linux/fs/gfs2/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/spinlock.h>
   9#include <linux/completion.h>
  10#include <linux/buffer_head.h>
  11#include <linux/pagemap.h>
  12#include <linux/uio.h>
  13#include <linux/blkdev.h>
  14#include <linux/mm.h>
  15#include <linux/mount.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/falloc.h>
  19#include <linux/swap.h>
  20#include <linux/crc32.h>
  21#include <linux/writeback.h>
  22#include <linux/uaccess.h>
  23#include <linux/dlm.h>
  24#include <linux/dlm_plock.h>
  25#include <linux/delay.h>
  26#include <linux/backing-dev.h>
  27
  28#include "gfs2.h"
  29#include "incore.h"
  30#include "bmap.h"
  31#include "aops.h"
  32#include "dir.h"
  33#include "glock.h"
  34#include "glops.h"
  35#include "inode.h"
  36#include "log.h"
  37#include "meta_io.h"
  38#include "quota.h"
  39#include "rgrp.h"
  40#include "trans.h"
  41#include "util.h"
  42
  43/**
  44 * gfs2_llseek - seek to a location in a file
  45 * @file: the file
  46 * @offset: the offset
  47 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  48 *
  49 * SEEK_END requires the glock for the file because it references the
  50 * file's size.
  51 *
  52 * Returns: The new offset, or errno
  53 */
  54
  55static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  56{
  57        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  58        struct gfs2_holder i_gh;
  59        loff_t error;
  60
  61        switch (whence) {
  62        case SEEK_END:
  63                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  64                                           &i_gh);
  65                if (!error) {
  66                        error = generic_file_llseek(file, offset, whence);
  67                        gfs2_glock_dq_uninit(&i_gh);
  68                }
  69                break;
  70
  71        case SEEK_DATA:
  72                error = gfs2_seek_data(file, offset);
  73                break;
  74
  75        case SEEK_HOLE:
  76                error = gfs2_seek_hole(file, offset);
  77                break;
  78
  79        case SEEK_CUR:
  80        case SEEK_SET:
  81                /*
  82                 * These don't reference inode->i_size and don't depend on the
  83                 * block mapping, so we don't need the glock.
  84                 */
  85                error = generic_file_llseek(file, offset, whence);
  86                break;
  87        default:
  88                error = -EINVAL;
  89        }
  90
  91        return error;
  92}
  93
  94/**
  95 * gfs2_readdir - Iterator for a directory
  96 * @file: The directory to read from
  97 * @ctx: What to feed directory entries to
  98 *
  99 * Returns: errno
 100 */
 101
 102static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 103{
 104        struct inode *dir = file->f_mapping->host;
 105        struct gfs2_inode *dip = GFS2_I(dir);
 106        struct gfs2_holder d_gh;
 107        int error;
 108
 109        error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 110        if (error)
 111                return error;
 112
 113        error = gfs2_dir_read(dir, ctx, &file->f_ra);
 114
 115        gfs2_glock_dq_uninit(&d_gh);
 116
 117        return error;
 118}
 119
 120/**
 121 * fsflag_gfs2flag
 122 *
 123 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 124 * and to GFS2_DIF_JDATA for non-directories.
 125 */
 126static struct {
 127        u32 fsflag;
 128        u32 gfsflag;
 129} fsflag_gfs2flag[] = {
 130        {FS_SYNC_FL, GFS2_DIF_SYNC},
 131        {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 132        {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 133        {FS_NOATIME_FL, GFS2_DIF_NOATIME},
 134        {FS_INDEX_FL, GFS2_DIF_EXHASH},
 135        {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 136        {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 137};
 138
 139static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
 140{
 141        int i;
 142        u32 fsflags = 0;
 143
 144        if (S_ISDIR(inode->i_mode))
 145                gfsflags &= ~GFS2_DIF_JDATA;
 146        else
 147                gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 148
 149        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 150                if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 151                        fsflags |= fsflag_gfs2flag[i].fsflag;
 152        return fsflags;
 153}
 154
 155static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 156{
 157        struct inode *inode = file_inode(filp);
 158        struct gfs2_inode *ip = GFS2_I(inode);
 159        struct gfs2_holder gh;
 160        int error;
 161        u32 fsflags;
 162
 163        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 164        error = gfs2_glock_nq(&gh);
 165        if (error)
 166                goto out_uninit;
 167
 168        fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
 169
 170        if (put_user(fsflags, ptr))
 171                error = -EFAULT;
 172
 173        gfs2_glock_dq(&gh);
 174out_uninit:
 175        gfs2_holder_uninit(&gh);
 176        return error;
 177}
 178
 179void gfs2_set_inode_flags(struct inode *inode)
 180{
 181        struct gfs2_inode *ip = GFS2_I(inode);
 182        unsigned int flags = inode->i_flags;
 183
 184        flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 185        if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 186                flags |= S_NOSEC;
 187        if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 188                flags |= S_IMMUTABLE;
 189        if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 190                flags |= S_APPEND;
 191        if (ip->i_diskflags & GFS2_DIF_NOATIME)
 192                flags |= S_NOATIME;
 193        if (ip->i_diskflags & GFS2_DIF_SYNC)
 194                flags |= S_SYNC;
 195        inode->i_flags = flags;
 196}
 197
 198/* Flags that can be set by user space */
 199#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|                    \
 200                             GFS2_DIF_IMMUTABLE|                \
 201                             GFS2_DIF_APPENDONLY|               \
 202                             GFS2_DIF_NOATIME|                  \
 203                             GFS2_DIF_SYNC|                     \
 204                             GFS2_DIF_TOPDIR|                   \
 205                             GFS2_DIF_INHERIT_JDATA)
 206
 207/**
 208 * do_gfs2_set_flags - set flags on an inode
 209 * @filp: file pointer
 210 * @reqflags: The flags to set
 211 * @mask: Indicates which flags are valid
 212 * @fsflags: The FS_* inode flags passed in
 213 *
 214 */
 215static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
 216                             const u32 fsflags)
 217{
 218        struct inode *inode = file_inode(filp);
 219        struct gfs2_inode *ip = GFS2_I(inode);
 220        struct gfs2_sbd *sdp = GFS2_SB(inode);
 221        struct buffer_head *bh;
 222        struct gfs2_holder gh;
 223        int error;
 224        u32 new_flags, flags, oldflags;
 225
 226        error = mnt_want_write_file(filp);
 227        if (error)
 228                return error;
 229
 230        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 231        if (error)
 232                goto out_drop_write;
 233
 234        oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
 235        error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
 236        if (error)
 237                goto out;
 238
 239        error = -EACCES;
 240        if (!inode_owner_or_capable(inode))
 241                goto out;
 242
 243        error = 0;
 244        flags = ip->i_diskflags;
 245        new_flags = (flags & ~mask) | (reqflags & mask);
 246        if ((new_flags ^ flags) == 0)
 247                goto out;
 248
 249        error = -EPERM;
 250        if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 251                goto out;
 252        if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 253                goto out;
 254        if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 255            !capable(CAP_LINUX_IMMUTABLE))
 256                goto out;
 257        if (!IS_IMMUTABLE(inode)) {
 258                error = gfs2_permission(inode, MAY_WRITE);
 259                if (error)
 260                        goto out;
 261        }
 262        if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 263                if (new_flags & GFS2_DIF_JDATA)
 264                        gfs2_log_flush(sdp, ip->i_gl,
 265                                       GFS2_LOG_HEAD_FLUSH_NORMAL |
 266                                       GFS2_LFC_SET_FLAGS);
 267                error = filemap_fdatawrite(inode->i_mapping);
 268                if (error)
 269                        goto out;
 270                error = filemap_fdatawait(inode->i_mapping);
 271                if (error)
 272                        goto out;
 273                if (new_flags & GFS2_DIF_JDATA)
 274                        gfs2_ordered_del_inode(ip);
 275        }
 276        error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 277        if (error)
 278                goto out;
 279        error = gfs2_meta_inode_buffer(ip, &bh);
 280        if (error)
 281                goto out_trans_end;
 282        inode->i_ctime = current_time(inode);
 283        gfs2_trans_add_meta(ip->i_gl, bh);
 284        ip->i_diskflags = new_flags;
 285        gfs2_dinode_out(ip, bh->b_data);
 286        brelse(bh);
 287        gfs2_set_inode_flags(inode);
 288        gfs2_set_aops(inode);
 289out_trans_end:
 290        gfs2_trans_end(sdp);
 291out:
 292        gfs2_glock_dq_uninit(&gh);
 293out_drop_write:
 294        mnt_drop_write_file(filp);
 295        return error;
 296}
 297
 298static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 299{
 300        struct inode *inode = file_inode(filp);
 301        u32 fsflags, gfsflags = 0;
 302        u32 mask;
 303        int i;
 304
 305        if (get_user(fsflags, ptr))
 306                return -EFAULT;
 307
 308        for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 309                if (fsflags & fsflag_gfs2flag[i].fsflag) {
 310                        fsflags &= ~fsflag_gfs2flag[i].fsflag;
 311                        gfsflags |= fsflag_gfs2flag[i].gfsflag;
 312                }
 313        }
 314        if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 315                return -EINVAL;
 316
 317        mask = GFS2_FLAGS_USER_SET;
 318        if (S_ISDIR(inode->i_mode)) {
 319                mask &= ~GFS2_DIF_JDATA;
 320        } else {
 321                /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 322                if (gfsflags & GFS2_DIF_TOPDIR)
 323                        return -EINVAL;
 324                mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 325        }
 326
 327        return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
 328}
 329
 330static int gfs2_getlabel(struct file *filp, char __user *label)
 331{
 332        struct inode *inode = file_inode(filp);
 333        struct gfs2_sbd *sdp = GFS2_SB(inode);
 334
 335        if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
 336                return -EFAULT;
 337
 338        return 0;
 339}
 340
 341static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 342{
 343        switch(cmd) {
 344        case FS_IOC_GETFLAGS:
 345                return gfs2_get_flags(filp, (u32 __user *)arg);
 346        case FS_IOC_SETFLAGS:
 347                return gfs2_set_flags(filp, (u32 __user *)arg);
 348        case FITRIM:
 349                return gfs2_fitrim(filp, (void __user *)arg);
 350        case FS_IOC_GETFSLABEL:
 351                return gfs2_getlabel(filp, (char __user *)arg);
 352        }
 353
 354        return -ENOTTY;
 355}
 356
 357/**
 358 * gfs2_size_hint - Give a hint to the size of a write request
 359 * @filep: The struct file
 360 * @offset: The file offset of the write
 361 * @size: The length of the write
 362 *
 363 * When we are about to do a write, this function records the total
 364 * write size in order to provide a suitable hint to the lower layers
 365 * about how many blocks will be required.
 366 *
 367 */
 368
 369static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 370{
 371        struct inode *inode = file_inode(filep);
 372        struct gfs2_sbd *sdp = GFS2_SB(inode);
 373        struct gfs2_inode *ip = GFS2_I(inode);
 374        size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 375        int hint = min_t(size_t, INT_MAX, blks);
 376
 377        if (hint > atomic_read(&ip->i_sizehint))
 378                atomic_set(&ip->i_sizehint, hint);
 379}
 380
 381/**
 382 * gfs2_allocate_page_backing - Allocate blocks for a write fault
 383 * @page: The (locked) page to allocate backing for
 384 *
 385 * We try to allocate all the blocks required for the page in one go.  This
 386 * might fail for various reasons, so we keep trying until all the blocks to
 387 * back this page are allocated.  If some of the blocks are already allocated,
 388 * that is ok too.
 389 */
 390static int gfs2_allocate_page_backing(struct page *page)
 391{
 392        u64 pos = page_offset(page);
 393        u64 size = PAGE_SIZE;
 394
 395        do {
 396                struct iomap iomap = { };
 397
 398                if (gfs2_iomap_get_alloc(page->mapping->host, pos, 1, &iomap))
 399                        return -EIO;
 400
 401                iomap.length = min(iomap.length, size);
 402                size -= iomap.length;
 403                pos += iomap.length;
 404        } while (size > 0);
 405
 406        return 0;
 407}
 408
 409/**
 410 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 411 * @vma: The virtual memory area
 412 * @vmf: The virtual memory fault containing the page to become writable
 413 *
 414 * When the page becomes writable, we need to ensure that we have
 415 * blocks allocated on disk to back that page.
 416 */
 417
 418static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
 419{
 420        struct page *page = vmf->page;
 421        struct inode *inode = file_inode(vmf->vma->vm_file);
 422        struct gfs2_inode *ip = GFS2_I(inode);
 423        struct gfs2_sbd *sdp = GFS2_SB(inode);
 424        struct gfs2_alloc_parms ap = { .aflags = 0, };
 425        unsigned long last_index;
 426        u64 pos = page_offset(page);
 427        unsigned int data_blocks, ind_blocks, rblocks;
 428        struct gfs2_holder gh;
 429        loff_t size;
 430        int ret;
 431
 432        sb_start_pagefault(inode->i_sb);
 433
 434        ret = gfs2_rsqa_alloc(ip);
 435        if (ret)
 436                goto out;
 437
 438        gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
 439
 440        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 441        ret = gfs2_glock_nq(&gh);
 442        if (ret)
 443                goto out_uninit;
 444
 445        /* Update file times before taking page lock */
 446        file_update_time(vmf->vma->vm_file);
 447
 448        set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 449        set_bit(GIF_SW_PAGED, &ip->i_flags);
 450
 451        if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
 452                lock_page(page);
 453                if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 454                        ret = -EAGAIN;
 455                        unlock_page(page);
 456                }
 457                goto out_unlock;
 458        }
 459
 460        ret = gfs2_rindex_update(sdp);
 461        if (ret)
 462                goto out_unlock;
 463
 464        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 465        ap.target = data_blocks + ind_blocks;
 466        ret = gfs2_quota_lock_check(ip, &ap);
 467        if (ret)
 468                goto out_unlock;
 469        ret = gfs2_inplace_reserve(ip, &ap);
 470        if (ret)
 471                goto out_quota_unlock;
 472
 473        rblocks = RES_DINODE + ind_blocks;
 474        if (gfs2_is_jdata(ip))
 475                rblocks += data_blocks ? data_blocks : 1;
 476        if (ind_blocks || data_blocks) {
 477                rblocks += RES_STATFS + RES_QUOTA;
 478                rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 479        }
 480        ret = gfs2_trans_begin(sdp, rblocks, 0);
 481        if (ret)
 482                goto out_trans_fail;
 483
 484        lock_page(page);
 485        ret = -EINVAL;
 486        size = i_size_read(inode);
 487        last_index = (size - 1) >> PAGE_SHIFT;
 488        /* Check page index against inode size */
 489        if (size == 0 || (page->index > last_index))
 490                goto out_trans_end;
 491
 492        ret = -EAGAIN;
 493        /* If truncated, we must retry the operation, we may have raced
 494         * with the glock demotion code.
 495         */
 496        if (!PageUptodate(page) || page->mapping != inode->i_mapping)
 497                goto out_trans_end;
 498
 499        /* Unstuff, if required, and allocate backing blocks for page */
 500        ret = 0;
 501        if (gfs2_is_stuffed(ip))
 502                ret = gfs2_unstuff_dinode(ip, page);
 503        if (ret == 0)
 504                ret = gfs2_allocate_page_backing(page);
 505
 506out_trans_end:
 507        if (ret)
 508                unlock_page(page);
 509        gfs2_trans_end(sdp);
 510out_trans_fail:
 511        gfs2_inplace_release(ip);
 512out_quota_unlock:
 513        gfs2_quota_unlock(ip);
 514out_unlock:
 515        gfs2_glock_dq(&gh);
 516out_uninit:
 517        gfs2_holder_uninit(&gh);
 518        if (ret == 0) {
 519                set_page_dirty(page);
 520                wait_for_stable_page(page);
 521        }
 522out:
 523        sb_end_pagefault(inode->i_sb);
 524        return block_page_mkwrite_return(ret);
 525}
 526
 527static const struct vm_operations_struct gfs2_vm_ops = {
 528        .fault = filemap_fault,
 529        .map_pages = filemap_map_pages,
 530        .page_mkwrite = gfs2_page_mkwrite,
 531};
 532
 533/**
 534 * gfs2_mmap -
 535 * @file: The file to map
 536 * @vma: The VMA which described the mapping
 537 *
 538 * There is no need to get a lock here unless we should be updating
 539 * atime. We ignore any locking errors since the only consequence is
 540 * a missed atime update (which will just be deferred until later).
 541 *
 542 * Returns: 0
 543 */
 544
 545static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 546{
 547        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 548
 549        if (!(file->f_flags & O_NOATIME) &&
 550            !IS_NOATIME(&ip->i_inode)) {
 551                struct gfs2_holder i_gh;
 552                int error;
 553
 554                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 555                                           &i_gh);
 556                if (error)
 557                        return error;
 558                /* grab lock to update inode */
 559                gfs2_glock_dq_uninit(&i_gh);
 560                file_accessed(file);
 561        }
 562        vma->vm_ops = &gfs2_vm_ops;
 563
 564        return 0;
 565}
 566
 567/**
 568 * gfs2_open_common - This is common to open and atomic_open
 569 * @inode: The inode being opened
 570 * @file: The file being opened
 571 *
 572 * This maybe called under a glock or not depending upon how it has
 573 * been called. We must always be called under a glock for regular
 574 * files, however. For other file types, it does not matter whether
 575 * we hold the glock or not.
 576 *
 577 * Returns: Error code or 0 for success
 578 */
 579
 580int gfs2_open_common(struct inode *inode, struct file *file)
 581{
 582        struct gfs2_file *fp;
 583        int ret;
 584
 585        if (S_ISREG(inode->i_mode)) {
 586                ret = generic_file_open(inode, file);
 587                if (ret)
 588                        return ret;
 589        }
 590
 591        fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 592        if (!fp)
 593                return -ENOMEM;
 594
 595        mutex_init(&fp->f_fl_mutex);
 596
 597        gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 598        file->private_data = fp;
 599        return 0;
 600}
 601
 602/**
 603 * gfs2_open - open a file
 604 * @inode: the inode to open
 605 * @file: the struct file for this opening
 606 *
 607 * After atomic_open, this function is only used for opening files
 608 * which are already cached. We must still get the glock for regular
 609 * files to ensure that we have the file size uptodate for the large
 610 * file check which is in the common code. That is only an issue for
 611 * regular files though.
 612 *
 613 * Returns: errno
 614 */
 615
 616static int gfs2_open(struct inode *inode, struct file *file)
 617{
 618        struct gfs2_inode *ip = GFS2_I(inode);
 619        struct gfs2_holder i_gh;
 620        int error;
 621        bool need_unlock = false;
 622
 623        if (S_ISREG(ip->i_inode.i_mode)) {
 624                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 625                                           &i_gh);
 626                if (error)
 627                        return error;
 628                need_unlock = true;
 629        }
 630
 631        error = gfs2_open_common(inode, file);
 632
 633        if (need_unlock)
 634                gfs2_glock_dq_uninit(&i_gh);
 635
 636        return error;
 637}
 638
 639/**
 640 * gfs2_release - called to close a struct file
 641 * @inode: the inode the struct file belongs to
 642 * @file: the struct file being closed
 643 *
 644 * Returns: errno
 645 */
 646
 647static int gfs2_release(struct inode *inode, struct file *file)
 648{
 649        struct gfs2_inode *ip = GFS2_I(inode);
 650
 651        kfree(file->private_data);
 652        file->private_data = NULL;
 653
 654        if (!(file->f_mode & FMODE_WRITE))
 655                return 0;
 656
 657        gfs2_rsqa_delete(ip, &inode->i_writecount);
 658        return 0;
 659}
 660
 661/**
 662 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 663 * @file: the file that points to the dentry
 664 * @start: the start position in the file to sync
 665 * @end: the end position in the file to sync
 666 * @datasync: set if we can ignore timestamp changes
 667 *
 668 * We split the data flushing here so that we don't wait for the data
 669 * until after we've also sent the metadata to disk. Note that for
 670 * data=ordered, we will write & wait for the data at the log flush
 671 * stage anyway, so this is unlikely to make much of a difference
 672 * except in the data=writeback case.
 673 *
 674 * If the fdatawrite fails due to any reason except -EIO, we will
 675 * continue the remainder of the fsync, although we'll still report
 676 * the error at the end. This is to match filemap_write_and_wait_range()
 677 * behaviour.
 678 *
 679 * Returns: errno
 680 */
 681
 682static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 683                      int datasync)
 684{
 685        struct address_space *mapping = file->f_mapping;
 686        struct inode *inode = mapping->host;
 687        int sync_state = inode->i_state & I_DIRTY_ALL;
 688        struct gfs2_inode *ip = GFS2_I(inode);
 689        int ret = 0, ret1 = 0;
 690
 691        if (mapping->nrpages) {
 692                ret1 = filemap_fdatawrite_range(mapping, start, end);
 693                if (ret1 == -EIO)
 694                        return ret1;
 695        }
 696
 697        if (!gfs2_is_jdata(ip))
 698                sync_state &= ~I_DIRTY_PAGES;
 699        if (datasync)
 700                sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
 701
 702        if (sync_state) {
 703                ret = sync_inode_metadata(inode, 1);
 704                if (ret)
 705                        return ret;
 706                if (gfs2_is_jdata(ip))
 707                        ret = file_write_and_wait(file);
 708                if (ret)
 709                        return ret;
 710                gfs2_ail_flush(ip->i_gl, 1);
 711        }
 712
 713        if (mapping->nrpages)
 714                ret = file_fdatawait_range(file, start, end);
 715
 716        return ret ? ret : ret1;
 717}
 718
 719static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
 720{
 721        struct file *file = iocb->ki_filp;
 722        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 723        size_t count = iov_iter_count(to);
 724        struct gfs2_holder gh;
 725        ssize_t ret;
 726
 727        if (!count)
 728                return 0; /* skip atime */
 729
 730        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 731        ret = gfs2_glock_nq(&gh);
 732        if (ret)
 733                goto out_uninit;
 734
 735        ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
 736
 737        gfs2_glock_dq(&gh);
 738out_uninit:
 739        gfs2_holder_uninit(&gh);
 740        return ret;
 741}
 742
 743static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 744{
 745        struct file *file = iocb->ki_filp;
 746        struct inode *inode = file->f_mapping->host;
 747        struct gfs2_inode *ip = GFS2_I(inode);
 748        size_t len = iov_iter_count(from);
 749        loff_t offset = iocb->ki_pos;
 750        struct gfs2_holder gh;
 751        ssize_t ret;
 752
 753        /*
 754         * Deferred lock, even if its a write, since we do no allocation on
 755         * this path. All we need to change is the atime, and this lock mode
 756         * ensures that other nodes have flushed their buffered read caches
 757         * (i.e. their page cache entries for this inode). We do not,
 758         * unfortunately, have the option of only flushing a range like the
 759         * VFS does.
 760         */
 761        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
 762        ret = gfs2_glock_nq(&gh);
 763        if (ret)
 764                goto out_uninit;
 765
 766        /* Silently fall back to buffered I/O when writing beyond EOF */
 767        if (offset + len > i_size_read(&ip->i_inode))
 768                goto out;
 769
 770        ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
 771
 772out:
 773        gfs2_glock_dq(&gh);
 774out_uninit:
 775        gfs2_holder_uninit(&gh);
 776        return ret;
 777}
 778
 779static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 780{
 781        ssize_t ret;
 782
 783        if (iocb->ki_flags & IOCB_DIRECT) {
 784                ret = gfs2_file_direct_read(iocb, to);
 785                if (likely(ret != -ENOTBLK))
 786                        return ret;
 787                iocb->ki_flags &= ~IOCB_DIRECT;
 788        }
 789        return generic_file_read_iter(iocb, to);
 790}
 791
 792/**
 793 * gfs2_file_write_iter - Perform a write to a file
 794 * @iocb: The io context
 795 * @from: The data to write
 796 *
 797 * We have to do a lock/unlock here to refresh the inode size for
 798 * O_APPEND writes, otherwise we can land up writing at the wrong
 799 * offset. There is still a race, but provided the app is using its
 800 * own file locking, this will make O_APPEND work as expected.
 801 *
 802 */
 803
 804static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 805{
 806        struct file *file = iocb->ki_filp;
 807        struct inode *inode = file_inode(file);
 808        struct gfs2_inode *ip = GFS2_I(inode);
 809        ssize_t written = 0, ret;
 810
 811        ret = gfs2_rsqa_alloc(ip);
 812        if (ret)
 813                return ret;
 814
 815        gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 816
 817        if (iocb->ki_flags & IOCB_APPEND) {
 818                struct gfs2_holder gh;
 819
 820                ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 821                if (ret)
 822                        return ret;
 823                gfs2_glock_dq_uninit(&gh);
 824        }
 825
 826        inode_lock(inode);
 827        ret = generic_write_checks(iocb, from);
 828        if (ret <= 0)
 829                goto out;
 830
 831        /* We can write back this queue in page reclaim */
 832        current->backing_dev_info = inode_to_bdi(inode);
 833
 834        ret = file_remove_privs(file);
 835        if (ret)
 836                goto out2;
 837
 838        ret = file_update_time(file);
 839        if (ret)
 840                goto out2;
 841
 842        if (iocb->ki_flags & IOCB_DIRECT) {
 843                struct address_space *mapping = file->f_mapping;
 844                loff_t pos, endbyte;
 845                ssize_t buffered;
 846
 847                written = gfs2_file_direct_write(iocb, from);
 848                if (written < 0 || !iov_iter_count(from))
 849                        goto out2;
 850
 851                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 852                if (unlikely(ret < 0))
 853                        goto out2;
 854                buffered = ret;
 855
 856                /*
 857                 * We need to ensure that the page cache pages are written to
 858                 * disk and invalidated to preserve the expected O_DIRECT
 859                 * semantics.
 860                 */
 861                pos = iocb->ki_pos;
 862                endbyte = pos + buffered - 1;
 863                ret = filemap_write_and_wait_range(mapping, pos, endbyte);
 864                if (!ret) {
 865                        iocb->ki_pos += buffered;
 866                        written += buffered;
 867                        invalidate_mapping_pages(mapping,
 868                                                 pos >> PAGE_SHIFT,
 869                                                 endbyte >> PAGE_SHIFT);
 870                } else {
 871                        /*
 872                         * We don't know how much we wrote, so just return
 873                         * the number of bytes which were direct-written
 874                         */
 875                }
 876        } else {
 877                ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 878                if (likely(ret > 0))
 879                        iocb->ki_pos += ret;
 880        }
 881
 882out2:
 883        current->backing_dev_info = NULL;
 884out:
 885        inode_unlock(inode);
 886        if (likely(ret > 0)) {
 887                /* Handle various SYNC-type writes */
 888                ret = generic_write_sync(iocb, ret);
 889        }
 890        return written ? written : ret;
 891}
 892
 893static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 894                           int mode)
 895{
 896        struct super_block *sb = inode->i_sb;
 897        struct gfs2_inode *ip = GFS2_I(inode);
 898        loff_t end = offset + len;
 899        struct buffer_head *dibh;
 900        int error;
 901
 902        error = gfs2_meta_inode_buffer(ip, &dibh);
 903        if (unlikely(error))
 904                return error;
 905
 906        gfs2_trans_add_meta(ip->i_gl, dibh);
 907
 908        if (gfs2_is_stuffed(ip)) {
 909                error = gfs2_unstuff_dinode(ip, NULL);
 910                if (unlikely(error))
 911                        goto out;
 912        }
 913
 914        while (offset < end) {
 915                struct iomap iomap = { };
 916
 917                error = gfs2_iomap_get_alloc(inode, offset, end - offset,
 918                                             &iomap);
 919                if (error)
 920                        goto out;
 921                offset = iomap.offset + iomap.length;
 922                if (!(iomap.flags & IOMAP_F_NEW))
 923                        continue;
 924                error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
 925                                         iomap.length >> inode->i_blkbits,
 926                                         GFP_NOFS);
 927                if (error) {
 928                        fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
 929                        goto out;
 930                }
 931        }
 932out:
 933        brelse(dibh);
 934        return error;
 935}
 936/**
 937 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
 938 *                     blocks, determine how many bytes can be written.
 939 * @ip:          The inode in question.
 940 * @len:         Max cap of bytes. What we return in *len must be <= this.
 941 * @data_blocks: Compute and return the number of data blocks needed
 942 * @ind_blocks:  Compute and return the number of indirect blocks needed
 943 * @max_blocks:  The total blocks available to work with.
 944 *
 945 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
 946 */
 947static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
 948                            unsigned int *data_blocks, unsigned int *ind_blocks,
 949                            unsigned int max_blocks)
 950{
 951        loff_t max = *len;
 952        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 953        unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
 954
 955        for (tmp = max_data; tmp > sdp->sd_diptrs;) {
 956                tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
 957                max_data -= tmp;
 958        }
 959
 960        *data_blocks = max_data;
 961        *ind_blocks = max_blocks - max_data;
 962        *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
 963        if (*len > max) {
 964                *len = max;
 965                gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
 966        }
 967}
 968
 969static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 970{
 971        struct inode *inode = file_inode(file);
 972        struct gfs2_sbd *sdp = GFS2_SB(inode);
 973        struct gfs2_inode *ip = GFS2_I(inode);
 974        struct gfs2_alloc_parms ap = { .aflags = 0, };
 975        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 976        loff_t bytes, max_bytes, max_blks;
 977        int error;
 978        const loff_t pos = offset;
 979        const loff_t count = len;
 980        loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
 981        loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
 982        loff_t max_chunk_size = UINT_MAX & bsize_mask;
 983
 984        next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 985
 986        offset &= bsize_mask;
 987
 988        len = next - offset;
 989        bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
 990        if (!bytes)
 991                bytes = UINT_MAX;
 992        bytes &= bsize_mask;
 993        if (bytes == 0)
 994                bytes = sdp->sd_sb.sb_bsize;
 995
 996        gfs2_size_hint(file, offset, len);
 997
 998        gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
 999        ap.min_target = data_blocks + ind_blocks;
1000
1001        while (len > 0) {
1002                if (len < bytes)
1003                        bytes = len;
1004                if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1005                        len -= bytes;
1006                        offset += bytes;
1007                        continue;
1008                }
1009
1010                /* We need to determine how many bytes we can actually
1011                 * fallocate without exceeding quota or going over the
1012                 * end of the fs. We start off optimistically by assuming
1013                 * we can write max_bytes */
1014                max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1015
1016                /* Since max_bytes is most likely a theoretical max, we
1017                 * calculate a more realistic 'bytes' to serve as a good
1018                 * starting point for the number of bytes we may be able
1019                 * to write */
1020                gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1021                ap.target = data_blocks + ind_blocks;
1022
1023                error = gfs2_quota_lock_check(ip, &ap);
1024                if (error)
1025                        return error;
1026                /* ap.allowed tells us how many blocks quota will allow
1027                 * us to write. Check if this reduces max_blks */
1028                max_blks = UINT_MAX;
1029                if (ap.allowed)
1030                        max_blks = ap.allowed;
1031
1032                error = gfs2_inplace_reserve(ip, &ap);
1033                if (error)
1034                        goto out_qunlock;
1035
1036                /* check if the selected rgrp limits our max_blks further */
1037                if (ap.allowed && ap.allowed < max_blks)
1038                        max_blks = ap.allowed;
1039
1040                /* Almost done. Calculate bytes that can be written using
1041                 * max_blks. We also recompute max_bytes, data_blocks and
1042                 * ind_blocks */
1043                calc_max_reserv(ip, &max_bytes, &data_blocks,
1044                                &ind_blocks, max_blks);
1045
1046                rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1047                          RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1048                if (gfs2_is_jdata(ip))
1049                        rblocks += data_blocks ? data_blocks : 1;
1050
1051                error = gfs2_trans_begin(sdp, rblocks,
1052                                         PAGE_SIZE/sdp->sd_sb.sb_bsize);
1053                if (error)
1054                        goto out_trans_fail;
1055
1056                error = fallocate_chunk(inode, offset, max_bytes, mode);
1057                gfs2_trans_end(sdp);
1058
1059                if (error)
1060                        goto out_trans_fail;
1061
1062                len -= max_bytes;
1063                offset += max_bytes;
1064                gfs2_inplace_release(ip);
1065                gfs2_quota_unlock(ip);
1066        }
1067
1068        if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1069                i_size_write(inode, pos + count);
1070                file_update_time(file);
1071                mark_inode_dirty(inode);
1072        }
1073
1074        if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1075                return vfs_fsync_range(file, pos, pos + count - 1,
1076                               (file->f_flags & __O_SYNC) ? 0 : 1);
1077        return 0;
1078
1079out_trans_fail:
1080        gfs2_inplace_release(ip);
1081out_qunlock:
1082        gfs2_quota_unlock(ip);
1083        return error;
1084}
1085
1086static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1087{
1088        struct inode *inode = file_inode(file);
1089        struct gfs2_sbd *sdp = GFS2_SB(inode);
1090        struct gfs2_inode *ip = GFS2_I(inode);
1091        struct gfs2_holder gh;
1092        int ret;
1093
1094        if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1095                return -EOPNOTSUPP;
1096        /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1097        if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1098                return -EOPNOTSUPP;
1099
1100        inode_lock(inode);
1101
1102        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1103        ret = gfs2_glock_nq(&gh);
1104        if (ret)
1105                goto out_uninit;
1106
1107        if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1108            (offset + len) > inode->i_size) {
1109                ret = inode_newsize_ok(inode, offset + len);
1110                if (ret)
1111                        goto out_unlock;
1112        }
1113
1114        ret = get_write_access(inode);
1115        if (ret)
1116                goto out_unlock;
1117
1118        if (mode & FALLOC_FL_PUNCH_HOLE) {
1119                ret = __gfs2_punch_hole(file, offset, len);
1120        } else {
1121                ret = gfs2_rsqa_alloc(ip);
1122                if (ret)
1123                        goto out_putw;
1124
1125                ret = __gfs2_fallocate(file, mode, offset, len);
1126
1127                if (ret)
1128                        gfs2_rs_deltree(&ip->i_res);
1129        }
1130
1131out_putw:
1132        put_write_access(inode);
1133out_unlock:
1134        gfs2_glock_dq(&gh);
1135out_uninit:
1136        gfs2_holder_uninit(&gh);
1137        inode_unlock(inode);
1138        return ret;
1139}
1140
1141static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1142                                      struct file *out, loff_t *ppos,
1143                                      size_t len, unsigned int flags)
1144{
1145        int error;
1146        struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1147
1148        error = gfs2_rsqa_alloc(ip);
1149        if (error)
1150                return (ssize_t)error;
1151
1152        gfs2_size_hint(out, *ppos, len);
1153
1154        return iter_file_splice_write(pipe, out, ppos, len, flags);
1155}
1156
1157#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1158
1159/**
1160 * gfs2_lock - acquire/release a posix lock on a file
1161 * @file: the file pointer
1162 * @cmd: either modify or retrieve lock state, possibly wait
1163 * @fl: type and range of lock
1164 *
1165 * Returns: errno
1166 */
1167
1168static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1169{
1170        struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1171        struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1172        struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1173
1174        if (!(fl->fl_flags & FL_POSIX))
1175                return -ENOLCK;
1176        if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1177                return -ENOLCK;
1178
1179        if (cmd == F_CANCELLK) {
1180                /* Hack: */
1181                cmd = F_SETLK;
1182                fl->fl_type = F_UNLCK;
1183        }
1184        if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags))) {
1185                if (fl->fl_type == F_UNLCK)
1186                        locks_lock_file_wait(file, fl);
1187                return -EIO;
1188        }
1189        if (IS_GETLK(cmd))
1190                return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1191        else if (fl->fl_type == F_UNLCK)
1192                return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1193        else
1194                return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1195}
1196
1197static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1198{
1199        struct gfs2_file *fp = file->private_data;
1200        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1201        struct gfs2_inode *ip = GFS2_I(file_inode(file));
1202        struct gfs2_glock *gl;
1203        unsigned int state;
1204        u16 flags;
1205        int error = 0;
1206        int sleeptime;
1207
1208        state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1209        flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1210
1211        mutex_lock(&fp->f_fl_mutex);
1212
1213        if (gfs2_holder_initialized(fl_gh)) {
1214                struct file_lock request;
1215                if (fl_gh->gh_state == state)
1216                        goto out;
1217                locks_init_lock(&request);
1218                request.fl_type = F_UNLCK;
1219                request.fl_flags = FL_FLOCK;
1220                locks_lock_file_wait(file, &request);
1221                gfs2_glock_dq(fl_gh);
1222                gfs2_holder_reinit(state, flags, fl_gh);
1223        } else {
1224                error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1225                                       &gfs2_flock_glops, CREATE, &gl);
1226                if (error)
1227                        goto out;
1228                gfs2_holder_init(gl, state, flags, fl_gh);
1229                gfs2_glock_put(gl);
1230        }
1231        for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1232                error = gfs2_glock_nq(fl_gh);
1233                if (error != GLR_TRYFAILED)
1234                        break;
1235                fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1236                fl_gh->gh_error = 0;
1237                msleep(sleeptime);
1238        }
1239        if (error) {
1240                gfs2_holder_uninit(fl_gh);
1241                if (error == GLR_TRYFAILED)
1242                        error = -EAGAIN;
1243        } else {
1244                error = locks_lock_file_wait(file, fl);
1245                gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1246        }
1247
1248out:
1249        mutex_unlock(&fp->f_fl_mutex);
1250        return error;
1251}
1252
1253static void do_unflock(struct file *file, struct file_lock *fl)
1254{
1255        struct gfs2_file *fp = file->private_data;
1256        struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1257
1258        mutex_lock(&fp->f_fl_mutex);
1259        locks_lock_file_wait(file, fl);
1260        if (gfs2_holder_initialized(fl_gh)) {
1261                gfs2_glock_dq(fl_gh);
1262                gfs2_holder_uninit(fl_gh);
1263        }
1264        mutex_unlock(&fp->f_fl_mutex);
1265}
1266
1267/**
1268 * gfs2_flock - acquire/release a flock lock on a file
1269 * @file: the file pointer
1270 * @cmd: either modify or retrieve lock state, possibly wait
1271 * @fl: type and range of lock
1272 *
1273 * Returns: errno
1274 */
1275
1276static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1277{
1278        if (!(fl->fl_flags & FL_FLOCK))
1279                return -ENOLCK;
1280        if (fl->fl_type & LOCK_MAND)
1281                return -EOPNOTSUPP;
1282
1283        if (fl->fl_type == F_UNLCK) {
1284                do_unflock(file, fl);
1285                return 0;
1286        } else {
1287                return do_flock(file, cmd, fl);
1288        }
1289}
1290
1291const struct file_operations gfs2_file_fops = {
1292        .llseek         = gfs2_llseek,
1293        .read_iter      = gfs2_file_read_iter,
1294        .write_iter     = gfs2_file_write_iter,
1295        .iopoll         = iomap_dio_iopoll,
1296        .unlocked_ioctl = gfs2_ioctl,
1297        .mmap           = gfs2_mmap,
1298        .open           = gfs2_open,
1299        .release        = gfs2_release,
1300        .fsync          = gfs2_fsync,
1301        .lock           = gfs2_lock,
1302        .flock          = gfs2_flock,
1303        .splice_read    = generic_file_splice_read,
1304        .splice_write   = gfs2_file_splice_write,
1305        .setlease       = simple_nosetlease,
1306        .fallocate      = gfs2_fallocate,
1307};
1308
1309const struct file_operations gfs2_dir_fops = {
1310        .iterate_shared = gfs2_readdir,
1311        .unlocked_ioctl = gfs2_ioctl,
1312        .open           = gfs2_open,
1313        .release        = gfs2_release,
1314        .fsync          = gfs2_fsync,
1315        .lock           = gfs2_lock,
1316        .flock          = gfs2_flock,
1317        .llseek         = default_llseek,
1318};
1319
1320#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1321
1322const struct file_operations gfs2_file_fops_nolock = {
1323        .llseek         = gfs2_llseek,
1324        .read_iter      = gfs2_file_read_iter,
1325        .write_iter     = gfs2_file_write_iter,
1326        .iopoll         = iomap_dio_iopoll,
1327        .unlocked_ioctl = gfs2_ioctl,
1328        .mmap           = gfs2_mmap,
1329        .open           = gfs2_open,
1330        .release        = gfs2_release,
1331        .fsync          = gfs2_fsync,
1332        .splice_read    = generic_file_splice_read,
1333        .splice_write   = gfs2_file_splice_write,
1334        .setlease       = generic_setlease,
1335        .fallocate      = gfs2_fallocate,
1336};
1337
1338const struct file_operations gfs2_dir_fops_nolock = {
1339        .iterate_shared = gfs2_readdir,
1340        .unlocked_ioctl = gfs2_ioctl,
1341        .open           = gfs2_open,
1342        .release        = gfs2_release,
1343        .fsync          = gfs2_fsync,
1344        .llseek         = default_llseek,
1345};
1346
1347