linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *discard_cmd_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35        unsigned long tmp = 0;
  36        int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39        shift = 56;
  40#endif
  41        while (shift >= 0) {
  42                tmp |= (unsigned long)str[idx++] << shift;
  43                shift -= BITS_PER_BYTE;
  44        }
  45        return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54        int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57        if ((word & 0xffffffff00000000UL) == 0)
  58                num += 32;
  59        else
  60                word >>= 32;
  61#endif
  62        if ((word & 0xffff0000) == 0)
  63                num += 16;
  64        else
  65                word >>= 16;
  66
  67        if ((word & 0xff00) == 0)
  68                num += 8;
  69        else
  70                word >>= 8;
  71
  72        if ((word & 0xf0) == 0)
  73                num += 4;
  74        else
  75                word >>= 4;
  76
  77        if ((word & 0xc) == 0)
  78                num += 2;
  79        else
  80                word >>= 2;
  81
  82        if ((word & 0x2) == 0)
  83                num += 1;
  84        return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97                        unsigned long size, unsigned long offset)
  98{
  99        const unsigned long *p = addr + BIT_WORD(offset);
 100        unsigned long result = size;
 101        unsigned long tmp;
 102
 103        if (offset >= size)
 104                return size;
 105
 106        size -= (offset & ~(BITS_PER_LONG - 1));
 107        offset %= BITS_PER_LONG;
 108
 109        while (1) {
 110                if (*p == 0)
 111                        goto pass;
 112
 113                tmp = __reverse_ulong((unsigned char *)p);
 114
 115                tmp &= ~0UL >> offset;
 116                if (size < BITS_PER_LONG)
 117                        tmp &= (~0UL << (BITS_PER_LONG - size));
 118                if (tmp)
 119                        goto found;
 120pass:
 121                if (size <= BITS_PER_LONG)
 122                        break;
 123                size -= BITS_PER_LONG;
 124                offset = 0;
 125                p++;
 126        }
 127        return result;
 128found:
 129        return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133                        unsigned long size, unsigned long offset)
 134{
 135        const unsigned long *p = addr + BIT_WORD(offset);
 136        unsigned long result = size;
 137        unsigned long tmp;
 138
 139        if (offset >= size)
 140                return size;
 141
 142        size -= (offset & ~(BITS_PER_LONG - 1));
 143        offset %= BITS_PER_LONG;
 144
 145        while (1) {
 146                if (*p == ~0UL)
 147                        goto pass;
 148
 149                tmp = __reverse_ulong((unsigned char *)p);
 150
 151                if (offset)
 152                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 153                if (size < BITS_PER_LONG)
 154                        tmp |= ~0UL >> size;
 155                if (tmp != ~0UL)
 156                        goto found;
 157pass:
 158                if (size <= BITS_PER_LONG)
 159                        break;
 160                size -= BITS_PER_LONG;
 161                offset = 0;
 162                p++;
 163        }
 164        return result;
 165found:
 166        return result - size + __reverse_ffz(tmp);
 167}
 168
 169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 170{
 171        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 172        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 173        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 174
 175        if (test_opt(sbi, LFS))
 176                return false;
 177        if (sbi->gc_mode == GC_URGENT)
 178                return true;
 179        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 180                return true;
 181
 182        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 183                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 184}
 185
 186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 187{
 188        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 189        struct f2fs_inode_info *fi = F2FS_I(inode);
 190        struct inmem_pages *new;
 191
 192        f2fs_trace_pid(page);
 193
 194        f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 195
 196        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 197
 198        /* add atomic page indices to the list */
 199        new->page = page;
 200        INIT_LIST_HEAD(&new->list);
 201
 202        /* increase reference count with clean state */
 203        mutex_lock(&fi->inmem_lock);
 204        get_page(page);
 205        list_add_tail(&new->list, &fi->inmem_pages);
 206        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 207        if (list_empty(&fi->inmem_ilist))
 208                list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
 209        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 210        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 211        mutex_unlock(&fi->inmem_lock);
 212
 213        trace_f2fs_register_inmem_page(page, INMEM);
 214}
 215
 216static int __revoke_inmem_pages(struct inode *inode,
 217                                struct list_head *head, bool drop, bool recover,
 218                                bool trylock)
 219{
 220        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 221        struct inmem_pages *cur, *tmp;
 222        int err = 0;
 223
 224        list_for_each_entry_safe(cur, tmp, head, list) {
 225                struct page *page = cur->page;
 226
 227                if (drop)
 228                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 229
 230                if (trylock) {
 231                        /*
 232                         * to avoid deadlock in between page lock and
 233                         * inmem_lock.
 234                         */
 235                        if (!trylock_page(page))
 236                                continue;
 237                } else {
 238                        lock_page(page);
 239                }
 240
 241                f2fs_wait_on_page_writeback(page, DATA, true, true);
 242
 243                if (recover) {
 244                        struct dnode_of_data dn;
 245                        struct node_info ni;
 246
 247                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 248retry:
 249                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 250                        err = f2fs_get_dnode_of_data(&dn, page->index,
 251                                                                LOOKUP_NODE);
 252                        if (err) {
 253                                if (err == -ENOMEM) {
 254                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 255                                        cond_resched();
 256                                        goto retry;
 257                                }
 258                                err = -EAGAIN;
 259                                goto next;
 260                        }
 261
 262                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 263                        if (err) {
 264                                f2fs_put_dnode(&dn);
 265                                return err;
 266                        }
 267
 268                        if (cur->old_addr == NEW_ADDR) {
 269                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 270                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 271                        } else
 272                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 273                                        cur->old_addr, ni.version, true, true);
 274                        f2fs_put_dnode(&dn);
 275                }
 276next:
 277                /* we don't need to invalidate this in the sccessful status */
 278                if (drop || recover) {
 279                        ClearPageUptodate(page);
 280                        clear_cold_data(page);
 281                }
 282                f2fs_clear_page_private(page);
 283                f2fs_put_page(page, 1);
 284
 285                list_del(&cur->list);
 286                kmem_cache_free(inmem_entry_slab, cur);
 287                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 288        }
 289        return err;
 290}
 291
 292void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 293{
 294        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 295        struct inode *inode;
 296        struct f2fs_inode_info *fi;
 297next:
 298        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 299        if (list_empty(head)) {
 300                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 301                return;
 302        }
 303        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 304        inode = igrab(&fi->vfs_inode);
 305        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 306
 307        if (inode) {
 308                if (gc_failure) {
 309                        if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
 310                                goto drop;
 311                        goto skip;
 312                }
 313drop:
 314                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 315                f2fs_drop_inmem_pages(inode);
 316                iput(inode);
 317        }
 318skip:
 319        congestion_wait(BLK_RW_ASYNC, HZ/50);
 320        cond_resched();
 321        goto next;
 322}
 323
 324void f2fs_drop_inmem_pages(struct inode *inode)
 325{
 326        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 327        struct f2fs_inode_info *fi = F2FS_I(inode);
 328
 329        while (!list_empty(&fi->inmem_pages)) {
 330                mutex_lock(&fi->inmem_lock);
 331                __revoke_inmem_pages(inode, &fi->inmem_pages,
 332                                                true, false, true);
 333
 334                if (list_empty(&fi->inmem_pages)) {
 335                        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 336                        if (!list_empty(&fi->inmem_ilist))
 337                                list_del_init(&fi->inmem_ilist);
 338                        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 339                }
 340                mutex_unlock(&fi->inmem_lock);
 341        }
 342
 343        clear_inode_flag(inode, FI_ATOMIC_FILE);
 344        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 345        stat_dec_atomic_write(inode);
 346}
 347
 348void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 349{
 350        struct f2fs_inode_info *fi = F2FS_I(inode);
 351        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 352        struct list_head *head = &fi->inmem_pages;
 353        struct inmem_pages *cur = NULL;
 354
 355        f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 356
 357        mutex_lock(&fi->inmem_lock);
 358        list_for_each_entry(cur, head, list) {
 359                if (cur->page == page)
 360                        break;
 361        }
 362
 363        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 364        list_del(&cur->list);
 365        mutex_unlock(&fi->inmem_lock);
 366
 367        dec_page_count(sbi, F2FS_INMEM_PAGES);
 368        kmem_cache_free(inmem_entry_slab, cur);
 369
 370        ClearPageUptodate(page);
 371        f2fs_clear_page_private(page);
 372        f2fs_put_page(page, 0);
 373
 374        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 375}
 376
 377static int __f2fs_commit_inmem_pages(struct inode *inode)
 378{
 379        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 380        struct f2fs_inode_info *fi = F2FS_I(inode);
 381        struct inmem_pages *cur, *tmp;
 382        struct f2fs_io_info fio = {
 383                .sbi = sbi,
 384                .ino = inode->i_ino,
 385                .type = DATA,
 386                .op = REQ_OP_WRITE,
 387                .op_flags = REQ_SYNC | REQ_PRIO,
 388                .io_type = FS_DATA_IO,
 389        };
 390        struct list_head revoke_list;
 391        bool submit_bio = false;
 392        int err = 0;
 393
 394        INIT_LIST_HEAD(&revoke_list);
 395
 396        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 397                struct page *page = cur->page;
 398
 399                lock_page(page);
 400                if (page->mapping == inode->i_mapping) {
 401                        trace_f2fs_commit_inmem_page(page, INMEM);
 402
 403                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 404
 405                        set_page_dirty(page);
 406                        if (clear_page_dirty_for_io(page)) {
 407                                inode_dec_dirty_pages(inode);
 408                                f2fs_remove_dirty_inode(inode);
 409                        }
 410retry:
 411                        fio.page = page;
 412                        fio.old_blkaddr = NULL_ADDR;
 413                        fio.encrypted_page = NULL;
 414                        fio.need_lock = LOCK_DONE;
 415                        err = f2fs_do_write_data_page(&fio);
 416                        if (err) {
 417                                if (err == -ENOMEM) {
 418                                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 419                                        cond_resched();
 420                                        goto retry;
 421                                }
 422                                unlock_page(page);
 423                                break;
 424                        }
 425                        /* record old blkaddr for revoking */
 426                        cur->old_addr = fio.old_blkaddr;
 427                        submit_bio = true;
 428                }
 429                unlock_page(page);
 430                list_move_tail(&cur->list, &revoke_list);
 431        }
 432
 433        if (submit_bio)
 434                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 435
 436        if (err) {
 437                /*
 438                 * try to revoke all committed pages, but still we could fail
 439                 * due to no memory or other reason, if that happened, EAGAIN
 440                 * will be returned, which means in such case, transaction is
 441                 * already not integrity, caller should use journal to do the
 442                 * recovery or rewrite & commit last transaction. For other
 443                 * error number, revoking was done by filesystem itself.
 444                 */
 445                err = __revoke_inmem_pages(inode, &revoke_list,
 446                                                false, true, false);
 447
 448                /* drop all uncommitted pages */
 449                __revoke_inmem_pages(inode, &fi->inmem_pages,
 450                                                true, false, false);
 451        } else {
 452                __revoke_inmem_pages(inode, &revoke_list,
 453                                                false, false, false);
 454        }
 455
 456        return err;
 457}
 458
 459int f2fs_commit_inmem_pages(struct inode *inode)
 460{
 461        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 462        struct f2fs_inode_info *fi = F2FS_I(inode);
 463        int err;
 464
 465        f2fs_balance_fs(sbi, true);
 466
 467        down_write(&fi->i_gc_rwsem[WRITE]);
 468
 469        f2fs_lock_op(sbi);
 470        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 471
 472        mutex_lock(&fi->inmem_lock);
 473        err = __f2fs_commit_inmem_pages(inode);
 474
 475        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 476        if (!list_empty(&fi->inmem_ilist))
 477                list_del_init(&fi->inmem_ilist);
 478        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 479        mutex_unlock(&fi->inmem_lock);
 480
 481        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 482
 483        f2fs_unlock_op(sbi);
 484        up_write(&fi->i_gc_rwsem[WRITE]);
 485
 486        return err;
 487}
 488
 489/*
 490 * This function balances dirty node and dentry pages.
 491 * In addition, it controls garbage collection.
 492 */
 493void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 494{
 495        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 496                f2fs_show_injection_info(FAULT_CHECKPOINT);
 497                f2fs_stop_checkpoint(sbi, false);
 498        }
 499
 500        /* balance_fs_bg is able to be pending */
 501        if (need && excess_cached_nats(sbi))
 502                f2fs_balance_fs_bg(sbi);
 503
 504        if (f2fs_is_checkpoint_ready(sbi))
 505                return;
 506
 507        /*
 508         * We should do GC or end up with checkpoint, if there are so many dirty
 509         * dir/node pages without enough free segments.
 510         */
 511        if (has_not_enough_free_secs(sbi, 0, 0)) {
 512                mutex_lock(&sbi->gc_mutex);
 513                f2fs_gc(sbi, false, false, NULL_SEGNO);
 514        }
 515}
 516
 517void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 518{
 519        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 520                return;
 521
 522        /* try to shrink extent cache when there is no enough memory */
 523        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 524                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 525
 526        /* check the # of cached NAT entries */
 527        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 528                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 529
 530        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 531                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 532        else
 533                f2fs_build_free_nids(sbi, false, false);
 534
 535        if (!is_idle(sbi, REQ_TIME) &&
 536                (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
 537                return;
 538
 539        /* checkpoint is the only way to shrink partial cached entries */
 540        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 541                        !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 542                        excess_prefree_segs(sbi) ||
 543                        excess_dirty_nats(sbi) ||
 544                        excess_dirty_nodes(sbi) ||
 545                        f2fs_time_over(sbi, CP_TIME)) {
 546                if (test_opt(sbi, DATA_FLUSH)) {
 547                        struct blk_plug plug;
 548
 549                        mutex_lock(&sbi->flush_lock);
 550
 551                        blk_start_plug(&plug);
 552                        f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 553                        blk_finish_plug(&plug);
 554
 555                        mutex_unlock(&sbi->flush_lock);
 556                }
 557                f2fs_sync_fs(sbi->sb, true);
 558                stat_inc_bg_cp_count(sbi->stat_info);
 559        }
 560}
 561
 562static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 563                                struct block_device *bdev)
 564{
 565        struct bio *bio;
 566        int ret;
 567
 568        bio = f2fs_bio_alloc(sbi, 0, false);
 569        if (!bio)
 570                return -ENOMEM;
 571
 572        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 573        bio_set_dev(bio, bdev);
 574        ret = submit_bio_wait(bio);
 575        bio_put(bio);
 576
 577        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 578                                test_opt(sbi, FLUSH_MERGE), ret);
 579        return ret;
 580}
 581
 582static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 583{
 584        int ret = 0;
 585        int i;
 586
 587        if (!f2fs_is_multi_device(sbi))
 588                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 589
 590        for (i = 0; i < sbi->s_ndevs; i++) {
 591                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 592                        continue;
 593                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 594                if (ret)
 595                        break;
 596        }
 597        return ret;
 598}
 599
 600static int issue_flush_thread(void *data)
 601{
 602        struct f2fs_sb_info *sbi = data;
 603        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 604        wait_queue_head_t *q = &fcc->flush_wait_queue;
 605repeat:
 606        if (kthread_should_stop())
 607                return 0;
 608
 609        sb_start_intwrite(sbi->sb);
 610
 611        if (!llist_empty(&fcc->issue_list)) {
 612                struct flush_cmd *cmd, *next;
 613                int ret;
 614
 615                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 616                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 617
 618                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 619
 620                ret = submit_flush_wait(sbi, cmd->ino);
 621                atomic_inc(&fcc->issued_flush);
 622
 623                llist_for_each_entry_safe(cmd, next,
 624                                          fcc->dispatch_list, llnode) {
 625                        cmd->ret = ret;
 626                        complete(&cmd->wait);
 627                }
 628                fcc->dispatch_list = NULL;
 629        }
 630
 631        sb_end_intwrite(sbi->sb);
 632
 633        wait_event_interruptible(*q,
 634                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 635        goto repeat;
 636}
 637
 638int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 639{
 640        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 641        struct flush_cmd cmd;
 642        int ret;
 643
 644        if (test_opt(sbi, NOBARRIER))
 645                return 0;
 646
 647        if (!test_opt(sbi, FLUSH_MERGE)) {
 648                atomic_inc(&fcc->queued_flush);
 649                ret = submit_flush_wait(sbi, ino);
 650                atomic_dec(&fcc->queued_flush);
 651                atomic_inc(&fcc->issued_flush);
 652                return ret;
 653        }
 654
 655        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 656            f2fs_is_multi_device(sbi)) {
 657                ret = submit_flush_wait(sbi, ino);
 658                atomic_dec(&fcc->queued_flush);
 659
 660                atomic_inc(&fcc->issued_flush);
 661                return ret;
 662        }
 663
 664        cmd.ino = ino;
 665        init_completion(&cmd.wait);
 666
 667        llist_add(&cmd.llnode, &fcc->issue_list);
 668
 669        /* update issue_list before we wake up issue_flush thread */
 670        smp_mb();
 671
 672        if (waitqueue_active(&fcc->flush_wait_queue))
 673                wake_up(&fcc->flush_wait_queue);
 674
 675        if (fcc->f2fs_issue_flush) {
 676                wait_for_completion(&cmd.wait);
 677                atomic_dec(&fcc->queued_flush);
 678        } else {
 679                struct llist_node *list;
 680
 681                list = llist_del_all(&fcc->issue_list);
 682                if (!list) {
 683                        wait_for_completion(&cmd.wait);
 684                        atomic_dec(&fcc->queued_flush);
 685                } else {
 686                        struct flush_cmd *tmp, *next;
 687
 688                        ret = submit_flush_wait(sbi, ino);
 689
 690                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 691                                if (tmp == &cmd) {
 692                                        cmd.ret = ret;
 693                                        atomic_dec(&fcc->queued_flush);
 694                                        continue;
 695                                }
 696                                tmp->ret = ret;
 697                                complete(&tmp->wait);
 698                        }
 699                }
 700        }
 701
 702        return cmd.ret;
 703}
 704
 705int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 706{
 707        dev_t dev = sbi->sb->s_bdev->bd_dev;
 708        struct flush_cmd_control *fcc;
 709        int err = 0;
 710
 711        if (SM_I(sbi)->fcc_info) {
 712                fcc = SM_I(sbi)->fcc_info;
 713                if (fcc->f2fs_issue_flush)
 714                        return err;
 715                goto init_thread;
 716        }
 717
 718        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 719        if (!fcc)
 720                return -ENOMEM;
 721        atomic_set(&fcc->issued_flush, 0);
 722        atomic_set(&fcc->queued_flush, 0);
 723        init_waitqueue_head(&fcc->flush_wait_queue);
 724        init_llist_head(&fcc->issue_list);
 725        SM_I(sbi)->fcc_info = fcc;
 726        if (!test_opt(sbi, FLUSH_MERGE))
 727                return err;
 728
 729init_thread:
 730        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 731                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 732        if (IS_ERR(fcc->f2fs_issue_flush)) {
 733                err = PTR_ERR(fcc->f2fs_issue_flush);
 734                kvfree(fcc);
 735                SM_I(sbi)->fcc_info = NULL;
 736                return err;
 737        }
 738
 739        return err;
 740}
 741
 742void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 743{
 744        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 745
 746        if (fcc && fcc->f2fs_issue_flush) {
 747                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 748
 749                fcc->f2fs_issue_flush = NULL;
 750                kthread_stop(flush_thread);
 751        }
 752        if (free) {
 753                kvfree(fcc);
 754                SM_I(sbi)->fcc_info = NULL;
 755        }
 756}
 757
 758int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 759{
 760        int ret = 0, i;
 761
 762        if (!f2fs_is_multi_device(sbi))
 763                return 0;
 764
 765        for (i = 1; i < sbi->s_ndevs; i++) {
 766                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 767                        continue;
 768                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 769                if (ret)
 770                        break;
 771
 772                spin_lock(&sbi->dev_lock);
 773                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 774                spin_unlock(&sbi->dev_lock);
 775        }
 776
 777        return ret;
 778}
 779
 780static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 781                enum dirty_type dirty_type)
 782{
 783        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 784
 785        /* need not be added */
 786        if (IS_CURSEG(sbi, segno))
 787                return;
 788
 789        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 790                dirty_i->nr_dirty[dirty_type]++;
 791
 792        if (dirty_type == DIRTY) {
 793                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 794                enum dirty_type t = sentry->type;
 795
 796                if (unlikely(t >= DIRTY)) {
 797                        f2fs_bug_on(sbi, 1);
 798                        return;
 799                }
 800                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 801                        dirty_i->nr_dirty[t]++;
 802        }
 803}
 804
 805static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 806                enum dirty_type dirty_type)
 807{
 808        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 809
 810        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 811                dirty_i->nr_dirty[dirty_type]--;
 812
 813        if (dirty_type == DIRTY) {
 814                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 815                enum dirty_type t = sentry->type;
 816
 817                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 818                        dirty_i->nr_dirty[t]--;
 819
 820                if (get_valid_blocks(sbi, segno, true) == 0)
 821                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 822                                                dirty_i->victim_secmap);
 823        }
 824}
 825
 826/*
 827 * Should not occur error such as -ENOMEM.
 828 * Adding dirty entry into seglist is not critical operation.
 829 * If a given segment is one of current working segments, it won't be added.
 830 */
 831static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 832{
 833        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 834        unsigned short valid_blocks, ckpt_valid_blocks;
 835
 836        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 837                return;
 838
 839        mutex_lock(&dirty_i->seglist_lock);
 840
 841        valid_blocks = get_valid_blocks(sbi, segno, false);
 842        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
 843
 844        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 845                                ckpt_valid_blocks == sbi->blocks_per_seg)) {
 846                __locate_dirty_segment(sbi, segno, PRE);
 847                __remove_dirty_segment(sbi, segno, DIRTY);
 848        } else if (valid_blocks < sbi->blocks_per_seg) {
 849                __locate_dirty_segment(sbi, segno, DIRTY);
 850        } else {
 851                /* Recovery routine with SSR needs this */
 852                __remove_dirty_segment(sbi, segno, DIRTY);
 853        }
 854
 855        mutex_unlock(&dirty_i->seglist_lock);
 856}
 857
 858/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 859void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 860{
 861        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 862        unsigned int segno;
 863
 864        mutex_lock(&dirty_i->seglist_lock);
 865        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 866                if (get_valid_blocks(sbi, segno, false))
 867                        continue;
 868                if (IS_CURSEG(sbi, segno))
 869                        continue;
 870                __locate_dirty_segment(sbi, segno, PRE);
 871                __remove_dirty_segment(sbi, segno, DIRTY);
 872        }
 873        mutex_unlock(&dirty_i->seglist_lock);
 874}
 875
 876block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 877{
 878        int ovp_hole_segs =
 879                (overprovision_segments(sbi) - reserved_segments(sbi));
 880        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 881        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 882        block_t holes[2] = {0, 0};      /* DATA and NODE */
 883        block_t unusable;
 884        struct seg_entry *se;
 885        unsigned int segno;
 886
 887        mutex_lock(&dirty_i->seglist_lock);
 888        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 889                se = get_seg_entry(sbi, segno);
 890                if (IS_NODESEG(se->type))
 891                        holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
 892                else
 893                        holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
 894        }
 895        mutex_unlock(&dirty_i->seglist_lock);
 896
 897        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 898        if (unusable > ovp_holes)
 899                return unusable - ovp_holes;
 900        return 0;
 901}
 902
 903int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 904{
 905        int ovp_hole_segs =
 906                (overprovision_segments(sbi) - reserved_segments(sbi));
 907        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 908                return -EAGAIN;
 909        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 910                dirty_segments(sbi) > ovp_hole_segs)
 911                return -EAGAIN;
 912        return 0;
 913}
 914
 915/* This is only used by SBI_CP_DISABLED */
 916static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 917{
 918        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 919        unsigned int segno = 0;
 920
 921        mutex_lock(&dirty_i->seglist_lock);
 922        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 923                if (get_valid_blocks(sbi, segno, false))
 924                        continue;
 925                if (get_ckpt_valid_blocks(sbi, segno))
 926                        continue;
 927                mutex_unlock(&dirty_i->seglist_lock);
 928                return segno;
 929        }
 930        mutex_unlock(&dirty_i->seglist_lock);
 931        return NULL_SEGNO;
 932}
 933
 934static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 935                struct block_device *bdev, block_t lstart,
 936                block_t start, block_t len)
 937{
 938        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 939        struct list_head *pend_list;
 940        struct discard_cmd *dc;
 941
 942        f2fs_bug_on(sbi, !len);
 943
 944        pend_list = &dcc->pend_list[plist_idx(len)];
 945
 946        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 947        INIT_LIST_HEAD(&dc->list);
 948        dc->bdev = bdev;
 949        dc->lstart = lstart;
 950        dc->start = start;
 951        dc->len = len;
 952        dc->ref = 0;
 953        dc->state = D_PREP;
 954        dc->queued = 0;
 955        dc->error = 0;
 956        init_completion(&dc->wait);
 957        list_add_tail(&dc->list, pend_list);
 958        spin_lock_init(&dc->lock);
 959        dc->bio_ref = 0;
 960        atomic_inc(&dcc->discard_cmd_cnt);
 961        dcc->undiscard_blks += len;
 962
 963        return dc;
 964}
 965
 966static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 967                                struct block_device *bdev, block_t lstart,
 968                                block_t start, block_t len,
 969                                struct rb_node *parent, struct rb_node **p,
 970                                bool leftmost)
 971{
 972        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 973        struct discard_cmd *dc;
 974
 975        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 976
 977        rb_link_node(&dc->rb_node, parent, p);
 978        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 979
 980        return dc;
 981}
 982
 983static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 984                                                        struct discard_cmd *dc)
 985{
 986        if (dc->state == D_DONE)
 987                atomic_sub(dc->queued, &dcc->queued_discard);
 988
 989        list_del(&dc->list);
 990        rb_erase_cached(&dc->rb_node, &dcc->root);
 991        dcc->undiscard_blks -= dc->len;
 992
 993        kmem_cache_free(discard_cmd_slab, dc);
 994
 995        atomic_dec(&dcc->discard_cmd_cnt);
 996}
 997
 998static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 999                                                        struct discard_cmd *dc)
1000{
1001        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002        unsigned long flags;
1003
1004        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006        spin_lock_irqsave(&dc->lock, flags);
1007        if (dc->bio_ref) {
1008                spin_unlock_irqrestore(&dc->lock, flags);
1009                return;
1010        }
1011        spin_unlock_irqrestore(&dc->lock, flags);
1012
1013        f2fs_bug_on(sbi, dc->ref);
1014
1015        if (dc->error == -EOPNOTSUPP)
1016                dc->error = 0;
1017
1018        if (dc->error)
1019                printk_ratelimited(
1020                        "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1021                        KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1022        __detach_discard_cmd(dcc, dc);
1023}
1024
1025static void f2fs_submit_discard_endio(struct bio *bio)
1026{
1027        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1028        unsigned long flags;
1029
1030        dc->error = blk_status_to_errno(bio->bi_status);
1031
1032        spin_lock_irqsave(&dc->lock, flags);
1033        dc->bio_ref--;
1034        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1035                dc->state = D_DONE;
1036                complete_all(&dc->wait);
1037        }
1038        spin_unlock_irqrestore(&dc->lock, flags);
1039        bio_put(bio);
1040}
1041
1042static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1043                                block_t start, block_t end)
1044{
1045#ifdef CONFIG_F2FS_CHECK_FS
1046        struct seg_entry *sentry;
1047        unsigned int segno;
1048        block_t blk = start;
1049        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1050        unsigned long *map;
1051
1052        while (blk < end) {
1053                segno = GET_SEGNO(sbi, blk);
1054                sentry = get_seg_entry(sbi, segno);
1055                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1056
1057                if (end < START_BLOCK(sbi, segno + 1))
1058                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1059                else
1060                        size = max_blocks;
1061                map = (unsigned long *)(sentry->cur_valid_map);
1062                offset = __find_rev_next_bit(map, size, offset);
1063                f2fs_bug_on(sbi, offset != size);
1064                blk = START_BLOCK(sbi, segno + 1);
1065        }
1066#endif
1067}
1068
1069static void __init_discard_policy(struct f2fs_sb_info *sbi,
1070                                struct discard_policy *dpolicy,
1071                                int discard_type, unsigned int granularity)
1072{
1073        /* common policy */
1074        dpolicy->type = discard_type;
1075        dpolicy->sync = true;
1076        dpolicy->ordered = false;
1077        dpolicy->granularity = granularity;
1078
1079        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1080        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1081        dpolicy->timeout = 0;
1082
1083        if (discard_type == DPOLICY_BG) {
1084                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1085                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1086                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1087                dpolicy->io_aware = true;
1088                dpolicy->sync = false;
1089                dpolicy->ordered = true;
1090                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1091                        dpolicy->granularity = 1;
1092                        dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1093                }
1094        } else if (discard_type == DPOLICY_FORCE) {
1095                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1096                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1097                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1098                dpolicy->io_aware = false;
1099        } else if (discard_type == DPOLICY_FSTRIM) {
1100                dpolicy->io_aware = false;
1101        } else if (discard_type == DPOLICY_UMOUNT) {
1102                dpolicy->max_requests = UINT_MAX;
1103                dpolicy->io_aware = false;
1104                /* we need to issue all to keep CP_TRIMMED_FLAG */
1105                dpolicy->granularity = 1;
1106        }
1107}
1108
1109static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1110                                struct block_device *bdev, block_t lstart,
1111                                block_t start, block_t len);
1112/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1113static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1114                                                struct discard_policy *dpolicy,
1115                                                struct discard_cmd *dc,
1116                                                unsigned int *issued)
1117{
1118        struct block_device *bdev = dc->bdev;
1119        struct request_queue *q = bdev_get_queue(bdev);
1120        unsigned int max_discard_blocks =
1121                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1122        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1123        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1124                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1125        int flag = dpolicy->sync ? REQ_SYNC : 0;
1126        block_t lstart, start, len, total_len;
1127        int err = 0;
1128
1129        if (dc->state != D_PREP)
1130                return 0;
1131
1132        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1133                return 0;
1134
1135        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1136
1137        lstart = dc->lstart;
1138        start = dc->start;
1139        len = dc->len;
1140        total_len = len;
1141
1142        dc->len = 0;
1143
1144        while (total_len && *issued < dpolicy->max_requests && !err) {
1145                struct bio *bio = NULL;
1146                unsigned long flags;
1147                bool last = true;
1148
1149                if (len > max_discard_blocks) {
1150                        len = max_discard_blocks;
1151                        last = false;
1152                }
1153
1154                (*issued)++;
1155                if (*issued == dpolicy->max_requests)
1156                        last = true;
1157
1158                dc->len += len;
1159
1160                if (time_to_inject(sbi, FAULT_DISCARD)) {
1161                        f2fs_show_injection_info(FAULT_DISCARD);
1162                        err = -EIO;
1163                        goto submit;
1164                }
1165                err = __blkdev_issue_discard(bdev,
1166                                        SECTOR_FROM_BLOCK(start),
1167                                        SECTOR_FROM_BLOCK(len),
1168                                        GFP_NOFS, 0, &bio);
1169submit:
1170                if (err) {
1171                        spin_lock_irqsave(&dc->lock, flags);
1172                        if (dc->state == D_PARTIAL)
1173                                dc->state = D_SUBMIT;
1174                        spin_unlock_irqrestore(&dc->lock, flags);
1175
1176                        break;
1177                }
1178
1179                f2fs_bug_on(sbi, !bio);
1180
1181                /*
1182                 * should keep before submission to avoid D_DONE
1183                 * right away
1184                 */
1185                spin_lock_irqsave(&dc->lock, flags);
1186                if (last)
1187                        dc->state = D_SUBMIT;
1188                else
1189                        dc->state = D_PARTIAL;
1190                dc->bio_ref++;
1191                spin_unlock_irqrestore(&dc->lock, flags);
1192
1193                atomic_inc(&dcc->queued_discard);
1194                dc->queued++;
1195                list_move_tail(&dc->list, wait_list);
1196
1197                /* sanity check on discard range */
1198                __check_sit_bitmap(sbi, lstart, lstart + len);
1199
1200                bio->bi_private = dc;
1201                bio->bi_end_io = f2fs_submit_discard_endio;
1202                bio->bi_opf |= flag;
1203                submit_bio(bio);
1204
1205                atomic_inc(&dcc->issued_discard);
1206
1207                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1208
1209                lstart += len;
1210                start += len;
1211                total_len -= len;
1212                len = total_len;
1213        }
1214
1215        if (!err && len)
1216                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1217        return err;
1218}
1219
1220static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1221                                struct block_device *bdev, block_t lstart,
1222                                block_t start, block_t len,
1223                                struct rb_node **insert_p,
1224                                struct rb_node *insert_parent)
1225{
1226        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1227        struct rb_node **p;
1228        struct rb_node *parent = NULL;
1229        struct discard_cmd *dc = NULL;
1230        bool leftmost = true;
1231
1232        if (insert_p && insert_parent) {
1233                parent = insert_parent;
1234                p = insert_p;
1235                goto do_insert;
1236        }
1237
1238        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1239                                                        lstart, &leftmost);
1240do_insert:
1241        dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1242                                                                p, leftmost);
1243        if (!dc)
1244                return NULL;
1245
1246        return dc;
1247}
1248
1249static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1250                                                struct discard_cmd *dc)
1251{
1252        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1253}
1254
1255static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1256                                struct discard_cmd *dc, block_t blkaddr)
1257{
1258        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1259        struct discard_info di = dc->di;
1260        bool modified = false;
1261
1262        if (dc->state == D_DONE || dc->len == 1) {
1263                __remove_discard_cmd(sbi, dc);
1264                return;
1265        }
1266
1267        dcc->undiscard_blks -= di.len;
1268
1269        if (blkaddr > di.lstart) {
1270                dc->len = blkaddr - dc->lstart;
1271                dcc->undiscard_blks += dc->len;
1272                __relocate_discard_cmd(dcc, dc);
1273                modified = true;
1274        }
1275
1276        if (blkaddr < di.lstart + di.len - 1) {
1277                if (modified) {
1278                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1279                                        di.start + blkaddr + 1 - di.lstart,
1280                                        di.lstart + di.len - 1 - blkaddr,
1281                                        NULL, NULL);
1282                } else {
1283                        dc->lstart++;
1284                        dc->len--;
1285                        dc->start++;
1286                        dcc->undiscard_blks += dc->len;
1287                        __relocate_discard_cmd(dcc, dc);
1288                }
1289        }
1290}
1291
1292static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1293                                struct block_device *bdev, block_t lstart,
1294                                block_t start, block_t len)
1295{
1296        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1297        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1298        struct discard_cmd *dc;
1299        struct discard_info di = {0};
1300        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1301        struct request_queue *q = bdev_get_queue(bdev);
1302        unsigned int max_discard_blocks =
1303                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1304        block_t end = lstart + len;
1305
1306        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1307                                        NULL, lstart,
1308                                        (struct rb_entry **)&prev_dc,
1309                                        (struct rb_entry **)&next_dc,
1310                                        &insert_p, &insert_parent, true, NULL);
1311        if (dc)
1312                prev_dc = dc;
1313
1314        if (!prev_dc) {
1315                di.lstart = lstart;
1316                di.len = next_dc ? next_dc->lstart - lstart : len;
1317                di.len = min(di.len, len);
1318                di.start = start;
1319        }
1320
1321        while (1) {
1322                struct rb_node *node;
1323                bool merged = false;
1324                struct discard_cmd *tdc = NULL;
1325
1326                if (prev_dc) {
1327                        di.lstart = prev_dc->lstart + prev_dc->len;
1328                        if (di.lstart < lstart)
1329                                di.lstart = lstart;
1330                        if (di.lstart >= end)
1331                                break;
1332
1333                        if (!next_dc || next_dc->lstart > end)
1334                                di.len = end - di.lstart;
1335                        else
1336                                di.len = next_dc->lstart - di.lstart;
1337                        di.start = start + di.lstart - lstart;
1338                }
1339
1340                if (!di.len)
1341                        goto next;
1342
1343                if (prev_dc && prev_dc->state == D_PREP &&
1344                        prev_dc->bdev == bdev &&
1345                        __is_discard_back_mergeable(&di, &prev_dc->di,
1346                                                        max_discard_blocks)) {
1347                        prev_dc->di.len += di.len;
1348                        dcc->undiscard_blks += di.len;
1349                        __relocate_discard_cmd(dcc, prev_dc);
1350                        di = prev_dc->di;
1351                        tdc = prev_dc;
1352                        merged = true;
1353                }
1354
1355                if (next_dc && next_dc->state == D_PREP &&
1356                        next_dc->bdev == bdev &&
1357                        __is_discard_front_mergeable(&di, &next_dc->di,
1358                                                        max_discard_blocks)) {
1359                        next_dc->di.lstart = di.lstart;
1360                        next_dc->di.len += di.len;
1361                        next_dc->di.start = di.start;
1362                        dcc->undiscard_blks += di.len;
1363                        __relocate_discard_cmd(dcc, next_dc);
1364                        if (tdc)
1365                                __remove_discard_cmd(sbi, tdc);
1366                        merged = true;
1367                }
1368
1369                if (!merged) {
1370                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1371                                                        di.len, NULL, NULL);
1372                }
1373 next:
1374                prev_dc = next_dc;
1375                if (!prev_dc)
1376                        break;
1377
1378                node = rb_next(&prev_dc->rb_node);
1379                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1380        }
1381}
1382
1383static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1384                struct block_device *bdev, block_t blkstart, block_t blklen)
1385{
1386        block_t lblkstart = blkstart;
1387
1388        if (!f2fs_bdev_support_discard(bdev))
1389                return 0;
1390
1391        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1392
1393        if (f2fs_is_multi_device(sbi)) {
1394                int devi = f2fs_target_device_index(sbi, blkstart);
1395
1396                blkstart -= FDEV(devi).start_blk;
1397        }
1398        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1399        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1400        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1401        return 0;
1402}
1403
1404static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1405                                        struct discard_policy *dpolicy)
1406{
1407        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1408        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1409        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1410        struct discard_cmd *dc;
1411        struct blk_plug plug;
1412        unsigned int pos = dcc->next_pos;
1413        unsigned int issued = 0;
1414        bool io_interrupted = false;
1415
1416        mutex_lock(&dcc->cmd_lock);
1417        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1418                                        NULL, pos,
1419                                        (struct rb_entry **)&prev_dc,
1420                                        (struct rb_entry **)&next_dc,
1421                                        &insert_p, &insert_parent, true, NULL);
1422        if (!dc)
1423                dc = next_dc;
1424
1425        blk_start_plug(&plug);
1426
1427        while (dc) {
1428                struct rb_node *node;
1429                int err = 0;
1430
1431                if (dc->state != D_PREP)
1432                        goto next;
1433
1434                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1435                        io_interrupted = true;
1436                        break;
1437                }
1438
1439                dcc->next_pos = dc->lstart + dc->len;
1440                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1441
1442                if (issued >= dpolicy->max_requests)
1443                        break;
1444next:
1445                node = rb_next(&dc->rb_node);
1446                if (err)
1447                        __remove_discard_cmd(sbi, dc);
1448                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1449        }
1450
1451        blk_finish_plug(&plug);
1452
1453        if (!dc)
1454                dcc->next_pos = 0;
1455
1456        mutex_unlock(&dcc->cmd_lock);
1457
1458        if (!issued && io_interrupted)
1459                issued = -1;
1460
1461        return issued;
1462}
1463
1464static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1465                                        struct discard_policy *dpolicy)
1466{
1467        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1468        struct list_head *pend_list;
1469        struct discard_cmd *dc, *tmp;
1470        struct blk_plug plug;
1471        int i, issued = 0;
1472        bool io_interrupted = false;
1473
1474        if (dpolicy->timeout != 0)
1475                f2fs_update_time(sbi, dpolicy->timeout);
1476
1477        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478                if (dpolicy->timeout != 0 &&
1479                                f2fs_time_over(sbi, dpolicy->timeout))
1480                        break;
1481
1482                if (i + 1 < dpolicy->granularity)
1483                        break;
1484
1485                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1486                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1487
1488                pend_list = &dcc->pend_list[i];
1489
1490                mutex_lock(&dcc->cmd_lock);
1491                if (list_empty(pend_list))
1492                        goto next;
1493                if (unlikely(dcc->rbtree_check))
1494                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1495                                                                &dcc->root));
1496                blk_start_plug(&plug);
1497                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1498                        f2fs_bug_on(sbi, dc->state != D_PREP);
1499
1500                        if (dpolicy->timeout != 0 &&
1501                                f2fs_time_over(sbi, dpolicy->timeout))
1502                                break;
1503
1504                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1505                                                !is_idle(sbi, DISCARD_TIME)) {
1506                                io_interrupted = true;
1507                                break;
1508                        }
1509
1510                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1511
1512                        if (issued >= dpolicy->max_requests)
1513                                break;
1514                }
1515                blk_finish_plug(&plug);
1516next:
1517                mutex_unlock(&dcc->cmd_lock);
1518
1519                if (issued >= dpolicy->max_requests || io_interrupted)
1520                        break;
1521        }
1522
1523        if (!issued && io_interrupted)
1524                issued = -1;
1525
1526        return issued;
1527}
1528
1529static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1530{
1531        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532        struct list_head *pend_list;
1533        struct discard_cmd *dc, *tmp;
1534        int i;
1535        bool dropped = false;
1536
1537        mutex_lock(&dcc->cmd_lock);
1538        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1539                pend_list = &dcc->pend_list[i];
1540                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1541                        f2fs_bug_on(sbi, dc->state != D_PREP);
1542                        __remove_discard_cmd(sbi, dc);
1543                        dropped = true;
1544                }
1545        }
1546        mutex_unlock(&dcc->cmd_lock);
1547
1548        return dropped;
1549}
1550
1551void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1552{
1553        __drop_discard_cmd(sbi);
1554}
1555
1556static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1557                                                        struct discard_cmd *dc)
1558{
1559        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1560        unsigned int len = 0;
1561
1562        wait_for_completion_io(&dc->wait);
1563        mutex_lock(&dcc->cmd_lock);
1564        f2fs_bug_on(sbi, dc->state != D_DONE);
1565        dc->ref--;
1566        if (!dc->ref) {
1567                if (!dc->error)
1568                        len = dc->len;
1569                __remove_discard_cmd(sbi, dc);
1570        }
1571        mutex_unlock(&dcc->cmd_lock);
1572
1573        return len;
1574}
1575
1576static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1577                                                struct discard_policy *dpolicy,
1578                                                block_t start, block_t end)
1579{
1580        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1582                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1583        struct discard_cmd *dc, *tmp;
1584        bool need_wait;
1585        unsigned int trimmed = 0;
1586
1587next:
1588        need_wait = false;
1589
1590        mutex_lock(&dcc->cmd_lock);
1591        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1592                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1593                        continue;
1594                if (dc->len < dpolicy->granularity)
1595                        continue;
1596                if (dc->state == D_DONE && !dc->ref) {
1597                        wait_for_completion_io(&dc->wait);
1598                        if (!dc->error)
1599                                trimmed += dc->len;
1600                        __remove_discard_cmd(sbi, dc);
1601                } else {
1602                        dc->ref++;
1603                        need_wait = true;
1604                        break;
1605                }
1606        }
1607        mutex_unlock(&dcc->cmd_lock);
1608
1609        if (need_wait) {
1610                trimmed += __wait_one_discard_bio(sbi, dc);
1611                goto next;
1612        }
1613
1614        return trimmed;
1615}
1616
1617static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1618                                                struct discard_policy *dpolicy)
1619{
1620        struct discard_policy dp;
1621        unsigned int discard_blks;
1622
1623        if (dpolicy)
1624                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1625
1626        /* wait all */
1627        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1628        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1629        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1630        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1631
1632        return discard_blks;
1633}
1634
1635/* This should be covered by global mutex, &sit_i->sentry_lock */
1636static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1637{
1638        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639        struct discard_cmd *dc;
1640        bool need_wait = false;
1641
1642        mutex_lock(&dcc->cmd_lock);
1643        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1644                                                        NULL, blkaddr);
1645        if (dc) {
1646                if (dc->state == D_PREP) {
1647                        __punch_discard_cmd(sbi, dc, blkaddr);
1648                } else {
1649                        dc->ref++;
1650                        need_wait = true;
1651                }
1652        }
1653        mutex_unlock(&dcc->cmd_lock);
1654
1655        if (need_wait)
1656                __wait_one_discard_bio(sbi, dc);
1657}
1658
1659void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1660{
1661        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1662
1663        if (dcc && dcc->f2fs_issue_discard) {
1664                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1665
1666                dcc->f2fs_issue_discard = NULL;
1667                kthread_stop(discard_thread);
1668        }
1669}
1670
1671/* This comes from f2fs_put_super */
1672bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1673{
1674        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1675        struct discard_policy dpolicy;
1676        bool dropped;
1677
1678        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1679                                        dcc->discard_granularity);
1680        dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1681        __issue_discard_cmd(sbi, &dpolicy);
1682        dropped = __drop_discard_cmd(sbi);
1683
1684        /* just to make sure there is no pending discard commands */
1685        __wait_all_discard_cmd(sbi, NULL);
1686
1687        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1688        return dropped;
1689}
1690
1691static int issue_discard_thread(void *data)
1692{
1693        struct f2fs_sb_info *sbi = data;
1694        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1695        wait_queue_head_t *q = &dcc->discard_wait_queue;
1696        struct discard_policy dpolicy;
1697        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1698        int issued;
1699
1700        set_freezable();
1701
1702        do {
1703                __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1704                                        dcc->discard_granularity);
1705
1706                wait_event_interruptible_timeout(*q,
1707                                kthread_should_stop() || freezing(current) ||
1708                                dcc->discard_wake,
1709                                msecs_to_jiffies(wait_ms));
1710
1711                if (dcc->discard_wake)
1712                        dcc->discard_wake = 0;
1713
1714                /* clean up pending candidates before going to sleep */
1715                if (atomic_read(&dcc->queued_discard))
1716                        __wait_all_discard_cmd(sbi, NULL);
1717
1718                if (try_to_freeze())
1719                        continue;
1720                if (f2fs_readonly(sbi->sb))
1721                        continue;
1722                if (kthread_should_stop())
1723                        return 0;
1724                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1725                        wait_ms = dpolicy.max_interval;
1726                        continue;
1727                }
1728
1729                if (sbi->gc_mode == GC_URGENT)
1730                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1731
1732                sb_start_intwrite(sbi->sb);
1733
1734                issued = __issue_discard_cmd(sbi, &dpolicy);
1735                if (issued > 0) {
1736                        __wait_all_discard_cmd(sbi, &dpolicy);
1737                        wait_ms = dpolicy.min_interval;
1738                } else if (issued == -1){
1739                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1740                        if (!wait_ms)
1741                                wait_ms = dpolicy.mid_interval;
1742                } else {
1743                        wait_ms = dpolicy.max_interval;
1744                }
1745
1746                sb_end_intwrite(sbi->sb);
1747
1748        } while (!kthread_should_stop());
1749        return 0;
1750}
1751
1752#ifdef CONFIG_BLK_DEV_ZONED
1753static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1754                struct block_device *bdev, block_t blkstart, block_t blklen)
1755{
1756        sector_t sector, nr_sects;
1757        block_t lblkstart = blkstart;
1758        int devi = 0;
1759
1760        if (f2fs_is_multi_device(sbi)) {
1761                devi = f2fs_target_device_index(sbi, blkstart);
1762                if (blkstart < FDEV(devi).start_blk ||
1763                    blkstart > FDEV(devi).end_blk) {
1764                        f2fs_err(sbi, "Invalid block %x", blkstart);
1765                        return -EIO;
1766                }
1767                blkstart -= FDEV(devi).start_blk;
1768        }
1769
1770        /* For sequential zones, reset the zone write pointer */
1771        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1772                sector = SECTOR_FROM_BLOCK(blkstart);
1773                nr_sects = SECTOR_FROM_BLOCK(blklen);
1774
1775                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1776                                nr_sects != bdev_zone_sectors(bdev)) {
1777                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1778                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1779                                 blkstart, blklen);
1780                        return -EIO;
1781                }
1782                trace_f2fs_issue_reset_zone(bdev, blkstart);
1783                return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1784        }
1785
1786        /* For conventional zones, use regular discard if supported */
1787        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1788}
1789#endif
1790
1791static int __issue_discard_async(struct f2fs_sb_info *sbi,
1792                struct block_device *bdev, block_t blkstart, block_t blklen)
1793{
1794#ifdef CONFIG_BLK_DEV_ZONED
1795        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1796                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1797#endif
1798        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1799}
1800
1801static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1802                                block_t blkstart, block_t blklen)
1803{
1804        sector_t start = blkstart, len = 0;
1805        struct block_device *bdev;
1806        struct seg_entry *se;
1807        unsigned int offset;
1808        block_t i;
1809        int err = 0;
1810
1811        bdev = f2fs_target_device(sbi, blkstart, NULL);
1812
1813        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1814                if (i != start) {
1815                        struct block_device *bdev2 =
1816                                f2fs_target_device(sbi, i, NULL);
1817
1818                        if (bdev2 != bdev) {
1819                                err = __issue_discard_async(sbi, bdev,
1820                                                start, len);
1821                                if (err)
1822                                        return err;
1823                                bdev = bdev2;
1824                                start = i;
1825                                len = 0;
1826                        }
1827                }
1828
1829                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1830                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1831
1832                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1833                        sbi->discard_blks--;
1834        }
1835
1836        if (len)
1837                err = __issue_discard_async(sbi, bdev, start, len);
1838        return err;
1839}
1840
1841static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1842                                                        bool check_only)
1843{
1844        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1845        int max_blocks = sbi->blocks_per_seg;
1846        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1847        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1848        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1849        unsigned long *discard_map = (unsigned long *)se->discard_map;
1850        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1851        unsigned int start = 0, end = -1;
1852        bool force = (cpc->reason & CP_DISCARD);
1853        struct discard_entry *de = NULL;
1854        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1855        int i;
1856
1857        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1858                return false;
1859
1860        if (!force) {
1861                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1862                        SM_I(sbi)->dcc_info->nr_discards >=
1863                                SM_I(sbi)->dcc_info->max_discards)
1864                        return false;
1865        }
1866
1867        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1868        for (i = 0; i < entries; i++)
1869                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1870                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1871
1872        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1873                                SM_I(sbi)->dcc_info->max_discards) {
1874                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1875                if (start >= max_blocks)
1876                        break;
1877
1878                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1879                if (force && start && end != max_blocks
1880                                        && (end - start) < cpc->trim_minlen)
1881                        continue;
1882
1883                if (check_only)
1884                        return true;
1885
1886                if (!de) {
1887                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1888                                                                GFP_F2FS_ZERO);
1889                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1890                        list_add_tail(&de->list, head);
1891                }
1892
1893                for (i = start; i < end; i++)
1894                        __set_bit_le(i, (void *)de->discard_map);
1895
1896                SM_I(sbi)->dcc_info->nr_discards += end - start;
1897        }
1898        return false;
1899}
1900
1901static void release_discard_addr(struct discard_entry *entry)
1902{
1903        list_del(&entry->list);
1904        kmem_cache_free(discard_entry_slab, entry);
1905}
1906
1907void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1908{
1909        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1910        struct discard_entry *entry, *this;
1911
1912        /* drop caches */
1913        list_for_each_entry_safe(entry, this, head, list)
1914                release_discard_addr(entry);
1915}
1916
1917/*
1918 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1919 */
1920static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1921{
1922        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1923        unsigned int segno;
1924
1925        mutex_lock(&dirty_i->seglist_lock);
1926        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1927                __set_test_and_free(sbi, segno);
1928        mutex_unlock(&dirty_i->seglist_lock);
1929}
1930
1931void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1932                                                struct cp_control *cpc)
1933{
1934        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1935        struct list_head *head = &dcc->entry_list;
1936        struct discard_entry *entry, *this;
1937        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1938        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1939        unsigned int start = 0, end = -1;
1940        unsigned int secno, start_segno;
1941        bool force = (cpc->reason & CP_DISCARD);
1942        bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1943
1944        mutex_lock(&dirty_i->seglist_lock);
1945
1946        while (1) {
1947                int i;
1948
1949                if (need_align && end != -1)
1950                        end--;
1951                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952                if (start >= MAIN_SEGS(sbi))
1953                        break;
1954                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955                                                                start + 1);
1956
1957                if (need_align) {
1958                        start = rounddown(start, sbi->segs_per_sec);
1959                        end = roundup(end, sbi->segs_per_sec);
1960                }
1961
1962                for (i = start; i < end; i++) {
1963                        if (test_and_clear_bit(i, prefree_map))
1964                                dirty_i->nr_dirty[PRE]--;
1965                }
1966
1967                if (!f2fs_realtime_discard_enable(sbi))
1968                        continue;
1969
1970                if (force && start >= cpc->trim_start &&
1971                                        (end - 1) <= cpc->trim_end)
1972                                continue;
1973
1974                if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1975                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976                                (end - start) << sbi->log_blocks_per_seg);
1977                        continue;
1978                }
1979next:
1980                secno = GET_SEC_FROM_SEG(sbi, start);
1981                start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982                if (!IS_CURSEC(sbi, secno) &&
1983                        !get_valid_blocks(sbi, start, true))
1984                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987                start = start_segno + sbi->segs_per_sec;
1988                if (start < end)
1989                        goto next;
1990                else
1991                        end = start - 1;
1992        }
1993        mutex_unlock(&dirty_i->seglist_lock);
1994
1995        /* send small discards */
1996        list_for_each_entry_safe(entry, this, head, list) {
1997                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1998                bool is_valid = test_bit_le(0, entry->discard_map);
1999
2000find_next:
2001                if (is_valid) {
2002                        next_pos = find_next_zero_bit_le(entry->discard_map,
2003                                        sbi->blocks_per_seg, cur_pos);
2004                        len = next_pos - cur_pos;
2005
2006                        if (f2fs_sb_has_blkzoned(sbi) ||
2007                            (force && len < cpc->trim_minlen))
2008                                goto skip;
2009
2010                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2011                                                                        len);
2012                        total_len += len;
2013                } else {
2014                        next_pos = find_next_bit_le(entry->discard_map,
2015                                        sbi->blocks_per_seg, cur_pos);
2016                }
2017skip:
2018                cur_pos = next_pos;
2019                is_valid = !is_valid;
2020
2021                if (cur_pos < sbi->blocks_per_seg)
2022                        goto find_next;
2023
2024                release_discard_addr(entry);
2025                dcc->nr_discards -= total_len;
2026        }
2027
2028        wake_up_discard_thread(sbi, false);
2029}
2030
2031static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2032{
2033        dev_t dev = sbi->sb->s_bdev->bd_dev;
2034        struct discard_cmd_control *dcc;
2035        int err = 0, i;
2036
2037        if (SM_I(sbi)->dcc_info) {
2038                dcc = SM_I(sbi)->dcc_info;
2039                goto init_thread;
2040        }
2041
2042        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2043        if (!dcc)
2044                return -ENOMEM;
2045
2046        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2047        INIT_LIST_HEAD(&dcc->entry_list);
2048        for (i = 0; i < MAX_PLIST_NUM; i++)
2049                INIT_LIST_HEAD(&dcc->pend_list[i]);
2050        INIT_LIST_HEAD(&dcc->wait_list);
2051        INIT_LIST_HEAD(&dcc->fstrim_list);
2052        mutex_init(&dcc->cmd_lock);
2053        atomic_set(&dcc->issued_discard, 0);
2054        atomic_set(&dcc->queued_discard, 0);
2055        atomic_set(&dcc->discard_cmd_cnt, 0);
2056        dcc->nr_discards = 0;
2057        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2058        dcc->undiscard_blks = 0;
2059        dcc->next_pos = 0;
2060        dcc->root = RB_ROOT_CACHED;
2061        dcc->rbtree_check = false;
2062
2063        init_waitqueue_head(&dcc->discard_wait_queue);
2064        SM_I(sbi)->dcc_info = dcc;
2065init_thread:
2066        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2067                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2068        if (IS_ERR(dcc->f2fs_issue_discard)) {
2069                err = PTR_ERR(dcc->f2fs_issue_discard);
2070                kvfree(dcc);
2071                SM_I(sbi)->dcc_info = NULL;
2072                return err;
2073        }
2074
2075        return err;
2076}
2077
2078static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2079{
2080        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2081
2082        if (!dcc)
2083                return;
2084
2085        f2fs_stop_discard_thread(sbi);
2086
2087        kvfree(dcc);
2088        SM_I(sbi)->dcc_info = NULL;
2089}
2090
2091static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2092{
2093        struct sit_info *sit_i = SIT_I(sbi);
2094
2095        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2096                sit_i->dirty_sentries++;
2097                return false;
2098        }
2099
2100        return true;
2101}
2102
2103static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2104                                        unsigned int segno, int modified)
2105{
2106        struct seg_entry *se = get_seg_entry(sbi, segno);
2107        se->type = type;
2108        if (modified)
2109                __mark_sit_entry_dirty(sbi, segno);
2110}
2111
2112static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2113{
2114        struct seg_entry *se;
2115        unsigned int segno, offset;
2116        long int new_vblocks;
2117        bool exist;
2118#ifdef CONFIG_F2FS_CHECK_FS
2119        bool mir_exist;
2120#endif
2121
2122        segno = GET_SEGNO(sbi, blkaddr);
2123
2124        se = get_seg_entry(sbi, segno);
2125        new_vblocks = se->valid_blocks + del;
2126        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2127
2128        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2129                                (new_vblocks > sbi->blocks_per_seg)));
2130
2131        se->valid_blocks = new_vblocks;
2132        se->mtime = get_mtime(sbi, false);
2133        if (se->mtime > SIT_I(sbi)->max_mtime)
2134                SIT_I(sbi)->max_mtime = se->mtime;
2135
2136        /* Update valid block bitmap */
2137        if (del > 0) {
2138                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2139#ifdef CONFIG_F2FS_CHECK_FS
2140                mir_exist = f2fs_test_and_set_bit(offset,
2141                                                se->cur_valid_map_mir);
2142                if (unlikely(exist != mir_exist)) {
2143                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2144                                 blkaddr, exist);
2145                        f2fs_bug_on(sbi, 1);
2146                }
2147#endif
2148                if (unlikely(exist)) {
2149                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2150                                 blkaddr);
2151                        f2fs_bug_on(sbi, 1);
2152                        se->valid_blocks--;
2153                        del = 0;
2154                }
2155
2156                if (!f2fs_test_and_set_bit(offset, se->discard_map))
2157                        sbi->discard_blks--;
2158
2159                /* don't overwrite by SSR to keep node chain */
2160                if (IS_NODESEG(se->type) &&
2161                                !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163                                se->ckpt_valid_blocks++;
2164                }
2165        } else {
2166                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167#ifdef CONFIG_F2FS_CHECK_FS
2168                mir_exist = f2fs_test_and_clear_bit(offset,
2169                                                se->cur_valid_map_mir);
2170                if (unlikely(exist != mir_exist)) {
2171                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172                                 blkaddr, exist);
2173                        f2fs_bug_on(sbi, 1);
2174                }
2175#endif
2176                if (unlikely(!exist)) {
2177                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178                                 blkaddr);
2179                        f2fs_bug_on(sbi, 1);
2180                        se->valid_blocks++;
2181                        del = 0;
2182                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183                        /*
2184                         * If checkpoints are off, we must not reuse data that
2185                         * was used in the previous checkpoint. If it was used
2186                         * before, we must track that to know how much space we
2187                         * really have.
2188                         */
2189                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190                                spin_lock(&sbi->stat_lock);
2191                                sbi->unusable_block_count++;
2192                                spin_unlock(&sbi->stat_lock);
2193                        }
2194                }
2195
2196                if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197                        sbi->discard_blks++;
2198        }
2199        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200                se->ckpt_valid_blocks += del;
2201
2202        __mark_sit_entry_dirty(sbi, segno);
2203
2204        /* update total number of valid blocks to be written in ckpt area */
2205        SIT_I(sbi)->written_valid_blocks += del;
2206
2207        if (__is_large_section(sbi))
2208                get_sec_entry(sbi, segno)->valid_blocks += del;
2209}
2210
2211void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212{
2213        unsigned int segno = GET_SEGNO(sbi, addr);
2214        struct sit_info *sit_i = SIT_I(sbi);
2215
2216        f2fs_bug_on(sbi, addr == NULL_ADDR);
2217        if (addr == NEW_ADDR)
2218                return;
2219
2220        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222        /* add it into sit main buffer */
2223        down_write(&sit_i->sentry_lock);
2224
2225        update_sit_entry(sbi, addr, -1);
2226
2227        /* add it into dirty seglist */
2228        locate_dirty_segment(sbi, segno);
2229
2230        up_write(&sit_i->sentry_lock);
2231}
2232
2233bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234{
2235        struct sit_info *sit_i = SIT_I(sbi);
2236        unsigned int segno, offset;
2237        struct seg_entry *se;
2238        bool is_cp = false;
2239
2240        if (!__is_valid_data_blkaddr(blkaddr))
2241                return true;
2242
2243        down_read(&sit_i->sentry_lock);
2244
2245        segno = GET_SEGNO(sbi, blkaddr);
2246        se = get_seg_entry(sbi, segno);
2247        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250                is_cp = true;
2251
2252        up_read(&sit_i->sentry_lock);
2253
2254        return is_cp;
2255}
2256
2257/*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261                                        struct f2fs_summary *sum)
2262{
2263        struct curseg_info *curseg = CURSEG_I(sbi, type);
2264        void *addr = curseg->sum_blk;
2265        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266        memcpy(addr, sum, sizeof(struct f2fs_summary));
2267}
2268
2269/*
2270 * Calculate the number of current summary pages for writing
2271 */
2272int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273{
2274        int valid_sum_count = 0;
2275        int i, sum_in_page;
2276
2277        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278                if (sbi->ckpt->alloc_type[i] == SSR)
2279                        valid_sum_count += sbi->blocks_per_seg;
2280                else {
2281                        if (for_ra)
2282                                valid_sum_count += le16_to_cpu(
2283                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284                        else
2285                                valid_sum_count += curseg_blkoff(sbi, i);
2286                }
2287        }
2288
2289        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291        if (valid_sum_count <= sum_in_page)
2292                return 1;
2293        else if ((valid_sum_count - sum_in_page) <=
2294                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295                return 2;
2296        return 3;
2297}
2298
2299/*
2300 * Caller should put this summary page
2301 */
2302struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303{
2304        return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305}
2306
2307void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308                                        void *src, block_t blk_addr)
2309{
2310        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312        memcpy(page_address(page), src, PAGE_SIZE);
2313        set_page_dirty(page);
2314        f2fs_put_page(page, 1);
2315}
2316
2317static void write_sum_page(struct f2fs_sb_info *sbi,
2318                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319{
2320        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321}
2322
2323static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324                                                int type, block_t blk_addr)
2325{
2326        struct curseg_info *curseg = CURSEG_I(sbi, type);
2327        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328        struct f2fs_summary_block *src = curseg->sum_blk;
2329        struct f2fs_summary_block *dst;
2330
2331        dst = (struct f2fs_summary_block *)page_address(page);
2332        memset(dst, 0, PAGE_SIZE);
2333
2334        mutex_lock(&curseg->curseg_mutex);
2335
2336        down_read(&curseg->journal_rwsem);
2337        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338        up_read(&curseg->journal_rwsem);
2339
2340        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343        mutex_unlock(&curseg->curseg_mutex);
2344
2345        set_page_dirty(page);
2346        f2fs_put_page(page, 1);
2347}
2348
2349static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350{
2351        struct curseg_info *curseg = CURSEG_I(sbi, type);
2352        unsigned int segno = curseg->segno + 1;
2353        struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356                return !test_bit(segno, free_i->free_segmap);
2357        return 0;
2358}
2359
2360/*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364static void get_new_segment(struct f2fs_sb_info *sbi,
2365                        unsigned int *newseg, bool new_sec, int dir)
2366{
2367        struct free_segmap_info *free_i = FREE_I(sbi);
2368        unsigned int segno, secno, zoneno;
2369        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372        unsigned int left_start = hint;
2373        bool init = true;
2374        int go_left = 0;
2375        int i;
2376
2377        spin_lock(&free_i->segmap_lock);
2378
2379        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380                segno = find_next_zero_bit(free_i->free_segmap,
2381                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383                        goto got_it;
2384        }
2385find_other_zone:
2386        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387        if (secno >= MAIN_SECS(sbi)) {
2388                if (dir == ALLOC_RIGHT) {
2389                        secno = find_next_zero_bit(free_i->free_secmap,
2390                                                        MAIN_SECS(sbi), 0);
2391                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392                } else {
2393                        go_left = 1;
2394                        left_start = hint - 1;
2395                }
2396        }
2397        if (go_left == 0)
2398                goto skip_left;
2399
2400        while (test_bit(left_start, free_i->free_secmap)) {
2401                if (left_start > 0) {
2402                        left_start--;
2403                        continue;
2404                }
2405                left_start = find_next_zero_bit(free_i->free_secmap,
2406                                                        MAIN_SECS(sbi), 0);
2407                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408                break;
2409        }
2410        secno = left_start;
2411skip_left:
2412        segno = GET_SEG_FROM_SEC(sbi, secno);
2413        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415        /* give up on finding another zone */
2416        if (!init)
2417                goto got_it;
2418        if (sbi->secs_per_zone == 1)
2419                goto got_it;
2420        if (zoneno == old_zoneno)
2421                goto got_it;
2422        if (dir == ALLOC_LEFT) {
2423                if (!go_left && zoneno + 1 >= total_zones)
2424                        goto got_it;
2425                if (go_left && zoneno == 0)
2426                        goto got_it;
2427        }
2428        for (i = 0; i < NR_CURSEG_TYPE; i++)
2429                if (CURSEG_I(sbi, i)->zone == zoneno)
2430                        break;
2431
2432        if (i < NR_CURSEG_TYPE) {
2433                /* zone is in user, try another */
2434                if (go_left)
2435                        hint = zoneno * sbi->secs_per_zone - 1;
2436                else if (zoneno + 1 >= total_zones)
2437                        hint = 0;
2438                else
2439                        hint = (zoneno + 1) * sbi->secs_per_zone;
2440                init = false;
2441                goto find_other_zone;
2442        }
2443got_it:
2444        /* set it as dirty segment in free segmap */
2445        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446        __set_inuse(sbi, segno);
2447        *newseg = segno;
2448        spin_unlock(&free_i->segmap_lock);
2449}
2450
2451static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452{
2453        struct curseg_info *curseg = CURSEG_I(sbi, type);
2454        struct summary_footer *sum_footer;
2455
2456        curseg->segno = curseg->next_segno;
2457        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458        curseg->next_blkoff = 0;
2459        curseg->next_segno = NULL_SEGNO;
2460
2461        sum_footer = &(curseg->sum_blk->footer);
2462        memset(sum_footer, 0, sizeof(struct summary_footer));
2463        if (IS_DATASEG(type))
2464                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465        if (IS_NODESEG(type))
2466                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467        __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468}
2469
2470static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471{
2472        /* if segs_per_sec is large than 1, we need to keep original policy. */
2473        if (__is_large_section(sbi))
2474                return CURSEG_I(sbi, type)->segno;
2475
2476        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477                return 0;
2478
2479        if (test_opt(sbi, NOHEAP) &&
2480                (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481                return 0;
2482
2483        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486        /* find segments from 0 to reuse freed segments */
2487        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488                return 0;
2489
2490        return CURSEG_I(sbi, type)->segno;
2491}
2492
2493/*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498{
2499        struct curseg_info *curseg = CURSEG_I(sbi, type);
2500        unsigned int segno = curseg->segno;
2501        int dir = ALLOC_LEFT;
2502
2503        write_sum_page(sbi, curseg->sum_blk,
2504                                GET_SUM_BLOCK(sbi, segno));
2505        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506                dir = ALLOC_RIGHT;
2507
2508        if (test_opt(sbi, NOHEAP))
2509                dir = ALLOC_RIGHT;
2510
2511        segno = __get_next_segno(sbi, type);
2512        get_new_segment(sbi, &segno, new_sec, dir);
2513        curseg->next_segno = segno;
2514        reset_curseg(sbi, type, 1);
2515        curseg->alloc_type = LFS;
2516}
2517
2518static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519                        struct curseg_info *seg, block_t start)
2520{
2521        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526        int i, pos;
2527
2528        for (i = 0; i < entries; i++)
2529                target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533        seg->next_blkoff = pos;
2534}
2535
2536/*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542                                struct curseg_info *seg)
2543{
2544        if (seg->alloc_type == SSR)
2545                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546        else
2547                seg->next_blkoff++;
2548}
2549
2550/*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555{
2556        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557        struct curseg_info *curseg = CURSEG_I(sbi, type);
2558        unsigned int new_segno = curseg->next_segno;
2559        struct f2fs_summary_block *sum_node;
2560        struct page *sum_page;
2561
2562        write_sum_page(sbi, curseg->sum_blk,
2563                                GET_SUM_BLOCK(sbi, curseg->segno));
2564        __set_test_and_inuse(sbi, new_segno);
2565
2566        mutex_lock(&dirty_i->seglist_lock);
2567        __remove_dirty_segment(sbi, new_segno, PRE);
2568        __remove_dirty_segment(sbi, new_segno, DIRTY);
2569        mutex_unlock(&dirty_i->seglist_lock);
2570
2571        reset_curseg(sbi, type, 1);
2572        curseg->alloc_type = SSR;
2573        __next_free_blkoff(sbi, curseg, 0);
2574
2575        sum_page = f2fs_get_sum_page(sbi, new_segno);
2576        f2fs_bug_on(sbi, IS_ERR(sum_page));
2577        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579        f2fs_put_page(sum_page, 1);
2580}
2581
2582static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583{
2584        struct curseg_info *curseg = CURSEG_I(sbi, type);
2585        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586        unsigned segno = NULL_SEGNO;
2587        int i, cnt;
2588        bool reversed = false;
2589
2590        /* f2fs_need_SSR() already forces to do this */
2591        if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592                curseg->next_segno = segno;
2593                return 1;
2594        }
2595
2596        /* For node segments, let's do SSR more intensively */
2597        if (IS_NODESEG(type)) {
2598                if (type >= CURSEG_WARM_NODE) {
2599                        reversed = true;
2600                        i = CURSEG_COLD_NODE;
2601                } else {
2602                        i = CURSEG_HOT_NODE;
2603                }
2604                cnt = NR_CURSEG_NODE_TYPE;
2605        } else {
2606                if (type >= CURSEG_WARM_DATA) {
2607                        reversed = true;
2608                        i = CURSEG_COLD_DATA;
2609                } else {
2610                        i = CURSEG_HOT_DATA;
2611                }
2612                cnt = NR_CURSEG_DATA_TYPE;
2613        }
2614
2615        for (; cnt-- > 0; reversed ? i-- : i++) {
2616                if (i == type)
2617                        continue;
2618                if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619                        curseg->next_segno = segno;
2620                        return 1;
2621                }
2622        }
2623
2624        /* find valid_blocks=0 in dirty list */
2625        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626                segno = get_free_segment(sbi);
2627                if (segno != NULL_SEGNO) {
2628                        curseg->next_segno = segno;
2629                        return 1;
2630                }
2631        }
2632        return 0;
2633}
2634
2635/*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640                                                int type, bool force)
2641{
2642        struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644        if (force)
2645                new_curseg(sbi, type, true);
2646        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647                                        type == CURSEG_WARM_NODE)
2648                new_curseg(sbi, type, false);
2649        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651                new_curseg(sbi, type, false);
2652        else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653                change_curseg(sbi, type);
2654        else
2655                new_curseg(sbi, type, false);
2656
2657        stat_inc_seg_type(sbi, curseg);
2658}
2659
2660void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661                                        unsigned int start, unsigned int end)
2662{
2663        struct curseg_info *curseg = CURSEG_I(sbi, type);
2664        unsigned int segno;
2665
2666        down_read(&SM_I(sbi)->curseg_lock);
2667        mutex_lock(&curseg->curseg_mutex);
2668        down_write(&SIT_I(sbi)->sentry_lock);
2669
2670        segno = CURSEG_I(sbi, type)->segno;
2671        if (segno < start || segno > end)
2672                goto unlock;
2673
2674        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675                change_curseg(sbi, type);
2676        else
2677                new_curseg(sbi, type, true);
2678
2679        stat_inc_seg_type(sbi, curseg);
2680
2681        locate_dirty_segment(sbi, segno);
2682unlock:
2683        up_write(&SIT_I(sbi)->sentry_lock);
2684
2685        if (segno != curseg->segno)
2686                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687                            type, segno, curseg->segno);
2688
2689        mutex_unlock(&curseg->curseg_mutex);
2690        up_read(&SM_I(sbi)->curseg_lock);
2691}
2692
2693void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694{
2695        struct curseg_info *curseg;
2696        unsigned int old_segno;
2697        int i;
2698
2699        down_write(&SIT_I(sbi)->sentry_lock);
2700
2701        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702                curseg = CURSEG_I(sbi, i);
2703                old_segno = curseg->segno;
2704                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705                locate_dirty_segment(sbi, old_segno);
2706        }
2707
2708        up_write(&SIT_I(sbi)->sentry_lock);
2709}
2710
2711static const struct segment_allocation default_salloc_ops = {
2712        .allocate_segment = allocate_segment_by_default,
2713};
2714
2715bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716                                                struct cp_control *cpc)
2717{
2718        __u64 trim_start = cpc->trim_start;
2719        bool has_candidate = false;
2720
2721        down_write(&SIT_I(sbi)->sentry_lock);
2722        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723                if (add_discard_addrs(sbi, cpc, true)) {
2724                        has_candidate = true;
2725                        break;
2726                }
2727        }
2728        up_write(&SIT_I(sbi)->sentry_lock);
2729
2730        cpc->trim_start = trim_start;
2731        return has_candidate;
2732}
2733
2734static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735                                        struct discard_policy *dpolicy,
2736                                        unsigned int start, unsigned int end)
2737{
2738        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740        struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741        struct discard_cmd *dc;
2742        struct blk_plug plug;
2743        int issued;
2744        unsigned int trimmed = 0;
2745
2746next:
2747        issued = 0;
2748
2749        mutex_lock(&dcc->cmd_lock);
2750        if (unlikely(dcc->rbtree_check))
2751                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752                                                                &dcc->root));
2753
2754        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755                                        NULL, start,
2756                                        (struct rb_entry **)&prev_dc,
2757                                        (struct rb_entry **)&next_dc,
2758                                        &insert_p, &insert_parent, true, NULL);
2759        if (!dc)
2760                dc = next_dc;
2761
2762        blk_start_plug(&plug);
2763
2764        while (dc && dc->lstart <= end) {
2765                struct rb_node *node;
2766                int err = 0;
2767
2768                if (dc->len < dpolicy->granularity)
2769                        goto skip;
2770
2771                if (dc->state != D_PREP) {
2772                        list_move_tail(&dc->list, &dcc->fstrim_list);
2773                        goto skip;
2774                }
2775
2776                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778                if (issued >= dpolicy->max_requests) {
2779                        start = dc->lstart + dc->len;
2780
2781                        if (err)
2782                                __remove_discard_cmd(sbi, dc);
2783
2784                        blk_finish_plug(&plug);
2785                        mutex_unlock(&dcc->cmd_lock);
2786                        trimmed += __wait_all_discard_cmd(sbi, NULL);
2787                        congestion_wait(BLK_RW_ASYNC, HZ/50);
2788                        goto next;
2789                }
2790skip:
2791                node = rb_next(&dc->rb_node);
2792                if (err)
2793                        __remove_discard_cmd(sbi, dc);
2794                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796                if (fatal_signal_pending(current))
2797                        break;
2798        }
2799
2800        blk_finish_plug(&plug);
2801        mutex_unlock(&dcc->cmd_lock);
2802
2803        return trimmed;
2804}
2805
2806int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807{
2808        __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810        unsigned int start_segno, end_segno;
2811        block_t start_block, end_block;
2812        struct cp_control cpc;
2813        struct discard_policy dpolicy;
2814        unsigned long long trimmed = 0;
2815        int err = 0;
2816        bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819                return -EINVAL;
2820
2821        if (end < MAIN_BLKADDR(sbi))
2822                goto out;
2823
2824        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826                return -EFSCORRUPTED;
2827        }
2828
2829        /* start/end segment number in main_area */
2830        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832                                                GET_SEGNO(sbi, end);
2833        if (need_align) {
2834                start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836        }
2837
2838        cpc.reason = CP_DISCARD;
2839        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840        cpc.trim_start = start_segno;
2841        cpc.trim_end = end_segno;
2842
2843        if (sbi->discard_blks == 0)
2844                goto out;
2845
2846        mutex_lock(&sbi->gc_mutex);
2847        err = f2fs_write_checkpoint(sbi, &cpc);
2848        mutex_unlock(&sbi->gc_mutex);
2849        if (err)
2850                goto out;
2851
2852        /*
2853         * We filed discard candidates, but actually we don't need to wait for
2854         * all of them, since they'll be issued in idle time along with runtime
2855         * discard option. User configuration looks like using runtime discard
2856         * or periodic fstrim instead of it.
2857         */
2858        if (f2fs_realtime_discard_enable(sbi))
2859                goto out;
2860
2861        start_block = START_BLOCK(sbi, start_segno);
2862        end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866                                        start_block, end_block);
2867
2868        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869                                        start_block, end_block);
2870out:
2871        if (!err)
2872                range->len = F2FS_BLK_TO_BYTES(trimmed);
2873        return err;
2874}
2875
2876static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877{
2878        struct curseg_info *curseg = CURSEG_I(sbi, type);
2879        if (curseg->next_blkoff < sbi->blocks_per_seg)
2880                return true;
2881        return false;
2882}
2883
2884int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885{
2886        switch (hint) {
2887        case WRITE_LIFE_SHORT:
2888                return CURSEG_HOT_DATA;
2889        case WRITE_LIFE_EXTREME:
2890                return CURSEG_COLD_DATA;
2891        default:
2892                return CURSEG_WARM_DATA;
2893        }
2894}
2895
2896/* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User                  F2FS                     Block
2905 * ----                  ----                     -----
2906 *                       META                     WRITE_LIFE_NOT_SET
2907 *                       HOT_NODE                 "
2908 *                       WARM_NODE                "
2909 *                       COLD_NODE                "
2910 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2911 * extension list        "                        "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE       "                        "
2918 * WRITE_LIFE_MEDIUM     "                        "
2919 * WRITE_LIFE_LONG       "                        "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User                  F2FS                     Block
2932 * ----                  ----                     -----
2933 *                       META                     WRITE_LIFE_MEDIUM;
2934 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2935 *                       WARM_NODE                "
2936 *                       COLD_NODE                WRITE_LIFE_NONE
2937 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2938 * extension list        "                        "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE       "                        "
2945 * WRITE_LIFE_MEDIUM     "                        "
2946 * WRITE_LIFE_LONG       "                        "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2955 */
2956
2957enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958                                enum page_type type, enum temp_type temp)
2959{
2960        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961                if (type == DATA) {
2962                        if (temp == WARM)
2963                                return WRITE_LIFE_NOT_SET;
2964                        else if (temp == HOT)
2965                                return WRITE_LIFE_SHORT;
2966                        else if (temp == COLD)
2967                                return WRITE_LIFE_EXTREME;
2968                } else {
2969                        return WRITE_LIFE_NOT_SET;
2970                }
2971        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972                if (type == DATA) {
2973                        if (temp == WARM)
2974                                return WRITE_LIFE_LONG;
2975                        else if (temp == HOT)
2976                                return WRITE_LIFE_SHORT;
2977                        else if (temp == COLD)
2978                                return WRITE_LIFE_EXTREME;
2979                } else if (type == NODE) {
2980                        if (temp == WARM || temp == HOT)
2981                                return WRITE_LIFE_NOT_SET;
2982                        else if (temp == COLD)
2983                                return WRITE_LIFE_NONE;
2984                } else if (type == META) {
2985                        return WRITE_LIFE_MEDIUM;
2986                }
2987        }
2988        return WRITE_LIFE_NOT_SET;
2989}
2990
2991static int __get_segment_type_2(struct f2fs_io_info *fio)
2992{
2993        if (fio->type == DATA)
2994                return CURSEG_HOT_DATA;
2995        else
2996                return CURSEG_HOT_NODE;
2997}
2998
2999static int __get_segment_type_4(struct f2fs_io_info *fio)
3000{
3001        if (fio->type == DATA) {
3002                struct inode *inode = fio->page->mapping->host;
3003
3004                if (S_ISDIR(inode->i_mode))
3005                        return CURSEG_HOT_DATA;
3006                else
3007                        return CURSEG_COLD_DATA;
3008        } else {
3009                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010                        return CURSEG_WARM_NODE;
3011                else
3012                        return CURSEG_COLD_NODE;
3013        }
3014}
3015
3016static int __get_segment_type_6(struct f2fs_io_info *fio)
3017{
3018        if (fio->type == DATA) {
3019                struct inode *inode = fio->page->mapping->host;
3020
3021                if (is_cold_data(fio->page) || file_is_cold(inode))
3022                        return CURSEG_COLD_DATA;
3023                if (file_is_hot(inode) ||
3024                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3025                                f2fs_is_atomic_file(inode) ||
3026                                f2fs_is_volatile_file(inode))
3027                        return CURSEG_HOT_DATA;
3028                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029        } else {
3030                if (IS_DNODE(fio->page))
3031                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032                                                CURSEG_HOT_NODE;
3033                return CURSEG_COLD_NODE;
3034        }
3035}
3036
3037static int __get_segment_type(struct f2fs_io_info *fio)
3038{
3039        int type = 0;
3040
3041        switch (F2FS_OPTION(fio->sbi).active_logs) {
3042        case 2:
3043                type = __get_segment_type_2(fio);
3044                break;
3045        case 4:
3046                type = __get_segment_type_4(fio);
3047                break;
3048        case 6:
3049                type = __get_segment_type_6(fio);
3050                break;
3051        default:
3052                f2fs_bug_on(fio->sbi, true);
3053        }
3054
3055        if (IS_HOT(type))
3056                fio->temp = HOT;
3057        else if (IS_WARM(type))
3058                fio->temp = WARM;
3059        else
3060                fio->temp = COLD;
3061        return type;
3062}
3063
3064void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065                block_t old_blkaddr, block_t *new_blkaddr,
3066                struct f2fs_summary *sum, int type,
3067                struct f2fs_io_info *fio, bool add_list)
3068{
3069        struct sit_info *sit_i = SIT_I(sbi);
3070        struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072        down_read(&SM_I(sbi)->curseg_lock);
3073
3074        mutex_lock(&curseg->curseg_mutex);
3075        down_write(&sit_i->sentry_lock);
3076
3077        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081        /*
3082         * __add_sum_entry should be resided under the curseg_mutex
3083         * because, this function updates a summary entry in the
3084         * current summary block.
3085         */
3086        __add_sum_entry(sbi, type, sum);
3087
3088        __refresh_next_blkoff(sbi, curseg);
3089
3090        stat_inc_block_count(sbi, curseg);
3091
3092        /*
3093         * SIT information should be updated before segment allocation,
3094         * since SSR needs latest valid block information.
3095         */
3096        update_sit_entry(sbi, *new_blkaddr, 1);
3097        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098                update_sit_entry(sbi, old_blkaddr, -1);
3099
3100        if (!__has_curseg_space(sbi, type))
3101                sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103        /*
3104         * segment dirty status should be updated after segment allocation,
3105         * so we just need to update status only one time after previous
3106         * segment being closed.
3107         */
3108        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111        up_write(&sit_i->sentry_lock);
3112
3113        if (page && IS_NODESEG(type)) {
3114                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116                f2fs_inode_chksum_set(sbi, page);
3117        }
3118
3119        if (add_list) {
3120                struct f2fs_bio_info *io;
3121
3122                INIT_LIST_HEAD(&fio->list);
3123                fio->in_list = true;
3124                fio->retry = false;
3125                io = sbi->write_io[fio->type] + fio->temp;
3126                spin_lock(&io->io_lock);
3127                list_add_tail(&fio->list, &io->io_list);
3128                spin_unlock(&io->io_lock);
3129        }
3130
3131        mutex_unlock(&curseg->curseg_mutex);
3132
3133        up_read(&SM_I(sbi)->curseg_lock);
3134}
3135
3136static void update_device_state(struct f2fs_io_info *fio)
3137{
3138        struct f2fs_sb_info *sbi = fio->sbi;
3139        unsigned int devidx;
3140
3141        if (!f2fs_is_multi_device(sbi))
3142                return;
3143
3144        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3145
3146        /* update device state for fsync */
3147        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3148
3149        /* update device state for checkpoint */
3150        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3151                spin_lock(&sbi->dev_lock);
3152                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3153                spin_unlock(&sbi->dev_lock);
3154        }
3155}
3156
3157static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3158{
3159        int type = __get_segment_type(fio);
3160        bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3161
3162        if (keep_order)
3163                down_read(&fio->sbi->io_order_lock);
3164reallocate:
3165        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3166                        &fio->new_blkaddr, sum, type, fio, true);
3167        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3168                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3169                                        fio->old_blkaddr, fio->old_blkaddr);
3170
3171        /* writeout dirty page into bdev */
3172        f2fs_submit_page_write(fio);
3173        if (fio->retry) {
3174                fio->old_blkaddr = fio->new_blkaddr;
3175                goto reallocate;
3176        }
3177
3178        update_device_state(fio);
3179
3180        if (keep_order)
3181                up_read(&fio->sbi->io_order_lock);
3182}
3183
3184void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3185                                        enum iostat_type io_type)
3186{
3187        struct f2fs_io_info fio = {
3188                .sbi = sbi,
3189                .type = META,
3190                .temp = HOT,
3191                .op = REQ_OP_WRITE,
3192                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3193                .old_blkaddr = page->index,
3194                .new_blkaddr = page->index,
3195                .page = page,
3196                .encrypted_page = NULL,
3197                .in_list = false,
3198        };
3199
3200        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3201                fio.op_flags &= ~REQ_META;
3202
3203        set_page_writeback(page);
3204        ClearPageError(page);
3205        f2fs_submit_page_write(&fio);
3206
3207        stat_inc_meta_count(sbi, page->index);
3208        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3209}
3210
3211void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3212{
3213        struct f2fs_summary sum;
3214
3215        set_summary(&sum, nid, 0, 0);
3216        do_write_page(&sum, fio);
3217
3218        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3219}
3220
3221void f2fs_outplace_write_data(struct dnode_of_data *dn,
3222                                        struct f2fs_io_info *fio)
3223{
3224        struct f2fs_sb_info *sbi = fio->sbi;
3225        struct f2fs_summary sum;
3226
3227        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3228        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3229        do_write_page(&sum, fio);
3230        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3231
3232        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3233}
3234
3235int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3236{
3237        int err;
3238        struct f2fs_sb_info *sbi = fio->sbi;
3239        unsigned int segno;
3240
3241        fio->new_blkaddr = fio->old_blkaddr;
3242        /* i/o temperature is needed for passing down write hints */
3243        __get_segment_type(fio);
3244
3245        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3246
3247        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3248                set_sbi_flag(sbi, SBI_NEED_FSCK);
3249                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3250                          __func__, segno);
3251                return -EFSCORRUPTED;
3252        }
3253
3254        stat_inc_inplace_blocks(fio->sbi);
3255
3256        if (fio->bio)
3257                err = f2fs_merge_page_bio(fio);
3258        else
3259                err = f2fs_submit_page_bio(fio);
3260        if (!err) {
3261                update_device_state(fio);
3262                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3263        }
3264
3265        return err;
3266}
3267
3268static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3269                                                unsigned int segno)
3270{
3271        int i;
3272
3273        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3274                if (CURSEG_I(sbi, i)->segno == segno)
3275                        break;
3276        }
3277        return i;
3278}
3279
3280void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3281                                block_t old_blkaddr, block_t new_blkaddr,
3282                                bool recover_curseg, bool recover_newaddr)
3283{
3284        struct sit_info *sit_i = SIT_I(sbi);
3285        struct curseg_info *curseg;
3286        unsigned int segno, old_cursegno;
3287        struct seg_entry *se;
3288        int type;
3289        unsigned short old_blkoff;
3290
3291        segno = GET_SEGNO(sbi, new_blkaddr);
3292        se = get_seg_entry(sbi, segno);
3293        type = se->type;
3294
3295        down_write(&SM_I(sbi)->curseg_lock);
3296
3297        if (!recover_curseg) {
3298                /* for recovery flow */
3299                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3300                        if (old_blkaddr == NULL_ADDR)
3301                                type = CURSEG_COLD_DATA;
3302                        else
3303                                type = CURSEG_WARM_DATA;
3304                }
3305        } else {
3306                if (IS_CURSEG(sbi, segno)) {
3307                        /* se->type is volatile as SSR allocation */
3308                        type = __f2fs_get_curseg(sbi, segno);
3309                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3310                } else {
3311                        type = CURSEG_WARM_DATA;
3312                }
3313        }
3314
3315        f2fs_bug_on(sbi, !IS_DATASEG(type));
3316        curseg = CURSEG_I(sbi, type);
3317
3318        mutex_lock(&curseg->curseg_mutex);
3319        down_write(&sit_i->sentry_lock);
3320
3321        old_cursegno = curseg->segno;
3322        old_blkoff = curseg->next_blkoff;
3323
3324        /* change the current segment */
3325        if (segno != curseg->segno) {
3326                curseg->next_segno = segno;
3327                change_curseg(sbi, type);
3328        }
3329
3330        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3331        __add_sum_entry(sbi, type, sum);
3332
3333        if (!recover_curseg || recover_newaddr)
3334                update_sit_entry(sbi, new_blkaddr, 1);
3335        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3336                invalidate_mapping_pages(META_MAPPING(sbi),
3337                                        old_blkaddr, old_blkaddr);
3338                update_sit_entry(sbi, old_blkaddr, -1);
3339        }
3340
3341        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3342        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3343
3344        locate_dirty_segment(sbi, old_cursegno);
3345
3346        if (recover_curseg) {
3347                if (old_cursegno != curseg->segno) {
3348                        curseg->next_segno = old_cursegno;
3349                        change_curseg(sbi, type);
3350                }
3351                curseg->next_blkoff = old_blkoff;
3352        }
3353
3354        up_write(&sit_i->sentry_lock);
3355        mutex_unlock(&curseg->curseg_mutex);
3356        up_write(&SM_I(sbi)->curseg_lock);
3357}
3358
3359void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3360                                block_t old_addr, block_t new_addr,
3361                                unsigned char version, bool recover_curseg,
3362                                bool recover_newaddr)
3363{
3364        struct f2fs_summary sum;
3365
3366        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3367
3368        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3369                                        recover_curseg, recover_newaddr);
3370
3371        f2fs_update_data_blkaddr(dn, new_addr);
3372}
3373
3374void f2fs_wait_on_page_writeback(struct page *page,
3375                                enum page_type type, bool ordered, bool locked)
3376{
3377        if (PageWriteback(page)) {
3378                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3379
3380                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3381                if (ordered) {
3382                        wait_on_page_writeback(page);
3383                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3384                } else {
3385                        wait_for_stable_page(page);
3386                }
3387        }
3388}
3389
3390void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3391{
3392        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393        struct page *cpage;
3394
3395        if (!f2fs_post_read_required(inode))
3396                return;
3397
3398        if (!__is_valid_data_blkaddr(blkaddr))
3399                return;
3400
3401        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3402        if (cpage) {
3403                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3404                f2fs_put_page(cpage, 1);
3405        }
3406}
3407
3408void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3409                                                                block_t len)
3410{
3411        block_t i;
3412
3413        for (i = 0; i < len; i++)
3414                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3415}
3416
3417static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3418{
3419        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3420        struct curseg_info *seg_i;
3421        unsigned char *kaddr;
3422        struct page *page;
3423        block_t start;
3424        int i, j, offset;
3425
3426        start = start_sum_block(sbi);
3427
3428        page = f2fs_get_meta_page(sbi, start++);
3429        if (IS_ERR(page))
3430                return PTR_ERR(page);
3431        kaddr = (unsigned char *)page_address(page);
3432
3433        /* Step 1: restore nat cache */
3434        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3435        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3436
3437        /* Step 2: restore sit cache */
3438        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3439        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3440        offset = 2 * SUM_JOURNAL_SIZE;
3441
3442        /* Step 3: restore summary entries */
3443        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3444                unsigned short blk_off;
3445                unsigned int segno;
3446
3447                seg_i = CURSEG_I(sbi, i);
3448                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3449                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3450                if (blk_off > ENTRIES_IN_SUM) {
3451                        f2fs_bug_on(sbi, 1);
3452                        f2fs_put_page(page, 1);
3453                        return -EFAULT;
3454                }
3455                seg_i->next_segno = segno;
3456                reset_curseg(sbi, i, 0);
3457                seg_i->alloc_type = ckpt->alloc_type[i];
3458                seg_i->next_blkoff = blk_off;
3459
3460                if (seg_i->alloc_type == SSR)
3461                        blk_off = sbi->blocks_per_seg;
3462
3463                for (j = 0; j < blk_off; j++) {
3464                        struct f2fs_summary *s;
3465                        s = (struct f2fs_summary *)(kaddr + offset);
3466                        seg_i->sum_blk->entries[j] = *s;
3467                        offset += SUMMARY_SIZE;
3468                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3469                                                SUM_FOOTER_SIZE)
3470                                continue;
3471
3472                        f2fs_put_page(page, 1);
3473                        page = NULL;
3474
3475                        page = f2fs_get_meta_page(sbi, start++);
3476                        if (IS_ERR(page))
3477                                return PTR_ERR(page);
3478                        kaddr = (unsigned char *)page_address(page);
3479                        offset = 0;
3480                }
3481        }
3482        f2fs_put_page(page, 1);
3483        return 0;
3484}
3485
3486static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3487{
3488        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3489        struct f2fs_summary_block *sum;
3490        struct curseg_info *curseg;
3491        struct page *new;
3492        unsigned short blk_off;
3493        unsigned int segno = 0;
3494        block_t blk_addr = 0;
3495        int err = 0;
3496
3497        /* get segment number and block addr */
3498        if (IS_DATASEG(type)) {
3499                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3500                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3501                                                        CURSEG_HOT_DATA]);
3502                if (__exist_node_summaries(sbi))
3503                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3504                else
3505                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3506        } else {
3507                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3508                                                        CURSEG_HOT_NODE]);
3509                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3510                                                        CURSEG_HOT_NODE]);
3511                if (__exist_node_summaries(sbi))
3512                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3513                                                        type - CURSEG_HOT_NODE);
3514                else
3515                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3516        }
3517
3518        new = f2fs_get_meta_page(sbi, blk_addr);
3519        if (IS_ERR(new))
3520                return PTR_ERR(new);
3521        sum = (struct f2fs_summary_block *)page_address(new);
3522
3523        if (IS_NODESEG(type)) {
3524                if (__exist_node_summaries(sbi)) {
3525                        struct f2fs_summary *ns = &sum->entries[0];
3526                        int i;
3527                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3528                                ns->version = 0;
3529                                ns->ofs_in_node = 0;
3530                        }
3531                } else {
3532                        err = f2fs_restore_node_summary(sbi, segno, sum);
3533                        if (err)
3534                                goto out;
3535                }
3536        }
3537
3538        /* set uncompleted segment to curseg */
3539        curseg = CURSEG_I(sbi, type);
3540        mutex_lock(&curseg->curseg_mutex);
3541
3542        /* update journal info */
3543        down_write(&curseg->journal_rwsem);
3544        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3545        up_write(&curseg->journal_rwsem);
3546
3547        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3548        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3549        curseg->next_segno = segno;
3550        reset_curseg(sbi, type, 0);
3551        curseg->alloc_type = ckpt->alloc_type[type];
3552        curseg->next_blkoff = blk_off;
3553        mutex_unlock(&curseg->curseg_mutex);
3554out:
3555        f2fs_put_page(new, 1);
3556        return err;
3557}
3558
3559static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3560{
3561        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3562        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3563        int type = CURSEG_HOT_DATA;
3564        int err;
3565
3566        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3567                int npages = f2fs_npages_for_summary_flush(sbi, true);
3568
3569                if (npages >= 2)
3570                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3571                                                        META_CP, true);
3572
3573                /* restore for compacted data summary */
3574                err = read_compacted_summaries(sbi);
3575                if (err)
3576                        return err;
3577                type = CURSEG_HOT_NODE;
3578        }
3579
3580        if (__exist_node_summaries(sbi))
3581                f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3582                                        NR_CURSEG_TYPE - type, META_CP, true);
3583
3584        for (; type <= CURSEG_COLD_NODE; type++) {
3585                err = read_normal_summaries(sbi, type);
3586                if (err)
3587                        return err;
3588        }
3589
3590        /* sanity check for summary blocks */
3591        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3592                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3593                f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3594                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3595                return -EINVAL;
3596        }
3597
3598        return 0;
3599}
3600
3601static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3602{
3603        struct page *page;
3604        unsigned char *kaddr;
3605        struct f2fs_summary *summary;
3606        struct curseg_info *seg_i;
3607        int written_size = 0;
3608        int i, j;
3609
3610        page = f2fs_grab_meta_page(sbi, blkaddr++);
3611        kaddr = (unsigned char *)page_address(page);
3612        memset(kaddr, 0, PAGE_SIZE);
3613
3614        /* Step 1: write nat cache */
3615        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3616        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3617        written_size += SUM_JOURNAL_SIZE;
3618
3619        /* Step 2: write sit cache */
3620        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3621        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3622        written_size += SUM_JOURNAL_SIZE;
3623
3624        /* Step 3: write summary entries */
3625        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3626                unsigned short blkoff;
3627                seg_i = CURSEG_I(sbi, i);
3628                if (sbi->ckpt->alloc_type[i] == SSR)
3629                        blkoff = sbi->blocks_per_seg;
3630                else
3631                        blkoff = curseg_blkoff(sbi, i);
3632
3633                for (j = 0; j < blkoff; j++) {
3634                        if (!page) {
3635                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3636                                kaddr = (unsigned char *)page_address(page);
3637                                memset(kaddr, 0, PAGE_SIZE);
3638                                written_size = 0;
3639                        }
3640                        summary = (struct f2fs_summary *)(kaddr + written_size);
3641                        *summary = seg_i->sum_blk->entries[j];
3642                        written_size += SUMMARY_SIZE;
3643
3644                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3645                                                        SUM_FOOTER_SIZE)
3646                                continue;
3647
3648                        set_page_dirty(page);
3649                        f2fs_put_page(page, 1);
3650                        page = NULL;
3651                }
3652        }
3653        if (page) {
3654                set_page_dirty(page);
3655                f2fs_put_page(page, 1);
3656        }
3657}
3658
3659static void write_normal_summaries(struct f2fs_sb_info *sbi,
3660                                        block_t blkaddr, int type)
3661{
3662        int i, end;
3663        if (IS_DATASEG(type))
3664                end = type + NR_CURSEG_DATA_TYPE;
3665        else
3666                end = type + NR_CURSEG_NODE_TYPE;
3667
3668        for (i = type; i < end; i++)
3669                write_current_sum_page(sbi, i, blkaddr + (i - type));
3670}
3671
3672void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3673{
3674        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3675                write_compacted_summaries(sbi, start_blk);
3676        else
3677                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3678}
3679
3680void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3681{
3682        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3683}
3684
3685int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3686                                        unsigned int val, int alloc)
3687{
3688        int i;
3689
3690        if (type == NAT_JOURNAL) {
3691                for (i = 0; i < nats_in_cursum(journal); i++) {
3692                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3693                                return i;
3694                }
3695                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3696                        return update_nats_in_cursum(journal, 1);
3697        } else if (type == SIT_JOURNAL) {
3698                for (i = 0; i < sits_in_cursum(journal); i++)
3699                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3700                                return i;
3701                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3702                        return update_sits_in_cursum(journal, 1);
3703        }
3704        return -1;
3705}
3706
3707static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3708                                        unsigned int segno)
3709{
3710        return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3711}
3712
3713static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3714                                        unsigned int start)
3715{
3716        struct sit_info *sit_i = SIT_I(sbi);
3717        struct page *page;
3718        pgoff_t src_off, dst_off;
3719
3720        src_off = current_sit_addr(sbi, start);
3721        dst_off = next_sit_addr(sbi, src_off);
3722
3723        page = f2fs_grab_meta_page(sbi, dst_off);
3724        seg_info_to_sit_page(sbi, page, start);
3725
3726        set_page_dirty(page);
3727        set_to_next_sit(sit_i, start);
3728
3729        return page;
3730}
3731
3732static struct sit_entry_set *grab_sit_entry_set(void)
3733{
3734        struct sit_entry_set *ses =
3735                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3736
3737        ses->entry_cnt = 0;
3738        INIT_LIST_HEAD(&ses->set_list);
3739        return ses;
3740}
3741
3742static void release_sit_entry_set(struct sit_entry_set *ses)
3743{
3744        list_del(&ses->set_list);
3745        kmem_cache_free(sit_entry_set_slab, ses);
3746}
3747
3748static void adjust_sit_entry_set(struct sit_entry_set *ses,
3749                                                struct list_head *head)
3750{
3751        struct sit_entry_set *next = ses;
3752
3753        if (list_is_last(&ses->set_list, head))
3754                return;
3755
3756        list_for_each_entry_continue(next, head, set_list)
3757                if (ses->entry_cnt <= next->entry_cnt)
3758                        break;
3759
3760        list_move_tail(&ses->set_list, &next->set_list);
3761}
3762
3763static void add_sit_entry(unsigned int segno, struct list_head *head)
3764{
3765        struct sit_entry_set *ses;
3766        unsigned int start_segno = START_SEGNO(segno);
3767
3768        list_for_each_entry(ses, head, set_list) {
3769                if (ses->start_segno == start_segno) {
3770                        ses->entry_cnt++;
3771                        adjust_sit_entry_set(ses, head);
3772                        return;
3773                }
3774        }
3775
3776        ses = grab_sit_entry_set();
3777
3778        ses->start_segno = start_segno;
3779        ses->entry_cnt++;
3780        list_add(&ses->set_list, head);
3781}
3782
3783static void add_sits_in_set(struct f2fs_sb_info *sbi)
3784{
3785        struct f2fs_sm_info *sm_info = SM_I(sbi);
3786        struct list_head *set_list = &sm_info->sit_entry_set;
3787        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3788        unsigned int segno;
3789
3790        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3791                add_sit_entry(segno, set_list);
3792}
3793
3794static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3795{
3796        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3797        struct f2fs_journal *journal = curseg->journal;
3798        int i;
3799
3800        down_write(&curseg->journal_rwsem);
3801        for (i = 0; i < sits_in_cursum(journal); i++) {
3802                unsigned int segno;
3803                bool dirtied;
3804
3805                segno = le32_to_cpu(segno_in_journal(journal, i));
3806                dirtied = __mark_sit_entry_dirty(sbi, segno);
3807
3808                if (!dirtied)
3809                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3810        }
3811        update_sits_in_cursum(journal, -i);
3812        up_write(&curseg->journal_rwsem);
3813}
3814
3815/*
3816 * CP calls this function, which flushes SIT entries including sit_journal,
3817 * and moves prefree segs to free segs.
3818 */
3819void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3820{
3821        struct sit_info *sit_i = SIT_I(sbi);
3822        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3823        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3824        struct f2fs_journal *journal = curseg->journal;
3825        struct sit_entry_set *ses, *tmp;
3826        struct list_head *head = &SM_I(sbi)->sit_entry_set;
3827        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3828        struct seg_entry *se;
3829
3830        down_write(&sit_i->sentry_lock);
3831
3832        if (!sit_i->dirty_sentries)
3833                goto out;
3834
3835        /*
3836         * add and account sit entries of dirty bitmap in sit entry
3837         * set temporarily
3838         */
3839        add_sits_in_set(sbi);
3840
3841        /*
3842         * if there are no enough space in journal to store dirty sit
3843         * entries, remove all entries from journal and add and account
3844         * them in sit entry set.
3845         */
3846        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3847                                                                !to_journal)
3848                remove_sits_in_journal(sbi);
3849
3850        /*
3851         * there are two steps to flush sit entries:
3852         * #1, flush sit entries to journal in current cold data summary block.
3853         * #2, flush sit entries to sit page.
3854         */
3855        list_for_each_entry_safe(ses, tmp, head, set_list) {
3856                struct page *page = NULL;
3857                struct f2fs_sit_block *raw_sit = NULL;
3858                unsigned int start_segno = ses->start_segno;
3859                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3860                                                (unsigned long)MAIN_SEGS(sbi));
3861                unsigned int segno = start_segno;
3862
3863                if (to_journal &&
3864                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3865                        to_journal = false;
3866
3867                if (to_journal) {
3868                        down_write(&curseg->journal_rwsem);
3869                } else {
3870                        page = get_next_sit_page(sbi, start_segno);
3871                        raw_sit = page_address(page);
3872                }
3873
3874                /* flush dirty sit entries in region of current sit set */
3875                for_each_set_bit_from(segno, bitmap, end) {
3876                        int offset, sit_offset;
3877
3878                        se = get_seg_entry(sbi, segno);
3879#ifdef CONFIG_F2FS_CHECK_FS
3880                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3881                                                SIT_VBLOCK_MAP_SIZE))
3882                                f2fs_bug_on(sbi, 1);
3883#endif
3884
3885                        /* add discard candidates */
3886                        if (!(cpc->reason & CP_DISCARD)) {
3887                                cpc->trim_start = segno;
3888                                add_discard_addrs(sbi, cpc, false);
3889                        }
3890
3891                        if (to_journal) {
3892                                offset = f2fs_lookup_journal_in_cursum(journal,
3893                                                        SIT_JOURNAL, segno, 1);
3894                                f2fs_bug_on(sbi, offset < 0);
3895                                segno_in_journal(journal, offset) =
3896                                                        cpu_to_le32(segno);
3897                                seg_info_to_raw_sit(se,
3898                                        &sit_in_journal(journal, offset));
3899                                check_block_count(sbi, segno,
3900                                        &sit_in_journal(journal, offset));
3901                        } else {
3902                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3903                                seg_info_to_raw_sit(se,
3904                                                &raw_sit->entries[sit_offset]);
3905                                check_block_count(sbi, segno,
3906                                                &raw_sit->entries[sit_offset]);
3907                        }
3908
3909                        __clear_bit(segno, bitmap);
3910                        sit_i->dirty_sentries--;
3911                        ses->entry_cnt--;
3912                }
3913
3914                if (to_journal)
3915                        up_write(&curseg->journal_rwsem);
3916                else
3917                        f2fs_put_page(page, 1);
3918
3919                f2fs_bug_on(sbi, ses->entry_cnt);
3920                release_sit_entry_set(ses);
3921        }
3922
3923        f2fs_bug_on(sbi, !list_empty(head));
3924        f2fs_bug_on(sbi, sit_i->dirty_sentries);
3925out:
3926        if (cpc->reason & CP_DISCARD) {
3927                __u64 trim_start = cpc->trim_start;
3928
3929                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3930                        add_discard_addrs(sbi, cpc, false);
3931
3932                cpc->trim_start = trim_start;
3933        }
3934        up_write(&sit_i->sentry_lock);
3935
3936        set_prefree_as_free_segments(sbi);
3937}
3938
3939static int build_sit_info(struct f2fs_sb_info *sbi)
3940{
3941        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3942        struct sit_info *sit_i;
3943        unsigned int sit_segs, start;
3944        char *src_bitmap;
3945        unsigned int bitmap_size;
3946
3947        /* allocate memory for SIT information */
3948        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3949        if (!sit_i)
3950                return -ENOMEM;
3951
3952        SM_I(sbi)->sit_info = sit_i;
3953
3954        sit_i->sentries =
3955                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3956                                              MAIN_SEGS(sbi)),
3957                              GFP_KERNEL);
3958        if (!sit_i->sentries)
3959                return -ENOMEM;
3960
3961        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3962        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3963                                                                GFP_KERNEL);
3964        if (!sit_i->dirty_sentries_bitmap)
3965                return -ENOMEM;
3966
3967        for (start = 0; start < MAIN_SEGS(sbi); start++) {
3968                sit_i->sentries[start].cur_valid_map
3969                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3970                sit_i->sentries[start].ckpt_valid_map
3971                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3972                if (!sit_i->sentries[start].cur_valid_map ||
3973                                !sit_i->sentries[start].ckpt_valid_map)
3974                        return -ENOMEM;
3975
3976#ifdef CONFIG_F2FS_CHECK_FS
3977                sit_i->sentries[start].cur_valid_map_mir
3978                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3979                if (!sit_i->sentries[start].cur_valid_map_mir)
3980                        return -ENOMEM;
3981#endif
3982
3983                sit_i->sentries[start].discard_map
3984                        = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3985                                                        GFP_KERNEL);
3986                if (!sit_i->sentries[start].discard_map)
3987                        return -ENOMEM;
3988        }
3989
3990        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3991        if (!sit_i->tmp_map)
3992                return -ENOMEM;
3993
3994        if (__is_large_section(sbi)) {
3995                sit_i->sec_entries =
3996                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3997                                                      MAIN_SECS(sbi)),
3998                                      GFP_KERNEL);
3999                if (!sit_i->sec_entries)
4000                        return -ENOMEM;
4001        }
4002
4003        /* get information related with SIT */
4004        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4005
4006        /* setup SIT bitmap from ckeckpoint pack */
4007        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4008        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4009
4010        sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4011        if (!sit_i->sit_bitmap)
4012                return -ENOMEM;
4013
4014#ifdef CONFIG_F2FS_CHECK_FS
4015        sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4016        if (!sit_i->sit_bitmap_mir)
4017                return -ENOMEM;
4018#endif
4019
4020        /* init SIT information */
4021        sit_i->s_ops = &default_salloc_ops;
4022
4023        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4024        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4025        sit_i->written_valid_blocks = 0;
4026        sit_i->bitmap_size = bitmap_size;
4027        sit_i->dirty_sentries = 0;
4028        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4029        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4030        sit_i->mounted_time = ktime_get_real_seconds();
4031        init_rwsem(&sit_i->sentry_lock);
4032        return 0;
4033}
4034
4035static int build_free_segmap(struct f2fs_sb_info *sbi)
4036{
4037        struct free_segmap_info *free_i;
4038        unsigned int bitmap_size, sec_bitmap_size;
4039
4040        /* allocate memory for free segmap information */
4041        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4042        if (!free_i)
4043                return -ENOMEM;
4044
4045        SM_I(sbi)->free_info = free_i;
4046
4047        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4048        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4049        if (!free_i->free_segmap)
4050                return -ENOMEM;
4051
4052        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4053        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4054        if (!free_i->free_secmap)
4055                return -ENOMEM;
4056
4057        /* set all segments as dirty temporarily */
4058        memset(free_i->free_segmap, 0xff, bitmap_size);
4059        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4060
4061        /* init free segmap information */
4062        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4063        free_i->free_segments = 0;
4064        free_i->free_sections = 0;
4065        spin_lock_init(&free_i->segmap_lock);
4066        return 0;
4067}
4068
4069static int build_curseg(struct f2fs_sb_info *sbi)
4070{
4071        struct curseg_info *array;
4072        int i;
4073
4074        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4075                             GFP_KERNEL);
4076        if (!array)
4077                return -ENOMEM;
4078
4079        SM_I(sbi)->curseg_array = array;
4080
4081        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4082                mutex_init(&array[i].curseg_mutex);
4083                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4084                if (!array[i].sum_blk)
4085                        return -ENOMEM;
4086                init_rwsem(&array[i].journal_rwsem);
4087                array[i].journal = f2fs_kzalloc(sbi,
4088                                sizeof(struct f2fs_journal), GFP_KERNEL);
4089                if (!array[i].journal)
4090                        return -ENOMEM;
4091                array[i].segno = NULL_SEGNO;
4092                array[i].next_blkoff = 0;
4093        }
4094        return restore_curseg_summaries(sbi);
4095}
4096
4097static int build_sit_entries(struct f2fs_sb_info *sbi)
4098{
4099        struct sit_info *sit_i = SIT_I(sbi);
4100        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4101        struct f2fs_journal *journal = curseg->journal;
4102        struct seg_entry *se;
4103        struct f2fs_sit_entry sit;
4104        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4105        unsigned int i, start, end;
4106        unsigned int readed, start_blk = 0;
4107        int err = 0;
4108        block_t total_node_blocks = 0;
4109
4110        do {
4111                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4112                                                        META_SIT, true);
4113
4114                start = start_blk * sit_i->sents_per_block;
4115                end = (start_blk + readed) * sit_i->sents_per_block;
4116
4117                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4118                        struct f2fs_sit_block *sit_blk;
4119                        struct page *page;
4120
4121                        se = &sit_i->sentries[start];
4122                        page = get_current_sit_page(sbi, start);
4123                        if (IS_ERR(page))
4124                                return PTR_ERR(page);
4125                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4126                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4127                        f2fs_put_page(page, 1);
4128
4129                        err = check_block_count(sbi, start, &sit);
4130                        if (err)
4131                                return err;
4132                        seg_info_from_raw_sit(se, &sit);
4133                        if (IS_NODESEG(se->type))
4134                                total_node_blocks += se->valid_blocks;
4135
4136                        /* build discard map only one time */
4137                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4138                                memset(se->discard_map, 0xff,
4139                                        SIT_VBLOCK_MAP_SIZE);
4140                        } else {
4141                                memcpy(se->discard_map,
4142                                        se->cur_valid_map,
4143                                        SIT_VBLOCK_MAP_SIZE);
4144                                sbi->discard_blks +=
4145                                        sbi->blocks_per_seg -
4146                                        se->valid_blocks;
4147                        }
4148
4149                        if (__is_large_section(sbi))
4150                                get_sec_entry(sbi, start)->valid_blocks +=
4151                                                        se->valid_blocks;
4152                }
4153                start_blk += readed;
4154        } while (start_blk < sit_blk_cnt);
4155
4156        down_read(&curseg->journal_rwsem);
4157        for (i = 0; i < sits_in_cursum(journal); i++) {
4158                unsigned int old_valid_blocks;
4159
4160                start = le32_to_cpu(segno_in_journal(journal, i));
4161                if (start >= MAIN_SEGS(sbi)) {
4162                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4163                                 start);
4164                        set_sbi_flag(sbi, SBI_NEED_FSCK);
4165                        err = -EFSCORRUPTED;
4166                        break;
4167                }
4168
4169                se = &sit_i->sentries[start];
4170                sit = sit_in_journal(journal, i);
4171
4172                old_valid_blocks = se->valid_blocks;
4173                if (IS_NODESEG(se->type))
4174                        total_node_blocks -= old_valid_blocks;
4175
4176                err = check_block_count(sbi, start, &sit);
4177                if (err)
4178                        break;
4179                seg_info_from_raw_sit(se, &sit);
4180                if (IS_NODESEG(se->type))
4181                        total_node_blocks += se->valid_blocks;
4182
4183                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184                        memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4185                } else {
4186                        memcpy(se->discard_map, se->cur_valid_map,
4187                                                SIT_VBLOCK_MAP_SIZE);
4188                        sbi->discard_blks += old_valid_blocks;
4189                        sbi->discard_blks -= se->valid_blocks;
4190                }
4191
4192                if (__is_large_section(sbi)) {
4193                        get_sec_entry(sbi, start)->valid_blocks +=
4194                                                        se->valid_blocks;
4195                        get_sec_entry(sbi, start)->valid_blocks -=
4196                                                        old_valid_blocks;
4197                }
4198        }
4199        up_read(&curseg->journal_rwsem);
4200
4201        if (!err && total_node_blocks != valid_node_count(sbi)) {
4202                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4203                         total_node_blocks, valid_node_count(sbi));
4204                set_sbi_flag(sbi, SBI_NEED_FSCK);
4205                err = -EFSCORRUPTED;
4206        }
4207
4208        return err;
4209}
4210
4211static void init_free_segmap(struct f2fs_sb_info *sbi)
4212{
4213        unsigned int start;
4214        int type;
4215
4216        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4217                struct seg_entry *sentry = get_seg_entry(sbi, start);
4218                if (!sentry->valid_blocks)
4219                        __set_free(sbi, start);
4220                else
4221                        SIT_I(sbi)->written_valid_blocks +=
4222                                                sentry->valid_blocks;
4223        }
4224
4225        /* set use the current segments */
4226        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4227                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4228                __set_test_and_inuse(sbi, curseg_t->segno);
4229        }
4230}
4231
4232static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4233{
4234        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4235        struct free_segmap_info *free_i = FREE_I(sbi);
4236        unsigned int segno = 0, offset = 0;
4237        unsigned short valid_blocks;
4238
4239        while (1) {
4240                /* find dirty segment based on free segmap */
4241                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4242                if (segno >= MAIN_SEGS(sbi))
4243                        break;
4244                offset = segno + 1;
4245                valid_blocks = get_valid_blocks(sbi, segno, false);
4246                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4247                        continue;
4248                if (valid_blocks > sbi->blocks_per_seg) {
4249                        f2fs_bug_on(sbi, 1);
4250                        continue;
4251                }
4252                mutex_lock(&dirty_i->seglist_lock);
4253                __locate_dirty_segment(sbi, segno, DIRTY);
4254                mutex_unlock(&dirty_i->seglist_lock);
4255        }
4256}
4257
4258static int init_victim_secmap(struct f2fs_sb_info *sbi)
4259{
4260        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4261        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4262
4263        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4264        if (!dirty_i->victim_secmap)
4265                return -ENOMEM;
4266        return 0;
4267}
4268
4269static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4270{
4271        struct dirty_seglist_info *dirty_i;
4272        unsigned int bitmap_size, i;
4273
4274        /* allocate memory for dirty segments list information */
4275        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4276                                                                GFP_KERNEL);
4277        if (!dirty_i)
4278                return -ENOMEM;
4279
4280        SM_I(sbi)->dirty_info = dirty_i;
4281        mutex_init(&dirty_i->seglist_lock);
4282
4283        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4284
4285        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4286                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4287                                                                GFP_KERNEL);
4288                if (!dirty_i->dirty_segmap[i])
4289                        return -ENOMEM;
4290        }
4291
4292        init_dirty_segmap(sbi);
4293        return init_victim_secmap(sbi);
4294}
4295
4296static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4297{
4298        int i;
4299
4300        /*
4301         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4302         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4303         */
4304        for (i = 0; i < NO_CHECK_TYPE; i++) {
4305                struct curseg_info *curseg = CURSEG_I(sbi, i);
4306                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4307                unsigned int blkofs = curseg->next_blkoff;
4308
4309                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4310                        goto out;
4311
4312                if (curseg->alloc_type == SSR)
4313                        continue;
4314
4315                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4316                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4317                                continue;
4318out:
4319                        f2fs_err(sbi,
4320                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4321                                 i, curseg->segno, curseg->alloc_type,
4322                                 curseg->next_blkoff, blkofs);
4323                        return -EFSCORRUPTED;
4324                }
4325        }
4326        return 0;
4327}
4328
4329/*
4330 * Update min, max modified time for cost-benefit GC algorithm
4331 */
4332static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4333{
4334        struct sit_info *sit_i = SIT_I(sbi);
4335        unsigned int segno;
4336
4337        down_write(&sit_i->sentry_lock);
4338
4339        sit_i->min_mtime = ULLONG_MAX;
4340
4341        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4342                unsigned int i;
4343                unsigned long long mtime = 0;
4344
4345                for (i = 0; i < sbi->segs_per_sec; i++)
4346                        mtime += get_seg_entry(sbi, segno + i)->mtime;
4347
4348                mtime = div_u64(mtime, sbi->segs_per_sec);
4349
4350                if (sit_i->min_mtime > mtime)
4351                        sit_i->min_mtime = mtime;
4352        }
4353        sit_i->max_mtime = get_mtime(sbi, false);
4354        up_write(&sit_i->sentry_lock);
4355}
4356
4357int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4358{
4359        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4360        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4361        struct f2fs_sm_info *sm_info;
4362        int err;
4363
4364        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4365        if (!sm_info)
4366                return -ENOMEM;
4367
4368        /* init sm info */
4369        sbi->sm_info = sm_info;
4370        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4371        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4372        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4373        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4374        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4375        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4376        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4377        sm_info->rec_prefree_segments = sm_info->main_segments *
4378                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4379        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4380                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4381
4382        if (!test_opt(sbi, LFS))
4383                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4384        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4385        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4386        sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4387        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4388        sm_info->min_ssr_sections = reserved_sections(sbi);
4389
4390        INIT_LIST_HEAD(&sm_info->sit_entry_set);
4391
4392        init_rwsem(&sm_info->curseg_lock);
4393
4394        if (!f2fs_readonly(sbi->sb)) {
4395                err = f2fs_create_flush_cmd_control(sbi);
4396                if (err)
4397                        return err;
4398        }
4399
4400        err = create_discard_cmd_control(sbi);
4401        if (err)
4402                return err;
4403
4404        err = build_sit_info(sbi);
4405        if (err)
4406                return err;
4407        err = build_free_segmap(sbi);
4408        if (err)
4409                return err;
4410        err = build_curseg(sbi);
4411        if (err)
4412                return err;
4413
4414        /* reinit free segmap based on SIT */
4415        err = build_sit_entries(sbi);
4416        if (err)
4417                return err;
4418
4419        init_free_segmap(sbi);
4420        err = build_dirty_segmap(sbi);
4421        if (err)
4422                return err;
4423
4424        err = sanity_check_curseg(sbi);
4425        if (err)
4426                return err;
4427
4428        init_min_max_mtime(sbi);
4429        return 0;
4430}
4431
4432static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4433                enum dirty_type dirty_type)
4434{
4435        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4436
4437        mutex_lock(&dirty_i->seglist_lock);
4438        kvfree(dirty_i->dirty_segmap[dirty_type]);
4439        dirty_i->nr_dirty[dirty_type] = 0;
4440        mutex_unlock(&dirty_i->seglist_lock);
4441}
4442
4443static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4444{
4445        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4446        kvfree(dirty_i->victim_secmap);
4447}
4448
4449static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4450{
4451        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4452        int i;
4453
4454        if (!dirty_i)
4455                return;
4456
4457        /* discard pre-free/dirty segments list */
4458        for (i = 0; i < NR_DIRTY_TYPE; i++)
4459                discard_dirty_segmap(sbi, i);
4460
4461        destroy_victim_secmap(sbi);
4462        SM_I(sbi)->dirty_info = NULL;
4463        kvfree(dirty_i);
4464}
4465
4466static void destroy_curseg(struct f2fs_sb_info *sbi)
4467{
4468        struct curseg_info *array = SM_I(sbi)->curseg_array;
4469        int i;
4470
4471        if (!array)
4472                return;
4473        SM_I(sbi)->curseg_array = NULL;
4474        for (i = 0; i < NR_CURSEG_TYPE; i++) {
4475                kvfree(array[i].sum_blk);
4476                kvfree(array[i].journal);
4477        }
4478        kvfree(array);
4479}
4480
4481static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4482{
4483        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4484        if (!free_i)
4485                return;
4486        SM_I(sbi)->free_info = NULL;
4487        kvfree(free_i->free_segmap);
4488        kvfree(free_i->free_secmap);
4489        kvfree(free_i);
4490}
4491
4492static void destroy_sit_info(struct f2fs_sb_info *sbi)
4493{
4494        struct sit_info *sit_i = SIT_I(sbi);
4495        unsigned int start;
4496
4497        if (!sit_i)
4498                return;
4499
4500        if (sit_i->sentries) {
4501                for (start = 0; start < MAIN_SEGS(sbi); start++) {
4502                        kvfree(sit_i->sentries[start].cur_valid_map);
4503#ifdef CONFIG_F2FS_CHECK_FS
4504                        kvfree(sit_i->sentries[start].cur_valid_map_mir);
4505#endif
4506                        kvfree(sit_i->sentries[start].ckpt_valid_map);
4507                        kvfree(sit_i->sentries[start].discard_map);
4508                }
4509        }
4510        kvfree(sit_i->tmp_map);
4511
4512        kvfree(sit_i->sentries);
4513        kvfree(sit_i->sec_entries);
4514        kvfree(sit_i->dirty_sentries_bitmap);
4515
4516        SM_I(sbi)->sit_info = NULL;
4517        kvfree(sit_i->sit_bitmap);
4518#ifdef CONFIG_F2FS_CHECK_FS
4519        kvfree(sit_i->sit_bitmap_mir);
4520#endif
4521        kvfree(sit_i);
4522}
4523
4524void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4525{
4526        struct f2fs_sm_info *sm_info = SM_I(sbi);
4527
4528        if (!sm_info)
4529                return;
4530        f2fs_destroy_flush_cmd_control(sbi, true);
4531        destroy_discard_cmd_control(sbi);
4532        destroy_dirty_segmap(sbi);
4533        destroy_curseg(sbi);
4534        destroy_free_segmap(sbi);
4535        destroy_sit_info(sbi);
4536        sbi->sm_info = NULL;
4537        kvfree(sm_info);
4538}
4539
4540int __init f2fs_create_segment_manager_caches(void)
4541{
4542        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4543                        sizeof(struct discard_entry));
4544        if (!discard_entry_slab)
4545                goto fail;
4546
4547        discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4548                        sizeof(struct discard_cmd));
4549        if (!discard_cmd_slab)
4550                goto destroy_discard_entry;
4551
4552        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4553                        sizeof(struct sit_entry_set));
4554        if (!sit_entry_set_slab)
4555                goto destroy_discard_cmd;
4556
4557        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4558                        sizeof(struct inmem_pages));
4559        if (!inmem_entry_slab)
4560                goto destroy_sit_entry_set;
4561        return 0;
4562
4563destroy_sit_entry_set:
4564        kmem_cache_destroy(sit_entry_set_slab);
4565destroy_discard_cmd:
4566        kmem_cache_destroy(discard_cmd_slab);
4567destroy_discard_entry:
4568        kmem_cache_destroy(discard_entry_slab);
4569fail:
4570        return -ENOMEM;
4571}
4572
4573void f2fs_destroy_segment_manager_caches(void)
4574{
4575        kmem_cache_destroy(sit_entry_set_slab);
4576        kmem_cache_destroy(discard_cmd_slab);
4577        kmem_cache_destroy(discard_entry_slab);
4578        kmem_cache_destroy(inmem_entry_slab);
4579}
4580