 841        struct file *file;
 842        int err;
 843        struct open_flags open_exec_flags = {
 844                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 845                .acc_mode = MAY_EXEC,
 846                .intent = LOOKUP_OPEN,
 847                .lookup_flags = LOOKUP_FOLLOW,
 848        };
 849
 850        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 851                return ERR_PTR(-EINVAL);
 852        if (flags & AT_SYMLINK_NOFOLLOW)
 853                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 854        if (flags & AT_EMPTY_PATH)
 855                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 856
 857        file = do_filp_open(fd, name, &open_exec_flags);
 858        if (IS_ERR(file))
 859                goto out;
 860
 861        err = -EACCES;
 862        if (!S_ISREG(file_inode(file)->i_mode))
 863                goto exit;
 864
 865        if (path_noexec(&file->f_path))
 866                goto exit;
 867
 868        err = deny_write_access(file);
 869        if (err)
 870                goto exit;
 871
 872        if (name->name[0] != '\0')
 873                fsnotify_open(file);
 874
 875out:
 876        return file;
 877
 878exit:
 879        fput(file);
 880        return ERR_PTR(err);
 881}
 882
 883struct file *open_exec(const char *name)
 884{
 885        struct filename *filename = getname_kernel(name);
 886        struct file *f = ERR_CAST(filename);
 887
 888        if (!IS_ERR(filename)) {
 889                f = do_open_execat(AT_FDCWD, filename, 0);
 890                putname(filename);
 891        }
 892        return f;
 893}
 894EXPORT_SYMBOL(open_exec);
 895
 896int kernel_read_file(struct file *file, void **buf, loff_t *size,
 897                     loff_t max_size, enum kernel_read_file_id id)
 898{
 899        loff_t i_size, pos;
 900        ssize_t bytes = 0;
 901        int ret;
 902
 903        if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 904                return -EINVAL;
 905
 906        ret = deny_write_access(file);
 907        if (ret)
 908                return ret;
 909
 910        ret = security_kernel_read_file(file, id);
 911        if (ret)
 912                goto out;
 913
 914        i_size = i_size_read(file_inode(file));
 915        if (i_size <= 0) {
 916                ret = -EINVAL;
 917                goto out;
 918        }
 919        if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
 920                ret = -EFBIG;
 921                goto out;
 922        }
 923
 924        if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 925                *buf = vmalloc(i_size);
 926        if (!*buf) {
 927                ret = -ENOMEM;
 928                goto out;
 929        }
 930
 931        pos = 0;
 932        while (pos < i_size) {
 933                bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
 934                if (bytes < 0) {
 935                        ret = bytes;
 936                        goto out_free;
 937                }
 938
 939                if (bytes == 0)
 940                        break;
 941        }
 942
 943        if (pos != i_size) {
 944                ret = -EIO;
 945                goto out_free;
 946        }
 947
 948        ret = security_kernel_post_read_file(file, *buf, i_size, id);
 949        if (!ret)
 950                *size = pos;
 951
 952out_free:
 953        if (ret < 0) {
 954                if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 955                        vfree(*buf);
 956                        *buf = NULL;
 957                }
 958        }
 959
 960out:
 961        allow_write_access(file);
 962        return ret;
 963}
 964EXPORT_SYMBOL_GPL(kernel_read_file);
 965
 966int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
 967                               loff_t max_size, enum kernel_read_file_id id)
 968{
 969        struct file *file;
 970        int ret;
 971
 972        if (!path || !*path)
 973                return -EINVAL;
 974
 975        file = filp_open(path, O_RDONLY, 0);
 976        if (IS_ERR(file))
 977                return PTR_ERR(file);
 978
 979        ret = kernel_read_file(file, buf, size, max_size, id);
 980        fput(file);
 981        return ret;
 982}
 983EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 984
 985int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 986                             enum kernel_read_file_id id)
 987{
 988        struct fd f = fdget(fd);
 989        int ret = -EBADF;
 990
 991        if (!f.file)
 992                goto out;
 993
 994        ret = kernel_read_file(f.file, buf, size, max_size, id);
 995out:
 996        fdput(f);
 997        return ret;
 998}
 999EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1000
1001ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1002{
1003        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1004        if (res > 0)
1005                flush_icache_range(addr, addr + len);
1006        return res;
1007}
1008EXPORT_SYMBOL(read_code);
1009
1010static int exec_mmap(struct mm_struct *mm)
1011{
1012        struct task_struct *tsk;
1013        struct mm_struct *old_mm, *active_mm;
1014
1015        /* Notify parent that we're no longer interested in the old VM */
1016        tsk = current;
1017        old_mm = current->mm;
1018        mm_release(tsk, old_mm);
1019
1020        if (old_mm) {
1021                sync_mm_rss(old_mm);
1022                /*
1023                 * Make sure that if there is a core dump in progress
1024                 * for the old mm, we get out and die instead of going
1025                 * through with the exec.  We must hold mmap_sem around
1026                 * checking core_state and changing tsk->mm.
1027                 */
1028                down_read(&old_mm->mmap_sem);
1029                if (unlikely(old_mm->core_state)) {
1030                        up_read(&old_mm->mmap_sem);
1031                        return -EINTR;
1032                }
1033        }
1034        task_lock(tsk);
1035        active_mm = tsk->active_mm;
1036        tsk->mm = mm;
1037        tsk->active_mm = mm;
1038        activate_mm(active_mm, mm);
1039        tsk->mm->vmacache_seqnum = 0;
1040        vmacache_flush(tsk);
1041        task_unlock(tsk);
1042        if (old_mm) {
1043                up_read(&old_mm->mmap_sem);
1044                BUG_ON(active_mm != old_mm);
1045                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1046                mm_update_next_owner(old_mm);
1047                mmput(old_mm);
1048                return 0;
1049        }
1050        mmdrop(active_mm);
1051        return 0;
1052}
1053
1054/*
1055 * This function makes sure the current process has its own signal table,
1056 * so that flush_signal_handlers can later reset the handlers without
1057 * disturbing other processes.  (Other processes might share the signal
1058 * table via the CLONE_SIGHAND option to clone().)
1059 */
1060static int de_thread(struct task_struct *tsk)
1061{
1062        struct signal_struct *sig = tsk->signal;
1063        struct sighand_struct *oldsighand = tsk->sighand;
1064        spinlock_t *lock = &oldsighand->siglock;
1065
1066        if (thread_group_empty(tsk))
1067                goto no_thread_group;
1068
1069        /*
1070         * Kill all other threads in the thread group.
1071         */
1072        spin_lock_irq(lock);
1073        if (signal_group_exit(sig)) {
1074                /*
1075                 * Another group action in progress, just
1076                 * return so that the signal is processed.
1077                 */
1078                spin_unlock_irq(lock);
1079                return -EAGAIN;
1080        }
1081
1082        sig->group_exit_task = tsk;
1083        sig->notify_count = zap_other_threads(tsk);
1084        if (!thread_group_leader(tsk))
1085                sig->notify_count--;
1086
1087        while (sig->notify_count) {
1088                __set_current_state(TASK_KILLABLE);
1089                spin_unlock_irq(lock);
1090                schedule();
1091                if (__fatal_signal_pending(tsk))
1092                        goto killed;
1093                spin_lock_irq(lock);
1094        }
1095        spin_unlock_irq(lock);
1096
1097        /*
1098         * At this point all other threads have exited, all we have to
1099         * do is to wait for the thread group leader to become inactive,
1100         * and to assume its PID:
1101         */
1102        if (!thread_group_leader(tsk)) {
1103                struct task_struct *leader = tsk->group_leader;
1104
1105                for (;;) {
1106                        cgroup_threadgroup_change_begin(tsk);
1107                        write_lock_irq(&tasklist_lock);
1108                        /*
1109                         * Do this under tasklist_lock to ensure that
1110                         * exit_notify() can't miss ->group_exit_task
1111                         */
1112                        sig->notify_count = -1;
1113                        if (likely(leader->exit_state))
1114                                break;
1115                        __set_current_state(TASK_KILLABLE);
1116                        write_unlock_irq(&tasklist_lock);
1117                        cgroup_threadgroup_change_end(tsk);
1118                        schedule();
1119                        if (__fatal_signal_pending(tsk))
1120                                goto killed;
1121                }
1122
1123                /*
1124                 * The only record we have of the real-time age of a
1125                 * process, regardless of execs it's done, is start_time.
1126                 * All the past CPU time is accumulated in signal_struct
1127                 * from sister threads now dead.  But in this non-leader
1128                 * exec, nothing survives from the original leader thread,
1129                 * whose birth marks the true age of this process now.
1130                 * When we take on its identity by switching to its PID, we
1131                 * also take its birthdate (always earlier than our own).
1132                 */
1133                tsk->start_time = leader->start_time;
1134                tsk->real_start_time = leader->real_start_time;
1135
1136                BUG_ON(!same_thread_group(leader, tsk));
1137                BUG_ON(has_group_leader_pid(tsk));
1138                /*
1139                 * An exec() starts a new thread group with the
1140                 * TGID of the previous thread group. Rehash the
1141                 * two threads with a switched PID, and release
1142                 * the former thread group leader:
1143                 */
1144
1145                /* Become a process group leader with the old leader's pid.
1146                 * The old leader becomes a thread of the this thread group.
1147                 * Note: The old leader also uses this pid until release_task
1148                 *       is called.  Odd but simple and correct.
1149                 */
1150                tsk->pid = leader->pid;
1151                change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1152                transfer_pid(leader, tsk, PIDTYPE_TGID);
1153                transfer_pid(leader, tsk, PIDTYPE_PGID);
1154                transfer_pid(leader, tsk, PIDTYPE_SID);
1155
1156                list_replace_rcu(&leader->tasks, &tsk->tasks);
1157                list_replace_init(&leader->sibling, &tsk->sibling);
1158
1159                tsk->group_leader = tsk;
1160                leader->group_leader = tsk;
1161
1162                tsk->exit_signal = SIGCHLD;
1163                leader->exit_signal = -1;
1164
1165                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1166                leader->exit_state = EXIT_DEAD;
1167
1168                /*
1169                 * We are going to release_task()->ptrace_unlink() silently,
1170                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1171                 * the tracer wont't block again waiting for this thread.
1172                 */
1173                if (unlikely(leader->ptrace))
1174                        __wake_up_parent(leader, leader->parent);
1175                write_unlock_irq(&tasklist_lock);
1176                cgroup_threadgroup_change_end(tsk);
1177
1178                release_task(leader);
1179        }
1180
1181        sig->group_exit_task = NULL;
1182        sig->notify_count = 0;
1183
1184no_thread_group:
1185        /* we have changed execution domain */
1186        tsk->exit_signal = SIGCHLD;
1187
1188#ifdef CONFIG_POSIX_TIMERS
1189        exit_itimers(sig);
1190        flush_itimer_signals();
1191#endif
1192
1193        if (refcount_read(&oldsighand->count) != 1) {
1194                struct sighand_struct *newsighand;
1195                /*
1196                 * This ->sighand is shared with the CLONE_SIGHAND
1197                 * but not CLONE_THREAD task, switch to the new one.
1198                 */
1199                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1200                if (!newsighand)
1201                        return -ENOMEM;
1202
1203                refcount_set(&newsighand->count, 1);
1204                memcpy(newsighand->action, oldsighand->action,
1205                       sizeof(newsighand->action));
1206
1207                write_lock_irq(&tasklist_lock);
1208                spin_lock(&oldsighand->siglock);
1209                rcu_assign_pointer(tsk->sighand, newsighand);
1210                spin_unlock(&oldsighand->siglock);
1211                write_unlock_irq(&tasklist_lock);
1212
1213                __cleanup_sighand(oldsighand);
1214        }
1215
1216        BUG_ON(!thread_group_leader(tsk));
1217        return 0;
1218
1219killed:
1220        /* protects against exit_notify() and __exit_signal() */
1221        read_lock(&tasklist_lock);
1222        sig->group_exit_task = NULL;
1223        sig->notify_count = 0;
1224        read_unlock(&tasklist_lock);
1225        return -EAGAIN;
1226}
1227
1228char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1229{
1230        task_lock(tsk);
1231        strncpy(buf, tsk->comm, buf_size);
1232        task_unlock(tsk);
1233        return buf;
1234}
1235EXPORT_SYMBOL_GPL(__get_task_comm);
1236
1237/*
1238 * These functions flushes out all traces of the currently running executable
1239 * so that a new one can be started
1240 */
1241
1242void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1243{
1244        task_lock(tsk);
1245        trace_task_rename(tsk, buf);
1246        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1247        task_unlock(tsk);
1248        perf_event_comm(tsk, exec);
1249}
1250
1251/*
1252 * Calling this is the point of no return. None of the failures will be
1253 * seen by userspace since either the process is already taking a fatal
1254 * signal (via de_thread() or coredump), or will have SEGV raised
1255 * (after exec_mmap()) by search_binary_handlers (see below).
1256 */
1257int flush_old_exec(struct linux_binprm * bprm)
1258{
1259        int retval;
1260
1261        /*
1262         * Make sure we have a private signal table and that
1263         * we are unassociated from the previous thread group.
1264         */
1265        retval = de_thread(current);
1266        if (retval)
1267                goto out;
1268
1269        /*
1270         * Must be called _before_ exec_mmap() as bprm->mm is
1271         * not visibile until then. This also enables the update
1272         * to be lockless.
1273         */
1274        set_mm_exe_file(bprm->mm, bprm->file);
1275
1276        /*
1277         * Release all of the old mmap stuff
1278         */
1279        acct_arg_size(bprm, 0);
1280        retval = exec_mmap(bprm->mm);
1281        if (retval)
1282                goto out;
1283
1284        /*
1285         * After clearing bprm->mm (to mark that current is using the
1286         * prepared mm now), we have nothing left of the original
1287         * process. If anything from here on returns an error, the check
1288         * in search_binary_handler() will SEGV current.
1289         */
1290        bprm->mm = NULL;
1291
1292        set_fs(USER_DS);
1293        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1294                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1295        flush_thread();
1296        current->personality &= ~bprm->per_clear;
1297
1298        /*
1299         * We have to apply CLOEXEC before we change whether the process is
1300         * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1301         * trying to access the should-be-closed file descriptors of a process
1302         * undergoing exec(2).
1303         */
1304        do_close_on_exec(current->files);
1305        return 0;
1306
1307out:
1308        return retval;
1309}
1310EXPORT_SYMBOL(flush_old_exec);
1311
1312void would_dump(struct linux_binprm *bprm, struct file *file)
1313{
1314        struct inode *inode = file_inode(file);
1315        if (inode_permission(inode, MAY_READ) < 0) {
1316                struct user_namespace *old, *user_ns;
1317                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1318
1319                /* Ensure mm->user_ns contains the executable */
1320                user_ns = old = bprm->mm->user_ns;
1321                while ((user_ns != &init_user_ns) &&
1322                       !privileged_wrt_inode_uidgid(user_ns, inode))
1323                        user_ns = user_ns->parent;
1324
1325                if (old != user_ns) {
1326                        bprm->mm->user_ns = get_user_ns(user_ns);
1327                        put_user_ns(old);
1328                }
1329        }
1330}
1331EXPORT_SYMBOL(would_dump);
1332
1333void setup_new_exec(struct linux_binprm * bprm)
1334{
1335        /*
1336         * Once here, prepare_binrpm() will not be called any more, so
1337         * the final state of setuid/setgid/fscaps can be merged into the
1338         * secureexec flag.
1339         */
1340        bprm->secureexec |= bprm->cap_elevated;
1341
1342        if (bprm->secureexec) {
1343                /* Make sure parent cannot signal privileged process. */
1344                current->pdeath_signal = 0;
1345
1346                /*
1347                 * For secureexec, reset the stack limit to sane default to
1348                 * avoid bad behavior from the prior rlimits. This has to
1349                 * happen before arch_pick_mmap_layout(), which examines
1350                 * RLIMIT_STACK, but after the point of no return to avoid
1351                 * needing to clean up the change on failure.
1352                 */
1353                if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1354                        bprm->rlim_stack.rlim_cur = _STK_LIM;
1355        }
1356
1357        arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1358
1359        current->sas_ss_sp = current->sas_ss_size = 0;
1360
1361        /*
1362         * Figure out dumpability. Note that this checking only of current
1363         * is wrong, but userspace depends on it. This should be testing
1364         * bprm->secureexec instead.
1365         */
1366        if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1367            !(uid_eq(current_euid(), current_uid()) &&
1368              gid_eq(current_egid(), current_gid())))
1369                set_dumpable(current->mm, suid_dumpable);
1370        else
1371                set_dumpable(current->mm, SUID_DUMP_USER);
1372
1373        arch_setup_new_exec();
1374        perf_event_exec();
1375        __set_task_comm(current, kbasename(bprm->filename), true);
1376
1377        /* Set the new mm task size. We have to do that late because it may
1378         * depend on TIF_32BIT which is only updated in flush_thread() on
1379         * some architectures like powerpc
1380         */
1381        current->mm->task_size = TASK_SIZE;
1382
1383        /* An exec changes our domain. We are no longer part of the thread
1384           group */
1385        current->self_exec_id++;
1386        flush_signal_handlers(current, 0);
1387}
1388EXPORT_SYMBOL(setup_new_exec);
1389
1390/* Runs immediately before start_thread() takes over. */
1391void finalize_exec(struct linux_binprm *bprm)
1392{
1393        /* Store any stack rlimit changes before starting thread. */
1394        task_lock(current->group_leader);
1395        current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1396        task_unlock(current->group_leader);
1397}
1398EXPORT_SYMBOL(finalize_exec);
1399
1400/*
1401 * Prepare credentials and lock ->cred_guard_mutex.
1402 * install_exec_creds() commits the new creds and drops the lock.
1403 * Or, if exec fails before, free_bprm() should release ->cred and
1404 * and unlock.
1405 */
1406static int prepare_bprm_creds(struct linux_binprm *bprm)
1407{
1408        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1409                return -ERESTARTNOINTR;
1410
1411        bprm->cred = prepare_exec_creds();
1412        if (likely(bprm->cred))
1413                return 0;
1414
1415        mutex_unlock(&current->signal->cred_guard_mutex);
1416        return -ENOMEM;
1417}
1418
1419static void free_bprm(struct linux_binprm *bprm)
1420{
1421        free_arg_pages(bprm);
1422        if (bprm->cred) {
1423                mutex_unlock(&current->signal->cred_guard_mutex);
1424                abort_creds(bprm->cred);
1425        }
1426        if (bprm->file) {
1427                allow_write_access(bprm->file);
1428                fput(bprm->file);
1429        }
1430        /* If a binfmt changed the interp, free it. */
1431        if (bprm->interp != bprm->filename)
1432                kfree(bprm->interp);
1433        kfree(bprm);
1434}
1435
1436int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1437{
1438        /* If a binfmt changed the interp, free it first. */
1439        if (bprm->interp != bprm->filename)
1440                kfree(bprm->interp);
1441        bprm->interp = kstrdup(interp, GFP_KERNEL);
1442        if (!bprm->interp)
1443                return -ENOMEM;
1444        return 0;
1445}
1446EXPORT_SYMBOL(bprm_change_interp);
1447
1448/*
1449 * install the new credentials for this executable
1450 */
1451void install_exec_creds(struct linux_binprm *bprm)
1452{
1453        security_bprm_committing_creds(bprm);
1454
1455        commit_creds(bprm->cred);
1456        bprm->cred = NULL;
1457
1458        /*
1459         * Disable monitoring for regular users
1460         * when executing setuid binaries. Must
1461         * wait until new credentials are committed
1462         * by commit_creds() above
1463         */
1464        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1465                perf_event_exit_task(current);
1466        /*
1467         * cred_guard_mutex must be held at least to this point to prevent
1468         * ptrace_attach() from altering our determination of the task's
1469         * credentials; any time after this it may be unlocked.
1470         */
1471        security_bprm_committed_creds(bprm);
1472        mutex_unlock(&current->signal->cred_guard_mutex);
1473}
1474EXPORT_SYMBOL(install_exec_creds);
1475
1476/*
1477 * determine how safe it is to execute the proposed program
1478 * - the caller must hold ->cred_guard_mutex to protect against
1479 *   PTRACE_ATTACH or seccomp thread-sync
1480 */
1481static void check_unsafe_exec(struct linux_binprm *bprm)
1482{
1483        struct task_struct *p = current, *t;
1484        unsigned n_fs;
1485
1486        if (p->ptrace)
1487                bprm->unsafe |= LSM_UNSAFE_PTRACE;
1488
1489        /*
1490         * This isn't strictly necessary, but it makes it harder for LSMs to
1491         * mess up.
1492         */
1493        if (task_no_new_privs(current))
1494                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1495
1496        t = p;
1497        n_fs = 1;
1498        spin_lock(&p->fs->lock);
1499        rcu_read_lock();
1500        while_each_thread(p, t) {
1501                if (t->fs == p->fs)
1502                        n_fs++;
1503        }
1504        rcu_read_unlock();
1505
1506        if (p->fs->users > n_fs)
1507                bprm->unsafe |= LSM_UNSAFE_SHARE;
1508        else
1509                p->fs->in_exec = 1;
1510        spin_unlock(&p->fs->lock);
1511}
1512
1513static void bprm_fill_uid(struct linux_binprm *bprm)
1514{
1515        struct inode *inode;
1516        unsigned int mode;
1517        kuid_t uid;
1518        kgid_t gid;
1519
1520        /*
1521         * Since this can be called multiple times (via prepare_binprm),
1522         * we must clear any previous work done when setting set[ug]id
1523         * bits from any earlier bprm->file uses (for example when run
1524         * first for a setuid script then again for its interpreter).
1525         */
1526        bprm->cred->euid = current_euid();
1527        bprm->cred->egid = current_egid();
1528
1529        if (!mnt_may_suid(bprm->file->f_path.mnt))
1530                return;
1531
1532        if (task_no_new_privs(current))
1533                return;
1534
1535        inode = bprm->file->f_path.dentry->d_inode;
1536        mode = READ_ONCE(inode->i_mode);
1537        if (!(mode & (S_ISUID|S_ISGID)))
1538                return;
1539
1540        /* Be careful if suid/sgid is set */
1541        inode_lock(inode);
1542
1543        /* reload atomically mode/uid/gid now that lock held */
1544        mode = inode->i_mode;
1545        uid = inode->i_uid;
1546        gid = inode->i_gid;
1547        inode_unlock(inode);
1548
1549        /* We ignore suid/sgid if there are no mappings for them in the ns */
1550        if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1551                 !kgid_has_mapping(bprm->cred->user_ns, gid))
1552                return;
1553
1554        if (mode & S_ISUID) {
1555                bprm->per_clear |= PER_CLEAR_ON_SETID;
1556                bprm->cred->euid = uid;
1557        }
1558
1559        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1560                bprm->per_clear |= PER_CLEAR_ON_SETID;
1561                bprm->cred->egid = gid;
1562        }
1563}
1564
1565/*
1566 * Fill the binprm structure from the inode.
1567 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1568 *
1569 * This may be called multiple times for binary chains (scripts for example).
1570 */
1571int prepare_binprm(struct linux_binprm *bprm)
1572{
1573        int retval;
1574        loff_t pos = 0;
1575
1576        bprm_fill_uid(bprm);
1577
1578        /* fill in binprm security blob */
1579        retval = security_bprm_set_creds(bprm);
1580        if (retval)
1581                return retval;
1582        bprm->called_set_creds = 1;
1583
1584        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1585        return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1586}
1587
1588EXPORT_SYMBOL(prepare_binprm);
1589
1590/*
1591 * Arguments are '\0' separated strings found at the location bprm->p
1592 * points to; chop off the first by relocating brpm->p to right after
1593 * the first '\0' encountered.
1594 */
1595int remove_arg_zero(struct linux_binprm *bprm)
1596{
1597        int ret = 0;
1598        unsigned long offset;
1599        char *kaddr;
1600        struct page *page;
1601
1602        if (!bprm->argc)
1603                return 0;
1604
1605        do {
1606                offset = bprm->p & ~PAGE_MASK;
1607                page = get_arg_page(bprm, bprm->p, 0);
1608                if (!page) {
1609                        ret = -EFAULT;
1610                        goto out;
1611                }
1612                kaddr = kmap_atomic(page);
1613
1614                for (; offset < PAGE_SIZE && kaddr[offset];
1615                                offset++, bprm->p++)
1616                        ;
1617
1618                kunmap_atomic(kaddr);
1619                put_arg_page(page);
1620        } while (offset == PAGE_SIZE);
1621
1622        bprm->p++;
1623        bprm->argc--;
1624        ret = 0;
1625
1626out:
1627        return ret;
1628}
1629EXPORT_SYMBOL(remove_arg_zero);
1630
1631#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1632/*
1633 * cycle the list of binary formats handler, until one recognizes the image
1634 */
1635int search_binary_handler(struct linux_binprm *bprm)
1636{
1637        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1638        struct linux_binfmt *fmt;
1639        int retval;
1640
1641        /* This allows 4 levels of binfmt rewrites before failing hard. */
1642        if (bprm->recursion_depth > 5)
1643                return -ELOOP;
1644
1645        retval = security_bprm_check(bprm);
1646        if (retval)
1647                return retval;
1648
1649        retval = -ENOENT;
1650 retry:
1651        read_lock(&binfmt_lock);
1652        list_for_each_entry(fmt, &formats, lh) {
1653                if (!try_module_get(fmt->module))
1654                        continue;
1655                read_unlock(&binfmt_lock);
1656
1657                bprm->recursion_depth++;
1658                retval = fmt->load_binary(bprm);
1659                bprm->recursion_depth--;
1660
1661                read_lock(&binfmt_lock);
1662                put_binfmt(fmt);
1663                if (retval < 0 && !bprm->mm) {
1664                        /* we got to flush_old_exec() and failed after it */
1665                        read_unlock(&binfmt_lock);
1666                        force_sigsegv(SIGSEGV);
1667                        return retval;
1668                }
1669                if (retval != -ENOEXEC || !bprm->file) {
1670                        read_unlock(&binfmt_lock);
1671                        return retval;
1672                }
1673        }
1674        read_unlock(&binfmt_lock);
1675
1676        if (need_retry) {
1677                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1678                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1679                        return retval;
1680                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1681                        return retval;
1682                need_retry = false;
1683                goto retry;
1684        }
1685
1686        return retval;
1687}
1688EXPORT_SYMBOL(search_binary_handler);
1689
1690static int exec_binprm(struct linux_binprm *bprm)
1691{
1692        pid_t old_pid, old_vpid;
1693        int ret;
1694
1695        /* Need to fetch pid before load_binary changes it */
1696        old_pid = current->pid;
1697        rcu_read_lock();
1698        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1699        rcu_read_unlock();
1700
1701        ret = search_binary_handler(bprm);
1702        if (ret >= 0) {
1703                audit_bprm(bprm);
1704                trace_sched_process_exec(current, old_pid, bprm);
1705                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1706                proc_exec_connector(current);
1707        }
1708
1709        return ret;
1710}
1711
1712/*
1713 * sys_execve() executes a new program.
1714 */
1715static int __do_execve_file(int fd, struct filename *filename,
1716                            struct user_arg_ptr argv,
1717                            struct user_arg_ptr envp,
1718                            int flags, struct file *file)
1719{
1720        char *pathbuf = NULL;
1721        struct linux_binprm *bprm;
1722        struct files_struct *displaced;
1723        int retval;
1724
1725        if (IS_ERR(filename))
1726                return PTR_ERR(filename);
1727
1728        /*
1729         * We move the actual failure in case of RLIMIT_NPROC excess from
1730         * set*uid() to execve() because too many poorly written programs
1731         * don't check setuid() return code.  Here we additionally recheck
1732         * whether NPROC limit is still exceeded.
1733         */
1734        if ((current->flags & PF_NPROC_EXCEEDED) &&
1735            atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1736                retval = -EAGAIN;
1737                goto out_ret;
1738        }
1739
1740        /* We're below the limit (still or again), so we don't want to make
1741         * further execve() calls fail. */
1742        current->flags &= ~PF_NPROC_EXCEEDED;
1743
1744        retval = unshare_files(&displaced);
1745        if (retval)
1746                goto out_ret;
1747
1748        retval = -ENOMEM;
1749        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1750        if (!bprm)
1751                goto out_files;
1752
1753        retval = prepare_bprm_creds(bprm);
1754        if (retval)
1755                goto out_free;
1756
1757        check_unsafe_exec(bprm);
1758        current->in_execve = 1;
1759
1760        if (!file)
1761                file = do_open_execat(fd, filename, flags);
1762        retval = PTR_ERR(file);
1763        if (IS_ERR(file))
1764                goto out_unmark;
1765
1766        sched_exec();
1767
1768        bprm->file = file;
1769        if (!filename) {
1770                bprm->filename = "none";
1771        } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1772                bprm->filename = filename->name;
1773        } else {
1774                if (filename->name[0] == '\0')
1775                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1776                else
1777                        pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1778                                            fd, filename->name);
1779                if (!pathbuf) {
1780                        retval = -ENOMEM;
1781                        goto out_unmark;
1782                }
1783                /*
1784                 * Record that a name derived from an O_CLOEXEC fd will be
1785                 * inaccessible after exec. Relies on having exclusive access to
1786                 * current->files (due to unshare_files above).
1787                 */
1788                if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1789                        bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1790                bprm->filename = pathbuf;
1791        }
1792        bprm->interp = bprm->filename;
1793
1794        retval = bprm_mm_init(bprm);
1795        if (retval)
1796                goto out_unmark;
1797
1798        retval = prepare_arg_pages(bprm, argv, envp);
1799        if (retval < 0)
1800                goto out;
1801
1802        retval = prepare_binprm(bprm);
1803        if (retval < 0)
1804                goto out;
1805
1806        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1807        if (retval < 0)
1808                goto out;
1809
1810        bprm->exec = bprm->p;
1811        retval = copy_strings(bprm->envc, envp, bprm);
1812        if (retval < 0)
1813                goto out;
1814
1815        retval = copy_strings(bprm->argc, argv, bprm);
1816        if (retval < 0)
1817                goto out;
1818
1819        would_dump(bprm, bprm->file);
1820
1821        retval = exec_binprm(bprm);
1822        if (retval < 0)
1823                goto out;
1824
1825        /* execve succeeded */
1826        current->fs->in_exec = 0;
1827        current->in_execve = 0;
1828        membarrier_execve(current);
1829        rseq_execve(current);
1830        acct_update_integrals(current);
1831        task_numa_free(current, false);
1832        free_bprm(bprm);
1833        kfree(pathbuf);
1834        if (filename)
1835                putname(filename);
1836        if (displaced)
1837                put_files_struct(displaced);
1838        return retval;
1839
1840out:
1841        if (bprm->mm) {
1842                acct_arg_size(bprm, 0);
1843                mmput(bprm->mm);
1844        }
1845
1846out_unmark:
1847        current->fs->in_exec = 0;
1848        current->in_execve = 0;
1849
1850out_free:
1851        free_bprm(bprm);
1852        kfree(pathbuf);
1853
1854out_files:
1855        if (displaced)
1856                reset_files_struct(displaced);
1857out_ret:
1858        if (filename)
1859                putname(filename);
1860        return retval;
1861}
1862
1863static int do_execveat_common(int fd, struct filename *filename,
1864                              struct user_arg_ptr argv,
1865                              struct user_arg_ptr envp,
1866                              int flags)
1867{
1868        return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1869}
1870
1871int do_execve_file(struct file *file, void *__argv, void *__envp)
1872{
1873        struct user_arg_ptr argv = { .ptr.native = __argv };
1874        struct user_arg_ptr envp = { .ptr.native = __envp };
1875
1876        return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1877}
1878
1879int do_execve(struct filename *filename,
1880        const char __user *const __user *__argv,
1881        const char __user *const __user *__envp)
1882{
1883        struct user_arg_ptr argv = { .ptr.native = __argv };
1884        struct user_arg_ptr envp = { .ptr.native = __envp };
1885        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1886}
1887
1888int do_execveat(int fd, struct filename *filename,
1889                const char __user *const __user *__argv,
1890                const char __user *const __user *__envp,
1891                int flags)
1892{
1893        struct user_arg_ptr argv = { .ptr.native = __argv };
1894        struct user_arg_ptr envp = { .ptr.native = __envp };
1895
1896        return do_execveat_common(fd, filename, argv, envp, flags);
1897}
1898
1899#ifdef CONFIG_COMPAT
1900static int compat_do_execve(struct filename *filename,
1901        const compat_uptr_t __user *__argv,
1902        const compat_uptr_t __user *__envp)
1903{
1904        struct user_arg_ptr argv = {
1905                .is_compat = true,
1906                .ptr.compat = __argv,
1907        };
1908        struct user_arg_ptr envp = {
1909                .is_compat = true,
1910                .ptr.compat = __envp,
1911        };
1912        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1913}
1914
1915static int compat_do_execveat(int fd, struct filename *filename,
1916                              const compat_uptr_t __user *__argv,
1917                              const compat_uptr_t __user *__envp,
1918                              int flags)
1919{
1920        struct user_arg_ptr argv = {
1921                .is_compat = true,
1922                .ptr.compat = __argv,
1923        };
1924        struct user_arg_ptr envp = {
1925                .is_compat = true,
1926                .ptr.compat = __envp,
1927        };
1928        return do_execveat_common(fd, filename, argv, envp, flags);
1929}
1930#endif
1931
1932void set_binfmt(struct linux_binfmt *new)
1933{
1934        struct mm_struct *mm = current->mm;
1935
1936        if (mm->binfmt)
1937                module_put(mm->binfmt->module);
1938
1939        mm->binfmt = new;
1940        if (new)
1941                __module_get(new->module);
1942}
1943EXPORT_SYMBOL(set_binfmt);
1944
1945/*
1946 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1947 */
1948void set_dumpable(struct mm_struct *mm, int value)
1949{
1950        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951                return;
1952
1953        set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1954}
1955
1956SYSCALL_DEFINE3(execve,
1957                const char __user *, filename,
1958                const char __user *const __user *, argv,
1959                const char __user *const __user *, envp)
1960{
1961        return do_execve(getname(filename), argv, envp);
1962}
1963
1964SYSCALL_DEFINE5(execveat,
1965                int, fd, const char __user *, filename,
1966                const char __user *const __user *, argv,
1967                const char __user *const __user *, envp,
1968                int, flags)
1969{
1970        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1971
1972        return do_execveat(fd,
1973                           getname_flags(filename, lookup_flags, NULL),
1974                           argv, envp, flags);
1975}
1976
1977#ifdef CONFIG_COMPAT
1978COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1979        const compat_uptr_t __user *, argv,
1980        const compat_uptr_t __user *, envp)
1981{
1982        return compat_do_execve(getname(filename), argv, envp);
1983}
1984
1985COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1986                       const char __user *, filename,
1987                       const compat_uptr_t __user *, argv,
1988                       const compat_uptr_t __user *, envp,
1989                       int,  flags)
1990{
1991        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1992
1993        return compat_do_execveat(fd,
1994                                  getname_flags(filename, lookup_flags, NULL),
1995                                  argv, envp, flags);
1996}
1997#endif
1998