linux/fs/gfs2/rgrp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/slab.h>
  10#include <linux/spinlock.h>
  11#include <linux/completion.h>
  12#include <linux/buffer_head.h>
  13#include <linux/fs.h>
  14#include <linux/gfs2_ondisk.h>
  15#include <linux/prefetch.h>
  16#include <linux/blkdev.h>
  17#include <linux/rbtree.h>
  18#include <linux/random.h>
  19
  20#include "gfs2.h"
  21#include "incore.h"
  22#include "glock.h"
  23#include "glops.h"
  24#include "lops.h"
  25#include "meta_io.h"
  26#include "quota.h"
  27#include "rgrp.h"
  28#include "super.h"
  29#include "trans.h"
  30#include "util.h"
  31#include "log.h"
  32#include "inode.h"
  33#include "trace_gfs2.h"
  34#include "dir.h"
  35
  36#define BFITNOENT ((u32)~0)
  37#define NO_BLOCK ((u64)~0)
  38
  39#if BITS_PER_LONG == 32
  40#define LBITMASK   (0x55555555UL)
  41#define LBITSKIP55 (0x55555555UL)
  42#define LBITSKIP00 (0x00000000UL)
  43#else
  44#define LBITMASK   (0x5555555555555555UL)
  45#define LBITSKIP55 (0x5555555555555555UL)
  46#define LBITSKIP00 (0x0000000000000000UL)
  47#endif
  48
  49/*
  50 * These routines are used by the resource group routines (rgrp.c)
  51 * to keep track of block allocation.  Each block is represented by two
  52 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  53 *
  54 * 0 = Free
  55 * 1 = Used (not metadata)
  56 * 2 = Unlinked (still in use) inode
  57 * 3 = Used (metadata)
  58 */
  59
  60struct gfs2_extent {
  61        struct gfs2_rbm rbm;
  62        u32 len;
  63};
  64
  65static const char valid_change[16] = {
  66                /* current */
  67        /* n */ 0, 1, 1, 1,
  68        /* e */ 1, 0, 0, 0,
  69        /* w */ 0, 0, 0, 1,
  70                1, 0, 0, 0
  71};
  72
  73static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  74                         const struct gfs2_inode *ip, bool nowrap);
  75
  76
  77/**
  78 * gfs2_setbit - Set a bit in the bitmaps
  79 * @rbm: The position of the bit to set
  80 * @do_clone: Also set the clone bitmap, if it exists
  81 * @new_state: the new state of the block
  82 *
  83 */
  84
  85static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  86                               unsigned char new_state)
  87{
  88        unsigned char *byte1, *byte2, *end, cur_state;
  89        struct gfs2_bitmap *bi = rbm_bi(rbm);
  90        unsigned int buflen = bi->bi_bytes;
  91        const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  92
  93        byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  94        end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  95
  96        BUG_ON(byte1 >= end);
  97
  98        cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
  99
 100        if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 101                struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
 102
 103                fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
 104                        rbm->offset, cur_state, new_state);
 105                fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
 106                        (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
 107                        (unsigned long long)bi->bi_bh->b_blocknr);
 108                fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
 109                        bi->bi_offset, bi->bi_bytes,
 110                        (unsigned long long)gfs2_rbm_to_block(rbm));
 111                dump_stack();
 112                gfs2_consist_rgrpd(rbm->rgd);
 113                return;
 114        }
 115        *byte1 ^= (cur_state ^ new_state) << bit;
 116
 117        if (do_clone && bi->bi_clone) {
 118                byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 119                cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 120                *byte2 ^= (cur_state ^ new_state) << bit;
 121        }
 122}
 123
 124/**
 125 * gfs2_testbit - test a bit in the bitmaps
 126 * @rbm: The bit to test
 127 * @use_clone: If true, test the clone bitmap, not the official bitmap.
 128 *
 129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
 130 * not the "real" bitmaps, to avoid allocating recently freed blocks.
 131 *
 132 * Returns: The two bit block state of the requested bit
 133 */
 134
 135static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
 136{
 137        struct gfs2_bitmap *bi = rbm_bi(rbm);
 138        const u8 *buffer;
 139        const u8 *byte;
 140        unsigned int bit;
 141
 142        if (use_clone && bi->bi_clone)
 143                buffer = bi->bi_clone;
 144        else
 145                buffer = bi->bi_bh->b_data;
 146        buffer += bi->bi_offset;
 147        byte = buffer + (rbm->offset / GFS2_NBBY);
 148        bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 149
 150        return (*byte >> bit) & GFS2_BIT_MASK;
 151}
 152
 153/**
 154 * gfs2_bit_search
 155 * @ptr: Pointer to bitmap data
 156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 157 * @state: The state we are searching for
 158 *
 159 * We xor the bitmap data with a patter which is the bitwise opposite
 160 * of what we are looking for, this gives rise to a pattern of ones
 161 * wherever there is a match. Since we have two bits per entry, we
 162 * take this pattern, shift it down by one place and then and it with
 163 * the original. All the even bit positions (0,2,4, etc) then represent
 164 * successful matches, so we mask with 0x55555..... to remove the unwanted
 165 * odd bit positions.
 166 *
 167 * This allows searching of a whole u64 at once (32 blocks) with a
 168 * single test (on 64 bit arches).
 169 */
 170
 171static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 172{
 173        u64 tmp;
 174        static const u64 search[] = {
 175                [0] = 0xffffffffffffffffULL,
 176                [1] = 0xaaaaaaaaaaaaaaaaULL,
 177                [2] = 0x5555555555555555ULL,
 178                [3] = 0x0000000000000000ULL,
 179        };
 180        tmp = le64_to_cpu(*ptr) ^ search[state];
 181        tmp &= (tmp >> 1);
 182        tmp &= mask;
 183        return tmp;
 184}
 185
 186/**
 187 * rs_cmp - multi-block reservation range compare
 188 * @blk: absolute file system block number of the new reservation
 189 * @len: number of blocks in the new reservation
 190 * @rs: existing reservation to compare against
 191 *
 192 * returns: 1 if the block range is beyond the reach of the reservation
 193 *         -1 if the block range is before the start of the reservation
 194 *          0 if the block range overlaps with the reservation
 195 */
 196static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 197{
 198        u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 199
 200        if (blk >= startblk + rs->rs_free)
 201                return 1;
 202        if (blk + len - 1 < startblk)
 203                return -1;
 204        return 0;
 205}
 206
 207/**
 208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 209 *       a block in a given allocation state.
 210 * @buf: the buffer that holds the bitmaps
 211 * @len: the length (in bytes) of the buffer
 212 * @goal: start search at this block's bit-pair (within @buffer)
 213 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 214 *
 215 * Scope of @goal and returned block number is only within this bitmap buffer,
 216 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 217 * beginning of a bitmap block buffer, skipping any header structures, but
 218 * headers are always a multiple of 64 bits long so that the buffer is
 219 * always aligned to a 64 bit boundary.
 220 *
 221 * The size of the buffer is in bytes, but is it assumed that it is
 222 * always ok to read a complete multiple of 64 bits at the end
 223 * of the block in case the end is no aligned to a natural boundary.
 224 *
 225 * Return: the block number (bitmap buffer scope) that was found
 226 */
 227
 228static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 229                       u32 goal, u8 state)
 230{
 231        u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 232        const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 233        const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 234        u64 tmp;
 235        u64 mask = 0x5555555555555555ULL;
 236        u32 bit;
 237
 238        /* Mask off bits we don't care about at the start of the search */
 239        mask <<= spoint;
 240        tmp = gfs2_bit_search(ptr, mask, state);
 241        ptr++;
 242        while(tmp == 0 && ptr < end) {
 243                tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 244                ptr++;
 245        }
 246        /* Mask off any bits which are more than len bytes from the start */
 247        if (ptr == end && (len & (sizeof(u64) - 1)))
 248                tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 249        /* Didn't find anything, so return */
 250        if (tmp == 0)
 251                return BFITNOENT;
 252        ptr--;
 253        bit = __ffs64(tmp);
 254        bit /= 2;       /* two bits per entry in the bitmap */
 255        return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 256}
 257
 258/**
 259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 260 * @rbm: The rbm with rgd already set correctly
 261 * @block: The block number (filesystem relative)
 262 *
 263 * This sets the bi and offset members of an rbm based on a
 264 * resource group and a filesystem relative block number. The
 265 * resource group must be set in the rbm on entry, the bi and
 266 * offset members will be set by this function.
 267 *
 268 * Returns: 0 on success, or an error code
 269 */
 270
 271static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 272{
 273        if (!rgrp_contains_block(rbm->rgd, block))
 274                return -E2BIG;
 275        rbm->bii = 0;
 276        rbm->offset = block - rbm->rgd->rd_data0;
 277        /* Check if the block is within the first block */
 278        if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 279                return 0;
 280
 281        /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 282        rbm->offset += (sizeof(struct gfs2_rgrp) -
 283                        sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 284        rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 285        rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 286        return 0;
 287}
 288
 289/**
 290 * gfs2_rbm_incr - increment an rbm structure
 291 * @rbm: The rbm with rgd already set correctly
 292 *
 293 * This function takes an existing rbm structure and increments it to the next
 294 * viable block offset.
 295 *
 296 * Returns: If incrementing the offset would cause the rbm to go past the
 297 *          end of the rgrp, true is returned, otherwise false.
 298 *
 299 */
 300
 301static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 302{
 303        if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 304                rbm->offset++;
 305                return false;
 306        }
 307        if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 308                return true;
 309
 310        rbm->offset = 0;
 311        rbm->bii++;
 312        return false;
 313}
 314
 315/**
 316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 317 * @rbm: Position to search (value/result)
 318 * @n_unaligned: Number of unaligned blocks to check
 319 * @len: Decremented for each block found (terminate on zero)
 320 *
 321 * Returns: true if a non-free block is encountered
 322 */
 323
 324static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 325{
 326        u32 n;
 327        u8 res;
 328
 329        for (n = 0; n < n_unaligned; n++) {
 330                res = gfs2_testbit(rbm, true);
 331                if (res != GFS2_BLKST_FREE)
 332                        return true;
 333                (*len)--;
 334                if (*len == 0)
 335                        return true;
 336                if (gfs2_rbm_incr(rbm))
 337                        return true;
 338        }
 339
 340        return false;
 341}
 342
 343/**
 344 * gfs2_free_extlen - Return extent length of free blocks
 345 * @rrbm: Starting position
 346 * @len: Max length to check
 347 *
 348 * Starting at the block specified by the rbm, see how many free blocks
 349 * there are, not reading more than len blocks ahead. This can be done
 350 * using memchr_inv when the blocks are byte aligned, but has to be done
 351 * on a block by block basis in case of unaligned blocks. Also this
 352 * function can cope with bitmap boundaries (although it must stop on
 353 * a resource group boundary)
 354 *
 355 * Returns: Number of free blocks in the extent
 356 */
 357
 358static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 359{
 360        struct gfs2_rbm rbm = *rrbm;
 361        u32 n_unaligned = rbm.offset & 3;
 362        u32 size = len;
 363        u32 bytes;
 364        u32 chunk_size;
 365        u8 *ptr, *start, *end;
 366        u64 block;
 367        struct gfs2_bitmap *bi;
 368
 369        if (n_unaligned &&
 370            gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 371                goto out;
 372
 373        n_unaligned = len & 3;
 374        /* Start is now byte aligned */
 375        while (len > 3) {
 376                bi = rbm_bi(&rbm);
 377                start = bi->bi_bh->b_data;
 378                if (bi->bi_clone)
 379                        start = bi->bi_clone;
 380                start += bi->bi_offset;
 381                end = start + bi->bi_bytes;
 382                BUG_ON(rbm.offset & 3);
 383                start += (rbm.offset / GFS2_NBBY);
 384                bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 385                ptr = memchr_inv(start, 0, bytes);
 386                chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 387                chunk_size *= GFS2_NBBY;
 388                BUG_ON(len < chunk_size);
 389                len -= chunk_size;
 390                block = gfs2_rbm_to_block(&rbm);
 391                if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 392                        n_unaligned = 0;
 393                        break;
 394                }
 395                if (ptr) {
 396                        n_unaligned = 3;
 397                        break;
 398                }
 399                n_unaligned = len & 3;
 400        }
 401
 402        /* Deal with any bits left over at the end */
 403        if (n_unaligned)
 404                gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 405out:
 406        return size - len;
 407}
 408
 409/**
 410 * gfs2_bitcount - count the number of bits in a certain state
 411 * @rgd: the resource group descriptor
 412 * @buffer: the buffer that holds the bitmaps
 413 * @buflen: the length (in bytes) of the buffer
 414 * @state: the state of the block we're looking for
 415 *
 416 * Returns: The number of bits
 417 */
 418
 419static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 420                         unsigned int buflen, u8 state)
 421{
 422        const u8 *byte = buffer;
 423        const u8 *end = buffer + buflen;
 424        const u8 state1 = state << 2;
 425        const u8 state2 = state << 4;
 426        const u8 state3 = state << 6;
 427        u32 count = 0;
 428
 429        for (; byte < end; byte++) {
 430                if (((*byte) & 0x03) == state)
 431                        count++;
 432                if (((*byte) & 0x0C) == state1)
 433                        count++;
 434                if (((*byte) & 0x30) == state2)
 435                        count++;
 436                if (((*byte) & 0xC0) == state3)
 437                        count++;
 438        }
 439
 440        return count;
 441}
 442
 443/**
 444 * gfs2_rgrp_verify - Verify that a resource group is consistent
 445 * @rgd: the rgrp
 446 *
 447 */
 448
 449void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 450{
 451        struct gfs2_sbd *sdp = rgd->rd_sbd;
 452        struct gfs2_bitmap *bi = NULL;
 453        u32 length = rgd->rd_length;
 454        u32 count[4], tmp;
 455        int buf, x;
 456
 457        memset(count, 0, 4 * sizeof(u32));
 458
 459        /* Count # blocks in each of 4 possible allocation states */
 460        for (buf = 0; buf < length; buf++) {
 461                bi = rgd->rd_bits + buf;
 462                for (x = 0; x < 4; x++)
 463                        count[x] += gfs2_bitcount(rgd,
 464                                                  bi->bi_bh->b_data +
 465                                                  bi->bi_offset,
 466                                                  bi->bi_bytes, x);
 467        }
 468
 469        if (count[0] != rgd->rd_free) {
 470                if (gfs2_consist_rgrpd(rgd))
 471                        fs_err(sdp, "free data mismatch:  %u != %u\n",
 472                               count[0], rgd->rd_free);
 473                return;
 474        }
 475
 476        tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 477        if (count[1] != tmp) {
 478                if (gfs2_consist_rgrpd(rgd))
 479                        fs_err(sdp, "used data mismatch:  %u != %u\n",
 480                               count[1], tmp);
 481                return;
 482        }
 483
 484        if (count[2] + count[3] != rgd->rd_dinodes) {
 485                if (gfs2_consist_rgrpd(rgd))
 486                        fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 487                               count[2] + count[3], rgd->rd_dinodes);
 488                return;
 489        }
 490}
 491
 492/**
 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 494 * @sdp: The GFS2 superblock
 495 * @blk: The data block number
 496 * @exact: True if this needs to be an exact match
 497 *
 498 * The @exact argument should be set to true by most callers. The exception
 499 * is when we need to match blocks which are not represented by the rgrp
 500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
 501 * there for alignment purposes. Another way of looking at it is that @exact
 502 * matches only valid data/metadata blocks, but with @exact false, it will
 503 * match any block within the extent of the rgrp.
 504 *
 505 * Returns: The resource group, or NULL if not found
 506 */
 507
 508struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 509{
 510        struct rb_node *n, *next;
 511        struct gfs2_rgrpd *cur;
 512
 513        spin_lock(&sdp->sd_rindex_spin);
 514        n = sdp->sd_rindex_tree.rb_node;
 515        while (n) {
 516                cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 517                next = NULL;
 518                if (blk < cur->rd_addr)
 519                        next = n->rb_left;
 520                else if (blk >= cur->rd_data0 + cur->rd_data)
 521                        next = n->rb_right;
 522                if (next == NULL) {
 523                        spin_unlock(&sdp->sd_rindex_spin);
 524                        if (exact) {
 525                                if (blk < cur->rd_addr)
 526                                        return NULL;
 527                                if (blk >= cur->rd_data0 + cur->rd_data)
 528                                        return NULL;
 529                        }
 530                        return cur;
 531                }
 532                n = next;
 533        }
 534        spin_unlock(&sdp->sd_rindex_spin);
 535
 536        return NULL;
 537}
 538
 539/**
 540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 541 * @sdp: The GFS2 superblock
 542 *
 543 * Returns: The first rgrp in the filesystem
 544 */
 545
 546struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 547{
 548        const struct rb_node *n;
 549        struct gfs2_rgrpd *rgd;
 550
 551        spin_lock(&sdp->sd_rindex_spin);
 552        n = rb_first(&sdp->sd_rindex_tree);
 553        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 554        spin_unlock(&sdp->sd_rindex_spin);
 555
 556        return rgd;
 557}
 558
 559/**
 560 * gfs2_rgrpd_get_next - get the next RG
 561 * @rgd: the resource group descriptor
 562 *
 563 * Returns: The next rgrp
 564 */
 565
 566struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 567{
 568        struct gfs2_sbd *sdp = rgd->rd_sbd;
 569        const struct rb_node *n;
 570
 571        spin_lock(&sdp->sd_rindex_spin);
 572        n = rb_next(&rgd->rd_node);
 573        if (n == NULL)
 574                n = rb_first(&sdp->sd_rindex_tree);
 575
 576        if (unlikely(&rgd->rd_node == n)) {
 577                spin_unlock(&sdp->sd_rindex_spin);
 578                return NULL;
 579        }
 580        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 581        spin_unlock(&sdp->sd_rindex_spin);
 582        return rgd;
 583}
 584
 585void check_and_update_goal(struct gfs2_inode *ip)
 586{
 587        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 588        if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 589                ip->i_goal = ip->i_no_addr;
 590}
 591
 592void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 593{
 594        int x;
 595
 596        for (x = 0; x < rgd->rd_length; x++) {
 597                struct gfs2_bitmap *bi = rgd->rd_bits + x;
 598                kfree(bi->bi_clone);
 599                bi->bi_clone = NULL;
 600        }
 601}
 602
 603/**
 604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 605 *                 plus a quota allocations data structure, if necessary
 606 * @ip: the inode for this reservation
 607 */
 608int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 609{
 610        return gfs2_qa_alloc(ip);
 611}
 612
 613static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
 614                    const char *fs_id_buf)
 615{
 616        struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
 617
 618        gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
 619                       (unsigned long long)ip->i_no_addr,
 620                       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 621                       rs->rs_rbm.offset, rs->rs_free);
 622}
 623
 624/**
 625 * __rs_deltree - remove a multi-block reservation from the rgd tree
 626 * @rs: The reservation to remove
 627 *
 628 */
 629static void __rs_deltree(struct gfs2_blkreserv *rs)
 630{
 631        struct gfs2_rgrpd *rgd;
 632
 633        if (!gfs2_rs_active(rs))
 634                return;
 635
 636        rgd = rs->rs_rbm.rgd;
 637        trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 638        rb_erase(&rs->rs_node, &rgd->rd_rstree);
 639        RB_CLEAR_NODE(&rs->rs_node);
 640
 641        if (rs->rs_free) {
 642                u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
 643                                 rs->rs_free - 1;
 644                struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
 645                struct gfs2_bitmap *start, *last;
 646
 647                /* return reserved blocks to the rgrp */
 648                BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 649                rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 650                /* The rgrp extent failure point is likely not to increase;
 651                   it will only do so if the freed blocks are somehow
 652                   contiguous with a span of free blocks that follows. Still,
 653                   it will force the number to be recalculated later. */
 654                rgd->rd_extfail_pt += rs->rs_free;
 655                rs->rs_free = 0;
 656                if (gfs2_rbm_from_block(&last_rbm, last_block))
 657                        return;
 658                start = rbm_bi(&rs->rs_rbm);
 659                last = rbm_bi(&last_rbm);
 660                do
 661                        clear_bit(GBF_FULL, &start->bi_flags);
 662                while (start++ != last);
 663        }
 664}
 665
 666/**
 667 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 668 * @rs: The reservation to remove
 669 *
 670 */
 671void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 672{
 673        struct gfs2_rgrpd *rgd;
 674
 675        rgd = rs->rs_rbm.rgd;
 676        if (rgd) {
 677                spin_lock(&rgd->rd_rsspin);
 678                __rs_deltree(rs);
 679                BUG_ON(rs->rs_free);
 680                spin_unlock(&rgd->rd_rsspin);
 681        }
 682}
 683
 684/**
 685 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 686 * @ip: The inode for this reservation
 687 * @wcount: The inode's write count, or NULL
 688 *
 689 */
 690void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 691{
 692        down_write(&ip->i_rw_mutex);
 693        if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 694                gfs2_rs_deltree(&ip->i_res);
 695        up_write(&ip->i_rw_mutex);
 696        gfs2_qa_delete(ip, wcount);
 697}
 698
 699/**
 700 * return_all_reservations - return all reserved blocks back to the rgrp.
 701 * @rgd: the rgrp that needs its space back
 702 *
 703 * We previously reserved a bunch of blocks for allocation. Now we need to
 704 * give them back. This leave the reservation structures in tact, but removes
 705 * all of their corresponding "no-fly zones".
 706 */
 707static void return_all_reservations(struct gfs2_rgrpd *rgd)
 708{
 709        struct rb_node *n;
 710        struct gfs2_blkreserv *rs;
 711
 712        spin_lock(&rgd->rd_rsspin);
 713        while ((n = rb_first(&rgd->rd_rstree))) {
 714                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 715                __rs_deltree(rs);
 716        }
 717        spin_unlock(&rgd->rd_rsspin);
 718}
 719
 720void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 721{
 722        struct rb_node *n;
 723        struct gfs2_rgrpd *rgd;
 724        struct gfs2_glock *gl;
 725
 726        while ((n = rb_first(&sdp->sd_rindex_tree))) {
 727                rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 728                gl = rgd->rd_gl;
 729
 730                rb_erase(n, &sdp->sd_rindex_tree);
 731
 732                if (gl) {
 733                        glock_clear_object(gl, rgd);
 734                        gfs2_rgrp_brelse(rgd);
 735                        gfs2_glock_put(gl);
 736                }
 737
 738                gfs2_free_clones(rgd);
 739                kfree(rgd->rd_bits);
 740                rgd->rd_bits = NULL;
 741                return_all_reservations(rgd);
 742                kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 743        }
 744}
 745
 746static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 747{
 748        struct gfs2_sbd *sdp = rgd->rd_sbd;
 749
 750        fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 751        fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
 752        fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 753        fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
 754        fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
 755}
 756
 757/**
 758 * gfs2_compute_bitstructs - Compute the bitmap sizes
 759 * @rgd: The resource group descriptor
 760 *
 761 * Calculates bitmap descriptors, one for each block that contains bitmap data
 762 *
 763 * Returns: errno
 764 */
 765
 766static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 767{
 768        struct gfs2_sbd *sdp = rgd->rd_sbd;
 769        struct gfs2_bitmap *bi;
 770        u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 771        u32 bytes_left, bytes;
 772        int x;
 773
 774        if (!length)
 775                return -EINVAL;
 776
 777        rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 778        if (!rgd->rd_bits)
 779                return -ENOMEM;
 780
 781        bytes_left = rgd->rd_bitbytes;
 782
 783        for (x = 0; x < length; x++) {
 784                bi = rgd->rd_bits + x;
 785
 786                bi->bi_flags = 0;
 787                /* small rgrp; bitmap stored completely in header block */
 788                if (length == 1) {
 789                        bytes = bytes_left;
 790                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 791                        bi->bi_start = 0;
 792                        bi->bi_bytes = bytes;
 793                        bi->bi_blocks = bytes * GFS2_NBBY;
 794                /* header block */
 795                } else if (x == 0) {
 796                        bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 797                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 798                        bi->bi_start = 0;
 799                        bi->bi_bytes = bytes;
 800                        bi->bi_blocks = bytes * GFS2_NBBY;
 801                /* last block */
 802                } else if (x + 1 == length) {
 803                        bytes = bytes_left;
 804                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 805                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 806                        bi->bi_bytes = bytes;
 807                        bi->bi_blocks = bytes * GFS2_NBBY;
 808                /* other blocks */
 809                } else {
 810                        bytes = sdp->sd_sb.sb_bsize -
 811                                sizeof(struct gfs2_meta_header);
 812                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 813                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 814                        bi->bi_bytes = bytes;
 815                        bi->bi_blocks = bytes * GFS2_NBBY;
 816                }
 817
 818                bytes_left -= bytes;
 819        }
 820
 821        if (bytes_left) {
 822                gfs2_consist_rgrpd(rgd);
 823                return -EIO;
 824        }
 825        bi = rgd->rd_bits + (length - 1);
 826        if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
 827                if (gfs2_consist_rgrpd(rgd)) {
 828                        gfs2_rindex_print(rgd);
 829                        fs_err(sdp, "start=%u len=%u offset=%u\n",
 830                               bi->bi_start, bi->bi_bytes, bi->bi_offset);
 831                }
 832                return -EIO;
 833        }
 834
 835        return 0;
 836}
 837
 838/**
 839 * gfs2_ri_total - Total up the file system space, according to the rindex.
 840 * @sdp: the filesystem
 841 *
 842 */
 843u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 844{
 845        u64 total_data = 0;     
 846        struct inode *inode = sdp->sd_rindex;
 847        struct gfs2_inode *ip = GFS2_I(inode);
 848        char buf[sizeof(struct gfs2_rindex)];
 849        int error, rgrps;
 850
 851        for (rgrps = 0;; rgrps++) {
 852                loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 853
 854                if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 855                        break;
 856                error = gfs2_internal_read(ip, buf, &pos,
 857                                           sizeof(struct gfs2_rindex));
 858                if (error != sizeof(struct gfs2_rindex))
 859                        break;
 860                total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 861        }
 862        return total_data;
 863}
 864
 865static int rgd_insert(struct gfs2_rgrpd *rgd)
 866{
 867        struct gfs2_sbd *sdp = rgd->rd_sbd;
 868        struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 869
 870        /* Figure out where to put new node */
 871        while (*newn) {
 872                struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 873                                                  rd_node);
 874
 875                parent = *newn;
 876                if (rgd->rd_addr < cur->rd_addr)
 877                        newn = &((*newn)->rb_left);
 878                else if (rgd->rd_addr > cur->rd_addr)
 879                        newn = &((*newn)->rb_right);
 880                else
 881                        return -EEXIST;
 882        }
 883
 884        rb_link_node(&rgd->rd_node, parent, newn);
 885        rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 886        sdp->sd_rgrps++;
 887        return 0;
 888}
 889
 890/**
 891 * read_rindex_entry - Pull in a new resource index entry from the disk
 892 * @ip: Pointer to the rindex inode
 893 *
 894 * Returns: 0 on success, > 0 on EOF, error code otherwise
 895 */
 896
 897static int read_rindex_entry(struct gfs2_inode *ip)
 898{
 899        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 900        const unsigned bsize = sdp->sd_sb.sb_bsize;
 901        loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 902        struct gfs2_rindex buf;
 903        int error;
 904        struct gfs2_rgrpd *rgd;
 905
 906        if (pos >= i_size_read(&ip->i_inode))
 907                return 1;
 908
 909        error = gfs2_internal_read(ip, (char *)&buf, &pos,
 910                                   sizeof(struct gfs2_rindex));
 911
 912        if (error != sizeof(struct gfs2_rindex))
 913                return (error == 0) ? 1 : error;
 914
 915        rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 916        error = -ENOMEM;
 917        if (!rgd)
 918                return error;
 919
 920        rgd->rd_sbd = sdp;
 921        rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 922        rgd->rd_length = be32_to_cpu(buf.ri_length);
 923        rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 924        rgd->rd_data = be32_to_cpu(buf.ri_data);
 925        rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 926        spin_lock_init(&rgd->rd_rsspin);
 927
 928        error = compute_bitstructs(rgd);
 929        if (error)
 930                goto fail;
 931
 932        error = gfs2_glock_get(sdp, rgd->rd_addr,
 933                               &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 934        if (error)
 935                goto fail;
 936
 937        rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 938        rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 939        if (rgd->rd_data > sdp->sd_max_rg_data)
 940                sdp->sd_max_rg_data = rgd->rd_data;
 941        spin_lock(&sdp->sd_rindex_spin);
 942        error = rgd_insert(rgd);
 943        spin_unlock(&sdp->sd_rindex_spin);
 944        if (!error) {
 945                glock_set_object(rgd->rd_gl, rgd);
 946                rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 947                rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 948                                                    rgd->rd_length) * bsize) - 1;
 949                return 0;
 950        }
 951
 952        error = 0; /* someone else read in the rgrp; free it and ignore it */
 953        gfs2_glock_put(rgd->rd_gl);
 954
 955fail:
 956        kfree(rgd->rd_bits);
 957        rgd->rd_bits = NULL;
 958        kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 959        return error;
 960}
 961
 962/**
 963 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 964 * @sdp: the GFS2 superblock
 965 *
 966 * The purpose of this function is to select a subset of the resource groups
 967 * and mark them as PREFERRED. We do it in such a way that each node prefers
 968 * to use a unique set of rgrps to minimize glock contention.
 969 */
 970static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 971{
 972        struct gfs2_rgrpd *rgd, *first;
 973        int i;
 974
 975        /* Skip an initial number of rgrps, based on this node's journal ID.
 976           That should start each node out on its own set. */
 977        rgd = gfs2_rgrpd_get_first(sdp);
 978        for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 979                rgd = gfs2_rgrpd_get_next(rgd);
 980        first = rgd;
 981
 982        do {
 983                rgd->rd_flags |= GFS2_RDF_PREFERRED;
 984                for (i = 0; i < sdp->sd_journals; i++) {
 985                        rgd = gfs2_rgrpd_get_next(rgd);
 986                        if (!rgd || rgd == first)
 987                                break;
 988                }
 989        } while (rgd && rgd != first);
 990}
 991
 992/**
 993 * gfs2_ri_update - Pull in a new resource index from the disk
 994 * @ip: pointer to the rindex inode
 995 *
 996 * Returns: 0 on successful update, error code otherwise
 997 */
 998
 999static int gfs2_ri_update(struct gfs2_inode *ip)
1000{
1001        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1002        int error;
1003
1004        do {
1005                error = read_rindex_entry(ip);
1006        } while (error == 0);
1007
1008        if (error < 0)
1009                return error;
1010
1011        set_rgrp_preferences(sdp);
1012
1013        sdp->sd_rindex_uptodate = 1;
1014        return 0;
1015}
1016
1017/**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
1034int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035{
1036        struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037        struct gfs2_glock *gl = ip->i_gl;
1038        struct gfs2_holder ri_gh;
1039        int error = 0;
1040        int unlock_required = 0;
1041
1042        /* Read new copy from disk if we don't have the latest */
1043        if (!sdp->sd_rindex_uptodate) {
1044                if (!gfs2_glock_is_locked_by_me(gl)) {
1045                        error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046                        if (error)
1047                                return error;
1048                        unlock_required = 1;
1049                }
1050                if (!sdp->sd_rindex_uptodate)
1051                        error = gfs2_ri_update(ip);
1052                if (unlock_required)
1053                        gfs2_glock_dq_uninit(&ri_gh);
1054        }
1055
1056        return error;
1057}
1058
1059static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060{
1061        const struct gfs2_rgrp *str = buf;
1062        u32 rg_flags;
1063
1064        rg_flags = be32_to_cpu(str->rg_flags);
1065        rg_flags &= ~GFS2_RDF_MASK;
1066        rgd->rd_flags &= GFS2_RDF_MASK;
1067        rgd->rd_flags |= rg_flags;
1068        rgd->rd_free = be32_to_cpu(str->rg_free);
1069        rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070        rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071        /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072}
1073
1074static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075{
1076        const struct gfs2_rgrp *str = buf;
1077
1078        rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079        rgl->rl_flags = str->rg_flags;
1080        rgl->rl_free = str->rg_free;
1081        rgl->rl_dinodes = str->rg_dinodes;
1082        rgl->rl_igeneration = str->rg_igeneration;
1083        rgl->__pad = 0UL;
1084}
1085
1086static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087{
1088        struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089        struct gfs2_rgrp *str = buf;
1090        u32 crc;
1091
1092        str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093        str->rg_free = cpu_to_be32(rgd->rd_free);
1094        str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095        if (next == NULL)
1096                str->rg_skip = 0;
1097        else if (next->rd_addr > rgd->rd_addr)
1098                str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099        str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100        str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101        str->rg_data = cpu_to_be32(rgd->rd_data);
1102        str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103        str->rg_crc = 0;
1104        crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105        str->rg_crc = cpu_to_be32(crc);
1106
1107        memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109}
1110
1111static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112{
1113        struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114        struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115        struct gfs2_sbd *sdp = rgd->rd_sbd;
1116        int valid = 1;
1117
1118        if (rgl->rl_flags != str->rg_flags) {
1119                fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120                        (unsigned long long)rgd->rd_addr,
1121                       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122                valid = 0;
1123        }
1124        if (rgl->rl_free != str->rg_free) {
1125                fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126                        (unsigned long long)rgd->rd_addr,
1127                        be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128                valid = 0;
1129        }
1130        if (rgl->rl_dinodes != str->rg_dinodes) {
1131                fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132                        (unsigned long long)rgd->rd_addr,
1133                        be32_to_cpu(rgl->rl_dinodes),
1134                        be32_to_cpu(str->rg_dinodes));
1135                valid = 0;
1136        }
1137        if (rgl->rl_igeneration != str->rg_igeneration) {
1138                fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139                        (unsigned long long)rgd->rd_addr,
1140                        (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141                        (unsigned long long)be64_to_cpu(str->rg_igeneration));
1142                valid = 0;
1143        }
1144        return valid;
1145}
1146
1147static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148{
1149        struct gfs2_bitmap *bi;
1150        const u32 length = rgd->rd_length;
1151        const u8 *buffer = NULL;
1152        u32 i, goal, count = 0;
1153
1154        for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155                goal = 0;
1156                buffer = bi->bi_bh->b_data + bi->bi_offset;
1157                WARN_ON(!buffer_uptodate(bi->bi_bh));
1158                while (goal < bi->bi_blocks) {
1159                        goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160                                           GFS2_BLKST_UNLINKED);
1161                        if (goal == BFITNOENT)
1162                                break;
1163                        count++;
1164                        goal++;
1165                }
1166        }
1167
1168        return count;
1169}
1170
1171
1172/**
1173 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1174 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1175 *
1176 * Read in all of a Resource Group's header and bitmap blocks.
1177 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1178 *
1179 * Returns: errno
1180 */
1181
1182static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1183{
1184        struct gfs2_sbd *sdp = rgd->rd_sbd;
1185        struct gfs2_glock *gl = rgd->rd_gl;
1186        unsigned int length = rgd->rd_length;
1187        struct gfs2_bitmap *bi;
1188        unsigned int x, y;
1189        int error;
1190
1191        if (rgd->rd_bits[0].bi_bh != NULL)
1192                return 0;
1193
1194        for (x = 0; x < length; x++) {
1195                bi = rgd->rd_bits + x;
1196                error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1197                if (error)
1198                        goto fail;
1199        }
1200
1201        for (y = length; y--;) {
1202                bi = rgd->rd_bits + y;
1203                error = gfs2_meta_wait(sdp, bi->bi_bh);
1204                if (error)
1205                        goto fail;
1206                if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1207                                              GFS2_METATYPE_RG)) {
1208                        error = -EIO;
1209                        goto fail;
1210                }
1211        }
1212
1213        if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1214                for (x = 0; x < length; x++)
1215                        clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1216                gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1217                rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1218                rgd->rd_free_clone = rgd->rd_free;
1219                /* max out the rgrp allocation failure point */
1220                rgd->rd_extfail_pt = rgd->rd_free;
1221        }
1222        if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1223                rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1224                gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1225                                     rgd->rd_bits[0].bi_bh->b_data);
1226        }
1227        else if (sdp->sd_args.ar_rgrplvb) {
1228                if (!gfs2_rgrp_lvb_valid(rgd)){
1229                        gfs2_consist_rgrpd(rgd);
1230                        error = -EIO;
1231                        goto fail;
1232                }
1233                if (rgd->rd_rgl->rl_unlinked == 0)
1234                        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1235        }
1236        return 0;
1237
1238fail:
1239        while (x--) {
1240                bi = rgd->rd_bits + x;
1241                brelse(bi->bi_bh);
1242                bi->bi_bh = NULL;
1243                gfs2_assert_warn(sdp, !bi->bi_clone);
1244        }
1245
1246        return error;
1247}
1248
1249static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1250{
1251        u32 rl_flags;
1252
1253        if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1254                return 0;
1255
1256        if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1257                return gfs2_rgrp_bh_get(rgd);
1258
1259        rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1260        rl_flags &= ~GFS2_RDF_MASK;
1261        rgd->rd_flags &= GFS2_RDF_MASK;
1262        rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1263        if (rgd->rd_rgl->rl_unlinked == 0)
1264                rgd->rd_flags &= ~GFS2_RDF_CHECK;
1265        rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1266        rgd->rd_free_clone = rgd->rd_free;
1267        rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1268        rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1269        return 0;
1270}
1271
1272int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1273{
1274        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1275        struct gfs2_sbd *sdp = rgd->rd_sbd;
1276
1277        if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1278                return 0;
1279        return gfs2_rgrp_bh_get(rgd);
1280}
1281
1282/**
1283 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1284 * @rgd: The resource group
1285 *
1286 */
1287
1288void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1289{
1290        int x, length = rgd->rd_length;
1291
1292        for (x = 0; x < length; x++) {
1293                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1294                if (bi->bi_bh) {
1295                        brelse(bi->bi_bh);
1296                        bi->bi_bh = NULL;
1297                }
1298        }
1299
1300}
1301
1302/**
1303 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1304 * @gh: The glock holder for the resource group
1305 *
1306 */
1307
1308void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1309{
1310        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1311        int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1312                test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1313
1314        if (rgd && demote_requested)
1315                gfs2_rgrp_brelse(rgd);
1316}
1317
1318int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1319                             struct buffer_head *bh,
1320                             const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1321{
1322        struct super_block *sb = sdp->sd_vfs;
1323        u64 blk;
1324        sector_t start = 0;
1325        sector_t nr_blks = 0;
1326        int rv;
1327        unsigned int x;
1328        u32 trimmed = 0;
1329        u8 diff;
1330
1331        for (x = 0; x < bi->bi_bytes; x++) {
1332                const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1333                clone += bi->bi_offset;
1334                clone += x;
1335                if (bh) {
1336                        const u8 *orig = bh->b_data + bi->bi_offset + x;
1337                        diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1338                } else {
1339                        diff = ~(*clone | (*clone >> 1));
1340                }
1341                diff &= 0x55;
1342                if (diff == 0)
1343                        continue;
1344                blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1345                while(diff) {
1346                        if (diff & 1) {
1347                                if (nr_blks == 0)
1348                                        goto start_new_extent;
1349                                if ((start + nr_blks) != blk) {
1350                                        if (nr_blks >= minlen) {
1351                                                rv = sb_issue_discard(sb,
1352                                                        start, nr_blks,
1353                                                        GFP_NOFS, 0);
1354                                                if (rv)
1355                                                        goto fail;
1356                                                trimmed += nr_blks;
1357                                        }
1358                                        nr_blks = 0;
1359start_new_extent:
1360                                        start = blk;
1361                                }
1362                                nr_blks++;
1363                        }
1364                        diff >>= 2;
1365                        blk++;
1366                }
1367        }
1368        if (nr_blks >= minlen) {
1369                rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1370                if (rv)
1371                        goto fail;
1372                trimmed += nr_blks;
1373        }
1374        if (ptrimmed)
1375                *ptrimmed = trimmed;
1376        return 0;
1377
1378fail:
1379        if (sdp->sd_args.ar_discard)
1380                fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1381        sdp->sd_args.ar_discard = 0;
1382        return -EIO;
1383}
1384
1385/**
1386 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1387 * @filp: Any file on the filesystem
1388 * @argp: Pointer to the arguments (also used to pass result)
1389 *
1390 * Returns: 0 on success, otherwise error code
1391 */
1392
1393int gfs2_fitrim(struct file *filp, void __user *argp)
1394{
1395        struct inode *inode = file_inode(filp);
1396        struct gfs2_sbd *sdp = GFS2_SB(inode);
1397        struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1398        struct buffer_head *bh;
1399        struct gfs2_rgrpd *rgd;
1400        struct gfs2_rgrpd *rgd_end;
1401        struct gfs2_holder gh;
1402        struct fstrim_range r;
1403        int ret = 0;
1404        u64 amt;
1405        u64 trimmed = 0;
1406        u64 start, end, minlen;
1407        unsigned int x;
1408        unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1409
1410        if (!capable(CAP_SYS_ADMIN))
1411                return -EPERM;
1412
1413        if (!blk_queue_discard(q))
1414                return -EOPNOTSUPP;
1415
1416        if (copy_from_user(&r, argp, sizeof(r)))
1417                return -EFAULT;
1418
1419        ret = gfs2_rindex_update(sdp);
1420        if (ret)
1421                return ret;
1422
1423        start = r.start >> bs_shift;
1424        end = start + (r.len >> bs_shift);
1425        minlen = max_t(u64, r.minlen,
1426                       q->limits.discard_granularity) >> bs_shift;
1427
1428        if (end <= start || minlen > sdp->sd_max_rg_data)
1429                return -EINVAL;
1430
1431        rgd = gfs2_blk2rgrpd(sdp, start, 0);
1432        rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1433
1434        if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1435            && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1436                return -EINVAL; /* start is beyond the end of the fs */
1437
1438        while (1) {
1439
1440                ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1441                if (ret)
1442                        goto out;
1443
1444                if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1445                        /* Trim each bitmap in the rgrp */
1446                        for (x = 0; x < rgd->rd_length; x++) {
1447                                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1448                                ret = gfs2_rgrp_send_discards(sdp,
1449                                                rgd->rd_data0, NULL, bi, minlen,
1450                                                &amt);
1451                                if (ret) {
1452                                        gfs2_glock_dq_uninit(&gh);
1453                                        goto out;
1454                                }
1455                                trimmed += amt;
1456                        }
1457
1458                        /* Mark rgrp as having been trimmed */
1459                        ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1460                        if (ret == 0) {
1461                                bh = rgd->rd_bits[0].bi_bh;
1462                                rgd->rd_flags |= GFS2_RGF_TRIMMED;
1463                                gfs2_trans_add_meta(rgd->rd_gl, bh);
1464                                gfs2_rgrp_out(rgd, bh->b_data);
1465                                gfs2_trans_end(sdp);
1466                        }
1467                }
1468                gfs2_glock_dq_uninit(&gh);
1469
1470                if (rgd == rgd_end)
1471                        break;
1472
1473                rgd = gfs2_rgrpd_get_next(rgd);
1474        }
1475
1476out:
1477        r.len = trimmed << bs_shift;
1478        if (copy_to_user(argp, &r, sizeof(r)))
1479                return -EFAULT;
1480
1481        return ret;
1482}
1483
1484/**
1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1486 * @ip: the inode structure
1487 *
1488 */
1489static void rs_insert(struct gfs2_inode *ip)
1490{
1491        struct rb_node **newn, *parent = NULL;
1492        int rc;
1493        struct gfs2_blkreserv *rs = &ip->i_res;
1494        struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1495        u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1496
1497        BUG_ON(gfs2_rs_active(rs));
1498
1499        spin_lock(&rgd->rd_rsspin);
1500        newn = &rgd->rd_rstree.rb_node;
1501        while (*newn) {
1502                struct gfs2_blkreserv *cur =
1503                        rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1504
1505                parent = *newn;
1506                rc = rs_cmp(fsblock, rs->rs_free, cur);
1507                if (rc > 0)
1508                        newn = &((*newn)->rb_right);
1509                else if (rc < 0)
1510                        newn = &((*newn)->rb_left);
1511                else {
1512                        spin_unlock(&rgd->rd_rsspin);
1513                        WARN_ON(1);
1514                        return;
1515                }
1516        }
1517
1518        rb_link_node(&rs->rs_node, parent, newn);
1519        rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1520
1521        /* Do our rgrp accounting for the reservation */
1522        rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1523        spin_unlock(&rgd->rd_rsspin);
1524        trace_gfs2_rs(rs, TRACE_RS_INSERT);
1525}
1526
1527/**
1528 * rgd_free - return the number of free blocks we can allocate.
1529 * @rgd: the resource group
1530 *
1531 * This function returns the number of free blocks for an rgrp.
1532 * That's the clone-free blocks (blocks that are free, not including those
1533 * still being used for unlinked files that haven't been deleted.)
1534 *
1535 * It also subtracts any blocks reserved by someone else, but does not
1536 * include free blocks that are still part of our current reservation,
1537 * because obviously we can (and will) allocate them.
1538 */
1539static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1540{
1541        u32 tot_reserved, tot_free;
1542
1543        if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1544                return 0;
1545        tot_reserved = rgd->rd_reserved - rs->rs_free;
1546
1547        if (rgd->rd_free_clone < tot_reserved)
1548                tot_reserved = 0;
1549
1550        tot_free = rgd->rd_free_clone - tot_reserved;
1551
1552        return tot_free;
1553}
1554
1555/**
1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1557 * @rgd: the resource group descriptor
1558 * @ip: pointer to the inode for which we're reserving blocks
1559 * @ap: the allocation parameters
1560 *
1561 */
1562
1563static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1564                           const struct gfs2_alloc_parms *ap)
1565{
1566        struct gfs2_rbm rbm = { .rgd = rgd, };
1567        u64 goal;
1568        struct gfs2_blkreserv *rs = &ip->i_res;
1569        u32 extlen;
1570        u32 free_blocks = rgd_free(rgd, rs);
1571        int ret;
1572        struct inode *inode = &ip->i_inode;
1573
1574        if (S_ISDIR(inode->i_mode))
1575                extlen = 1;
1576        else {
1577                extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1578                extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1579        }
1580        if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1581                return;
1582
1583        /* Find bitmap block that contains bits for goal block */
1584        if (rgrp_contains_block(rgd, ip->i_goal))
1585                goal = ip->i_goal;
1586        else
1587                goal = rgd->rd_last_alloc + rgd->rd_data0;
1588
1589        if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1590                return;
1591
1592        ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1593        if (ret == 0) {
1594                rs->rs_rbm = rbm;
1595                rs->rs_free = extlen;
1596                rs_insert(ip);
1597        } else {
1598                if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1599                        rgd->rd_last_alloc = 0;
1600        }
1601}
1602
1603/**
1604 * gfs2_next_unreserved_block - Return next block that is not reserved
1605 * @rgd: The resource group
1606 * @block: The starting block
1607 * @length: The required length
1608 * @ip: Ignore any reservations for this inode
1609 *
1610 * If the block does not appear in any reservation, then return the
1611 * block number unchanged. If it does appear in the reservation, then
1612 * keep looking through the tree of reservations in order to find the
1613 * first block number which is not reserved.
1614 */
1615
1616static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1617                                      u32 length,
1618                                      const struct gfs2_inode *ip)
1619{
1620        struct gfs2_blkreserv *rs;
1621        struct rb_node *n;
1622        int rc;
1623
1624        spin_lock(&rgd->rd_rsspin);
1625        n = rgd->rd_rstree.rb_node;
1626        while (n) {
1627                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1628                rc = rs_cmp(block, length, rs);
1629                if (rc < 0)
1630                        n = n->rb_left;
1631                else if (rc > 0)
1632                        n = n->rb_right;
1633                else
1634                        break;
1635        }
1636
1637        if (n) {
1638                while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1639                        block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1640                        n = n->rb_right;
1641                        if (n == NULL)
1642                                break;
1643                        rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1644                }
1645        }
1646
1647        spin_unlock(&rgd->rd_rsspin);
1648        return block;
1649}
1650
1651/**
1652 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1653 * @rbm: The current position in the resource group
1654 * @ip: The inode for which we are searching for blocks
1655 * @minext: The minimum extent length
1656 * @maxext: A pointer to the maximum extent structure
1657 *
1658 * This checks the current position in the rgrp to see whether there is
1659 * a reservation covering this block. If not then this function is a
1660 * no-op. If there is, then the position is moved to the end of the
1661 * contiguous reservation(s) so that we are pointing at the first
1662 * non-reserved block.
1663 *
1664 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1665 */
1666
1667static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1668                                             const struct gfs2_inode *ip,
1669                                             u32 minext,
1670                                             struct gfs2_extent *maxext)
1671{
1672        u64 block = gfs2_rbm_to_block(rbm);
1673        u32 extlen = 1;
1674        u64 nblock;
1675        int ret;
1676
1677        /*
1678         * If we have a minimum extent length, then skip over any extent
1679         * which is less than the min extent length in size.
1680         */
1681        if (minext) {
1682                extlen = gfs2_free_extlen(rbm, minext);
1683                if (extlen <= maxext->len)
1684                        goto fail;
1685        }
1686
1687        /*
1688         * Check the extent which has been found against the reservations
1689         * and skip if parts of it are already reserved
1690         */
1691        nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1692        if (nblock == block) {
1693                if (!minext || extlen >= minext)
1694                        return 0;
1695
1696                if (extlen > maxext->len) {
1697                        maxext->len = extlen;
1698                        maxext->rbm = *rbm;
1699                }
1700fail:
1701                nblock = block + extlen;
1702        }
1703        ret = gfs2_rbm_from_block(rbm, nblock);
1704        if (ret < 0)
1705                return ret;
1706        return 1;
1707}
1708
1709/**
1710 * gfs2_rbm_find - Look for blocks of a particular state
1711 * @rbm: Value/result starting position and final position
1712 * @state: The state which we want to find
1713 * @minext: Pointer to the requested extent length (NULL for a single block)
1714 *          This is updated to be the actual reservation size.
1715 * @ip: If set, check for reservations
1716 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1717 *          around until we've reached the starting point.
1718 *
1719 * Side effects:
1720 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1721 *   has no free blocks in it.
1722 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1723 *   has come up short on a free block search.
1724 *
1725 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1726 */
1727
1728static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1729                         const struct gfs2_inode *ip, bool nowrap)
1730{
1731        bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1732        struct buffer_head *bh;
1733        int last_bii;
1734        u32 offset;
1735        u8 *buffer;
1736        bool wrapped = false;
1737        int ret;
1738        struct gfs2_bitmap *bi;
1739        struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1740
1741        /*
1742         * Determine the last bitmap to search.  If we're not starting at the
1743         * beginning of a bitmap, we need to search that bitmap twice to scan
1744         * the entire resource group.
1745         */
1746        last_bii = rbm->bii - (rbm->offset == 0);
1747
1748        while(1) {
1749                bi = rbm_bi(rbm);
1750                if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1751                    test_bit(GBF_FULL, &bi->bi_flags) &&
1752                    (state == GFS2_BLKST_FREE))
1753                        goto next_bitmap;
1754
1755                bh = bi->bi_bh;
1756                buffer = bh->b_data + bi->bi_offset;
1757                WARN_ON(!buffer_uptodate(bh));
1758                if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1759                        buffer = bi->bi_clone + bi->bi_offset;
1760                offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1761                if (offset == BFITNOENT) {
1762                        if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1763                                set_bit(GBF_FULL, &bi->bi_flags);
1764                        goto next_bitmap;
1765                }
1766                rbm->offset = offset;
1767                if (ip == NULL)
1768                        return 0;
1769
1770                ret = gfs2_reservation_check_and_update(rbm, ip,
1771                                                        minext ? *minext : 0,
1772                                                        &maxext);
1773                if (ret == 0)
1774                        return 0;
1775                if (ret > 0)
1776                        goto next_iter;
1777                if (ret == -E2BIG) {
1778                        rbm->bii = 0;
1779                        rbm->offset = 0;
1780                        goto res_covered_end_of_rgrp;
1781                }
1782                return ret;
1783
1784next_bitmap:    /* Find next bitmap in the rgrp */
1785                rbm->offset = 0;
1786                rbm->bii++;
1787                if (rbm->bii == rbm->rgd->rd_length)
1788                        rbm->bii = 0;
1789res_covered_end_of_rgrp:
1790                if (rbm->bii == 0) {
1791                        if (wrapped)
1792                                break;
1793                        wrapped = true;
1794                        if (nowrap)
1795                                break;
1796                }
1797next_iter:
1798                /* Have we scanned the entire resource group? */
1799                if (wrapped && rbm->bii > last_bii)
1800                        break;
1801        }
1802
1803        if (minext == NULL || state != GFS2_BLKST_FREE)
1804                return -ENOSPC;
1805
1806        /* If the extent was too small, and it's smaller than the smallest
1807           to have failed before, remember for future reference that it's
1808           useless to search this rgrp again for this amount or more. */
1809        if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1810            *minext < rbm->rgd->rd_extfail_pt)
1811                rbm->rgd->rd_extfail_pt = *minext;
1812
1813        /* If the maximum extent we found is big enough to fulfill the
1814           minimum requirements, use it anyway. */
1815        if (maxext.len) {
1816                *rbm = maxext.rbm;
1817                *minext = maxext.len;
1818                return 0;
1819        }
1820
1821        return -ENOSPC;
1822}
1823
1824/**
1825 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1826 * @rgd: The rgrp
1827 * @last_unlinked: block address of the last dinode we unlinked
1828 * @skip: block address we should explicitly not unlink
1829 *
1830 * Returns: 0 if no error
1831 *          The inode, if one has been found, in inode.
1832 */
1833
1834static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1835{
1836        u64 block;
1837        struct gfs2_sbd *sdp = rgd->rd_sbd;
1838        struct gfs2_glock *gl;
1839        struct gfs2_inode *ip;
1840        int error;
1841        int found = 0;
1842        struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1843
1844        while (1) {
1845                down_write(&sdp->sd_log_flush_lock);
1846                error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1847                                      true);
1848                up_write(&sdp->sd_log_flush_lock);
1849                if (error == -ENOSPC)
1850                        break;
1851                if (WARN_ON_ONCE(error))
1852                        break;
1853
1854                block = gfs2_rbm_to_block(&rbm);
1855                if (gfs2_rbm_from_block(&rbm, block + 1))
1856                        break;
1857                if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1858                        continue;
1859                if (block == skip)
1860                        continue;
1861                *last_unlinked = block;
1862
1863                error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1864                if (error)
1865                        continue;
1866
1867                /* If the inode is already in cache, we can ignore it here
1868                 * because the existing inode disposal code will deal with
1869                 * it when all refs have gone away. Accessing gl_object like
1870                 * this is not safe in general. Here it is ok because we do
1871                 * not dereference the pointer, and we only need an approx
1872                 * answer to whether it is NULL or not.
1873                 */
1874                ip = gl->gl_object;
1875
1876                if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1877                        gfs2_glock_put(gl);
1878                else
1879                        found++;
1880
1881                /* Limit reclaim to sensible number of tasks */
1882                if (found > NR_CPUS)
1883                        return;
1884        }
1885
1886        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1887        return;
1888}
1889
1890/**
1891 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1892 * @rgd: The rgrp in question
1893 * @loops: An indication of how picky we can be (0=very, 1=less so)
1894 *
1895 * This function uses the recently added glock statistics in order to
1896 * figure out whether a parciular resource group is suffering from
1897 * contention from multiple nodes. This is done purely on the basis
1898 * of timings, since this is the only data we have to work with and
1899 * our aim here is to reject a resource group which is highly contended
1900 * but (very important) not to do this too often in order to ensure that
1901 * we do not land up introducing fragmentation by changing resource
1902 * groups when not actually required.
1903 *
1904 * The calculation is fairly simple, we want to know whether the SRTTB
1905 * (i.e. smoothed round trip time for blocking operations) to acquire
1906 * the lock for this rgrp's glock is significantly greater than the
1907 * time taken for resource groups on average. We introduce a margin in
1908 * the form of the variable @var which is computed as the sum of the two
1909 * respective variences, and multiplied by a factor depending on @loops
1910 * and whether we have a lot of data to base the decision on. This is
1911 * then tested against the square difference of the means in order to
1912 * decide whether the result is statistically significant or not.
1913 *
1914 * Returns: A boolean verdict on the congestion status
1915 */
1916
1917static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1918{
1919        const struct gfs2_glock *gl = rgd->rd_gl;
1920        const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1921        struct gfs2_lkstats *st;
1922        u64 r_dcount, l_dcount;
1923        u64 l_srttb, a_srttb = 0;
1924        s64 srttb_diff;
1925        u64 sqr_diff;
1926        u64 var;
1927        int cpu, nonzero = 0;
1928
1929        preempt_disable();
1930        for_each_present_cpu(cpu) {
1931                st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1932                if (st->stats[GFS2_LKS_SRTTB]) {
1933                        a_srttb += st->stats[GFS2_LKS_SRTTB];
1934                        nonzero++;
1935                }
1936        }
1937        st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1938        if (nonzero)
1939                do_div(a_srttb, nonzero);
1940        r_dcount = st->stats[GFS2_LKS_DCOUNT];
1941        var = st->stats[GFS2_LKS_SRTTVARB] +
1942              gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1943        preempt_enable();
1944
1945        l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1946        l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1947
1948        if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1949                return false;
1950
1951        srttb_diff = a_srttb - l_srttb;
1952        sqr_diff = srttb_diff * srttb_diff;
1953
1954        var *= 2;
1955        if (l_dcount < 8 || r_dcount < 8)
1956                var *= 2;
1957        if (loops == 1)
1958                var *= 2;
1959
1960        return ((srttb_diff < 0) && (sqr_diff > var));
1961}
1962
1963/**
1964 * gfs2_rgrp_used_recently
1965 * @rs: The block reservation with the rgrp to test
1966 * @msecs: The time limit in milliseconds
1967 *
1968 * Returns: True if the rgrp glock has been used within the time limit
1969 */
1970static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1971                                    u64 msecs)
1972{
1973        u64 tdiff;
1974
1975        tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1976                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1977
1978        return tdiff > (msecs * 1000 * 1000);
1979}
1980
1981static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1982{
1983        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1984        u32 skip;
1985
1986        get_random_bytes(&skip, sizeof(skip));
1987        return skip % sdp->sd_rgrps;
1988}
1989
1990static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1991{
1992        struct gfs2_rgrpd *rgd = *pos;
1993        struct gfs2_sbd *sdp = rgd->rd_sbd;
1994
1995        rgd = gfs2_rgrpd_get_next(rgd);
1996        if (rgd == NULL)
1997                rgd = gfs2_rgrpd_get_first(sdp);
1998        *pos = rgd;
1999        if (rgd != begin) /* If we didn't wrap */
2000                return true;
2001        return false;
2002}
2003
2004/**
2005 * fast_to_acquire - determine if a resource group will be fast to acquire
2006 *
2007 * If this is one of our preferred rgrps, it should be quicker to acquire,
2008 * because we tried to set ourselves up as dlm lock master.
2009 */
2010static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2011{
2012        struct gfs2_glock *gl = rgd->rd_gl;
2013
2014        if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2015            !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2016            !test_bit(GLF_DEMOTE, &gl->gl_flags))
2017                return 1;
2018        if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2019                return 1;
2020        return 0;
2021}
2022
2023/**
2024 * gfs2_inplace_reserve - Reserve space in the filesystem
2025 * @ip: the inode to reserve space for
2026 * @ap: the allocation parameters
2027 *
2028 * We try our best to find an rgrp that has at least ap->target blocks
2029 * available. After a couple of passes (loops == 2), the prospects of finding
2030 * such an rgrp diminish. At this stage, we return the first rgrp that has
2031 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2032 * the number of blocks available in the chosen rgrp.
2033 *
2034 * Returns: 0 on success,
2035 *          -ENOMEM if a suitable rgrp can't be found
2036 *          errno otherwise
2037 */
2038
2039int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2040{
2041        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2042        struct gfs2_rgrpd *begin = NULL;
2043        struct gfs2_blkreserv *rs = &ip->i_res;
2044        int error = 0, rg_locked, flags = 0;
2045        u64 last_unlinked = NO_BLOCK;
2046        int loops = 0;
2047        u32 free_blocks, skip = 0;
2048
2049        if (sdp->sd_args.ar_rgrplvb)
2050                flags |= GL_SKIP;
2051        if (gfs2_assert_warn(sdp, ap->target))
2052                return -EINVAL;
2053        if (gfs2_rs_active(rs)) {
2054                begin = rs->rs_rbm.rgd;
2055        } else if (rs->rs_rbm.rgd &&
2056                   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2057                begin = rs->rs_rbm.rgd;
2058        } else {
2059                check_and_update_goal(ip);
2060                rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2061        }
2062        if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2063                skip = gfs2_orlov_skip(ip);
2064        if (rs->rs_rbm.rgd == NULL)
2065                return -EBADSLT;
2066
2067        while (loops < 3) {
2068                rg_locked = 1;
2069
2070                if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2071                        rg_locked = 0;
2072                        if (skip && skip--)
2073                                goto next_rgrp;
2074                        if (!gfs2_rs_active(rs)) {
2075                                if (loops == 0 &&
2076                                    !fast_to_acquire(rs->rs_rbm.rgd))
2077                                        goto next_rgrp;
2078                                if ((loops < 2) &&
2079                                    gfs2_rgrp_used_recently(rs, 1000) &&
2080                                    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2081                                        goto next_rgrp;
2082                        }
2083                        error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2084                                                   LM_ST_EXCLUSIVE, flags,
2085                                                   &ip->i_rgd_gh);
2086                        if (unlikely(error))
2087                                return error;
2088                        if (!gfs2_rs_active(rs) && (loops < 2) &&
2089                            gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090                                goto skip_rgrp;
2091                        if (sdp->sd_args.ar_rgrplvb) {
2092                                error = update_rgrp_lvb(rs->rs_rbm.rgd);
2093                                if (unlikely(error)) {
2094                                        gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2095                                        return error;
2096                                }
2097                        }
2098                }
2099
2100                /* Skip unusable resource groups */
2101                if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2102                                                 GFS2_RDF_ERROR)) ||
2103                    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2104                        goto skip_rgrp;
2105
2106                if (sdp->sd_args.ar_rgrplvb)
2107                        gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2108
2109                /* Get a reservation if we don't already have one */
2110                if (!gfs2_rs_active(rs))
2111                        rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2112
2113                /* Skip rgrps when we can't get a reservation on first pass */
2114                if (!gfs2_rs_active(rs) && (loops < 1))
2115                        goto check_rgrp;
2116
2117                /* If rgrp has enough free space, use it */
2118                free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2119                if (free_blocks >= ap->target ||
2120                    (loops == 2 && ap->min_target &&
2121                     free_blocks >= ap->min_target)) {
2122                        ap->allowed = free_blocks;
2123                        return 0;
2124                }
2125check_rgrp:
2126                /* Check for unlinked inodes which can be reclaimed */
2127                if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2128                        try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2129                                        ip->i_no_addr);
2130skip_rgrp:
2131                /* Drop reservation, if we couldn't use reserved rgrp */
2132                if (gfs2_rs_active(rs))
2133                        gfs2_rs_deltree(rs);
2134
2135                /* Unlock rgrp if required */
2136                if (!rg_locked)
2137                        gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2138next_rgrp:
2139                /* Find the next rgrp, and continue looking */
2140                if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2141                        continue;
2142                if (skip)
2143                        continue;
2144
2145                /* If we've scanned all the rgrps, but found no free blocks
2146                 * then this checks for some less likely conditions before
2147                 * trying again.
2148                 */
2149                loops++;
2150                /* Check that fs hasn't grown if writing to rindex */
2151                if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2152                        error = gfs2_ri_update(ip);
2153                        if (error)
2154                                return error;
2155                }
2156                /* Flushing the log may release space */
2157                if (loops == 2)
2158                        gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2159                                       GFS2_LFC_INPLACE_RESERVE);
2160        }
2161
2162        return -ENOSPC;
2163}
2164
2165/**
2166 * gfs2_inplace_release - release an inplace reservation
2167 * @ip: the inode the reservation was taken out on
2168 *
2169 * Release a reservation made by gfs2_inplace_reserve().
2170 */
2171
2172void gfs2_inplace_release(struct gfs2_inode *ip)
2173{
2174        if (gfs2_holder_initialized(&ip->i_rgd_gh))
2175                gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2176}
2177
2178/**
2179 * gfs2_alloc_extent - allocate an extent from a given bitmap
2180 * @rbm: the resource group information
2181 * @dinode: TRUE if the first block we allocate is for a dinode
2182 * @n: The extent length (value/result)
2183 *
2184 * Add the bitmap buffer to the transaction.
2185 * Set the found bits to @new_state to change block's allocation state.
2186 */
2187static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2188                             unsigned int *n)
2189{
2190        struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2191        const unsigned int elen = *n;
2192        u64 block;
2193        int ret;
2194
2195        *n = 1;
2196        block = gfs2_rbm_to_block(rbm);
2197        gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2198        gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2199        block++;
2200        while (*n < elen) {
2201                ret = gfs2_rbm_from_block(&pos, block);
2202                if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2203                        break;
2204                gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2205                gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2206                (*n)++;
2207                block++;
2208        }
2209}
2210
2211/**
2212 * rgblk_free - Change alloc state of given block(s)
2213 * @sdp: the filesystem
2214 * @rgd: the resource group the blocks are in
2215 * @bstart: the start of a run of blocks to free
2216 * @blen: the length of the block run (all must lie within ONE RG!)
2217 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2218 */
2219
2220static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2221                       u64 bstart, u32 blen, unsigned char new_state)
2222{
2223        struct gfs2_rbm rbm;
2224        struct gfs2_bitmap *bi, *bi_prev = NULL;
2225
2226        rbm.rgd = rgd;
2227        if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2228                return;
2229        while (blen--) {
2230                bi = rbm_bi(&rbm);
2231                if (bi != bi_prev) {
2232                        if (!bi->bi_clone) {
2233                                bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2234                                                      GFP_NOFS | __GFP_NOFAIL);
2235                                memcpy(bi->bi_clone + bi->bi_offset,
2236                                       bi->bi_bh->b_data + bi->bi_offset,
2237                                       bi->bi_bytes);
2238                        }
2239                        gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2240                        bi_prev = bi;
2241                }
2242                gfs2_setbit(&rbm, false, new_state);
2243                gfs2_rbm_incr(&rbm);
2244        }
2245}
2246
2247/**
2248 * gfs2_rgrp_dump - print out an rgrp
2249 * @seq: The iterator
2250 * @gl: The glock in question
2251 * @fs_id_buf: pointer to file system id (if requested)
2252 *
2253 */
2254
2255void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2256                    const char *fs_id_buf)
2257{
2258        struct gfs2_rgrpd *rgd = gl->gl_object;
2259        struct gfs2_blkreserv *trs;
2260        const struct rb_node *n;
2261
2262        if (rgd == NULL)
2263                return;
2264        gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2265                       fs_id_buf,
2266                       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2267                       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2268                       rgd->rd_reserved, rgd->rd_extfail_pt);
2269        if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2270                struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2271
2272                gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2273                               be32_to_cpu(rgl->rl_flags),
2274                               be32_to_cpu(rgl->rl_free),
2275                               be32_to_cpu(rgl->rl_dinodes));
2276        }
2277        spin_lock(&rgd->rd_rsspin);
2278        for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2279                trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2280                dump_rs(seq, trs, fs_id_buf);
2281        }
2282        spin_unlock(&rgd->rd_rsspin);
2283}
2284
2285static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2286{
2287        struct gfs2_sbd *sdp = rgd->rd_sbd;
2288        char fs_id_buf[GFS2_FSNAME_LEN + 3 * sizeof(int) + 2];
2289
2290        fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2291                (unsigned long long)rgd->rd_addr);
2292        fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2293        sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2294        gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2295        rgd->rd_flags |= GFS2_RDF_ERROR;
2296}
2297
2298/**
2299 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2300 * @ip: The inode we have just allocated blocks for
2301 * @rbm: The start of the allocated blocks
2302 * @len: The extent length
2303 *
2304 * Adjusts a reservation after an allocation has taken place. If the
2305 * reservation does not match the allocation, or if it is now empty
2306 * then it is removed.
2307 */
2308
2309static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2310                                    const struct gfs2_rbm *rbm, unsigned len)
2311{
2312        struct gfs2_blkreserv *rs = &ip->i_res;
2313        struct gfs2_rgrpd *rgd = rbm->rgd;
2314        unsigned rlen;
2315        u64 block;
2316        int ret;
2317
2318        spin_lock(&rgd->rd_rsspin);
2319        if (gfs2_rs_active(rs)) {
2320                if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2321                        block = gfs2_rbm_to_block(rbm);
2322                        ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2323                        rlen = min(rs->rs_free, len);
2324                        rs->rs_free -= rlen;
2325                        rgd->rd_reserved -= rlen;
2326                        trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2327                        if (rs->rs_free && !ret)
2328                                goto out;
2329                        /* We used up our block reservation, so we should
2330                           reserve more blocks next time. */
2331                        atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2332                }
2333                __rs_deltree(rs);
2334        }
2335out:
2336        spin_unlock(&rgd->rd_rsspin);
2337}
2338
2339/**
2340 * gfs2_set_alloc_start - Set starting point for block allocation
2341 * @rbm: The rbm which will be set to the required location
2342 * @ip: The gfs2 inode
2343 * @dinode: Flag to say if allocation includes a new inode
2344 *
2345 * This sets the starting point from the reservation if one is active
2346 * otherwise it falls back to guessing a start point based on the
2347 * inode's goal block or the last allocation point in the rgrp.
2348 */
2349
2350static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2351                                 const struct gfs2_inode *ip, bool dinode)
2352{
2353        u64 goal;
2354
2355        if (gfs2_rs_active(&ip->i_res)) {
2356                *rbm = ip->i_res.rs_rbm;
2357                return;
2358        }
2359
2360        if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2361                goal = ip->i_goal;
2362        else
2363                goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2364
2365        if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2366                rbm->bii = 0;
2367                rbm->offset = 0;
2368        }
2369}
2370
2371/**
2372 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2373 * @ip: the inode to allocate the block for
2374 * @bn: Used to return the starting block number
2375 * @nblocks: requested number of blocks/extent length (value/result)
2376 * @dinode: 1 if we're allocating a dinode block, else 0
2377 * @generation: the generation number of the inode
2378 *
2379 * Returns: 0 or error
2380 */
2381
2382int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2383                      bool dinode, u64 *generation)
2384{
2385        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2386        struct buffer_head *dibh;
2387        struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2388        unsigned int ndata;
2389        u64 block; /* block, within the file system scope */
2390        int error;
2391
2392        gfs2_set_alloc_start(&rbm, ip, dinode);
2393        error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2394
2395        if (error == -ENOSPC) {
2396                gfs2_set_alloc_start(&rbm, ip, dinode);
2397                error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2398        }
2399
2400        /* Since all blocks are reserved in advance, this shouldn't happen */
2401        if (error) {
2402                fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2403                        (unsigned long long)ip->i_no_addr, error, *nblocks,
2404                        test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2405                        rbm.rgd->rd_extfail_pt);
2406                goto rgrp_error;
2407        }
2408
2409        gfs2_alloc_extent(&rbm, dinode, nblocks);
2410        block = gfs2_rbm_to_block(&rbm);
2411        rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2412        if (gfs2_rs_active(&ip->i_res))
2413                gfs2_adjust_reservation(ip, &rbm, *nblocks);
2414        ndata = *nblocks;
2415        if (dinode)
2416                ndata--;
2417
2418        if (!dinode) {
2419                ip->i_goal = block + ndata - 1;
2420                error = gfs2_meta_inode_buffer(ip, &dibh);
2421                if (error == 0) {
2422                        struct gfs2_dinode *di =
2423                                (struct gfs2_dinode *)dibh->b_data;
2424                        gfs2_trans_add_meta(ip->i_gl, dibh);
2425                        di->di_goal_meta = di->di_goal_data =
2426                                cpu_to_be64(ip->i_goal);
2427                        brelse(dibh);
2428                }
2429        }
2430        if (rbm.rgd->rd_free < *nblocks) {
2431                fs_warn(sdp, "nblocks=%u\n", *nblocks);
2432                goto rgrp_error;
2433        }
2434
2435        rbm.rgd->rd_free -= *nblocks;
2436        if (dinode) {
2437                rbm.rgd->rd_dinodes++;
2438                *generation = rbm.rgd->rd_igeneration++;
2439                if (*generation == 0)
2440                        *generation = rbm.rgd->rd_igeneration++;
2441        }
2442
2443        gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2444        gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2445
2446        gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2447        if (dinode)
2448                gfs2_trans_remove_revoke(sdp, block, *nblocks);
2449
2450        gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2451
2452        rbm.rgd->rd_free_clone -= *nblocks;
2453        trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2454                               dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2455        *bn = block;
2456        return 0;
2457
2458rgrp_error:
2459        gfs2_rgrp_error(rbm.rgd);
2460        return -EIO;
2461}
2462
2463/**
2464 * __gfs2_free_blocks - free a contiguous run of block(s)
2465 * @ip: the inode these blocks are being freed from
2466 * @rgd: the resource group the blocks are in
2467 * @bstart: first block of a run of contiguous blocks
2468 * @blen: the length of the block run
2469 * @meta: 1 if the blocks represent metadata
2470 *
2471 */
2472
2473void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2474                        u64 bstart, u32 blen, int meta)
2475{
2476        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2477
2478        rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2479        trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2480        rgd->rd_free += blen;
2481        rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2482        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484
2485        /* Directories keep their data in the metadata address space */
2486        if (meta || ip->i_depth)
2487                gfs2_meta_wipe(ip, bstart, blen);
2488}
2489
2490/**
2491 * gfs2_free_meta - free a contiguous run of data block(s)
2492 * @ip: the inode these blocks are being freed from
2493 * @rgd: the resource group the blocks are in
2494 * @bstart: first block of a run of contiguous blocks
2495 * @blen: the length of the block run
2496 *
2497 */
2498
2499void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2500                    u64 bstart, u32 blen)
2501{
2502        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2503
2504        __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2505        gfs2_statfs_change(sdp, 0, +blen, 0);
2506        gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2507}
2508
2509void gfs2_unlink_di(struct inode *inode)
2510{
2511        struct gfs2_inode *ip = GFS2_I(inode);
2512        struct gfs2_sbd *sdp = GFS2_SB(inode);
2513        struct gfs2_rgrpd *rgd;
2514        u64 blkno = ip->i_no_addr;
2515
2516        rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2517        if (!rgd)
2518                return;
2519        rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2520        trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2521        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2522        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2523        be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2524}
2525
2526void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2527{
2528        struct gfs2_sbd *sdp = rgd->rd_sbd;
2529
2530        rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2531        if (!rgd->rd_dinodes)
2532                gfs2_consist_rgrpd(rgd);
2533        rgd->rd_dinodes--;
2534        rgd->rd_free++;
2535
2536        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2537        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2538        be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2539
2540        gfs2_statfs_change(sdp, 0, +1, -1);
2541        trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2542        gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2543        gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2544}
2545
2546/**
2547 * gfs2_check_blk_type - Check the type of a block
2548 * @sdp: The superblock
2549 * @no_addr: The block number to check
2550 * @type: The block type we are looking for
2551 *
2552 * Returns: 0 if the block type matches the expected type
2553 *          -ESTALE if it doesn't match
2554 *          or -ve errno if something went wrong while checking
2555 */
2556
2557int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2558{
2559        struct gfs2_rgrpd *rgd;
2560        struct gfs2_holder rgd_gh;
2561        struct gfs2_rbm rbm;
2562        int error = -EINVAL;
2563
2564        rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2565        if (!rgd)
2566                goto fail;
2567
2568        error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2569        if (error)
2570                goto fail;
2571
2572        rbm.rgd = rgd;
2573        error = gfs2_rbm_from_block(&rbm, no_addr);
2574        if (WARN_ON_ONCE(error))
2575                goto fail;
2576
2577        if (gfs2_testbit(&rbm, false) != type)
2578                error = -ESTALE;
2579
2580        gfs2_glock_dq_uninit(&rgd_gh);
2581fail:
2582        return error;
2583}
2584
2585/**
2586 * gfs2_rlist_add - add a RG to a list of RGs
2587 * @ip: the inode
2588 * @rlist: the list of resource groups
2589 * @block: the block
2590 *
2591 * Figure out what RG a block belongs to and add that RG to the list
2592 *
2593 * FIXME: Don't use NOFAIL
2594 *
2595 */
2596
2597void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2598                    u64 block)
2599{
2600        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2601        struct gfs2_rgrpd *rgd;
2602        struct gfs2_rgrpd **tmp;
2603        unsigned int new_space;
2604        unsigned int x;
2605
2606        if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2607                return;
2608
2609        /*
2610         * The resource group last accessed is kept in the last position.
2611         */
2612
2613        if (rlist->rl_rgrps) {
2614                rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2615                if (rgrp_contains_block(rgd, block))
2616                        return;
2617                rgd = gfs2_blk2rgrpd(sdp, block, 1);
2618        } else {
2619                rgd = ip->i_res.rs_rbm.rgd;
2620                if (!rgd || !rgrp_contains_block(rgd, block))
2621                        rgd = gfs2_blk2rgrpd(sdp, block, 1);
2622        }
2623
2624        if (!rgd) {
2625                fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2626                       (unsigned long long)block);
2627                return;
2628        }
2629
2630        for (x = 0; x < rlist->rl_rgrps; x++) {
2631                if (rlist->rl_rgd[x] == rgd) {
2632                        swap(rlist->rl_rgd[x],
2633                             rlist->rl_rgd[rlist->rl_rgrps - 1]);
2634                        return;
2635                }
2636        }
2637
2638        if (rlist->rl_rgrps == rlist->rl_space) {
2639                new_space = rlist->rl_space + 10;
2640
2641                tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2642                              GFP_NOFS | __GFP_NOFAIL);
2643
2644                if (rlist->rl_rgd) {
2645                        memcpy(tmp, rlist->rl_rgd,
2646                               rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2647                        kfree(rlist->rl_rgd);
2648                }
2649
2650                rlist->rl_space = new_space;
2651                rlist->rl_rgd = tmp;
2652        }
2653
2654        rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2655}
2656
2657/**
2658 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2659 *      and initialize an array of glock holders for them
2660 * @rlist: the list of resource groups
2661 *
2662 * FIXME: Don't use NOFAIL
2663 *
2664 */
2665
2666void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2667{
2668        unsigned int x;
2669
2670        rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2671                                      sizeof(struct gfs2_holder),
2672                                      GFP_NOFS | __GFP_NOFAIL);
2673        for (x = 0; x < rlist->rl_rgrps; x++)
2674                gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2675                                LM_ST_EXCLUSIVE, 0,
2676                                &rlist->rl_ghs[x]);
2677}
2678
2679/**
2680 * gfs2_rlist_free - free a resource group list
2681 * @rlist: the list of resource groups
2682 *
2683 */
2684
2685void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2686{
2687        unsigned int x;
2688
2689        kfree(rlist->rl_rgd);
2690
2691        if (rlist->rl_ghs) {
2692                for (x = 0; x < rlist->rl_rgrps; x++)
2693                        gfs2_holder_uninit(&rlist->rl_ghs[x]);
2694                kfree(rlist->rl_ghs);
2695                rlist->rl_ghs = NULL;
2696        }
2697}
2698
2699