linux/fs/jbd2/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/journal.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem journal-writing code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages journals: areas of disk reserved for logging
  13 * transactional updates.  This includes the kernel journaling thread
  14 * which is responsible for scheduling updates to the log.
  15 *
  16 * We do not actually manage the physical storage of the journal in this
  17 * file: that is left to a per-journal policy function, which allows us
  18 * to store the journal within a filesystem-specified area for ext2
  19 * journaling (ext2 can use a reserved inode for storing the log).
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/fs.h>
  25#include <linux/jbd2.h>
  26#include <linux/errno.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/mm.h>
  30#include <linux/freezer.h>
  31#include <linux/pagemap.h>
  32#include <linux/kthread.h>
  33#include <linux/poison.h>
  34#include <linux/proc_fs.h>
  35#include <linux/seq_file.h>
  36#include <linux/math64.h>
  37#include <linux/hash.h>
  38#include <linux/log2.h>
  39#include <linux/vmalloc.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bitops.h>
  42#include <linux/ratelimit.h>
  43#include <linux/sched/mm.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/jbd2.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50
  51#ifdef CONFIG_JBD2_DEBUG
  52ushort jbd2_journal_enable_debug __read_mostly;
  53EXPORT_SYMBOL(jbd2_journal_enable_debug);
  54
  55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  57#endif
  58
  59EXPORT_SYMBOL(jbd2_journal_extend);
  60EXPORT_SYMBOL(jbd2_journal_stop);
  61EXPORT_SYMBOL(jbd2_journal_lock_updates);
  62EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  63EXPORT_SYMBOL(jbd2_journal_get_write_access);
  64EXPORT_SYMBOL(jbd2_journal_get_create_access);
  65EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  66EXPORT_SYMBOL(jbd2_journal_set_triggers);
  67EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  68EXPORT_SYMBOL(jbd2_journal_forget);
  69EXPORT_SYMBOL(jbd2_journal_flush);
  70EXPORT_SYMBOL(jbd2_journal_revoke);
  71
  72EXPORT_SYMBOL(jbd2_journal_init_dev);
  73EXPORT_SYMBOL(jbd2_journal_init_inode);
  74EXPORT_SYMBOL(jbd2_journal_check_used_features);
  75EXPORT_SYMBOL(jbd2_journal_check_available_features);
  76EXPORT_SYMBOL(jbd2_journal_set_features);
  77EXPORT_SYMBOL(jbd2_journal_load);
  78EXPORT_SYMBOL(jbd2_journal_destroy);
  79EXPORT_SYMBOL(jbd2_journal_abort);
  80EXPORT_SYMBOL(jbd2_journal_errno);
  81EXPORT_SYMBOL(jbd2_journal_ack_err);
  82EXPORT_SYMBOL(jbd2_journal_clear_err);
  83EXPORT_SYMBOL(jbd2_log_wait_commit);
  84EXPORT_SYMBOL(jbd2_log_start_commit);
  85EXPORT_SYMBOL(jbd2_journal_start_commit);
  86EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  87EXPORT_SYMBOL(jbd2_journal_wipe);
  88EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  89EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  90EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  91EXPORT_SYMBOL(jbd2_journal_force_commit);
  92EXPORT_SYMBOL(jbd2_journal_inode_add_write);
  93EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
  94EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
  95EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
  96EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  97EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
  98EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
  99EXPORT_SYMBOL(jbd2_inode_cache);
 100
 101static void __journal_abort_soft (journal_t *journal, int errno);
 102static int jbd2_journal_create_slab(size_t slab_size);
 103
 104#ifdef CONFIG_JBD2_DEBUG
 105void __jbd2_debug(int level, const char *file, const char *func,
 106                  unsigned int line, const char *fmt, ...)
 107{
 108        struct va_format vaf;
 109        va_list args;
 110
 111        if (level > jbd2_journal_enable_debug)
 112                return;
 113        va_start(args, fmt);
 114        vaf.fmt = fmt;
 115        vaf.va = &args;
 116        printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
 117        va_end(args);
 118}
 119EXPORT_SYMBOL(__jbd2_debug);
 120#endif
 121
 122/* Checksumming functions */
 123static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 124{
 125        if (!jbd2_journal_has_csum_v2or3_feature(j))
 126                return 1;
 127
 128        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 129}
 130
 131static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 132{
 133        __u32 csum;
 134        __be32 old_csum;
 135
 136        old_csum = sb->s_checksum;
 137        sb->s_checksum = 0;
 138        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 139        sb->s_checksum = old_csum;
 140
 141        return cpu_to_be32(csum);
 142}
 143
 144/*
 145 * Helper function used to manage commit timeouts
 146 */
 147
 148static void commit_timeout(struct timer_list *t)
 149{
 150        journal_t *journal = from_timer(journal, t, j_commit_timer);
 151
 152        wake_up_process(journal->j_task);
 153}
 154
 155/*
 156 * kjournald2: The main thread function used to manage a logging device
 157 * journal.
 158 *
 159 * This kernel thread is responsible for two things:
 160 *
 161 * 1) COMMIT:  Every so often we need to commit the current state of the
 162 *    filesystem to disk.  The journal thread is responsible for writing
 163 *    all of the metadata buffers to disk.
 164 *
 165 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 166 *    of the data in that part of the log has been rewritten elsewhere on
 167 *    the disk.  Flushing these old buffers to reclaim space in the log is
 168 *    known as checkpointing, and this thread is responsible for that job.
 169 */
 170
 171static int kjournald2(void *arg)
 172{
 173        journal_t *journal = arg;
 174        transaction_t *transaction;
 175
 176        /*
 177         * Set up an interval timer which can be used to trigger a commit wakeup
 178         * after the commit interval expires
 179         */
 180        timer_setup(&journal->j_commit_timer, commit_timeout, 0);
 181
 182        set_freezable();
 183
 184        /* Record that the journal thread is running */
 185        journal->j_task = current;
 186        wake_up(&journal->j_wait_done_commit);
 187
 188        /*
 189         * Make sure that no allocations from this kernel thread will ever
 190         * recurse to the fs layer because we are responsible for the
 191         * transaction commit and any fs involvement might get stuck waiting for
 192         * the trasn. commit.
 193         */
 194        memalloc_nofs_save();
 195
 196        /*
 197         * And now, wait forever for commit wakeup events.
 198         */
 199        write_lock(&journal->j_state_lock);
 200
 201loop:
 202        if (journal->j_flags & JBD2_UNMOUNT)
 203                goto end_loop;
 204
 205        jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
 206                journal->j_commit_sequence, journal->j_commit_request);
 207
 208        if (journal->j_commit_sequence != journal->j_commit_request) {
 209                jbd_debug(1, "OK, requests differ\n");
 210                write_unlock(&journal->j_state_lock);
 211                del_timer_sync(&journal->j_commit_timer);
 212                jbd2_journal_commit_transaction(journal);
 213                write_lock(&journal->j_state_lock);
 214                goto loop;
 215        }
 216
 217        wake_up(&journal->j_wait_done_commit);
 218        if (freezing(current)) {
 219                /*
 220                 * The simpler the better. Flushing journal isn't a
 221                 * good idea, because that depends on threads that may
 222                 * be already stopped.
 223                 */
 224                jbd_debug(1, "Now suspending kjournald2\n");
 225                write_unlock(&journal->j_state_lock);
 226                try_to_freeze();
 227                write_lock(&journal->j_state_lock);
 228        } else {
 229                /*
 230                 * We assume on resume that commits are already there,
 231                 * so we don't sleep
 232                 */
 233                DEFINE_WAIT(wait);
 234                int should_sleep = 1;
 235
 236                prepare_to_wait(&journal->j_wait_commit, &wait,
 237                                TASK_INTERRUPTIBLE);
 238                if (journal->j_commit_sequence != journal->j_commit_request)
 239                        should_sleep = 0;
 240                transaction = journal->j_running_transaction;
 241                if (transaction && time_after_eq(jiffies,
 242                                                transaction->t_expires))
 243                        should_sleep = 0;
 244                if (journal->j_flags & JBD2_UNMOUNT)
 245                        should_sleep = 0;
 246                if (should_sleep) {
 247                        write_unlock(&journal->j_state_lock);
 248                        schedule();
 249                        write_lock(&journal->j_state_lock);
 250                }
 251                finish_wait(&journal->j_wait_commit, &wait);
 252        }
 253
 254        jbd_debug(1, "kjournald2 wakes\n");
 255
 256        /*
 257         * Were we woken up by a commit wakeup event?
 258         */
 259        transaction = journal->j_running_transaction;
 260        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 261                journal->j_commit_request = transaction->t_tid;
 262                jbd_debug(1, "woke because of timeout\n");
 263        }
 264        goto loop;
 265
 266end_loop:
 267        del_timer_sync(&journal->j_commit_timer);
 268        journal->j_task = NULL;
 269        wake_up(&journal->j_wait_done_commit);
 270        jbd_debug(1, "Journal thread exiting.\n");
 271        write_unlock(&journal->j_state_lock);
 272        return 0;
 273}
 274
 275static int jbd2_journal_start_thread(journal_t *journal)
 276{
 277        struct task_struct *t;
 278
 279        t = kthread_run(kjournald2, journal, "jbd2/%s",
 280                        journal->j_devname);
 281        if (IS_ERR(t))
 282                return PTR_ERR(t);
 283
 284        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 285        return 0;
 286}
 287
 288static void journal_kill_thread(journal_t *journal)
 289{
 290        write_lock(&journal->j_state_lock);
 291        journal->j_flags |= JBD2_UNMOUNT;
 292
 293        while (journal->j_task) {
 294                write_unlock(&journal->j_state_lock);
 295                wake_up(&journal->j_wait_commit);
 296                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 297                write_lock(&journal->j_state_lock);
 298        }
 299        write_unlock(&journal->j_state_lock);
 300}
 301
 302/*
 303 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 304 *
 305 * Writes a metadata buffer to a given disk block.  The actual IO is not
 306 * performed but a new buffer_head is constructed which labels the data
 307 * to be written with the correct destination disk block.
 308 *
 309 * Any magic-number escaping which needs to be done will cause a
 310 * copy-out here.  If the buffer happens to start with the
 311 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 312 * magic number is only written to the log for descripter blocks.  In
 313 * this case, we copy the data and replace the first word with 0, and we
 314 * return a result code which indicates that this buffer needs to be
 315 * marked as an escaped buffer in the corresponding log descriptor
 316 * block.  The missing word can then be restored when the block is read
 317 * during recovery.
 318 *
 319 * If the source buffer has already been modified by a new transaction
 320 * since we took the last commit snapshot, we use the frozen copy of
 321 * that data for IO. If we end up using the existing buffer_head's data
 322 * for the write, then we have to make sure nobody modifies it while the
 323 * IO is in progress. do_get_write_access() handles this.
 324 *
 325 * The function returns a pointer to the buffer_head to be used for IO.
 326 *
 327 *
 328 * Return value:
 329 *  <0: Error
 330 * >=0: Finished OK
 331 *
 332 * On success:
 333 * Bit 0 set == escape performed on the data
 334 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 335 */
 336
 337int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 338                                  struct journal_head  *jh_in,
 339                                  struct buffer_head **bh_out,
 340                                  sector_t blocknr)
 341{
 342        int need_copy_out = 0;
 343        int done_copy_out = 0;
 344        int do_escape = 0;
 345        char *mapped_data;
 346        struct buffer_head *new_bh;
 347        struct page *new_page;
 348        unsigned int new_offset;
 349        struct buffer_head *bh_in = jh2bh(jh_in);
 350        journal_t *journal = transaction->t_journal;
 351
 352        /*
 353         * The buffer really shouldn't be locked: only the current committing
 354         * transaction is allowed to write it, so nobody else is allowed
 355         * to do any IO.
 356         *
 357         * akpm: except if we're journalling data, and write() output is
 358         * also part of a shared mapping, and another thread has
 359         * decided to launch a writepage() against this buffer.
 360         */
 361        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 362
 363        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 364
 365        /* keep subsequent assertions sane */
 366        atomic_set(&new_bh->b_count, 1);
 367
 368        jbd_lock_bh_state(bh_in);
 369repeat:
 370        /*
 371         * If a new transaction has already done a buffer copy-out, then
 372         * we use that version of the data for the commit.
 373         */
 374        if (jh_in->b_frozen_data) {
 375                done_copy_out = 1;
 376                new_page = virt_to_page(jh_in->b_frozen_data);
 377                new_offset = offset_in_page(jh_in->b_frozen_data);
 378        } else {
 379                new_page = jh2bh(jh_in)->b_page;
 380                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 381        }
 382
 383        mapped_data = kmap_atomic(new_page);
 384        /*
 385         * Fire data frozen trigger if data already wasn't frozen.  Do this
 386         * before checking for escaping, as the trigger may modify the magic
 387         * offset.  If a copy-out happens afterwards, it will have the correct
 388         * data in the buffer.
 389         */
 390        if (!done_copy_out)
 391                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 392                                           jh_in->b_triggers);
 393
 394        /*
 395         * Check for escaping
 396         */
 397        if (*((__be32 *)(mapped_data + new_offset)) ==
 398                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 399                need_copy_out = 1;
 400                do_escape = 1;
 401        }
 402        kunmap_atomic(mapped_data);
 403
 404        /*
 405         * Do we need to do a data copy?
 406         */
 407        if (need_copy_out && !done_copy_out) {
 408                char *tmp;
 409
 410                jbd_unlock_bh_state(bh_in);
 411                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 412                if (!tmp) {
 413                        brelse(new_bh);
 414                        return -ENOMEM;
 415                }
 416                jbd_lock_bh_state(bh_in);
 417                if (jh_in->b_frozen_data) {
 418                        jbd2_free(tmp, bh_in->b_size);
 419                        goto repeat;
 420                }
 421
 422                jh_in->b_frozen_data = tmp;
 423                mapped_data = kmap_atomic(new_page);
 424                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 425                kunmap_atomic(mapped_data);
 426
 427                new_page = virt_to_page(tmp);
 428                new_offset = offset_in_page(tmp);
 429                done_copy_out = 1;
 430
 431                /*
 432                 * This isn't strictly necessary, as we're using frozen
 433                 * data for the escaping, but it keeps consistency with
 434                 * b_frozen_data usage.
 435                 */
 436                jh_in->b_frozen_triggers = jh_in->b_triggers;
 437        }
 438
 439        /*
 440         * Did we need to do an escaping?  Now we've done all the
 441         * copying, we can finally do so.
 442         */
 443        if (do_escape) {
 444                mapped_data = kmap_atomic(new_page);
 445                *((unsigned int *)(mapped_data + new_offset)) = 0;
 446                kunmap_atomic(mapped_data);
 447        }
 448
 449        set_bh_page(new_bh, new_page, new_offset);
 450        new_bh->b_size = bh_in->b_size;
 451        new_bh->b_bdev = journal->j_dev;
 452        new_bh->b_blocknr = blocknr;
 453        new_bh->b_private = bh_in;
 454        set_buffer_mapped(new_bh);
 455        set_buffer_dirty(new_bh);
 456
 457        *bh_out = new_bh;
 458
 459        /*
 460         * The to-be-written buffer needs to get moved to the io queue,
 461         * and the original buffer whose contents we are shadowing or
 462         * copying is moved to the transaction's shadow queue.
 463         */
 464        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 465        spin_lock(&journal->j_list_lock);
 466        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 467        spin_unlock(&journal->j_list_lock);
 468        set_buffer_shadow(bh_in);
 469        jbd_unlock_bh_state(bh_in);
 470
 471        return do_escape | (done_copy_out << 1);
 472}
 473
 474/*
 475 * Allocation code for the journal file.  Manage the space left in the
 476 * journal, so that we can begin checkpointing when appropriate.
 477 */
 478
 479/*
 480 * Called with j_state_lock locked for writing.
 481 * Returns true if a transaction commit was started.
 482 */
 483int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 484{
 485        /* Return if the txn has already requested to be committed */
 486        if (journal->j_commit_request == target)
 487                return 0;
 488
 489        /*
 490         * The only transaction we can possibly wait upon is the
 491         * currently running transaction (if it exists).  Otherwise,
 492         * the target tid must be an old one.
 493         */
 494        if (journal->j_running_transaction &&
 495            journal->j_running_transaction->t_tid == target) {
 496                /*
 497                 * We want a new commit: OK, mark the request and wakeup the
 498                 * commit thread.  We do _not_ do the commit ourselves.
 499                 */
 500
 501                journal->j_commit_request = target;
 502                jbd_debug(1, "JBD2: requesting commit %u/%u\n",
 503                          journal->j_commit_request,
 504                          journal->j_commit_sequence);
 505                journal->j_running_transaction->t_requested = jiffies;
 506                wake_up(&journal->j_wait_commit);
 507                return 1;
 508        } else if (!tid_geq(journal->j_commit_request, target))
 509                /* This should never happen, but if it does, preserve
 510                   the evidence before kjournald goes into a loop and
 511                   increments j_commit_sequence beyond all recognition. */
 512                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 513                          journal->j_commit_request,
 514                          journal->j_commit_sequence,
 515                          target, journal->j_running_transaction ?
 516                          journal->j_running_transaction->t_tid : 0);
 517        return 0;
 518}
 519
 520int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 521{
 522        int ret;
 523
 524        write_lock(&journal->j_state_lock);
 525        ret = __jbd2_log_start_commit(journal, tid);
 526        write_unlock(&journal->j_state_lock);
 527        return ret;
 528}
 529
 530/*
 531 * Force and wait any uncommitted transactions.  We can only force the running
 532 * transaction if we don't have an active handle, otherwise, we will deadlock.
 533 * Returns: <0 in case of error,
 534 *           0 if nothing to commit,
 535 *           1 if transaction was successfully committed.
 536 */
 537static int __jbd2_journal_force_commit(journal_t *journal)
 538{
 539        transaction_t *transaction = NULL;
 540        tid_t tid;
 541        int need_to_start = 0, ret = 0;
 542
 543        read_lock(&journal->j_state_lock);
 544        if (journal->j_running_transaction && !current->journal_info) {
 545                transaction = journal->j_running_transaction;
 546                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 547                        need_to_start = 1;
 548        } else if (journal->j_committing_transaction)
 549                transaction = journal->j_committing_transaction;
 550
 551        if (!transaction) {
 552                /* Nothing to commit */
 553                read_unlock(&journal->j_state_lock);
 554                return 0;
 555        }
 556        tid = transaction->t_tid;
 557        read_unlock(&journal->j_state_lock);
 558        if (need_to_start)
 559                jbd2_log_start_commit(journal, tid);
 560        ret = jbd2_log_wait_commit(journal, tid);
 561        if (!ret)
 562                ret = 1;
 563
 564        return ret;
 565}
 566
 567/**
 568 * Force and wait upon a commit if the calling process is not within
 569 * transaction.  This is used for forcing out undo-protected data which contains
 570 * bitmaps, when the fs is running out of space.
 571 *
 572 * @journal: journal to force
 573 * Returns true if progress was made.
 574 */
 575int jbd2_journal_force_commit_nested(journal_t *journal)
 576{
 577        int ret;
 578
 579        ret = __jbd2_journal_force_commit(journal);
 580        return ret > 0;
 581}
 582
 583/**
 584 * int journal_force_commit() - force any uncommitted transactions
 585 * @journal: journal to force
 586 *
 587 * Caller want unconditional commit. We can only force the running transaction
 588 * if we don't have an active handle, otherwise, we will deadlock.
 589 */
 590int jbd2_journal_force_commit(journal_t *journal)
 591{
 592        int ret;
 593
 594        J_ASSERT(!current->journal_info);
 595        ret = __jbd2_journal_force_commit(journal);
 596        if (ret > 0)
 597                ret = 0;
 598        return ret;
 599}
 600
 601/*
 602 * Start a commit of the current running transaction (if any).  Returns true
 603 * if a transaction is going to be committed (or is currently already
 604 * committing), and fills its tid in at *ptid
 605 */
 606int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 607{
 608        int ret = 0;
 609
 610        write_lock(&journal->j_state_lock);
 611        if (journal->j_running_transaction) {
 612                tid_t tid = journal->j_running_transaction->t_tid;
 613
 614                __jbd2_log_start_commit(journal, tid);
 615                /* There's a running transaction and we've just made sure
 616                 * it's commit has been scheduled. */
 617                if (ptid)
 618                        *ptid = tid;
 619                ret = 1;
 620        } else if (journal->j_committing_transaction) {
 621                /*
 622                 * If commit has been started, then we have to wait for
 623                 * completion of that transaction.
 624                 */
 625                if (ptid)
 626                        *ptid = journal->j_committing_transaction->t_tid;
 627                ret = 1;
 628        }
 629        write_unlock(&journal->j_state_lock);
 630        return ret;
 631}
 632
 633/*
 634 * Return 1 if a given transaction has not yet sent barrier request
 635 * connected with a transaction commit. If 0 is returned, transaction
 636 * may or may not have sent the barrier. Used to avoid sending barrier
 637 * twice in common cases.
 638 */
 639int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 640{
 641        int ret = 0;
 642        transaction_t *commit_trans;
 643
 644        if (!(journal->j_flags & JBD2_BARRIER))
 645                return 0;
 646        read_lock(&journal->j_state_lock);
 647        /* Transaction already committed? */
 648        if (tid_geq(journal->j_commit_sequence, tid))
 649                goto out;
 650        commit_trans = journal->j_committing_transaction;
 651        if (!commit_trans || commit_trans->t_tid != tid) {
 652                ret = 1;
 653                goto out;
 654        }
 655        /*
 656         * Transaction is being committed and we already proceeded to
 657         * submitting a flush to fs partition?
 658         */
 659        if (journal->j_fs_dev != journal->j_dev) {
 660                if (!commit_trans->t_need_data_flush ||
 661                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 662                        goto out;
 663        } else {
 664                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 665                        goto out;
 666        }
 667        ret = 1;
 668out:
 669        read_unlock(&journal->j_state_lock);
 670        return ret;
 671}
 672EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 673
 674/*
 675 * Wait for a specified commit to complete.
 676 * The caller may not hold the journal lock.
 677 */
 678int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 679{
 680        int err = 0;
 681
 682        read_lock(&journal->j_state_lock);
 683#ifdef CONFIG_PROVE_LOCKING
 684        /*
 685         * Some callers make sure transaction is already committing and in that
 686         * case we cannot block on open handles anymore. So don't warn in that
 687         * case.
 688         */
 689        if (tid_gt(tid, journal->j_commit_sequence) &&
 690            (!journal->j_committing_transaction ||
 691             journal->j_committing_transaction->t_tid != tid)) {
 692                read_unlock(&journal->j_state_lock);
 693                jbd2_might_wait_for_commit(journal);
 694                read_lock(&journal->j_state_lock);
 695        }
 696#endif
 697#ifdef CONFIG_JBD2_DEBUG
 698        if (!tid_geq(journal->j_commit_request, tid)) {
 699                printk(KERN_ERR
 700                       "%s: error: j_commit_request=%u, tid=%u\n",
 701                       __func__, journal->j_commit_request, tid);
 702        }
 703#endif
 704        while (tid_gt(tid, journal->j_commit_sequence)) {
 705                jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
 706                                  tid, journal->j_commit_sequence);
 707                read_unlock(&journal->j_state_lock);
 708                wake_up(&journal->j_wait_commit);
 709                wait_event(journal->j_wait_done_commit,
 710                                !tid_gt(tid, journal->j_commit_sequence));
 711                read_lock(&journal->j_state_lock);
 712        }
 713        read_unlock(&journal->j_state_lock);
 714
 715        if (unlikely(is_journal_aborted(journal)))
 716                err = -EIO;
 717        return err;
 718}
 719
 720/* Return 1 when transaction with given tid has already committed. */
 721int jbd2_transaction_committed(journal_t *journal, tid_t tid)
 722{
 723        int ret = 1;
 724
 725        read_lock(&journal->j_state_lock);
 726        if (journal->j_running_transaction &&
 727            journal->j_running_transaction->t_tid == tid)
 728                ret = 0;
 729        if (journal->j_committing_transaction &&
 730            journal->j_committing_transaction->t_tid == tid)
 731                ret = 0;
 732        read_unlock(&journal->j_state_lock);
 733        return ret;
 734}
 735EXPORT_SYMBOL(jbd2_transaction_committed);
 736
 737/*
 738 * When this function returns the transaction corresponding to tid
 739 * will be completed.  If the transaction has currently running, start
 740 * committing that transaction before waiting for it to complete.  If
 741 * the transaction id is stale, it is by definition already completed,
 742 * so just return SUCCESS.
 743 */
 744int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 745{
 746        int     need_to_wait = 1;
 747
 748        read_lock(&journal->j_state_lock);
 749        if (journal->j_running_transaction &&
 750            journal->j_running_transaction->t_tid == tid) {
 751                if (journal->j_commit_request != tid) {
 752                        /* transaction not yet started, so request it */
 753                        read_unlock(&journal->j_state_lock);
 754                        jbd2_log_start_commit(journal, tid);
 755                        goto wait_commit;
 756                }
 757        } else if (!(journal->j_committing_transaction &&
 758                     journal->j_committing_transaction->t_tid == tid))
 759                need_to_wait = 0;
 760        read_unlock(&journal->j_state_lock);
 761        if (!need_to_wait)
 762                return 0;
 763wait_commit:
 764        return jbd2_log_wait_commit(journal, tid);
 765}
 766EXPORT_SYMBOL(jbd2_complete_transaction);
 767
 768/*
 769 * Log buffer allocation routines:
 770 */
 771
 772int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 773{
 774        unsigned long blocknr;
 775
 776        write_lock(&journal->j_state_lock);
 777        J_ASSERT(journal->j_free > 1);
 778
 779        blocknr = journal->j_head;
 780        journal->j_head++;
 781        journal->j_free--;
 782        if (journal->j_head == journal->j_last)
 783                journal->j_head = journal->j_first;
 784        write_unlock(&journal->j_state_lock);
 785        return jbd2_journal_bmap(journal, blocknr, retp);
 786}
 787
 788/*
 789 * Conversion of logical to physical block numbers for the journal
 790 *
 791 * On external journals the journal blocks are identity-mapped, so
 792 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 793 * ready.
 794 */
 795int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 796                 unsigned long long *retp)
 797{
 798        int err = 0;
 799        unsigned long long ret;
 800
 801        if (journal->j_inode) {
 802                ret = bmap(journal->j_inode, blocknr);
 803                if (ret)
 804                        *retp = ret;
 805                else {
 806                        printk(KERN_ALERT "%s: journal block not found "
 807                                        "at offset %lu on %s\n",
 808                               __func__, blocknr, journal->j_devname);
 809                        err = -EIO;
 810                        __journal_abort_soft(journal, err);
 811                }
 812        } else {
 813                *retp = blocknr; /* +journal->j_blk_offset */
 814        }
 815        return err;
 816}
 817
 818/*
 819 * We play buffer_head aliasing tricks to write data/metadata blocks to
 820 * the journal without copying their contents, but for journal
 821 * descriptor blocks we do need to generate bona fide buffers.
 822 *
 823 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 824 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 825 * But we don't bother doing that, so there will be coherency problems with
 826 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 827 */
 828struct buffer_head *
 829jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 830{
 831        journal_t *journal = transaction->t_journal;
 832        struct buffer_head *bh;
 833        unsigned long long blocknr;
 834        journal_header_t *header;
 835        int err;
 836
 837        err = jbd2_journal_next_log_block(journal, &blocknr);
 838
 839        if (err)
 840                return NULL;
 841
 842        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 843        if (!bh)
 844                return NULL;
 845        lock_buffer(bh);
 846        memset(bh->b_data, 0, journal->j_blocksize);
 847        header = (journal_header_t *)bh->b_data;
 848        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 849        header->h_blocktype = cpu_to_be32(type);
 850        header->h_sequence = cpu_to_be32(transaction->t_tid);
 851        set_buffer_uptodate(bh);
 852        unlock_buffer(bh);
 853        BUFFER_TRACE(bh, "return this buffer");
 854        return bh;
 855}
 856
 857void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 858{
 859        struct jbd2_journal_block_tail *tail;
 860        __u32 csum;
 861
 862        if (!jbd2_journal_has_csum_v2or3(j))
 863                return;
 864
 865        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 866                        sizeof(struct jbd2_journal_block_tail));
 867        tail->t_checksum = 0;
 868        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 869        tail->t_checksum = cpu_to_be32(csum);
 870}
 871
 872/*
 873 * Return tid of the oldest transaction in the journal and block in the journal
 874 * where the transaction starts.
 875 *
 876 * If the journal is now empty, return which will be the next transaction ID
 877 * we will write and where will that transaction start.
 878 *
 879 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 880 * it can.
 881 */
 882int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 883                              unsigned long *block)
 884{
 885        transaction_t *transaction;
 886        int ret;
 887
 888        read_lock(&journal->j_state_lock);
 889        spin_lock(&journal->j_list_lock);
 890        transaction = journal->j_checkpoint_transactions;
 891        if (transaction) {
 892                *tid = transaction->t_tid;
 893                *block = transaction->t_log_start;
 894        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 895                *tid = transaction->t_tid;
 896                *block = transaction->t_log_start;
 897        } else if ((transaction = journal->j_running_transaction) != NULL) {
 898                *tid = transaction->t_tid;
 899                *block = journal->j_head;
 900        } else {
 901                *tid = journal->j_transaction_sequence;
 902                *block = journal->j_head;
 903        }
 904        ret = tid_gt(*tid, journal->j_tail_sequence);
 905        spin_unlock(&journal->j_list_lock);
 906        read_unlock(&journal->j_state_lock);
 907
 908        return ret;
 909}
 910
 911/*
 912 * Update information in journal structure and in on disk journal superblock
 913 * about log tail. This function does not check whether information passed in
 914 * really pushes log tail further. It's responsibility of the caller to make
 915 * sure provided log tail information is valid (e.g. by holding
 916 * j_checkpoint_mutex all the time between computing log tail and calling this
 917 * function as is the case with jbd2_cleanup_journal_tail()).
 918 *
 919 * Requires j_checkpoint_mutex
 920 */
 921int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 922{
 923        unsigned long freed;
 924        int ret;
 925
 926        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 927
 928        /*
 929         * We cannot afford for write to remain in drive's caches since as
 930         * soon as we update j_tail, next transaction can start reusing journal
 931         * space and if we lose sb update during power failure we'd replay
 932         * old transaction with possibly newly overwritten data.
 933         */
 934        ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
 935                                              REQ_SYNC | REQ_FUA);
 936        if (ret)
 937                goto out;
 938
 939        write_lock(&journal->j_state_lock);
 940        freed = block - journal->j_tail;
 941        if (block < journal->j_tail)
 942                freed += journal->j_last - journal->j_first;
 943
 944        trace_jbd2_update_log_tail(journal, tid, block, freed);
 945        jbd_debug(1,
 946                  "Cleaning journal tail from %u to %u (offset %lu), "
 947                  "freeing %lu\n",
 948                  journal->j_tail_sequence, tid, block, freed);
 949
 950        journal->j_free += freed;
 951        journal->j_tail_sequence = tid;
 952        journal->j_tail = block;
 953        write_unlock(&journal->j_state_lock);
 954
 955out:
 956        return ret;
 957}
 958
 959/*
 960 * This is a variation of __jbd2_update_log_tail which checks for validity of
 961 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 962 * with other threads updating log tail.
 963 */
 964void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 965{
 966        mutex_lock_io(&journal->j_checkpoint_mutex);
 967        if (tid_gt(tid, journal->j_tail_sequence))
 968                __jbd2_update_log_tail(journal, tid, block);
 969        mutex_unlock(&journal->j_checkpoint_mutex);
 970}
 971
 972struct jbd2_stats_proc_session {
 973        journal_t *journal;
 974        struct transaction_stats_s *stats;
 975        int start;
 976        int max;
 977};
 978
 979static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 980{
 981        return *pos ? NULL : SEQ_START_TOKEN;
 982}
 983
 984static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 985{
 986        return NULL;
 987}
 988
 989static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 990{
 991        struct jbd2_stats_proc_session *s = seq->private;
 992
 993        if (v != SEQ_START_TOKEN)
 994                return 0;
 995        seq_printf(seq, "%lu transactions (%lu requested), "
 996                   "each up to %u blocks\n",
 997                   s->stats->ts_tid, s->stats->ts_requested,
 998                   s->journal->j_max_transaction_buffers);
 999        if (s->stats->ts_tid == 0)
1000                return 0;
1001        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003        seq_printf(seq, "  %ums request delay\n",
1004            (s->stats->ts_requested == 0) ? 0 :
1005            jiffies_to_msecs(s->stats->run.rs_request_delay /
1006                             s->stats->ts_requested));
1007        seq_printf(seq, "  %ums running transaction\n",
1008            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009        seq_printf(seq, "  %ums transaction was being locked\n",
1010            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013        seq_printf(seq, "  %ums logging transaction\n",
1014            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015        seq_printf(seq, "  %lluus average transaction commit time\n",
1016                   div_u64(s->journal->j_average_commit_time, 1000));
1017        seq_printf(seq, "  %lu handles per transaction\n",
1018            s->stats->run.rs_handle_count / s->stats->ts_tid);
1019        seq_printf(seq, "  %lu blocks per transaction\n",
1020            s->stats->run.rs_blocks / s->stats->ts_tid);
1021        seq_printf(seq, "  %lu logged blocks per transaction\n",
1022            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023        return 0;
1024}
1025
1026static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027{
1028}
1029
1030static const struct seq_operations jbd2_seq_info_ops = {
1031        .start  = jbd2_seq_info_start,
1032        .next   = jbd2_seq_info_next,
1033        .stop   = jbd2_seq_info_stop,
1034        .show   = jbd2_seq_info_show,
1035};
1036
1037static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038{
1039        journal_t *journal = PDE_DATA(inode);
1040        struct jbd2_stats_proc_session *s;
1041        int rc, size;
1042
1043        s = kmalloc(sizeof(*s), GFP_KERNEL);
1044        if (s == NULL)
1045                return -ENOMEM;
1046        size = sizeof(struct transaction_stats_s);
1047        s->stats = kmalloc(size, GFP_KERNEL);
1048        if (s->stats == NULL) {
1049                kfree(s);
1050                return -ENOMEM;
1051        }
1052        spin_lock(&journal->j_history_lock);
1053        memcpy(s->stats, &journal->j_stats, size);
1054        s->journal = journal;
1055        spin_unlock(&journal->j_history_lock);
1056
1057        rc = seq_open(file, &jbd2_seq_info_ops);
1058        if (rc == 0) {
1059                struct seq_file *m = file->private_data;
1060                m->private = s;
1061        } else {
1062                kfree(s->stats);
1063                kfree(s);
1064        }
1065        return rc;
1066
1067}
1068
1069static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070{
1071        struct seq_file *seq = file->private_data;
1072        struct jbd2_stats_proc_session *s = seq->private;
1073        kfree(s->stats);
1074        kfree(s);
1075        return seq_release(inode, file);
1076}
1077
1078static const struct file_operations jbd2_seq_info_fops = {
1079        .owner          = THIS_MODULE,
1080        .open           = jbd2_seq_info_open,
1081        .read           = seq_read,
1082        .llseek         = seq_lseek,
1083        .release        = jbd2_seq_info_release,
1084};
1085
1086static struct proc_dir_entry *proc_jbd2_stats;
1087
1088static void jbd2_stats_proc_init(journal_t *journal)
1089{
1090        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091        if (journal->j_proc_entry) {
1092                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093                                 &jbd2_seq_info_fops, journal);
1094        }
1095}
1096
1097static void jbd2_stats_proc_exit(journal_t *journal)
1098{
1099        remove_proc_entry("info", journal->j_proc_entry);
1100        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101}
1102
1103/*
1104 * Management for journal control blocks: functions to create and
1105 * destroy journal_t structures, and to initialise and read existing
1106 * journal blocks from disk.  */
1107
1108/* First: create and setup a journal_t object in memory.  We initialise
1109 * very few fields yet: that has to wait until we have created the
1110 * journal structures from from scratch, or loaded them from disk. */
1111
1112static journal_t *journal_init_common(struct block_device *bdev,
1113                        struct block_device *fs_dev,
1114                        unsigned long long start, int len, int blocksize)
1115{
1116        static struct lock_class_key jbd2_trans_commit_key;
1117        journal_t *journal;
1118        int err;
1119        struct buffer_head *bh;
1120        int n;
1121
1122        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123        if (!journal)
1124                return NULL;
1125
1126        init_waitqueue_head(&journal->j_wait_transaction_locked);
1127        init_waitqueue_head(&journal->j_wait_done_commit);
1128        init_waitqueue_head(&journal->j_wait_commit);
1129        init_waitqueue_head(&journal->j_wait_updates);
1130        init_waitqueue_head(&journal->j_wait_reserved);
1131        mutex_init(&journal->j_barrier);
1132        mutex_init(&journal->j_checkpoint_mutex);
1133        spin_lock_init(&journal->j_revoke_lock);
1134        spin_lock_init(&journal->j_list_lock);
1135        rwlock_init(&journal->j_state_lock);
1136
1137        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138        journal->j_min_batch_time = 0;
1139        journal->j_max_batch_time = 15000; /* 15ms */
1140        atomic_set(&journal->j_reserved_credits, 0);
1141
1142        /* The journal is marked for error until we succeed with recovery! */
1143        journal->j_flags = JBD2_ABORT;
1144
1145        /* Set up a default-sized revoke table for the new mount. */
1146        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147        if (err)
1148                goto err_cleanup;
1149
1150        spin_lock_init(&journal->j_history_lock);
1151
1152        lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153                         &jbd2_trans_commit_key, 0);
1154
1155        /* journal descriptor can store up to n blocks -bzzz */
1156        journal->j_blocksize = blocksize;
1157        journal->j_dev = bdev;
1158        journal->j_fs_dev = fs_dev;
1159        journal->j_blk_offset = start;
1160        journal->j_maxlen = len;
1161        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162        journal->j_wbufsize = n;
1163        journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164                                        GFP_KERNEL);
1165        if (!journal->j_wbuf)
1166                goto err_cleanup;
1167
1168        bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169        if (!bh) {
1170                pr_err("%s: Cannot get buffer for journal superblock\n",
1171                        __func__);
1172                goto err_cleanup;
1173        }
1174        journal->j_sb_buffer = bh;
1175        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176
1177        return journal;
1178
1179err_cleanup:
1180        kfree(journal->j_wbuf);
1181        jbd2_journal_destroy_revoke(journal);
1182        kfree(journal);
1183        return NULL;
1184}
1185
1186/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187 *
1188 * Create a journal structure assigned some fixed set of disk blocks to
1189 * the journal.  We don't actually touch those disk blocks yet, but we
1190 * need to set up all of the mapping information to tell the journaling
1191 * system where the journal blocks are.
1192 *
1193 */
1194
1195/**
1196 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197 *  @bdev: Block device on which to create the journal
1198 *  @fs_dev: Device which hold journalled filesystem for this journal.
1199 *  @start: Block nr Start of journal.
1200 *  @len:  Length of the journal in blocks.
1201 *  @blocksize: blocksize of journalling device
1202 *
1203 *  Returns: a newly created journal_t *
1204 *
1205 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206 *  range of blocks on an arbitrary block device.
1207 *
1208 */
1209journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210                        struct block_device *fs_dev,
1211                        unsigned long long start, int len, int blocksize)
1212{
1213        journal_t *journal;
1214
1215        journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216        if (!journal)
1217                return NULL;
1218
1219        bdevname(journal->j_dev, journal->j_devname);
1220        strreplace(journal->j_devname, '/', '!');
1221        jbd2_stats_proc_init(journal);
1222
1223        return journal;
1224}
1225
1226/**
1227 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228 *  @inode: An inode to create the journal in
1229 *
1230 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231 * the journal.  The inode must exist already, must support bmap() and
1232 * must have all data blocks preallocated.
1233 */
1234journal_t *jbd2_journal_init_inode(struct inode *inode)
1235{
1236        journal_t *journal;
1237        char *p;
1238        unsigned long long blocknr;
1239
1240        blocknr = bmap(inode, 0);
1241        if (!blocknr) {
1242                pr_err("%s: Cannot locate journal superblock\n",
1243                        __func__);
1244                return NULL;
1245        }
1246
1247        jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248                  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250
1251        journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252                        blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253                        inode->i_sb->s_blocksize);
1254        if (!journal)
1255                return NULL;
1256
1257        journal->j_inode = inode;
1258        bdevname(journal->j_dev, journal->j_devname);
1259        p = strreplace(journal->j_devname, '/', '!');
1260        sprintf(p, "-%lu", journal->j_inode->i_ino);
1261        jbd2_stats_proc_init(journal);
1262
1263        return journal;
1264}
1265
1266/*
1267 * If the journal init or create aborts, we need to mark the journal
1268 * superblock as being NULL to prevent the journal destroy from writing
1269 * back a bogus superblock.
1270 */
1271static void journal_fail_superblock (journal_t *journal)
1272{
1273        struct buffer_head *bh = journal->j_sb_buffer;
1274        brelse(bh);
1275        journal->j_sb_buffer = NULL;
1276}
1277
1278/*
1279 * Given a journal_t structure, initialise the various fields for
1280 * startup of a new journaling session.  We use this both when creating
1281 * a journal, and after recovering an old journal to reset it for
1282 * subsequent use.
1283 */
1284
1285static int journal_reset(journal_t *journal)
1286{
1287        journal_superblock_t *sb = journal->j_superblock;
1288        unsigned long long first, last;
1289
1290        first = be32_to_cpu(sb->s_first);
1291        last = be32_to_cpu(sb->s_maxlen);
1292        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294                       first, last);
1295                journal_fail_superblock(journal);
1296                return -EINVAL;
1297        }
1298
1299        journal->j_first = first;
1300        journal->j_last = last;
1301
1302        journal->j_head = first;
1303        journal->j_tail = first;
1304        journal->j_free = last - first;
1305
1306        journal->j_tail_sequence = journal->j_transaction_sequence;
1307        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308        journal->j_commit_request = journal->j_commit_sequence;
1309
1310        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311
1312        /*
1313         * As a special case, if the on-disk copy is already marked as needing
1314         * no recovery (s_start == 0), then we can safely defer the superblock
1315         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1316         * attempting a write to a potential-readonly device.
1317         */
1318        if (sb->s_start == 0) {
1319                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320                        "(start %ld, seq %u, errno %d)\n",
1321                        journal->j_tail, journal->j_tail_sequence,
1322                        journal->j_errno);
1323                journal->j_flags |= JBD2_FLUSHED;
1324        } else {
1325                /* Lock here to make assertions happy... */
1326                mutex_lock_io(&journal->j_checkpoint_mutex);
1327                /*
1328                 * Update log tail information. We use REQ_FUA since new
1329                 * transaction will start reusing journal space and so we
1330                 * must make sure information about current log tail is on
1331                 * disk before that.
1332                 */
1333                jbd2_journal_update_sb_log_tail(journal,
1334                                                journal->j_tail_sequence,
1335                                                journal->j_tail,
1336                                                REQ_SYNC | REQ_FUA);
1337                mutex_unlock(&journal->j_checkpoint_mutex);
1338        }
1339        return jbd2_journal_start_thread(journal);
1340}
1341
1342/*
1343 * This function expects that the caller will have locked the journal
1344 * buffer head, and will return with it unlocked
1345 */
1346static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347{
1348        struct buffer_head *bh = journal->j_sb_buffer;
1349        journal_superblock_t *sb = journal->j_superblock;
1350        int ret;
1351
1352        /* Buffer got discarded which means block device got invalidated */
1353        if (!buffer_mapped(bh))
1354                return -EIO;
1355
1356        trace_jbd2_write_superblock(journal, write_flags);
1357        if (!(journal->j_flags & JBD2_BARRIER))
1358                write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1359        if (buffer_write_io_error(bh)) {
1360                /*
1361                 * Oh, dear.  A previous attempt to write the journal
1362                 * superblock failed.  This could happen because the
1363                 * USB device was yanked out.  Or it could happen to
1364                 * be a transient write error and maybe the block will
1365                 * be remapped.  Nothing we can do but to retry the
1366                 * write and hope for the best.
1367                 */
1368                printk(KERN_ERR "JBD2: previous I/O error detected "
1369                       "for journal superblock update for %s.\n",
1370                       journal->j_devname);
1371                clear_buffer_write_io_error(bh);
1372                set_buffer_uptodate(bh);
1373        }
1374        if (jbd2_journal_has_csum_v2or3(journal))
1375                sb->s_checksum = jbd2_superblock_csum(journal, sb);
1376        get_bh(bh);
1377        bh->b_end_io = end_buffer_write_sync;
1378        ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1379        wait_on_buffer(bh);
1380        if (buffer_write_io_error(bh)) {
1381                clear_buffer_write_io_error(bh);
1382                set_buffer_uptodate(bh);
1383                ret = -EIO;
1384        }
1385        if (ret) {
1386                printk(KERN_ERR "JBD2: Error %d detected when updating "
1387                       "journal superblock for %s.\n", ret,
1388                       journal->j_devname);
1389                jbd2_journal_abort(journal, ret);
1390        }
1391
1392        return ret;
1393}
1394
1395/**
1396 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1397 * @journal: The journal to update.
1398 * @tail_tid: TID of the new transaction at the tail of the log
1399 * @tail_block: The first block of the transaction at the tail of the log
1400 * @write_op: With which operation should we write the journal sb
1401 *
1402 * Update a journal's superblock information about log tail and write it to
1403 * disk, waiting for the IO to complete.
1404 */
1405int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1406                                     unsigned long tail_block, int write_op)
1407{
1408        journal_superblock_t *sb = journal->j_superblock;
1409        int ret;
1410
1411        if (is_journal_aborted(journal))
1412                return -EIO;
1413
1414        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1415        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1416                  tail_block, tail_tid);
1417
1418        lock_buffer(journal->j_sb_buffer);
1419        sb->s_sequence = cpu_to_be32(tail_tid);
1420        sb->s_start    = cpu_to_be32(tail_block);
1421
1422        ret = jbd2_write_superblock(journal, write_op);
1423        if (ret)
1424                goto out;
1425
1426        /* Log is no longer empty */
1427        write_lock(&journal->j_state_lock);
1428        WARN_ON(!sb->s_sequence);
1429        journal->j_flags &= ~JBD2_FLUSHED;
1430        write_unlock(&journal->j_state_lock);
1431
1432out:
1433        return ret;
1434}
1435
1436/**
1437 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438 * @journal: The journal to update.
1439 * @write_op: With which operation should we write the journal sb
1440 *
1441 * Update a journal's dynamic superblock fields to show that journal is empty.
1442 * Write updated superblock to disk waiting for IO to complete.
1443 */
1444static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445{
1446        journal_superblock_t *sb = journal->j_superblock;
1447
1448        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449        lock_buffer(journal->j_sb_buffer);
1450        if (sb->s_start == 0) {         /* Is it already empty? */
1451                unlock_buffer(journal->j_sb_buffer);
1452                return;
1453        }
1454
1455        jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1456                  journal->j_tail_sequence);
1457
1458        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459        sb->s_start    = cpu_to_be32(0);
1460
1461        jbd2_write_superblock(journal, write_op);
1462
1463        /* Log is no longer empty */
1464        write_lock(&journal->j_state_lock);
1465        journal->j_flags |= JBD2_FLUSHED;
1466        write_unlock(&journal->j_state_lock);
1467}
1468
1469
1470/**
1471 * jbd2_journal_update_sb_errno() - Update error in the journal.
1472 * @journal: The journal to update.
1473 *
1474 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1475 * to complete.
1476 */
1477void jbd2_journal_update_sb_errno(journal_t *journal)
1478{
1479        journal_superblock_t *sb = journal->j_superblock;
1480        int errcode;
1481
1482        lock_buffer(journal->j_sb_buffer);
1483        errcode = journal->j_errno;
1484        if (errcode == -ESHUTDOWN)
1485                errcode = 0;
1486        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1487        sb->s_errno    = cpu_to_be32(errcode);
1488
1489        jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1490}
1491EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1492
1493/*
1494 * Read the superblock for a given journal, performing initial
1495 * validation of the format.
1496 */
1497static int journal_get_superblock(journal_t *journal)
1498{
1499        struct buffer_head *bh;
1500        journal_superblock_t *sb;
1501        int err = -EIO;
1502
1503        bh = journal->j_sb_buffer;
1504
1505        J_ASSERT(bh != NULL);
1506        if (!buffer_uptodate(bh)) {
1507                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1508                wait_on_buffer(bh);
1509                if (!buffer_uptodate(bh)) {
1510                        printk(KERN_ERR
1511                                "JBD2: IO error reading journal superblock\n");
1512                        goto out;
1513                }
1514        }
1515
1516        if (buffer_verified(bh))
1517                return 0;
1518
1519        sb = journal->j_superblock;
1520
1521        err = -EINVAL;
1522
1523        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1524            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1525                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1526                goto out;
1527        }
1528
1529        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1530        case JBD2_SUPERBLOCK_V1:
1531                journal->j_format_version = 1;
1532                break;
1533        case JBD2_SUPERBLOCK_V2:
1534                journal->j_format_version = 2;
1535                break;
1536        default:
1537                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1538                goto out;
1539        }
1540
1541        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1542                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1543        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1544                printk(KERN_WARNING "JBD2: journal file too short\n");
1545                goto out;
1546        }
1547
1548        if (be32_to_cpu(sb->s_first) == 0 ||
1549            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1550                printk(KERN_WARNING
1551                        "JBD2: Invalid start block of journal: %u\n",
1552                        be32_to_cpu(sb->s_first));
1553                goto out;
1554        }
1555
1556        if (jbd2_has_feature_csum2(journal) &&
1557            jbd2_has_feature_csum3(journal)) {
1558                /* Can't have checksum v2 and v3 at the same time! */
1559                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1560                       "at the same time!\n");
1561                goto out;
1562        }
1563
1564        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1565            jbd2_has_feature_checksum(journal)) {
1566                /* Can't have checksum v1 and v2 on at the same time! */
1567                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1568                       "at the same time!\n");
1569                goto out;
1570        }
1571
1572        if (!jbd2_verify_csum_type(journal, sb)) {
1573                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1574                goto out;
1575        }
1576
1577        /* Load the checksum driver */
1578        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1579                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1580                if (IS_ERR(journal->j_chksum_driver)) {
1581                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1582                        err = PTR_ERR(journal->j_chksum_driver);
1583                        journal->j_chksum_driver = NULL;
1584                        goto out;
1585                }
1586        }
1587
1588        if (jbd2_journal_has_csum_v2or3(journal)) {
1589                /* Check superblock checksum */
1590                if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1591                        printk(KERN_ERR "JBD2: journal checksum error\n");
1592                        err = -EFSBADCRC;
1593                        goto out;
1594                }
1595
1596                /* Precompute checksum seed for all metadata */
1597                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1598                                                   sizeof(sb->s_uuid));
1599        }
1600
1601        set_buffer_verified(bh);
1602
1603        return 0;
1604
1605out:
1606        journal_fail_superblock(journal);
1607        return err;
1608}
1609
1610/*
1611 * Load the on-disk journal superblock and read the key fields into the
1612 * journal_t.
1613 */
1614
1615static int load_superblock(journal_t *journal)
1616{
1617        int err;
1618        journal_superblock_t *sb;
1619
1620        err = journal_get_superblock(journal);
1621        if (err)
1622                return err;
1623
1624        sb = journal->j_superblock;
1625
1626        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1627        journal->j_tail = be32_to_cpu(sb->s_start);
1628        journal->j_first = be32_to_cpu(sb->s_first);
1629        journal->j_last = be32_to_cpu(sb->s_maxlen);
1630        journal->j_errno = be32_to_cpu(sb->s_errno);
1631
1632        return 0;
1633}
1634
1635
1636/**
1637 * int jbd2_journal_load() - Read journal from disk.
1638 * @journal: Journal to act on.
1639 *
1640 * Given a journal_t structure which tells us which disk blocks contain
1641 * a journal, read the journal from disk to initialise the in-memory
1642 * structures.
1643 */
1644int jbd2_journal_load(journal_t *journal)
1645{
1646        int err;
1647        journal_superblock_t *sb;
1648
1649        err = load_superblock(journal);
1650        if (err)
1651                return err;
1652
1653        sb = journal->j_superblock;
1654        /* If this is a V2 superblock, then we have to check the
1655         * features flags on it. */
1656
1657        if (journal->j_format_version >= 2) {
1658                if ((sb->s_feature_ro_compat &
1659                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1660                    (sb->s_feature_incompat &
1661                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1662                        printk(KERN_WARNING
1663                                "JBD2: Unrecognised features on journal\n");
1664                        return -EINVAL;
1665                }
1666        }
1667
1668        /*
1669         * Create a slab for this blocksize
1670         */
1671        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1672        if (err)
1673                return err;
1674
1675        /* Let the recovery code check whether it needs to recover any
1676         * data from the journal. */
1677        if (jbd2_journal_recover(journal))
1678                goto recovery_error;
1679
1680        if (journal->j_failed_commit) {
1681                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1682                       "is corrupt.\n", journal->j_failed_commit,
1683                       journal->j_devname);
1684                return -EFSCORRUPTED;
1685        }
1686
1687        /* OK, we've finished with the dynamic journal bits:
1688         * reinitialise the dynamic contents of the superblock in memory
1689         * and reset them on disk. */
1690        if (journal_reset(journal))
1691                goto recovery_error;
1692
1693        journal->j_flags &= ~JBD2_ABORT;
1694        journal->j_flags |= JBD2_LOADED;
1695        return 0;
1696
1697recovery_error:
1698        printk(KERN_WARNING "JBD2: recovery failed\n");
1699        return -EIO;
1700}
1701
1702/**
1703 * void jbd2_journal_destroy() - Release a journal_t structure.
1704 * @journal: Journal to act on.
1705 *
1706 * Release a journal_t structure once it is no longer in use by the
1707 * journaled object.
1708 * Return <0 if we couldn't clean up the journal.
1709 */
1710int jbd2_journal_destroy(journal_t *journal)
1711{
1712        int err = 0;
1713
1714        /* Wait for the commit thread to wake up and die. */
1715        journal_kill_thread(journal);
1716
1717        /* Force a final log commit */
1718        if (journal->j_running_transaction)
1719                jbd2_journal_commit_transaction(journal);
1720
1721        /* Force any old transactions to disk */
1722
1723        /* Totally anal locking here... */
1724        spin_lock(&journal->j_list_lock);
1725        while (journal->j_checkpoint_transactions != NULL) {
1726                spin_unlock(&journal->j_list_lock);
1727                mutex_lock_io(&journal->j_checkpoint_mutex);
1728                err = jbd2_log_do_checkpoint(journal);
1729                mutex_unlock(&journal->j_checkpoint_mutex);
1730                /*
1731                 * If checkpointing failed, just free the buffers to avoid
1732                 * looping forever
1733                 */
1734                if (err) {
1735                        jbd2_journal_destroy_checkpoint(journal);
1736                        spin_lock(&journal->j_list_lock);
1737                        break;
1738                }
1739                spin_lock(&journal->j_list_lock);
1740        }
1741
1742        J_ASSERT(journal->j_running_transaction == NULL);
1743        J_ASSERT(journal->j_committing_transaction == NULL);
1744        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1745        spin_unlock(&journal->j_list_lock);
1746
1747        if (journal->j_sb_buffer) {
1748                if (!is_journal_aborted(journal)) {
1749                        mutex_lock_io(&journal->j_checkpoint_mutex);
1750
1751                        write_lock(&journal->j_state_lock);
1752                        journal->j_tail_sequence =
1753                                ++journal->j_transaction_sequence;
1754                        write_unlock(&journal->j_state_lock);
1755
1756                        jbd2_mark_journal_empty(journal,
1757                                        REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1758                        mutex_unlock(&journal->j_checkpoint_mutex);
1759                } else
1760                        err = -EIO;
1761                brelse(journal->j_sb_buffer);
1762        }
1763
1764        if (journal->j_proc_entry)
1765                jbd2_stats_proc_exit(journal);
1766        iput(journal->j_inode);
1767        if (journal->j_revoke)
1768                jbd2_journal_destroy_revoke(journal);
1769        if (journal->j_chksum_driver)
1770                crypto_free_shash(journal->j_chksum_driver);
1771        kfree(journal->j_wbuf);
1772        kfree(journal);
1773
1774        return err;
1775}
1776
1777
1778/**
1779 *int jbd2_journal_check_used_features () - Check if features specified are used.
1780 * @journal: Journal to check.
1781 * @compat: bitmask of compatible features
1782 * @ro: bitmask of features that force read-only mount
1783 * @incompat: bitmask of incompatible features
1784 *
1785 * Check whether the journal uses all of a given set of
1786 * features.  Return true (non-zero) if it does.
1787 **/
1788
1789int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1790                                 unsigned long ro, unsigned long incompat)
1791{
1792        journal_superblock_t *sb;
1793
1794        if (!compat && !ro && !incompat)
1795                return 1;
1796        /* Load journal superblock if it is not loaded yet. */
1797        if (journal->j_format_version == 0 &&
1798            journal_get_superblock(journal) != 0)
1799                return 0;
1800        if (journal->j_format_version == 1)
1801                return 0;
1802
1803        sb = journal->j_superblock;
1804
1805        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1806            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1807            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1808                return 1;
1809
1810        return 0;
1811}
1812
1813/**
1814 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1815 * @journal: Journal to check.
1816 * @compat: bitmask of compatible features
1817 * @ro: bitmask of features that force read-only mount
1818 * @incompat: bitmask of incompatible features
1819 *
1820 * Check whether the journaling code supports the use of
1821 * all of a given set of features on this journal.  Return true
1822 * (non-zero) if it can. */
1823
1824int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1825                                      unsigned long ro, unsigned long incompat)
1826{
1827        if (!compat && !ro && !incompat)
1828                return 1;
1829
1830        /* We can support any known requested features iff the
1831         * superblock is in version 2.  Otherwise we fail to support any
1832         * extended sb features. */
1833
1834        if (journal->j_format_version != 2)
1835                return 0;
1836
1837        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1838            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1839            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1840                return 1;
1841
1842        return 0;
1843}
1844
1845/**
1846 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1847 * @journal: Journal to act on.
1848 * @compat: bitmask of compatible features
1849 * @ro: bitmask of features that force read-only mount
1850 * @incompat: bitmask of incompatible features
1851 *
1852 * Mark a given journal feature as present on the
1853 * superblock.  Returns true if the requested features could be set.
1854 *
1855 */
1856
1857int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1858                          unsigned long ro, unsigned long incompat)
1859{
1860#define INCOMPAT_FEATURE_ON(f) \
1861                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1862#define COMPAT_FEATURE_ON(f) \
1863                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1864        journal_superblock_t *sb;
1865
1866        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1867                return 1;
1868
1869        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1870                return 0;
1871
1872        /* If enabling v2 checksums, turn on v3 instead */
1873        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1874                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1875                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1876        }
1877
1878        /* Asking for checksumming v3 and v1?  Only give them v3. */
1879        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1880            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1881                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1882
1883        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1884                  compat, ro, incompat);
1885
1886        sb = journal->j_superblock;
1887
1888        /* Load the checksum driver if necessary */
1889        if ((journal->j_chksum_driver == NULL) &&
1890            INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1891                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1892                if (IS_ERR(journal->j_chksum_driver)) {
1893                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1894                        journal->j_chksum_driver = NULL;
1895                        return 0;
1896                }
1897                /* Precompute checksum seed for all metadata */
1898                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1899                                                   sizeof(sb->s_uuid));
1900        }
1901
1902        lock_buffer(journal->j_sb_buffer);
1903
1904        /* If enabling v3 checksums, update superblock */
1905        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1906                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1907                sb->s_feature_compat &=
1908                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1909        }
1910
1911        /* If enabling v1 checksums, downgrade superblock */
1912        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1913                sb->s_feature_incompat &=
1914                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1915                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1916
1917        sb->s_feature_compat    |= cpu_to_be32(compat);
1918        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1919        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1920        unlock_buffer(journal->j_sb_buffer);
1921
1922        return 1;
1923#undef COMPAT_FEATURE_ON
1924#undef INCOMPAT_FEATURE_ON
1925}
1926
1927/*
1928 * jbd2_journal_clear_features () - Clear a given journal feature in the
1929 *                                  superblock
1930 * @journal: Journal to act on.
1931 * @compat: bitmask of compatible features
1932 * @ro: bitmask of features that force read-only mount
1933 * @incompat: bitmask of incompatible features
1934 *
1935 * Clear a given journal feature as present on the
1936 * superblock.
1937 */
1938void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1939                                unsigned long ro, unsigned long incompat)
1940{
1941        journal_superblock_t *sb;
1942
1943        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1944                  compat, ro, incompat);
1945
1946        sb = journal->j_superblock;
1947
1948        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1949        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1950        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1951}
1952EXPORT_SYMBOL(jbd2_journal_clear_features);
1953
1954/**
1955 * int jbd2_journal_flush () - Flush journal
1956 * @journal: Journal to act on.
1957 *
1958 * Flush all data for a given journal to disk and empty the journal.
1959 * Filesystems can use this when remounting readonly to ensure that
1960 * recovery does not need to happen on remount.
1961 */
1962
1963int jbd2_journal_flush(journal_t *journal)
1964{
1965        int err = 0;
1966        transaction_t *transaction = NULL;
1967
1968        write_lock(&journal->j_state_lock);
1969
1970        /* Force everything buffered to the log... */
1971        if (journal->j_running_transaction) {
1972                transaction = journal->j_running_transaction;
1973                __jbd2_log_start_commit(journal, transaction->t_tid);
1974        } else if (journal->j_committing_transaction)
1975                transaction = journal->j_committing_transaction;
1976
1977        /* Wait for the log commit to complete... */
1978        if (transaction) {
1979                tid_t tid = transaction->t_tid;
1980
1981                write_unlock(&journal->j_state_lock);
1982                jbd2_log_wait_commit(journal, tid);
1983        } else {
1984                write_unlock(&journal->j_state_lock);
1985        }
1986
1987        /* ...and flush everything in the log out to disk. */
1988        spin_lock(&journal->j_list_lock);
1989        while (!err && journal->j_checkpoint_transactions != NULL) {
1990                spin_unlock(&journal->j_list_lock);
1991                mutex_lock_io(&journal->j_checkpoint_mutex);
1992                err = jbd2_log_do_checkpoint(journal);
1993                mutex_unlock(&journal->j_checkpoint_mutex);
1994                spin_lock(&journal->j_list_lock);
1995        }
1996        spin_unlock(&journal->j_list_lock);
1997
1998        if (is_journal_aborted(journal))
1999                return -EIO;
2000
2001        mutex_lock_io(&journal->j_checkpoint_mutex);
2002        if (!err) {
2003                err = jbd2_cleanup_journal_tail(journal);
2004                if (err < 0) {
2005                        mutex_unlock(&journal->j_checkpoint_mutex);
2006                        goto out;
2007                }
2008                err = 0;
2009        }
2010
2011        /* Finally, mark the journal as really needing no recovery.
2012         * This sets s_start==0 in the underlying superblock, which is
2013         * the magic code for a fully-recovered superblock.  Any future
2014         * commits of data to the journal will restore the current
2015         * s_start value. */
2016        jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2017        mutex_unlock(&journal->j_checkpoint_mutex);
2018        write_lock(&journal->j_state_lock);
2019        J_ASSERT(!journal->j_running_transaction);
2020        J_ASSERT(!journal->j_committing_transaction);
2021        J_ASSERT(!journal->j_checkpoint_transactions);
2022        J_ASSERT(journal->j_head == journal->j_tail);
2023        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2024        write_unlock(&journal->j_state_lock);
2025out:
2026        return err;
2027}
2028
2029/**
2030 * int jbd2_journal_wipe() - Wipe journal contents
2031 * @journal: Journal to act on.
2032 * @write: flag (see below)
2033 *
2034 * Wipe out all of the contents of a journal, safely.  This will produce
2035 * a warning if the journal contains any valid recovery information.
2036 * Must be called between journal_init_*() and jbd2_journal_load().
2037 *
2038 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2039 * we merely suppress recovery.
2040 */
2041
2042int jbd2_journal_wipe(journal_t *journal, int write)
2043{
2044        int err = 0;
2045
2046        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2047
2048        err = load_superblock(journal);
2049        if (err)
2050                return err;
2051
2052        if (!journal->j_tail)
2053                goto no_recovery;
2054
2055        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2056                write ? "Clearing" : "Ignoring");
2057
2058        err = jbd2_journal_skip_recovery(journal);
2059        if (write) {
2060                /* Lock to make assertions happy... */
2061                mutex_lock_io(&journal->j_checkpoint_mutex);
2062                jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2063                mutex_unlock(&journal->j_checkpoint_mutex);
2064        }
2065
2066 no_recovery:
2067        return err;
2068}
2069
2070/*
2071 * Journal abort has very specific semantics, which we describe
2072 * for journal abort.
2073 *
2074 * Two internal functions, which provide abort to the jbd layer
2075 * itself are here.
2076 */
2077
2078/*
2079 * Quick version for internal journal use (doesn't lock the journal).
2080 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2081 * and don't attempt to make any other journal updates.
2082 */
2083void __jbd2_journal_abort_hard(journal_t *journal)
2084{
2085        transaction_t *transaction;
2086
2087        if (journal->j_flags & JBD2_ABORT)
2088                return;
2089
2090        printk(KERN_ERR "Aborting journal on device %s.\n",
2091               journal->j_devname);
2092
2093        write_lock(&journal->j_state_lock);
2094        journal->j_flags |= JBD2_ABORT;
2095        transaction = journal->j_running_transaction;
2096        if (transaction)
2097                __jbd2_log_start_commit(journal, transaction->t_tid);
2098        write_unlock(&journal->j_state_lock);
2099}
2100
2101/* Soft abort: record the abort error status in the journal superblock,
2102 * but don't do any other IO. */
2103static void __journal_abort_soft (journal_t *journal, int errno)
2104{
2105        int old_errno;
2106
2107        write_lock(&journal->j_state_lock);
2108        old_errno = journal->j_errno;
2109        if (!journal->j_errno || errno == -ESHUTDOWN)
2110                journal->j_errno = errno;
2111
2112        if (journal->j_flags & JBD2_ABORT) {
2113                write_unlock(&journal->j_state_lock);
2114                if (!old_errno && old_errno != -ESHUTDOWN &&
2115                    errno == -ESHUTDOWN)
2116                        jbd2_journal_update_sb_errno(journal);
2117                return;
2118        }
2119        write_unlock(&journal->j_state_lock);
2120
2121        __jbd2_journal_abort_hard(journal);
2122
2123        if (errno) {
2124                jbd2_journal_update_sb_errno(journal);
2125                write_lock(&journal->j_state_lock);
2126                journal->j_flags |= JBD2_REC_ERR;
2127                write_unlock(&journal->j_state_lock);
2128        }
2129}
2130
2131/**
2132 * void jbd2_journal_abort () - Shutdown the journal immediately.
2133 * @journal: the journal to shutdown.
2134 * @errno:   an error number to record in the journal indicating
2135 *           the reason for the shutdown.
2136 *
2137 * Perform a complete, immediate shutdown of the ENTIRE
2138 * journal (not of a single transaction).  This operation cannot be
2139 * undone without closing and reopening the journal.
2140 *
2141 * The jbd2_journal_abort function is intended to support higher level error
2142 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2143 * mode.
2144 *
2145 * Journal abort has very specific semantics.  Any existing dirty,
2146 * unjournaled buffers in the main filesystem will still be written to
2147 * disk by bdflush, but the journaling mechanism will be suspended
2148 * immediately and no further transaction commits will be honoured.
2149 *
2150 * Any dirty, journaled buffers will be written back to disk without
2151 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2152 * filesystem, but we _do_ attempt to leave as much data as possible
2153 * behind for fsck to use for cleanup.
2154 *
2155 * Any attempt to get a new transaction handle on a journal which is in
2156 * ABORT state will just result in an -EROFS error return.  A
2157 * jbd2_journal_stop on an existing handle will return -EIO if we have
2158 * entered abort state during the update.
2159 *
2160 * Recursive transactions are not disturbed by journal abort until the
2161 * final jbd2_journal_stop, which will receive the -EIO error.
2162 *
2163 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2164 * which will be recorded (if possible) in the journal superblock.  This
2165 * allows a client to record failure conditions in the middle of a
2166 * transaction without having to complete the transaction to record the
2167 * failure to disk.  ext3_error, for example, now uses this
2168 * functionality.
2169 *
2170 * Errors which originate from within the journaling layer will NOT
2171 * supply an errno; a null errno implies that absolutely no further
2172 * writes are done to the journal (unless there are any already in
2173 * progress).
2174 *
2175 */
2176
2177void jbd2_journal_abort(journal_t *journal, int errno)
2178{
2179        __journal_abort_soft(journal, errno);
2180}
2181
2182/**
2183 * int jbd2_journal_errno () - returns the journal's error state.
2184 * @journal: journal to examine.
2185 *
2186 * This is the errno number set with jbd2_journal_abort(), the last
2187 * time the journal was mounted - if the journal was stopped
2188 * without calling abort this will be 0.
2189 *
2190 * If the journal has been aborted on this mount time -EROFS will
2191 * be returned.
2192 */
2193int jbd2_journal_errno(journal_t *journal)
2194{
2195        int err;
2196
2197        read_lock(&journal->j_state_lock);
2198        if (journal->j_flags & JBD2_ABORT)
2199                err = -EROFS;
2200        else
2201                err = journal->j_errno;
2202        read_unlock(&journal->j_state_lock);
2203        return err;
2204}
2205
2206/**
2207 * int jbd2_journal_clear_err () - clears the journal's error state
2208 * @journal: journal to act on.
2209 *
2210 * An error must be cleared or acked to take a FS out of readonly
2211 * mode.
2212 */
2213int jbd2_journal_clear_err(journal_t *journal)
2214{
2215        int err = 0;
2216
2217        write_lock(&journal->j_state_lock);
2218        if (journal->j_flags & JBD2_ABORT)
2219                err = -EROFS;
2220        else
2221                journal->j_errno = 0;
2222        write_unlock(&journal->j_state_lock);
2223        return err;
2224}
2225
2226/**
2227 * void jbd2_journal_ack_err() - Ack journal err.
2228 * @journal: journal to act on.
2229 *
2230 * An error must be cleared or acked to take a FS out of readonly
2231 * mode.
2232 */
2233void jbd2_journal_ack_err(journal_t *journal)
2234{
2235        write_lock(&journal->j_state_lock);
2236        if (journal->j_errno)
2237                journal->j_flags |= JBD2_ACK_ERR;
2238        write_unlock(&journal->j_state_lock);
2239}
2240
2241int jbd2_journal_blocks_per_page(struct inode *inode)
2242{
2243        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2244}
2245
2246/*
2247 * helper functions to deal with 32 or 64bit block numbers.
2248 */
2249size_t journal_tag_bytes(journal_t *journal)
2250{
2251        size_t sz;
2252
2253        if (jbd2_has_feature_csum3(journal))
2254                return sizeof(journal_block_tag3_t);
2255
2256        sz = sizeof(journal_block_tag_t);
2257
2258        if (jbd2_has_feature_csum2(journal))
2259                sz += sizeof(__u16);
2260
2261        if (jbd2_has_feature_64bit(journal))
2262                return sz;
2263        else
2264                return sz - sizeof(__u32);
2265}
2266
2267/*
2268 * JBD memory management
2269 *
2270 * These functions are used to allocate block-sized chunks of memory
2271 * used for making copies of buffer_head data.  Very often it will be
2272 * page-sized chunks of data, but sometimes it will be in
2273 * sub-page-size chunks.  (For example, 16k pages on Power systems
2274 * with a 4k block file system.)  For blocks smaller than a page, we
2275 * use a SLAB allocator.  There are slab caches for each block size,
2276 * which are allocated at mount time, if necessary, and we only free
2277 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2278 * this reason we don't need to a mutex to protect access to
2279 * jbd2_slab[] allocating or releasing memory; only in
2280 * jbd2_journal_create_slab().
2281 */
2282#define JBD2_MAX_SLABS 8
2283static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2284
2285static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2286        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2287        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2288};
2289
2290
2291static void jbd2_journal_destroy_slabs(void)
2292{
2293        int i;
2294
2295        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2296                kmem_cache_destroy(jbd2_slab[i]);
2297                jbd2_slab[i] = NULL;
2298        }
2299}
2300
2301static int jbd2_journal_create_slab(size_t size)
2302{
2303        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2304        int i = order_base_2(size) - 10;
2305        size_t slab_size;
2306
2307        if (size == PAGE_SIZE)
2308                return 0;
2309
2310        if (i >= JBD2_MAX_SLABS)
2311                return -EINVAL;
2312
2313        if (unlikely(i < 0))
2314                i = 0;
2315        mutex_lock(&jbd2_slab_create_mutex);
2316        if (jbd2_slab[i]) {
2317                mutex_unlock(&jbd2_slab_create_mutex);
2318                return 0;       /* Already created */
2319        }
2320
2321        slab_size = 1 << (i+10);
2322        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2323                                         slab_size, 0, NULL);
2324        mutex_unlock(&jbd2_slab_create_mutex);
2325        if (!jbd2_slab[i]) {
2326                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2327                return -ENOMEM;
2328        }
2329        return 0;
2330}
2331
2332static struct kmem_cache *get_slab(size_t size)
2333{
2334        int i = order_base_2(size) - 10;
2335
2336        BUG_ON(i >= JBD2_MAX_SLABS);
2337        if (unlikely(i < 0))
2338                i = 0;
2339        BUG_ON(jbd2_slab[i] == NULL);
2340        return jbd2_slab[i];
2341}
2342
2343void *jbd2_alloc(size_t size, gfp_t flags)
2344{
2345        void *ptr;
2346
2347        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2348
2349        if (size < PAGE_SIZE)
2350                ptr = kmem_cache_alloc(get_slab(size), flags);
2351        else
2352                ptr = (void *)__get_free_pages(flags, get_order(size));
2353
2354        /* Check alignment; SLUB has gotten this wrong in the past,
2355         * and this can lead to user data corruption! */
2356        BUG_ON(((unsigned long) ptr) & (size-1));
2357
2358        return ptr;
2359}
2360
2361void jbd2_free(void *ptr, size_t size)
2362{
2363        if (size < PAGE_SIZE)
2364                kmem_cache_free(get_slab(size), ptr);
2365        else
2366                free_pages((unsigned long)ptr, get_order(size));
2367};
2368
2369/*
2370 * Journal_head storage management
2371 */
2372static struct kmem_cache *jbd2_journal_head_cache;
2373#ifdef CONFIG_JBD2_DEBUG
2374static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375#endif
2376
2377static int __init jbd2_journal_init_journal_head_cache(void)
2378{
2379        J_ASSERT(!jbd2_journal_head_cache);
2380        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2381                                sizeof(struct journal_head),
2382                                0,              /* offset */
2383                                SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2384                                NULL);          /* ctor */
2385        if (!jbd2_journal_head_cache) {
2386                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2387                return -ENOMEM;
2388        }
2389        return 0;
2390}
2391
2392static void jbd2_journal_destroy_journal_head_cache(void)
2393{
2394        kmem_cache_destroy(jbd2_journal_head_cache);
2395        jbd2_journal_head_cache = NULL;
2396}
2397
2398/*
2399 * journal_head splicing and dicing
2400 */
2401static struct journal_head *journal_alloc_journal_head(void)
2402{
2403        struct journal_head *ret;
2404
2405#ifdef CONFIG_JBD2_DEBUG
2406        atomic_inc(&nr_journal_heads);
2407#endif
2408        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2409        if (!ret) {
2410                jbd_debug(1, "out of memory for journal_head\n");
2411                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2412                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2413                                GFP_NOFS | __GFP_NOFAIL);
2414        }
2415        return ret;
2416}
2417
2418static void journal_free_journal_head(struct journal_head *jh)
2419{
2420#ifdef CONFIG_JBD2_DEBUG
2421        atomic_dec(&nr_journal_heads);
2422        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2423#endif
2424        kmem_cache_free(jbd2_journal_head_cache, jh);
2425}
2426
2427/*
2428 * A journal_head is attached to a buffer_head whenever JBD has an
2429 * interest in the buffer.
2430 *
2431 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2432 * is set.  This bit is tested in core kernel code where we need to take
2433 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2434 * there.
2435 *
2436 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2437 *
2438 * When a buffer has its BH_JBD bit set it is immune from being released by
2439 * core kernel code, mainly via ->b_count.
2440 *
2441 * A journal_head is detached from its buffer_head when the journal_head's
2442 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2443 * transaction (b_cp_transaction) hold their references to b_jcount.
2444 *
2445 * Various places in the kernel want to attach a journal_head to a buffer_head
2446 * _before_ attaching the journal_head to a transaction.  To protect the
2447 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2448 * journal_head's b_jcount refcount by one.  The caller must call
2449 * jbd2_journal_put_journal_head() to undo this.
2450 *
2451 * So the typical usage would be:
2452 *
2453 *      (Attach a journal_head if needed.  Increments b_jcount)
2454 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2455 *      ...
2456 *      (Get another reference for transaction)
2457 *      jbd2_journal_grab_journal_head(bh);
2458 *      jh->b_transaction = xxx;
2459 *      (Put original reference)
2460 *      jbd2_journal_put_journal_head(jh);
2461 */
2462
2463/*
2464 * Give a buffer_head a journal_head.
2465 *
2466 * May sleep.
2467 */
2468struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2469{
2470        struct journal_head *jh;
2471        struct journal_head *new_jh = NULL;
2472
2473repeat:
2474        if (!buffer_jbd(bh))
2475                new_jh = journal_alloc_journal_head();
2476
2477        jbd_lock_bh_journal_head(bh);
2478        if (buffer_jbd(bh)) {
2479                jh = bh2jh(bh);
2480        } else {
2481                J_ASSERT_BH(bh,
2482                        (atomic_read(&bh->b_count) > 0) ||
2483                        (bh->b_page && bh->b_page->mapping));
2484
2485                if (!new_jh) {
2486                        jbd_unlock_bh_journal_head(bh);
2487                        goto repeat;
2488                }
2489
2490                jh = new_jh;
2491                new_jh = NULL;          /* We consumed it */
2492                set_buffer_jbd(bh);
2493                bh->b_private = jh;
2494                jh->b_bh = bh;
2495                get_bh(bh);
2496                BUFFER_TRACE(bh, "added journal_head");
2497        }
2498        jh->b_jcount++;
2499        jbd_unlock_bh_journal_head(bh);
2500        if (new_jh)
2501                journal_free_journal_head(new_jh);
2502        return bh->b_private;
2503}
2504
2505/*
2506 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2507 * having a journal_head, return NULL
2508 */
2509struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2510{
2511        struct journal_head *jh = NULL;
2512
2513        jbd_lock_bh_journal_head(bh);
2514        if (buffer_jbd(bh)) {
2515                jh = bh2jh(bh);
2516                jh->b_jcount++;
2517        }
2518        jbd_unlock_bh_journal_head(bh);
2519        return jh;
2520}
2521
2522static void __journal_remove_journal_head(struct buffer_head *bh)
2523{
2524        struct journal_head *jh = bh2jh(bh);
2525
2526        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2527        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2528        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2529        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2530        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2531        J_ASSERT_BH(bh, buffer_jbd(bh));
2532        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2533        BUFFER_TRACE(bh, "remove journal_head");
2534        if (jh->b_frozen_data) {
2535                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2536                jbd2_free(jh->b_frozen_data, bh->b_size);
2537        }
2538        if (jh->b_committed_data) {
2539                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2540                jbd2_free(jh->b_committed_data, bh->b_size);
2541        }
2542        bh->b_private = NULL;
2543        jh->b_bh = NULL;        /* debug, really */
2544        clear_buffer_jbd(bh);
2545        journal_free_journal_head(jh);
2546}
2547
2548/*
2549 * Drop a reference on the passed journal_head.  If it fell to zero then
2550 * release the journal_head from the buffer_head.
2551 */
2552void jbd2_journal_put_journal_head(struct journal_head *jh)
2553{
2554        struct buffer_head *bh = jh2bh(jh);
2555
2556        jbd_lock_bh_journal_head(bh);
2557        J_ASSERT_JH(jh, jh->b_jcount > 0);
2558        --jh->b_jcount;
2559        if (!jh->b_jcount) {
2560                __journal_remove_journal_head(bh);
2561                jbd_unlock_bh_journal_head(bh);
2562                __brelse(bh);
2563        } else
2564                jbd_unlock_bh_journal_head(bh);
2565}
2566
2567/*
2568 * Initialize jbd inode head
2569 */
2570void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2571{
2572        jinode->i_transaction = NULL;
2573        jinode->i_next_transaction = NULL;
2574        jinode->i_vfs_inode = inode;
2575        jinode->i_flags = 0;
2576        jinode->i_dirty_start = 0;
2577        jinode->i_dirty_end = 0;
2578        INIT_LIST_HEAD(&jinode->i_list);
2579}
2580
2581/*
2582 * Function to be called before we start removing inode from memory (i.e.,
2583 * clear_inode() is a fine place to be called from). It removes inode from
2584 * transaction's lists.
2585 */
2586void jbd2_journal_release_jbd_inode(journal_t *journal,
2587                                    struct jbd2_inode *jinode)
2588{
2589        if (!journal)
2590                return;
2591restart:
2592        spin_lock(&journal->j_list_lock);
2593        /* Is commit writing out inode - we have to wait */
2594        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595                wait_queue_head_t *wq;
2596                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599                spin_unlock(&journal->j_list_lock);
2600                schedule();
2601                finish_wait(wq, &wait.wq_entry);
2602                goto restart;
2603        }
2604
2605        if (jinode->i_transaction) {
2606                list_del(&jinode->i_list);
2607                jinode->i_transaction = NULL;
2608        }
2609        spin_unlock(&journal->j_list_lock);
2610}
2611
2612
2613#ifdef CONFIG_PROC_FS
2614
2615#define JBD2_STATS_PROC_NAME "fs/jbd2"
2616
2617static void __init jbd2_create_jbd_stats_proc_entry(void)
2618{
2619        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620}
2621
2622static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623{
2624        if (proc_jbd2_stats)
2625                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626}
2627
2628#else
2629
2630#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632
2633#endif
2634
2635struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636
2637static int __init jbd2_journal_init_inode_cache(void)
2638{
2639        J_ASSERT(!jbd2_inode_cache);
2640        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2641        if (!jbd2_inode_cache) {
2642                pr_emerg("JBD2: failed to create inode cache\n");
2643                return -ENOMEM;
2644        }
2645        return 0;
2646}
2647
2648static int __init jbd2_journal_init_handle_cache(void)
2649{
2650        J_ASSERT(!jbd2_handle_cache);
2651        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2652        if (!jbd2_handle_cache) {
2653                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2654                return -ENOMEM;
2655        }
2656        return 0;
2657}
2658
2659static void jbd2_journal_destroy_inode_cache(void)
2660{
2661        kmem_cache_destroy(jbd2_inode_cache);
2662        jbd2_inode_cache = NULL;
2663}
2664
2665static void jbd2_journal_destroy_handle_cache(void)
2666{
2667        kmem_cache_destroy(jbd2_handle_cache);
2668        jbd2_handle_cache = NULL;
2669}
2670
2671/*
2672 * Module startup and shutdown
2673 */
2674
2675static int __init journal_init_caches(void)
2676{
2677        int ret;
2678
2679        ret = jbd2_journal_init_revoke_record_cache();
2680        if (ret == 0)
2681                ret = jbd2_journal_init_revoke_table_cache();
2682        if (ret == 0)
2683                ret = jbd2_journal_init_journal_head_cache();
2684        if (ret == 0)
2685                ret = jbd2_journal_init_handle_cache();
2686        if (ret == 0)
2687                ret = jbd2_journal_init_inode_cache();
2688        if (ret == 0)
2689                ret = jbd2_journal_init_transaction_cache();
2690        return ret;
2691}
2692
2693static void jbd2_journal_destroy_caches(void)
2694{
2695        jbd2_journal_destroy_revoke_record_cache();
2696        jbd2_journal_destroy_revoke_table_cache();
2697        jbd2_journal_destroy_journal_head_cache();
2698        jbd2_journal_destroy_handle_cache();
2699        jbd2_journal_destroy_inode_cache();
2700        jbd2_journal_destroy_transaction_cache();
2701        jbd2_journal_destroy_slabs();
2702}
2703
2704static int __init journal_init(void)
2705{
2706        int ret;
2707
2708        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2709
2710        ret = journal_init_caches();
2711        if (ret == 0) {
2712                jbd2_create_jbd_stats_proc_entry();
2713        } else {
2714                jbd2_journal_destroy_caches();
2715        }
2716        return ret;
2717}
2718
2719static void __exit journal_exit(void)
2720{
2721#ifdef CONFIG_JBD2_DEBUG
2722        int n = atomic_read(&nr_journal_heads);
2723        if (n)
2724                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2725#endif
2726        jbd2_remove_jbd_stats_proc_entry();
2727        jbd2_journal_destroy_caches();
2728}
2729
2730MODULE_LICENSE("GPL");
2731module_init(journal_init);
2732module_exit(journal_exit);
2733
2734