linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39        J_ASSERT(!transaction_cache);
  40        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41                                        sizeof(transaction_t),
  42                                        0,
  43                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44                                        NULL);
  45        if (!transaction_cache) {
  46                pr_emerg("JBD2: failed to create transaction cache\n");
  47                return -ENOMEM;
  48        }
  49        return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        kmem_cache_destroy(transaction_cache);
  55        transaction_cache = NULL;
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61                return;
  62        kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * jbd2_get_transaction: obtain a new transaction_t object.
  67 *
  68 * Simply initialise a new transaction. Initialize it in
  69 * RUNNING state and add it to the current journal (which should not
  70 * have an existing running transaction: we only make a new transaction
  71 * once we have started to commit the old one).
  72 *
  73 * Preconditions:
  74 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  75 *      new transaction and we can't block without protecting against other
  76 *      processes trying to touch the journal while it is in transition.
  77 *
  78 */
  79
  80static void jbd2_get_transaction(journal_t *journal,
  81                                transaction_t *transaction)
  82{
  83        transaction->t_journal = journal;
  84        transaction->t_state = T_RUNNING;
  85        transaction->t_start_time = ktime_get();
  86        transaction->t_tid = journal->j_transaction_sequence++;
  87        transaction->t_expires = jiffies + journal->j_commit_interval;
  88        spin_lock_init(&transaction->t_handle_lock);
  89        atomic_set(&transaction->t_updates, 0);
  90        atomic_set(&transaction->t_outstanding_credits,
  91                   atomic_read(&journal->j_reserved_credits));
  92        atomic_set(&transaction->t_handle_count, 0);
  93        INIT_LIST_HEAD(&transaction->t_inode_list);
  94        INIT_LIST_HEAD(&transaction->t_private_list);
  95
  96        /* Set up the commit timer for the new transaction. */
  97        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
  98        add_timer(&journal->j_commit_timer);
  99
 100        J_ASSERT(journal->j_running_transaction == NULL);
 101        journal->j_running_transaction = transaction;
 102        transaction->t_max_wait = 0;
 103        transaction->t_start = jiffies;
 104        transaction->t_requested = 0;
 105}
 106
 107/*
 108 * Handle management.
 109 *
 110 * A handle_t is an object which represents a single atomic update to a
 111 * filesystem, and which tracks all of the modifications which form part
 112 * of that one update.
 113 */
 114
 115/*
 116 * Update transaction's maximum wait time, if debugging is enabled.
 117 *
 118 * In order for t_max_wait to be reliable, it must be protected by a
 119 * lock.  But doing so will mean that start_this_handle() can not be
 120 * run in parallel on SMP systems, which limits our scalability.  So
 121 * unless debugging is enabled, we no longer update t_max_wait, which
 122 * means that maximum wait time reported by the jbd2_run_stats
 123 * tracepoint will always be zero.
 124 */
 125static inline void update_t_max_wait(transaction_t *transaction,
 126                                     unsigned long ts)
 127{
 128#ifdef CONFIG_JBD2_DEBUG
 129        if (jbd2_journal_enable_debug &&
 130            time_after(transaction->t_start, ts)) {
 131                ts = jbd2_time_diff(ts, transaction->t_start);
 132                spin_lock(&transaction->t_handle_lock);
 133                if (ts > transaction->t_max_wait)
 134                        transaction->t_max_wait = ts;
 135                spin_unlock(&transaction->t_handle_lock);
 136        }
 137#endif
 138}
 139
 140/*
 141 * Wait until running transaction passes to T_FLUSH state and new transaction
 142 * can thus be started. Also starts the commit if needed. The function expects
 143 * running transaction to exist and releases j_state_lock.
 144 */
 145static void wait_transaction_locked(journal_t *journal)
 146        __releases(journal->j_state_lock)
 147{
 148        DEFINE_WAIT(wait);
 149        int need_to_start;
 150        tid_t tid = journal->j_running_transaction->t_tid;
 151
 152        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 153                        TASK_UNINTERRUPTIBLE);
 154        need_to_start = !tid_geq(journal->j_commit_request, tid);
 155        read_unlock(&journal->j_state_lock);
 156        if (need_to_start)
 157                jbd2_log_start_commit(journal, tid);
 158        jbd2_might_wait_for_commit(journal);
 159        schedule();
 160        finish_wait(&journal->j_wait_transaction_locked, &wait);
 161}
 162
 163/*
 164 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 165 * state and new transaction can thus be started. The function releases
 166 * j_state_lock.
 167 */
 168static void wait_transaction_switching(journal_t *journal)
 169        __releases(journal->j_state_lock)
 170{
 171        DEFINE_WAIT(wait);
 172
 173        if (WARN_ON(!journal->j_running_transaction ||
 174                    journal->j_running_transaction->t_state != T_SWITCH))
 175                return;
 176        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 177                        TASK_UNINTERRUPTIBLE);
 178        read_unlock(&journal->j_state_lock);
 179        /*
 180         * We don't call jbd2_might_wait_for_commit() here as there's no
 181         * waiting for outstanding handles happening anymore in T_SWITCH state
 182         * and handling of reserved handles actually relies on that for
 183         * correctness.
 184         */
 185        schedule();
 186        finish_wait(&journal->j_wait_transaction_locked, &wait);
 187}
 188
 189static void sub_reserved_credits(journal_t *journal, int blocks)
 190{
 191        atomic_sub(blocks, &journal->j_reserved_credits);
 192        wake_up(&journal->j_wait_reserved);
 193}
 194
 195/*
 196 * Wait until we can add credits for handle to the running transaction.  Called
 197 * with j_state_lock held for reading. Returns 0 if handle joined the running
 198 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 199 * caller must retry.
 200 */
 201static int add_transaction_credits(journal_t *journal, int blocks,
 202                                   int rsv_blocks)
 203{
 204        transaction_t *t = journal->j_running_transaction;
 205        int needed;
 206        int total = blocks + rsv_blocks;
 207
 208        /*
 209         * If the current transaction is locked down for commit, wait
 210         * for the lock to be released.
 211         */
 212        if (t->t_state != T_RUNNING) {
 213                WARN_ON_ONCE(t->t_state >= T_FLUSH);
 214                wait_transaction_locked(journal);
 215                return 1;
 216        }
 217
 218        /*
 219         * If there is not enough space left in the log to write all
 220         * potential buffers requested by this operation, we need to
 221         * stall pending a log checkpoint to free some more log space.
 222         */
 223        needed = atomic_add_return(total, &t->t_outstanding_credits);
 224        if (needed > journal->j_max_transaction_buffers) {
 225                /*
 226                 * If the current transaction is already too large,
 227                 * then start to commit it: we can then go back and
 228                 * attach this handle to a new transaction.
 229                 */
 230                atomic_sub(total, &t->t_outstanding_credits);
 231
 232                /*
 233                 * Is the number of reserved credits in the current transaction too
 234                 * big to fit this handle? Wait until reserved credits are freed.
 235                 */
 236                if (atomic_read(&journal->j_reserved_credits) + total >
 237                    journal->j_max_transaction_buffers) {
 238                        read_unlock(&journal->j_state_lock);
 239                        jbd2_might_wait_for_commit(journal);
 240                        wait_event(journal->j_wait_reserved,
 241                                   atomic_read(&journal->j_reserved_credits) + total <=
 242                                   journal->j_max_transaction_buffers);
 243                        return 1;
 244                }
 245
 246                wait_transaction_locked(journal);
 247                return 1;
 248        }
 249
 250        /*
 251         * The commit code assumes that it can get enough log space
 252         * without forcing a checkpoint.  This is *critical* for
 253         * correctness: a checkpoint of a buffer which is also
 254         * associated with a committing transaction creates a deadlock,
 255         * so commit simply cannot force through checkpoints.
 256         *
 257         * We must therefore ensure the necessary space in the journal
 258         * *before* starting to dirty potentially checkpointed buffers
 259         * in the new transaction.
 260         */
 261        if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 262                atomic_sub(total, &t->t_outstanding_credits);
 263                read_unlock(&journal->j_state_lock);
 264                jbd2_might_wait_for_commit(journal);
 265                write_lock(&journal->j_state_lock);
 266                if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 267                        __jbd2_log_wait_for_space(journal);
 268                write_unlock(&journal->j_state_lock);
 269                return 1;
 270        }
 271
 272        /* No reservation? We are done... */
 273        if (!rsv_blocks)
 274                return 0;
 275
 276        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 277        /* We allow at most half of a transaction to be reserved */
 278        if (needed > journal->j_max_transaction_buffers / 2) {
 279                sub_reserved_credits(journal, rsv_blocks);
 280                atomic_sub(total, &t->t_outstanding_credits);
 281                read_unlock(&journal->j_state_lock);
 282                jbd2_might_wait_for_commit(journal);
 283                wait_event(journal->j_wait_reserved,
 284                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 285                         <= journal->j_max_transaction_buffers / 2);
 286                return 1;
 287        }
 288        return 0;
 289}
 290
 291/*
 292 * start_this_handle: Given a handle, deal with any locking or stalling
 293 * needed to make sure that there is enough journal space for the handle
 294 * to begin.  Attach the handle to a transaction and set up the
 295 * transaction's buffer credits.
 296 */
 297
 298static int start_this_handle(journal_t *journal, handle_t *handle,
 299                             gfp_t gfp_mask)
 300{
 301        transaction_t   *transaction, *new_transaction = NULL;
 302        int             blocks = handle->h_buffer_credits;
 303        int             rsv_blocks = 0;
 304        unsigned long ts = jiffies;
 305
 306        if (handle->h_rsv_handle)
 307                rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 308
 309        /*
 310         * Limit the number of reserved credits to 1/2 of maximum transaction
 311         * size and limit the number of total credits to not exceed maximum
 312         * transaction size per operation.
 313         */
 314        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 315            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 316                printk(KERN_ERR "JBD2: %s wants too many credits "
 317                       "credits:%d rsv_credits:%d max:%d\n",
 318                       current->comm, blocks, rsv_blocks,
 319                       journal->j_max_transaction_buffers);
 320                WARN_ON(1);
 321                return -ENOSPC;
 322        }
 323
 324alloc_transaction:
 325        if (!journal->j_running_transaction) {
 326                /*
 327                 * If __GFP_FS is not present, then we may be being called from
 328                 * inside the fs writeback layer, so we MUST NOT fail.
 329                 */
 330                if ((gfp_mask & __GFP_FS) == 0)
 331                        gfp_mask |= __GFP_NOFAIL;
 332                new_transaction = kmem_cache_zalloc(transaction_cache,
 333                                                    gfp_mask);
 334                if (!new_transaction)
 335                        return -ENOMEM;
 336        }
 337
 338        jbd_debug(3, "New handle %p going live.\n", handle);
 339
 340        /*
 341         * We need to hold j_state_lock until t_updates has been incremented,
 342         * for proper journal barrier handling
 343         */
 344repeat:
 345        read_lock(&journal->j_state_lock);
 346        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 347        if (is_journal_aborted(journal) ||
 348            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 349                read_unlock(&journal->j_state_lock);
 350                jbd2_journal_free_transaction(new_transaction);
 351                return -EROFS;
 352        }
 353
 354        /*
 355         * Wait on the journal's transaction barrier if necessary. Specifically
 356         * we allow reserved handles to proceed because otherwise commit could
 357         * deadlock on page writeback not being able to complete.
 358         */
 359        if (!handle->h_reserved && journal->j_barrier_count) {
 360                read_unlock(&journal->j_state_lock);
 361                wait_event(journal->j_wait_transaction_locked,
 362                                journal->j_barrier_count == 0);
 363                goto repeat;
 364        }
 365
 366        if (!journal->j_running_transaction) {
 367                read_unlock(&journal->j_state_lock);
 368                if (!new_transaction)
 369                        goto alloc_transaction;
 370                write_lock(&journal->j_state_lock);
 371                if (!journal->j_running_transaction &&
 372                    (handle->h_reserved || !journal->j_barrier_count)) {
 373                        jbd2_get_transaction(journal, new_transaction);
 374                        new_transaction = NULL;
 375                }
 376                write_unlock(&journal->j_state_lock);
 377                goto repeat;
 378        }
 379
 380        transaction = journal->j_running_transaction;
 381
 382        if (!handle->h_reserved) {
 383                /* We may have dropped j_state_lock - restart in that case */
 384                if (add_transaction_credits(journal, blocks, rsv_blocks))
 385                        goto repeat;
 386        } else {
 387                /*
 388                 * We have handle reserved so we are allowed to join T_LOCKED
 389                 * transaction and we don't have to check for transaction size
 390                 * and journal space. But we still have to wait while running
 391                 * transaction is being switched to a committing one as it
 392                 * won't wait for any handles anymore.
 393                 */
 394                if (transaction->t_state == T_SWITCH) {
 395                        wait_transaction_switching(journal);
 396                        goto repeat;
 397                }
 398                sub_reserved_credits(journal, blocks);
 399                handle->h_reserved = 0;
 400        }
 401
 402        /* OK, account for the buffers that this operation expects to
 403         * use and add the handle to the running transaction. 
 404         */
 405        update_t_max_wait(transaction, ts);
 406        handle->h_transaction = transaction;
 407        handle->h_requested_credits = blocks;
 408        handle->h_start_jiffies = jiffies;
 409        atomic_inc(&transaction->t_updates);
 410        atomic_inc(&transaction->t_handle_count);
 411        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 412                  handle, blocks,
 413                  atomic_read(&transaction->t_outstanding_credits),
 414                  jbd2_log_space_left(journal));
 415        read_unlock(&journal->j_state_lock);
 416        current->journal_info = handle;
 417
 418        rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 419        jbd2_journal_free_transaction(new_transaction);
 420        /*
 421         * Ensure that no allocations done while the transaction is open are
 422         * going to recurse back to the fs layer.
 423         */
 424        handle->saved_alloc_context = memalloc_nofs_save();
 425        return 0;
 426}
 427
 428/* Allocate a new handle.  This should probably be in a slab... */
 429static handle_t *new_handle(int nblocks)
 430{
 431        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 432        if (!handle)
 433                return NULL;
 434        handle->h_buffer_credits = nblocks;
 435        handle->h_ref = 1;
 436
 437        return handle;
 438}
 439
 440handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 441                              gfp_t gfp_mask, unsigned int type,
 442                              unsigned int line_no)
 443{
 444        handle_t *handle = journal_current_handle();
 445        int err;
 446
 447        if (!journal)
 448                return ERR_PTR(-EROFS);
 449
 450        if (handle) {
 451                J_ASSERT(handle->h_transaction->t_journal == journal);
 452                handle->h_ref++;
 453                return handle;
 454        }
 455
 456        handle = new_handle(nblocks);
 457        if (!handle)
 458                return ERR_PTR(-ENOMEM);
 459        if (rsv_blocks) {
 460                handle_t *rsv_handle;
 461
 462                rsv_handle = new_handle(rsv_blocks);
 463                if (!rsv_handle) {
 464                        jbd2_free_handle(handle);
 465                        return ERR_PTR(-ENOMEM);
 466                }
 467                rsv_handle->h_reserved = 1;
 468                rsv_handle->h_journal = journal;
 469                handle->h_rsv_handle = rsv_handle;
 470        }
 471
 472        err = start_this_handle(journal, handle, gfp_mask);
 473        if (err < 0) {
 474                if (handle->h_rsv_handle)
 475                        jbd2_free_handle(handle->h_rsv_handle);
 476                jbd2_free_handle(handle);
 477                return ERR_PTR(err);
 478        }
 479        handle->h_type = type;
 480        handle->h_line_no = line_no;
 481        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 482                                handle->h_transaction->t_tid, type,
 483                                line_no, nblocks);
 484
 485        return handle;
 486}
 487EXPORT_SYMBOL(jbd2__journal_start);
 488
 489
 490/**
 491 * handle_t *jbd2_journal_start() - Obtain a new handle.
 492 * @journal: Journal to start transaction on.
 493 * @nblocks: number of block buffer we might modify
 494 *
 495 * We make sure that the transaction can guarantee at least nblocks of
 496 * modified buffers in the log.  We block until the log can guarantee
 497 * that much space. Additionally, if rsv_blocks > 0, we also create another
 498 * handle with rsv_blocks reserved blocks in the journal. This handle is
 499 * is stored in h_rsv_handle. It is not attached to any particular transaction
 500 * and thus doesn't block transaction commit. If the caller uses this reserved
 501 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 502 * on the parent handle will dispose the reserved one. Reserved handle has to
 503 * be converted to a normal handle using jbd2_journal_start_reserved() before
 504 * it can be used.
 505 *
 506 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 507 * on failure.
 508 */
 509handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 510{
 511        return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 512}
 513EXPORT_SYMBOL(jbd2_journal_start);
 514
 515void jbd2_journal_free_reserved(handle_t *handle)
 516{
 517        journal_t *journal = handle->h_journal;
 518
 519        WARN_ON(!handle->h_reserved);
 520        sub_reserved_credits(journal, handle->h_buffer_credits);
 521        jbd2_free_handle(handle);
 522}
 523EXPORT_SYMBOL(jbd2_journal_free_reserved);
 524
 525/**
 526 * int jbd2_journal_start_reserved() - start reserved handle
 527 * @handle: handle to start
 528 * @type: for handle statistics
 529 * @line_no: for handle statistics
 530 *
 531 * Start handle that has been previously reserved with jbd2_journal_reserve().
 532 * This attaches @handle to the running transaction (or creates one if there's
 533 * not transaction running). Unlike jbd2_journal_start() this function cannot
 534 * block on journal commit, checkpointing, or similar stuff. It can block on
 535 * memory allocation or frozen journal though.
 536 *
 537 * Return 0 on success, non-zero on error - handle is freed in that case.
 538 */
 539int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 540                                unsigned int line_no)
 541{
 542        journal_t *journal = handle->h_journal;
 543        int ret = -EIO;
 544
 545        if (WARN_ON(!handle->h_reserved)) {
 546                /* Someone passed in normal handle? Just stop it. */
 547                jbd2_journal_stop(handle);
 548                return ret;
 549        }
 550        /*
 551         * Usefulness of mixing of reserved and unreserved handles is
 552         * questionable. So far nobody seems to need it so just error out.
 553         */
 554        if (WARN_ON(current->journal_info)) {
 555                jbd2_journal_free_reserved(handle);
 556                return ret;
 557        }
 558
 559        handle->h_journal = NULL;
 560        /*
 561         * GFP_NOFS is here because callers are likely from writeback or
 562         * similarly constrained call sites
 563         */
 564        ret = start_this_handle(journal, handle, GFP_NOFS);
 565        if (ret < 0) {
 566                handle->h_journal = journal;
 567                jbd2_journal_free_reserved(handle);
 568                return ret;
 569        }
 570        handle->h_type = type;
 571        handle->h_line_no = line_no;
 572        return 0;
 573}
 574EXPORT_SYMBOL(jbd2_journal_start_reserved);
 575
 576/**
 577 * int jbd2_journal_extend() - extend buffer credits.
 578 * @handle:  handle to 'extend'
 579 * @nblocks: nr blocks to try to extend by.
 580 *
 581 * Some transactions, such as large extends and truncates, can be done
 582 * atomically all at once or in several stages.  The operation requests
 583 * a credit for a number of buffer modifications in advance, but can
 584 * extend its credit if it needs more.
 585 *
 586 * jbd2_journal_extend tries to give the running handle more buffer credits.
 587 * It does not guarantee that allocation - this is a best-effort only.
 588 * The calling process MUST be able to deal cleanly with a failure to
 589 * extend here.
 590 *
 591 * Return 0 on success, non-zero on failure.
 592 *
 593 * return code < 0 implies an error
 594 * return code > 0 implies normal transaction-full status.
 595 */
 596int jbd2_journal_extend(handle_t *handle, int nblocks)
 597{
 598        transaction_t *transaction = handle->h_transaction;
 599        journal_t *journal;
 600        int result;
 601        int wanted;
 602
 603        if (is_handle_aborted(handle))
 604                return -EROFS;
 605        journal = transaction->t_journal;
 606
 607        result = 1;
 608
 609        read_lock(&journal->j_state_lock);
 610
 611        /* Don't extend a locked-down transaction! */
 612        if (transaction->t_state != T_RUNNING) {
 613                jbd_debug(3, "denied handle %p %d blocks: "
 614                          "transaction not running\n", handle, nblocks);
 615                goto error_out;
 616        }
 617
 618        spin_lock(&transaction->t_handle_lock);
 619        wanted = atomic_add_return(nblocks,
 620                                   &transaction->t_outstanding_credits);
 621
 622        if (wanted > journal->j_max_transaction_buffers) {
 623                jbd_debug(3, "denied handle %p %d blocks: "
 624                          "transaction too large\n", handle, nblocks);
 625                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 626                goto unlock;
 627        }
 628
 629        if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 630            jbd2_log_space_left(journal)) {
 631                jbd_debug(3, "denied handle %p %d blocks: "
 632                          "insufficient log space\n", handle, nblocks);
 633                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 634                goto unlock;
 635        }
 636
 637        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 638                                 transaction->t_tid,
 639                                 handle->h_type, handle->h_line_no,
 640                                 handle->h_buffer_credits,
 641                                 nblocks);
 642
 643        handle->h_buffer_credits += nblocks;
 644        handle->h_requested_credits += nblocks;
 645        result = 0;
 646
 647        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 648unlock:
 649        spin_unlock(&transaction->t_handle_lock);
 650error_out:
 651        read_unlock(&journal->j_state_lock);
 652        return result;
 653}
 654
 655
 656/**
 657 * int jbd2_journal_restart() - restart a handle .
 658 * @handle:  handle to restart
 659 * @nblocks: nr credits requested
 660 * @gfp_mask: memory allocation flags (for start_this_handle)
 661 *
 662 * Restart a handle for a multi-transaction filesystem
 663 * operation.
 664 *
 665 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 666 * to a running handle, a call to jbd2_journal_restart will commit the
 667 * handle's transaction so far and reattach the handle to a new
 668 * transaction capable of guaranteeing the requested number of
 669 * credits. We preserve reserved handle if there's any attached to the
 670 * passed in handle.
 671 */
 672int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 673{
 674        transaction_t *transaction = handle->h_transaction;
 675        journal_t *journal;
 676        tid_t           tid;
 677        int             need_to_start, ret;
 678
 679        /* If we've had an abort of any type, don't even think about
 680         * actually doing the restart! */
 681        if (is_handle_aborted(handle))
 682                return 0;
 683        journal = transaction->t_journal;
 684
 685        /*
 686         * First unlink the handle from its current transaction, and start the
 687         * commit on that.
 688         */
 689        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 690        J_ASSERT(journal_current_handle() == handle);
 691
 692        read_lock(&journal->j_state_lock);
 693        spin_lock(&transaction->t_handle_lock);
 694        atomic_sub(handle->h_buffer_credits,
 695                   &transaction->t_outstanding_credits);
 696        if (handle->h_rsv_handle) {
 697                sub_reserved_credits(journal,
 698                                     handle->h_rsv_handle->h_buffer_credits);
 699        }
 700        if (atomic_dec_and_test(&transaction->t_updates))
 701                wake_up(&journal->j_wait_updates);
 702        tid = transaction->t_tid;
 703        spin_unlock(&transaction->t_handle_lock);
 704        handle->h_transaction = NULL;
 705        current->journal_info = NULL;
 706
 707        jbd_debug(2, "restarting handle %p\n", handle);
 708        need_to_start = !tid_geq(journal->j_commit_request, tid);
 709        read_unlock(&journal->j_state_lock);
 710        if (need_to_start)
 711                jbd2_log_start_commit(journal, tid);
 712
 713        rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
 714        handle->h_buffer_credits = nblocks;
 715        /*
 716         * Restore the original nofs context because the journal restart
 717         * is basically the same thing as journal stop and start.
 718         * start_this_handle will start a new nofs context.
 719         */
 720        memalloc_nofs_restore(handle->saved_alloc_context);
 721        ret = start_this_handle(journal, handle, gfp_mask);
 722        return ret;
 723}
 724EXPORT_SYMBOL(jbd2__journal_restart);
 725
 726
 727int jbd2_journal_restart(handle_t *handle, int nblocks)
 728{
 729        return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 730}
 731EXPORT_SYMBOL(jbd2_journal_restart);
 732
 733/**
 734 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 735 * @journal:  Journal to establish a barrier on.
 736 *
 737 * This locks out any further updates from being started, and blocks
 738 * until all existing updates have completed, returning only once the
 739 * journal is in a quiescent state with no updates running.
 740 *
 741 * The journal lock should not be held on entry.
 742 */
 743void jbd2_journal_lock_updates(journal_t *journal)
 744{
 745        DEFINE_WAIT(wait);
 746
 747        jbd2_might_wait_for_commit(journal);
 748
 749        write_lock(&journal->j_state_lock);
 750        ++journal->j_barrier_count;
 751
 752        /* Wait until there are no reserved handles */
 753        if (atomic_read(&journal->j_reserved_credits)) {
 754                write_unlock(&journal->j_state_lock);
 755                wait_event(journal->j_wait_reserved,
 756                           atomic_read(&journal->j_reserved_credits) == 0);
 757                write_lock(&journal->j_state_lock);
 758        }
 759
 760        /* Wait until there are no running updates */
 761        while (1) {
 762                transaction_t *transaction = journal->j_running_transaction;
 763
 764                if (!transaction)
 765                        break;
 766
 767                spin_lock(&transaction->t_handle_lock);
 768                prepare_to_wait(&journal->j_wait_updates, &wait,
 769                                TASK_UNINTERRUPTIBLE);
 770                if (!atomic_read(&transaction->t_updates)) {
 771                        spin_unlock(&transaction->t_handle_lock);
 772                        finish_wait(&journal->j_wait_updates, &wait);
 773                        break;
 774                }
 775                spin_unlock(&transaction->t_handle_lock);
 776                write_unlock(&journal->j_state_lock);
 777                schedule();
 778                finish_wait(&journal->j_wait_updates, &wait);
 779                write_lock(&journal->j_state_lock);
 780        }
 781        write_unlock(&journal->j_state_lock);
 782
 783        /*
 784         * We have now established a barrier against other normal updates, but
 785         * we also need to barrier against other jbd2_journal_lock_updates() calls
 786         * to make sure that we serialise special journal-locked operations
 787         * too.
 788         */
 789        mutex_lock(&journal->j_barrier);
 790}
 791
 792/**
 793 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 794 * @journal:  Journal to release the barrier on.
 795 *
 796 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 797 *
 798 * Should be called without the journal lock held.
 799 */
 800void jbd2_journal_unlock_updates (journal_t *journal)
 801{
 802        J_ASSERT(journal->j_barrier_count != 0);
 803
 804        mutex_unlock(&journal->j_barrier);
 805        write_lock(&journal->j_state_lock);
 806        --journal->j_barrier_count;
 807        write_unlock(&journal->j_state_lock);
 808        wake_up(&journal->j_wait_transaction_locked);
 809}
 810
 811static void warn_dirty_buffer(struct buffer_head *bh)
 812{
 813        printk(KERN_WARNING
 814               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 815               "There's a risk of filesystem corruption in case of system "
 816               "crash.\n",
 817               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 818}
 819
 820/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 821static void jbd2_freeze_jh_data(struct journal_head *jh)
 822{
 823        struct page *page;
 824        int offset;
 825        char *source;
 826        struct buffer_head *bh = jh2bh(jh);
 827
 828        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 829        page = bh->b_page;
 830        offset = offset_in_page(bh->b_data);
 831        source = kmap_atomic(page);
 832        /* Fire data frozen trigger just before we copy the data */
 833        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 834        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 835        kunmap_atomic(source);
 836
 837        /*
 838         * Now that the frozen data is saved off, we need to store any matching
 839         * triggers.
 840         */
 841        jh->b_frozen_triggers = jh->b_triggers;
 842}
 843
 844/*
 845 * If the buffer is already part of the current transaction, then there
 846 * is nothing we need to do.  If it is already part of a prior
 847 * transaction which we are still committing to disk, then we need to
 848 * make sure that we do not overwrite the old copy: we do copy-out to
 849 * preserve the copy going to disk.  We also account the buffer against
 850 * the handle's metadata buffer credits (unless the buffer is already
 851 * part of the transaction, that is).
 852 *
 853 */
 854static int
 855do_get_write_access(handle_t *handle, struct journal_head *jh,
 856                        int force_copy)
 857{
 858        struct buffer_head *bh;
 859        transaction_t *transaction = handle->h_transaction;
 860        journal_t *journal;
 861        int error;
 862        char *frozen_buffer = NULL;
 863        unsigned long start_lock, time_lock;
 864
 865        if (is_handle_aborted(handle))
 866                return -EROFS;
 867        journal = transaction->t_journal;
 868
 869        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 870
 871        JBUFFER_TRACE(jh, "entry");
 872repeat:
 873        bh = jh2bh(jh);
 874
 875        /* @@@ Need to check for errors here at some point. */
 876
 877        start_lock = jiffies;
 878        lock_buffer(bh);
 879        jbd_lock_bh_state(bh);
 880
 881        /* If it takes too long to lock the buffer, trace it */
 882        time_lock = jbd2_time_diff(start_lock, jiffies);
 883        if (time_lock > HZ/10)
 884                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 885                        jiffies_to_msecs(time_lock));
 886
 887        /* We now hold the buffer lock so it is safe to query the buffer
 888         * state.  Is the buffer dirty?
 889         *
 890         * If so, there are two possibilities.  The buffer may be
 891         * non-journaled, and undergoing a quite legitimate writeback.
 892         * Otherwise, it is journaled, and we don't expect dirty buffers
 893         * in that state (the buffers should be marked JBD_Dirty
 894         * instead.)  So either the IO is being done under our own
 895         * control and this is a bug, or it's a third party IO such as
 896         * dump(8) (which may leave the buffer scheduled for read ---
 897         * ie. locked but not dirty) or tune2fs (which may actually have
 898         * the buffer dirtied, ugh.)  */
 899
 900        if (buffer_dirty(bh)) {
 901                /*
 902                 * First question: is this buffer already part of the current
 903                 * transaction or the existing committing transaction?
 904                 */
 905                if (jh->b_transaction) {
 906                        J_ASSERT_JH(jh,
 907                                jh->b_transaction == transaction ||
 908                                jh->b_transaction ==
 909                                        journal->j_committing_transaction);
 910                        if (jh->b_next_transaction)
 911                                J_ASSERT_JH(jh, jh->b_next_transaction ==
 912                                                        transaction);
 913                        warn_dirty_buffer(bh);
 914                }
 915                /*
 916                 * In any case we need to clean the dirty flag and we must
 917                 * do it under the buffer lock to be sure we don't race
 918                 * with running write-out.
 919                 */
 920                JBUFFER_TRACE(jh, "Journalling dirty buffer");
 921                clear_buffer_dirty(bh);
 922                set_buffer_jbddirty(bh);
 923        }
 924
 925        unlock_buffer(bh);
 926
 927        error = -EROFS;
 928        if (is_handle_aborted(handle)) {
 929                jbd_unlock_bh_state(bh);
 930                goto out;
 931        }
 932        error = 0;
 933
 934        /*
 935         * The buffer is already part of this transaction if b_transaction or
 936         * b_next_transaction points to it
 937         */
 938        if (jh->b_transaction == transaction ||
 939            jh->b_next_transaction == transaction)
 940                goto done;
 941
 942        /*
 943         * this is the first time this transaction is touching this buffer,
 944         * reset the modified flag
 945         */
 946        jh->b_modified = 0;
 947
 948        /*
 949         * If the buffer is not journaled right now, we need to make sure it
 950         * doesn't get written to disk before the caller actually commits the
 951         * new data
 952         */
 953        if (!jh->b_transaction) {
 954                JBUFFER_TRACE(jh, "no transaction");
 955                J_ASSERT_JH(jh, !jh->b_next_transaction);
 956                JBUFFER_TRACE(jh, "file as BJ_Reserved");
 957                /*
 958                 * Make sure all stores to jh (b_modified, b_frozen_data) are
 959                 * visible before attaching it to the running transaction.
 960                 * Paired with barrier in jbd2_write_access_granted()
 961                 */
 962                smp_wmb();
 963                spin_lock(&journal->j_list_lock);
 964                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 965                spin_unlock(&journal->j_list_lock);
 966                goto done;
 967        }
 968        /*
 969         * If there is already a copy-out version of this buffer, then we don't
 970         * need to make another one
 971         */
 972        if (jh->b_frozen_data) {
 973                JBUFFER_TRACE(jh, "has frozen data");
 974                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 975                goto attach_next;
 976        }
 977
 978        JBUFFER_TRACE(jh, "owned by older transaction");
 979        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 980        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 981
 982        /*
 983         * There is one case we have to be very careful about.  If the
 984         * committing transaction is currently writing this buffer out to disk
 985         * and has NOT made a copy-out, then we cannot modify the buffer
 986         * contents at all right now.  The essence of copy-out is that it is
 987         * the extra copy, not the primary copy, which gets journaled.  If the
 988         * primary copy is already going to disk then we cannot do copy-out
 989         * here.
 990         */
 991        if (buffer_shadow(bh)) {
 992                JBUFFER_TRACE(jh, "on shadow: sleep");
 993                jbd_unlock_bh_state(bh);
 994                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 995                goto repeat;
 996        }
 997
 998        /*
 999         * Only do the copy if the currently-owning transaction still needs it.
1000         * If buffer isn't on BJ_Metadata list, the committing transaction is
1001         * past that stage (here we use the fact that BH_Shadow is set under
1002         * bh_state lock together with refiling to BJ_Shadow list and at this
1003         * point we know the buffer doesn't have BH_Shadow set).
1004         *
1005         * Subtle point, though: if this is a get_undo_access, then we will be
1006         * relying on the frozen_data to contain the new value of the
1007         * committed_data record after the transaction, so we HAVE to force the
1008         * frozen_data copy in that case.
1009         */
1010        if (jh->b_jlist == BJ_Metadata || force_copy) {
1011                JBUFFER_TRACE(jh, "generate frozen data");
1012                if (!frozen_buffer) {
1013                        JBUFFER_TRACE(jh, "allocate memory for buffer");
1014                        jbd_unlock_bh_state(bh);
1015                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1016                                                   GFP_NOFS | __GFP_NOFAIL);
1017                        goto repeat;
1018                }
1019                jh->b_frozen_data = frozen_buffer;
1020                frozen_buffer = NULL;
1021                jbd2_freeze_jh_data(jh);
1022        }
1023attach_next:
1024        /*
1025         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1026         * before attaching it to the running transaction. Paired with barrier
1027         * in jbd2_write_access_granted()
1028         */
1029        smp_wmb();
1030        jh->b_next_transaction = transaction;
1031
1032done:
1033        jbd_unlock_bh_state(bh);
1034
1035        /*
1036         * If we are about to journal a buffer, then any revoke pending on it is
1037         * no longer valid
1038         */
1039        jbd2_journal_cancel_revoke(handle, jh);
1040
1041out:
1042        if (unlikely(frozen_buffer))    /* It's usually NULL */
1043                jbd2_free(frozen_buffer, bh->b_size);
1044
1045        JBUFFER_TRACE(jh, "exit");
1046        return error;
1047}
1048
1049/* Fast check whether buffer is already attached to the required transaction */
1050static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1051                                                        bool undo)
1052{
1053        struct journal_head *jh;
1054        bool ret = false;
1055
1056        /* Dirty buffers require special handling... */
1057        if (buffer_dirty(bh))
1058                return false;
1059
1060        /*
1061         * RCU protects us from dereferencing freed pages. So the checks we do
1062         * are guaranteed not to oops. However the jh slab object can get freed
1063         * & reallocated while we work with it. So we have to be careful. When
1064         * we see jh attached to the running transaction, we know it must stay
1065         * so until the transaction is committed. Thus jh won't be freed and
1066         * will be attached to the same bh while we run.  However it can
1067         * happen jh gets freed, reallocated, and attached to the transaction
1068         * just after we get pointer to it from bh. So we have to be careful
1069         * and recheck jh still belongs to our bh before we return success.
1070         */
1071        rcu_read_lock();
1072        if (!buffer_jbd(bh))
1073                goto out;
1074        /* This should be bh2jh() but that doesn't work with inline functions */
1075        jh = READ_ONCE(bh->b_private);
1076        if (!jh)
1077                goto out;
1078        /* For undo access buffer must have data copied */
1079        if (undo && !jh->b_committed_data)
1080                goto out;
1081        if (jh->b_transaction != handle->h_transaction &&
1082            jh->b_next_transaction != handle->h_transaction)
1083                goto out;
1084        /*
1085         * There are two reasons for the barrier here:
1086         * 1) Make sure to fetch b_bh after we did previous checks so that we
1087         * detect when jh went through free, realloc, attach to transaction
1088         * while we were checking. Paired with implicit barrier in that path.
1089         * 2) So that access to bh done after jbd2_write_access_granted()
1090         * doesn't get reordered and see inconsistent state of concurrent
1091         * do_get_write_access().
1092         */
1093        smp_mb();
1094        if (unlikely(jh->b_bh != bh))
1095                goto out;
1096        ret = true;
1097out:
1098        rcu_read_unlock();
1099        return ret;
1100}
1101
1102/**
1103 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1104 * @handle: transaction to add buffer modifications to
1105 * @bh:     bh to be used for metadata writes
1106 *
1107 * Returns: error code or 0 on success.
1108 *
1109 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1110 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1111 */
1112
1113int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1114{
1115        struct journal_head *jh;
1116        int rc;
1117
1118        if (jbd2_write_access_granted(handle, bh, false))
1119                return 0;
1120
1121        jh = jbd2_journal_add_journal_head(bh);
1122        /* We do not want to get caught playing with fields which the
1123         * log thread also manipulates.  Make sure that the buffer
1124         * completes any outstanding IO before proceeding. */
1125        rc = do_get_write_access(handle, jh, 0);
1126        jbd2_journal_put_journal_head(jh);
1127        return rc;
1128}
1129
1130
1131/*
1132 * When the user wants to journal a newly created buffer_head
1133 * (ie. getblk() returned a new buffer and we are going to populate it
1134 * manually rather than reading off disk), then we need to keep the
1135 * buffer_head locked until it has been completely filled with new
1136 * data.  In this case, we should be able to make the assertion that
1137 * the bh is not already part of an existing transaction.
1138 *
1139 * The buffer should already be locked by the caller by this point.
1140 * There is no lock ranking violation: it was a newly created,
1141 * unlocked buffer beforehand. */
1142
1143/**
1144 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1145 * @handle: transaction to new buffer to
1146 * @bh: new buffer.
1147 *
1148 * Call this if you create a new bh.
1149 */
1150int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1151{
1152        transaction_t *transaction = handle->h_transaction;
1153        journal_t *journal;
1154        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1155        int err;
1156
1157        jbd_debug(5, "journal_head %p\n", jh);
1158        err = -EROFS;
1159        if (is_handle_aborted(handle))
1160                goto out;
1161        journal = transaction->t_journal;
1162        err = 0;
1163
1164        JBUFFER_TRACE(jh, "entry");
1165        /*
1166         * The buffer may already belong to this transaction due to pre-zeroing
1167         * in the filesystem's new_block code.  It may also be on the previous,
1168         * committing transaction's lists, but it HAS to be in Forget state in
1169         * that case: the transaction must have deleted the buffer for it to be
1170         * reused here.
1171         */
1172        jbd_lock_bh_state(bh);
1173        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1174                jh->b_transaction == NULL ||
1175                (jh->b_transaction == journal->j_committing_transaction &&
1176                          jh->b_jlist == BJ_Forget)));
1177
1178        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1179        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1180
1181        if (jh->b_transaction == NULL) {
1182                /*
1183                 * Previous jbd2_journal_forget() could have left the buffer
1184                 * with jbddirty bit set because it was being committed. When
1185                 * the commit finished, we've filed the buffer for
1186                 * checkpointing and marked it dirty. Now we are reallocating
1187                 * the buffer so the transaction freeing it must have
1188                 * committed and so it's safe to clear the dirty bit.
1189                 */
1190                clear_buffer_dirty(jh2bh(jh));
1191                /* first access by this transaction */
1192                jh->b_modified = 0;
1193
1194                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1195                spin_lock(&journal->j_list_lock);
1196                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1197                spin_unlock(&journal->j_list_lock);
1198        } else if (jh->b_transaction == journal->j_committing_transaction) {
1199                /* first access by this transaction */
1200                jh->b_modified = 0;
1201
1202                JBUFFER_TRACE(jh, "set next transaction");
1203                spin_lock(&journal->j_list_lock);
1204                jh->b_next_transaction = transaction;
1205                spin_unlock(&journal->j_list_lock);
1206        }
1207        jbd_unlock_bh_state(bh);
1208
1209        /*
1210         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1211         * blocks which contain freed but then revoked metadata.  We need
1212         * to cancel the revoke in case we end up freeing it yet again
1213         * and the reallocating as data - this would cause a second revoke,
1214         * which hits an assertion error.
1215         */
1216        JBUFFER_TRACE(jh, "cancelling revoke");
1217        jbd2_journal_cancel_revoke(handle, jh);
1218out:
1219        jbd2_journal_put_journal_head(jh);
1220        return err;
1221}
1222
1223/**
1224 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1225 *     non-rewindable consequences
1226 * @handle: transaction
1227 * @bh: buffer to undo
1228 *
1229 * Sometimes there is a need to distinguish between metadata which has
1230 * been committed to disk and that which has not.  The ext3fs code uses
1231 * this for freeing and allocating space, we have to make sure that we
1232 * do not reuse freed space until the deallocation has been committed,
1233 * since if we overwrote that space we would make the delete
1234 * un-rewindable in case of a crash.
1235 *
1236 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1237 * buffer for parts of non-rewindable operations such as delete
1238 * operations on the bitmaps.  The journaling code must keep a copy of
1239 * the buffer's contents prior to the undo_access call until such time
1240 * as we know that the buffer has definitely been committed to disk.
1241 *
1242 * We never need to know which transaction the committed data is part
1243 * of, buffers touched here are guaranteed to be dirtied later and so
1244 * will be committed to a new transaction in due course, at which point
1245 * we can discard the old committed data pointer.
1246 *
1247 * Returns error number or 0 on success.
1248 */
1249int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1250{
1251        int err;
1252        struct journal_head *jh;
1253        char *committed_data = NULL;
1254
1255        if (jbd2_write_access_granted(handle, bh, true))
1256                return 0;
1257
1258        jh = jbd2_journal_add_journal_head(bh);
1259        JBUFFER_TRACE(jh, "entry");
1260
1261        /*
1262         * Do this first --- it can drop the journal lock, so we want to
1263         * make sure that obtaining the committed_data is done
1264         * atomically wrt. completion of any outstanding commits.
1265         */
1266        err = do_get_write_access(handle, jh, 1);
1267        if (err)
1268                goto out;
1269
1270repeat:
1271        if (!jh->b_committed_data)
1272                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1273                                            GFP_NOFS|__GFP_NOFAIL);
1274
1275        jbd_lock_bh_state(bh);
1276        if (!jh->b_committed_data) {
1277                /* Copy out the current buffer contents into the
1278                 * preserved, committed copy. */
1279                JBUFFER_TRACE(jh, "generate b_committed data");
1280                if (!committed_data) {
1281                        jbd_unlock_bh_state(bh);
1282                        goto repeat;
1283                }
1284
1285                jh->b_committed_data = committed_data;
1286                committed_data = NULL;
1287                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1288        }
1289        jbd_unlock_bh_state(bh);
1290out:
1291        jbd2_journal_put_journal_head(jh);
1292        if (unlikely(committed_data))
1293                jbd2_free(committed_data, bh->b_size);
1294        return err;
1295}
1296
1297/**
1298 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1299 * @bh: buffer to trigger on
1300 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1301 *
1302 * Set any triggers on this journal_head.  This is always safe, because
1303 * triggers for a committing buffer will be saved off, and triggers for
1304 * a running transaction will match the buffer in that transaction.
1305 *
1306 * Call with NULL to clear the triggers.
1307 */
1308void jbd2_journal_set_triggers(struct buffer_head *bh,
1309                               struct jbd2_buffer_trigger_type *type)
1310{
1311        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1312
1313        if (WARN_ON(!jh))
1314                return;
1315        jh->b_triggers = type;
1316        jbd2_journal_put_journal_head(jh);
1317}
1318
1319void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1320                                struct jbd2_buffer_trigger_type *triggers)
1321{
1322        struct buffer_head *bh = jh2bh(jh);
1323
1324        if (!triggers || !triggers->t_frozen)
1325                return;
1326
1327        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1328}
1329
1330void jbd2_buffer_abort_trigger(struct journal_head *jh,
1331                               struct jbd2_buffer_trigger_type *triggers)
1332{
1333        if (!triggers || !triggers->t_abort)
1334                return;
1335
1336        triggers->t_abort(triggers, jh2bh(jh));
1337}
1338
1339/**
1340 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1341 * @handle: transaction to add buffer to.
1342 * @bh: buffer to mark
1343 *
1344 * mark dirty metadata which needs to be journaled as part of the current
1345 * transaction.
1346 *
1347 * The buffer must have previously had jbd2_journal_get_write_access()
1348 * called so that it has a valid journal_head attached to the buffer
1349 * head.
1350 *
1351 * The buffer is placed on the transaction's metadata list and is marked
1352 * as belonging to the transaction.
1353 *
1354 * Returns error number or 0 on success.
1355 *
1356 * Special care needs to be taken if the buffer already belongs to the
1357 * current committing transaction (in which case we should have frozen
1358 * data present for that commit).  In that case, we don't relink the
1359 * buffer: that only gets done when the old transaction finally
1360 * completes its commit.
1361 */
1362int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1363{
1364        transaction_t *transaction = handle->h_transaction;
1365        journal_t *journal;
1366        struct journal_head *jh;
1367        int ret = 0;
1368
1369        if (is_handle_aborted(handle))
1370                return -EROFS;
1371        if (!buffer_jbd(bh))
1372                return -EUCLEAN;
1373
1374        /*
1375         * We don't grab jh reference here since the buffer must be part
1376         * of the running transaction.
1377         */
1378        jh = bh2jh(bh);
1379        jbd_debug(5, "journal_head %p\n", jh);
1380        JBUFFER_TRACE(jh, "entry");
1381
1382        /*
1383         * This and the following assertions are unreliable since we may see jh
1384         * in inconsistent state unless we grab bh_state lock. But this is
1385         * crucial to catch bugs so let's do a reliable check until the
1386         * lockless handling is fully proven.
1387         */
1388        if (jh->b_transaction != transaction &&
1389            jh->b_next_transaction != transaction) {
1390                jbd_lock_bh_state(bh);
1391                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1392                                jh->b_next_transaction == transaction);
1393                jbd_unlock_bh_state(bh);
1394        }
1395        if (jh->b_modified == 1) {
1396                /* If it's in our transaction it must be in BJ_Metadata list. */
1397                if (jh->b_transaction == transaction &&
1398                    jh->b_jlist != BJ_Metadata) {
1399                        jbd_lock_bh_state(bh);
1400                        if (jh->b_transaction == transaction &&
1401                            jh->b_jlist != BJ_Metadata)
1402                                pr_err("JBD2: assertion failure: h_type=%u "
1403                                       "h_line_no=%u block_no=%llu jlist=%u\n",
1404                                       handle->h_type, handle->h_line_no,
1405                                       (unsigned long long) bh->b_blocknr,
1406                                       jh->b_jlist);
1407                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1408                                        jh->b_jlist == BJ_Metadata);
1409                        jbd_unlock_bh_state(bh);
1410                }
1411                goto out;
1412        }
1413
1414        journal = transaction->t_journal;
1415        jbd_lock_bh_state(bh);
1416
1417        if (jh->b_modified == 0) {
1418                /*
1419                 * This buffer's got modified and becoming part
1420                 * of the transaction. This needs to be done
1421                 * once a transaction -bzzz
1422                 */
1423                if (handle->h_buffer_credits <= 0) {
1424                        ret = -ENOSPC;
1425                        goto out_unlock_bh;
1426                }
1427                jh->b_modified = 1;
1428                handle->h_buffer_credits--;
1429        }
1430
1431        /*
1432         * fastpath, to avoid expensive locking.  If this buffer is already
1433         * on the running transaction's metadata list there is nothing to do.
1434         * Nobody can take it off again because there is a handle open.
1435         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1436         * result in this test being false, so we go in and take the locks.
1437         */
1438        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1439                JBUFFER_TRACE(jh, "fastpath");
1440                if (unlikely(jh->b_transaction !=
1441                             journal->j_running_transaction)) {
1442                        printk(KERN_ERR "JBD2: %s: "
1443                               "jh->b_transaction (%llu, %p, %u) != "
1444                               "journal->j_running_transaction (%p, %u)\n",
1445                               journal->j_devname,
1446                               (unsigned long long) bh->b_blocknr,
1447                               jh->b_transaction,
1448                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1449                               journal->j_running_transaction,
1450                               journal->j_running_transaction ?
1451                               journal->j_running_transaction->t_tid : 0);
1452                        ret = -EINVAL;
1453                }
1454                goto out_unlock_bh;
1455        }
1456
1457        set_buffer_jbddirty(bh);
1458
1459        /*
1460         * Metadata already on the current transaction list doesn't
1461         * need to be filed.  Metadata on another transaction's list must
1462         * be committing, and will be refiled once the commit completes:
1463         * leave it alone for now.
1464         */
1465        if (jh->b_transaction != transaction) {
1466                JBUFFER_TRACE(jh, "already on other transaction");
1467                if (unlikely(((jh->b_transaction !=
1468                               journal->j_committing_transaction)) ||
1469                             (jh->b_next_transaction != transaction))) {
1470                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1471                               "bad jh for block %llu: "
1472                               "transaction (%p, %u), "
1473                               "jh->b_transaction (%p, %u), "
1474                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1475                               journal->j_devname,
1476                               (unsigned long long) bh->b_blocknr,
1477                               transaction, transaction->t_tid,
1478                               jh->b_transaction,
1479                               jh->b_transaction ?
1480                               jh->b_transaction->t_tid : 0,
1481                               jh->b_next_transaction,
1482                               jh->b_next_transaction ?
1483                               jh->b_next_transaction->t_tid : 0,
1484                               jh->b_jlist);
1485                        WARN_ON(1);
1486                        ret = -EINVAL;
1487                }
1488                /* And this case is illegal: we can't reuse another
1489                 * transaction's data buffer, ever. */
1490                goto out_unlock_bh;
1491        }
1492
1493        /* That test should have eliminated the following case: */
1494        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1495
1496        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1497        spin_lock(&journal->j_list_lock);
1498        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1499        spin_unlock(&journal->j_list_lock);
1500out_unlock_bh:
1501        jbd_unlock_bh_state(bh);
1502out:
1503        JBUFFER_TRACE(jh, "exit");
1504        return ret;
1505}
1506
1507/**
1508 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1509 * @handle: transaction handle
1510 * @bh:     bh to 'forget'
1511 *
1512 * We can only do the bforget if there are no commits pending against the
1513 * buffer.  If the buffer is dirty in the current running transaction we
1514 * can safely unlink it.
1515 *
1516 * bh may not be a journalled buffer at all - it may be a non-JBD
1517 * buffer which came off the hashtable.  Check for this.
1518 *
1519 * Decrements bh->b_count by one.
1520 *
1521 * Allow this call even if the handle has aborted --- it may be part of
1522 * the caller's cleanup after an abort.
1523 */
1524int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1525{
1526        transaction_t *transaction = handle->h_transaction;
1527        journal_t *journal;
1528        struct journal_head *jh;
1529        int drop_reserve = 0;
1530        int err = 0;
1531        int was_modified = 0;
1532
1533        if (is_handle_aborted(handle))
1534                return -EROFS;
1535        journal = transaction->t_journal;
1536
1537        BUFFER_TRACE(bh, "entry");
1538
1539        jbd_lock_bh_state(bh);
1540
1541        if (!buffer_jbd(bh))
1542                goto not_jbd;
1543        jh = bh2jh(bh);
1544
1545        /* Critical error: attempting to delete a bitmap buffer, maybe?
1546         * Don't do any jbd operations, and return an error. */
1547        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1548                         "inconsistent data on disk")) {
1549                err = -EIO;
1550                goto not_jbd;
1551        }
1552
1553        /* keep track of whether or not this transaction modified us */
1554        was_modified = jh->b_modified;
1555
1556        /*
1557         * The buffer's going from the transaction, we must drop
1558         * all references -bzzz
1559         */
1560        jh->b_modified = 0;
1561
1562        if (jh->b_transaction == transaction) {
1563                J_ASSERT_JH(jh, !jh->b_frozen_data);
1564
1565                /* If we are forgetting a buffer which is already part
1566                 * of this transaction, then we can just drop it from
1567                 * the transaction immediately. */
1568                clear_buffer_dirty(bh);
1569                clear_buffer_jbddirty(bh);
1570
1571                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1572
1573                /*
1574                 * we only want to drop a reference if this transaction
1575                 * modified the buffer
1576                 */
1577                if (was_modified)
1578                        drop_reserve = 1;
1579
1580                /*
1581                 * We are no longer going to journal this buffer.
1582                 * However, the commit of this transaction is still
1583                 * important to the buffer: the delete that we are now
1584                 * processing might obsolete an old log entry, so by
1585                 * committing, we can satisfy the buffer's checkpoint.
1586                 *
1587                 * So, if we have a checkpoint on the buffer, we should
1588                 * now refile the buffer on our BJ_Forget list so that
1589                 * we know to remove the checkpoint after we commit.
1590                 */
1591
1592                spin_lock(&journal->j_list_lock);
1593                if (jh->b_cp_transaction) {
1594                        __jbd2_journal_temp_unlink_buffer(jh);
1595                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1596                } else {
1597                        __jbd2_journal_unfile_buffer(jh);
1598                        if (!buffer_jbd(bh)) {
1599                                spin_unlock(&journal->j_list_lock);
1600                                goto not_jbd;
1601                        }
1602                }
1603                spin_unlock(&journal->j_list_lock);
1604        } else if (jh->b_transaction) {
1605                J_ASSERT_JH(jh, (jh->b_transaction ==
1606                                 journal->j_committing_transaction));
1607                /* However, if the buffer is still owned by a prior
1608                 * (committing) transaction, we can't drop it yet... */
1609                JBUFFER_TRACE(jh, "belongs to older transaction");
1610                /* ... but we CAN drop it from the new transaction through
1611                 * marking the buffer as freed and set j_next_transaction to
1612                 * the new transaction, so that not only the commit code
1613                 * knows it should clear dirty bits when it is done with the
1614                 * buffer, but also the buffer can be checkpointed only
1615                 * after the new transaction commits. */
1616
1617                set_buffer_freed(bh);
1618
1619                if (!jh->b_next_transaction) {
1620                        spin_lock(&journal->j_list_lock);
1621                        jh->b_next_transaction = transaction;
1622                        spin_unlock(&journal->j_list_lock);
1623                } else {
1624                        J_ASSERT(jh->b_next_transaction == transaction);
1625
1626                        /*
1627                         * only drop a reference if this transaction modified
1628                         * the buffer
1629                         */
1630                        if (was_modified)
1631                                drop_reserve = 1;
1632                }
1633        } else {
1634                /*
1635                 * Finally, if the buffer is not belongs to any
1636                 * transaction, we can just drop it now if it has no
1637                 * checkpoint.
1638                 */
1639                spin_lock(&journal->j_list_lock);
1640                if (!jh->b_cp_transaction) {
1641                        JBUFFER_TRACE(jh, "belongs to none transaction");
1642                        spin_unlock(&journal->j_list_lock);
1643                        goto not_jbd;
1644                }
1645
1646                /*
1647                 * Otherwise, if the buffer has been written to disk,
1648                 * it is safe to remove the checkpoint and drop it.
1649                 */
1650                if (!buffer_dirty(bh)) {
1651                        __jbd2_journal_remove_checkpoint(jh);
1652                        spin_unlock(&journal->j_list_lock);
1653                        goto not_jbd;
1654                }
1655
1656                /*
1657                 * The buffer is still not written to disk, we should
1658                 * attach this buffer to current transaction so that the
1659                 * buffer can be checkpointed only after the current
1660                 * transaction commits.
1661                 */
1662                clear_buffer_dirty(bh);
1663                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1664                spin_unlock(&journal->j_list_lock);
1665        }
1666
1667        jbd_unlock_bh_state(bh);
1668        __brelse(bh);
1669drop:
1670        if (drop_reserve) {
1671                /* no need to reserve log space for this block -bzzz */
1672                handle->h_buffer_credits++;
1673        }
1674        return err;
1675
1676not_jbd:
1677        jbd_unlock_bh_state(bh);
1678        __bforget(bh);
1679        goto drop;
1680}
1681
1682/**
1683 * int jbd2_journal_stop() - complete a transaction
1684 * @handle: transaction to complete.
1685 *
1686 * All done for a particular handle.
1687 *
1688 * There is not much action needed here.  We just return any remaining
1689 * buffer credits to the transaction and remove the handle.  The only
1690 * complication is that we need to start a commit operation if the
1691 * filesystem is marked for synchronous update.
1692 *
1693 * jbd2_journal_stop itself will not usually return an error, but it may
1694 * do so in unusual circumstances.  In particular, expect it to
1695 * return -EIO if a jbd2_journal_abort has been executed since the
1696 * transaction began.
1697 */
1698int jbd2_journal_stop(handle_t *handle)
1699{
1700        transaction_t *transaction = handle->h_transaction;
1701        journal_t *journal;
1702        int err = 0, wait_for_commit = 0;
1703        tid_t tid;
1704        pid_t pid;
1705
1706        if (!transaction) {
1707                /*
1708                 * Handle is already detached from the transaction so
1709                 * there is nothing to do other than decrease a refcount,
1710                 * or free the handle if refcount drops to zero
1711                 */
1712                if (--handle->h_ref > 0) {
1713                        jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1714                                                         handle->h_ref);
1715                        return err;
1716                } else {
1717                        if (handle->h_rsv_handle)
1718                                jbd2_free_handle(handle->h_rsv_handle);
1719                        goto free_and_exit;
1720                }
1721        }
1722        journal = transaction->t_journal;
1723
1724        J_ASSERT(journal_current_handle() == handle);
1725
1726        if (is_handle_aborted(handle))
1727                err = -EIO;
1728        else
1729                J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1730
1731        if (--handle->h_ref > 0) {
1732                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1733                          handle->h_ref);
1734                return err;
1735        }
1736
1737        jbd_debug(4, "Handle %p going down\n", handle);
1738        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1739                                transaction->t_tid,
1740                                handle->h_type, handle->h_line_no,
1741                                jiffies - handle->h_start_jiffies,
1742                                handle->h_sync, handle->h_requested_credits,
1743                                (handle->h_requested_credits -
1744                                 handle->h_buffer_credits));
1745
1746        /*
1747         * Implement synchronous transaction batching.  If the handle
1748         * was synchronous, don't force a commit immediately.  Let's
1749         * yield and let another thread piggyback onto this
1750         * transaction.  Keep doing that while new threads continue to
1751         * arrive.  It doesn't cost much - we're about to run a commit
1752         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1753         * operations by 30x or more...
1754         *
1755         * We try and optimize the sleep time against what the
1756         * underlying disk can do, instead of having a static sleep
1757         * time.  This is useful for the case where our storage is so
1758         * fast that it is more optimal to go ahead and force a flush
1759         * and wait for the transaction to be committed than it is to
1760         * wait for an arbitrary amount of time for new writers to
1761         * join the transaction.  We achieve this by measuring how
1762         * long it takes to commit a transaction, and compare it with
1763         * how long this transaction has been running, and if run time
1764         * < commit time then we sleep for the delta and commit.  This
1765         * greatly helps super fast disks that would see slowdowns as
1766         * more threads started doing fsyncs.
1767         *
1768         * But don't do this if this process was the most recent one
1769         * to perform a synchronous write.  We do this to detect the
1770         * case where a single process is doing a stream of sync
1771         * writes.  No point in waiting for joiners in that case.
1772         *
1773         * Setting max_batch_time to 0 disables this completely.
1774         */
1775        pid = current->pid;
1776        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1777            journal->j_max_batch_time) {
1778                u64 commit_time, trans_time;
1779
1780                journal->j_last_sync_writer = pid;
1781
1782                read_lock(&journal->j_state_lock);
1783                commit_time = journal->j_average_commit_time;
1784                read_unlock(&journal->j_state_lock);
1785
1786                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1787                                                   transaction->t_start_time));
1788
1789                commit_time = max_t(u64, commit_time,
1790                                    1000*journal->j_min_batch_time);
1791                commit_time = min_t(u64, commit_time,
1792                                    1000*journal->j_max_batch_time);
1793
1794                if (trans_time < commit_time) {
1795                        ktime_t expires = ktime_add_ns(ktime_get(),
1796                                                       commit_time);
1797                        set_current_state(TASK_UNINTERRUPTIBLE);
1798                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1799                }
1800        }
1801
1802        if (handle->h_sync)
1803                transaction->t_synchronous_commit = 1;
1804        current->journal_info = NULL;
1805        atomic_sub(handle->h_buffer_credits,
1806                   &transaction->t_outstanding_credits);
1807
1808        /*
1809         * If the handle is marked SYNC, we need to set another commit
1810         * going!  We also want to force a commit if the current
1811         * transaction is occupying too much of the log, or if the
1812         * transaction is too old now.
1813         */
1814        if (handle->h_sync ||
1815            (atomic_read(&transaction->t_outstanding_credits) >
1816             journal->j_max_transaction_buffers) ||
1817            time_after_eq(jiffies, transaction->t_expires)) {
1818                /* Do this even for aborted journals: an abort still
1819                 * completes the commit thread, it just doesn't write
1820                 * anything to disk. */
1821
1822                jbd_debug(2, "transaction too old, requesting commit for "
1823                                        "handle %p\n", handle);
1824                /* This is non-blocking */
1825                jbd2_log_start_commit(journal, transaction->t_tid);
1826
1827                /*
1828                 * Special case: JBD2_SYNC synchronous updates require us
1829                 * to wait for the commit to complete.
1830                 */
1831                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1832                        wait_for_commit = 1;
1833        }
1834
1835        /*
1836         * Once we drop t_updates, if it goes to zero the transaction
1837         * could start committing on us and eventually disappear.  So
1838         * once we do this, we must not dereference transaction
1839         * pointer again.
1840         */
1841        tid = transaction->t_tid;
1842        if (atomic_dec_and_test(&transaction->t_updates)) {
1843                wake_up(&journal->j_wait_updates);
1844                if (journal->j_barrier_count)
1845                        wake_up(&journal->j_wait_transaction_locked);
1846        }
1847
1848        rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1849
1850        if (wait_for_commit)
1851                err = jbd2_log_wait_commit(journal, tid);
1852
1853        if (handle->h_rsv_handle)
1854                jbd2_journal_free_reserved(handle->h_rsv_handle);
1855free_and_exit:
1856        /*
1857         * Scope of the GFP_NOFS context is over here and so we can restore the
1858         * original alloc context.
1859         */
1860        memalloc_nofs_restore(handle->saved_alloc_context);
1861        jbd2_free_handle(handle);
1862        return err;
1863}
1864
1865/*
1866 *
1867 * List management code snippets: various functions for manipulating the
1868 * transaction buffer lists.
1869 *
1870 */
1871
1872/*
1873 * Append a buffer to a transaction list, given the transaction's list head
1874 * pointer.
1875 *
1876 * j_list_lock is held.
1877 *
1878 * jbd_lock_bh_state(jh2bh(jh)) is held.
1879 */
1880
1881static inline void
1882__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1883{
1884        if (!*list) {
1885                jh->b_tnext = jh->b_tprev = jh;
1886                *list = jh;
1887        } else {
1888                /* Insert at the tail of the list to preserve order */
1889                struct journal_head *first = *list, *last = first->b_tprev;
1890                jh->b_tprev = last;
1891                jh->b_tnext = first;
1892                last->b_tnext = first->b_tprev = jh;
1893        }
1894}
1895
1896/*
1897 * Remove a buffer from a transaction list, given the transaction's list
1898 * head pointer.
1899 *
1900 * Called with j_list_lock held, and the journal may not be locked.
1901 *
1902 * jbd_lock_bh_state(jh2bh(jh)) is held.
1903 */
1904
1905static inline void
1906__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1907{
1908        if (*list == jh) {
1909                *list = jh->b_tnext;
1910                if (*list == jh)
1911                        *list = NULL;
1912        }
1913        jh->b_tprev->b_tnext = jh->b_tnext;
1914        jh->b_tnext->b_tprev = jh->b_tprev;
1915}
1916
1917/*
1918 * Remove a buffer from the appropriate transaction list.
1919 *
1920 * Note that this function can *change* the value of
1921 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1922 * t_reserved_list.  If the caller is holding onto a copy of one of these
1923 * pointers, it could go bad.  Generally the caller needs to re-read the
1924 * pointer from the transaction_t.
1925 *
1926 * Called under j_list_lock.
1927 */
1928static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1929{
1930        struct journal_head **list = NULL;
1931        transaction_t *transaction;
1932        struct buffer_head *bh = jh2bh(jh);
1933
1934        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1935        transaction = jh->b_transaction;
1936        if (transaction)
1937                assert_spin_locked(&transaction->t_journal->j_list_lock);
1938
1939        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1940        if (jh->b_jlist != BJ_None)
1941                J_ASSERT_JH(jh, transaction != NULL);
1942
1943        switch (jh->b_jlist) {
1944        case BJ_None:
1945                return;
1946        case BJ_Metadata:
1947                transaction->t_nr_buffers--;
1948                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1949                list = &transaction->t_buffers;
1950                break;
1951        case BJ_Forget:
1952                list = &transaction->t_forget;
1953                break;
1954        case BJ_Shadow:
1955                list = &transaction->t_shadow_list;
1956                break;
1957        case BJ_Reserved:
1958                list = &transaction->t_reserved_list;
1959                break;
1960        }
1961
1962        __blist_del_buffer(list, jh);
1963        jh->b_jlist = BJ_None;
1964        if (transaction && is_journal_aborted(transaction->t_journal))
1965                clear_buffer_jbddirty(bh);
1966        else if (test_clear_buffer_jbddirty(bh))
1967                mark_buffer_dirty(bh);  /* Expose it to the VM */
1968}
1969
1970/*
1971 * Remove buffer from all transactions.
1972 *
1973 * Called with bh_state lock and j_list_lock
1974 *
1975 * jh and bh may be already freed when this function returns.
1976 */
1977static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1978{
1979        __jbd2_journal_temp_unlink_buffer(jh);
1980        jh->b_transaction = NULL;
1981        jbd2_journal_put_journal_head(jh);
1982}
1983
1984void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1985{
1986        struct buffer_head *bh = jh2bh(jh);
1987
1988        /* Get reference so that buffer cannot be freed before we unlock it */
1989        get_bh(bh);
1990        jbd_lock_bh_state(bh);
1991        spin_lock(&journal->j_list_lock);
1992        __jbd2_journal_unfile_buffer(jh);
1993        spin_unlock(&journal->j_list_lock);
1994        jbd_unlock_bh_state(bh);
1995        __brelse(bh);
1996}
1997
1998/*
1999 * Called from jbd2_journal_try_to_free_buffers().
2000 *
2001 * Called under jbd_lock_bh_state(bh)
2002 */
2003static void
2004__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2005{
2006        struct journal_head *jh;
2007
2008        jh = bh2jh(bh);
2009
2010        if (buffer_locked(bh) || buffer_dirty(bh))
2011                goto out;
2012
2013        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2014                goto out;
2015
2016        spin_lock(&journal->j_list_lock);
2017        if (jh->b_cp_transaction != NULL) {
2018                /* written-back checkpointed metadata buffer */
2019                JBUFFER_TRACE(jh, "remove from checkpoint list");
2020                __jbd2_journal_remove_checkpoint(jh);
2021        }
2022        spin_unlock(&journal->j_list_lock);
2023out:
2024        return;
2025}
2026
2027/**
2028 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
2029 * @journal: journal for operation
2030 * @page: to try and free
2031 * @gfp_mask: we use the mask to detect how hard should we try to release
2032 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2033 * code to release the buffers.
2034 *
2035 *
2036 * For all the buffers on this page,
2037 * if they are fully written out ordered data, move them onto BUF_CLEAN
2038 * so try_to_free_buffers() can reap them.
2039 *
2040 * This function returns non-zero if we wish try_to_free_buffers()
2041 * to be called. We do this if the page is releasable by try_to_free_buffers().
2042 * We also do it if the page has locked or dirty buffers and the caller wants
2043 * us to perform sync or async writeout.
2044 *
2045 * This complicates JBD locking somewhat.  We aren't protected by the
2046 * BKL here.  We wish to remove the buffer from its committing or
2047 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2048 *
2049 * This may *change* the value of transaction_t->t_datalist, so anyone
2050 * who looks at t_datalist needs to lock against this function.
2051 *
2052 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2053 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2054 * will come out of the lock with the buffer dirty, which makes it
2055 * ineligible for release here.
2056 *
2057 * Who else is affected by this?  hmm...  Really the only contender
2058 * is do_get_write_access() - it could be looking at the buffer while
2059 * journal_try_to_free_buffer() is changing its state.  But that
2060 * cannot happen because we never reallocate freed data as metadata
2061 * while the data is part of a transaction.  Yes?
2062 *
2063 * Return 0 on failure, 1 on success
2064 */
2065int jbd2_journal_try_to_free_buffers(journal_t *journal,
2066                                struct page *page, gfp_t gfp_mask)
2067{
2068        struct buffer_head *head;
2069        struct buffer_head *bh;
2070        int ret = 0;
2071
2072        J_ASSERT(PageLocked(page));
2073
2074        head = page_buffers(page);
2075        bh = head;
2076        do {
2077                struct journal_head *jh;
2078
2079                /*
2080                 * We take our own ref against the journal_head here to avoid
2081                 * having to add tons of locking around each instance of
2082                 * jbd2_journal_put_journal_head().
2083                 */
2084                jh = jbd2_journal_grab_journal_head(bh);
2085                if (!jh)
2086                        continue;
2087
2088                jbd_lock_bh_state(bh);
2089                __journal_try_to_free_buffer(journal, bh);
2090                jbd2_journal_put_journal_head(jh);
2091                jbd_unlock_bh_state(bh);
2092                if (buffer_jbd(bh))
2093                        goto busy;
2094        } while ((bh = bh->b_this_page) != head);
2095
2096        ret = try_to_free_buffers(page);
2097
2098busy:
2099        return ret;
2100}
2101
2102/*
2103 * This buffer is no longer needed.  If it is on an older transaction's
2104 * checkpoint list we need to record it on this transaction's forget list
2105 * to pin this buffer (and hence its checkpointing transaction) down until
2106 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2107 * release it.
2108 * Returns non-zero if JBD no longer has an interest in the buffer.
2109 *
2110 * Called under j_list_lock.
2111 *
2112 * Called under jbd_lock_bh_state(bh).
2113 */
2114static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2115{
2116        int may_free = 1;
2117        struct buffer_head *bh = jh2bh(jh);
2118
2119        if (jh->b_cp_transaction) {
2120                JBUFFER_TRACE(jh, "on running+cp transaction");
2121                __jbd2_journal_temp_unlink_buffer(jh);
2122                /*
2123                 * We don't want to write the buffer anymore, clear the
2124                 * bit so that we don't confuse checks in
2125                 * __journal_file_buffer
2126                 */
2127                clear_buffer_dirty(bh);
2128                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2129                may_free = 0;
2130        } else {
2131                JBUFFER_TRACE(jh, "on running transaction");
2132                __jbd2_journal_unfile_buffer(jh);
2133        }
2134        return may_free;
2135}
2136
2137/*
2138 * jbd2_journal_invalidatepage
2139 *
2140 * This code is tricky.  It has a number of cases to deal with.
2141 *
2142 * There are two invariants which this code relies on:
2143 *
2144 * i_size must be updated on disk before we start calling invalidatepage on the
2145 * data.
2146 *
2147 *  This is done in ext3 by defining an ext3_setattr method which
2148 *  updates i_size before truncate gets going.  By maintaining this
2149 *  invariant, we can be sure that it is safe to throw away any buffers
2150 *  attached to the current transaction: once the transaction commits,
2151 *  we know that the data will not be needed.
2152 *
2153 *  Note however that we can *not* throw away data belonging to the
2154 *  previous, committing transaction!
2155 *
2156 * Any disk blocks which *are* part of the previous, committing
2157 * transaction (and which therefore cannot be discarded immediately) are
2158 * not going to be reused in the new running transaction
2159 *
2160 *  The bitmap committed_data images guarantee this: any block which is
2161 *  allocated in one transaction and removed in the next will be marked
2162 *  as in-use in the committed_data bitmap, so cannot be reused until
2163 *  the next transaction to delete the block commits.  This means that
2164 *  leaving committing buffers dirty is quite safe: the disk blocks
2165 *  cannot be reallocated to a different file and so buffer aliasing is
2166 *  not possible.
2167 *
2168 *
2169 * The above applies mainly to ordered data mode.  In writeback mode we
2170 * don't make guarantees about the order in which data hits disk --- in
2171 * particular we don't guarantee that new dirty data is flushed before
2172 * transaction commit --- so it is always safe just to discard data
2173 * immediately in that mode.  --sct
2174 */
2175
2176/*
2177 * The journal_unmap_buffer helper function returns zero if the buffer
2178 * concerned remains pinned as an anonymous buffer belonging to an older
2179 * transaction.
2180 *
2181 * We're outside-transaction here.  Either or both of j_running_transaction
2182 * and j_committing_transaction may be NULL.
2183 */
2184static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2185                                int partial_page)
2186{
2187        transaction_t *transaction;
2188        struct journal_head *jh;
2189        int may_free = 1;
2190
2191        BUFFER_TRACE(bh, "entry");
2192
2193        /*
2194         * It is safe to proceed here without the j_list_lock because the
2195         * buffers cannot be stolen by try_to_free_buffers as long as we are
2196         * holding the page lock. --sct
2197         */
2198
2199        if (!buffer_jbd(bh))
2200                goto zap_buffer_unlocked;
2201
2202        /* OK, we have data buffer in journaled mode */
2203        write_lock(&journal->j_state_lock);
2204        jbd_lock_bh_state(bh);
2205        spin_lock(&journal->j_list_lock);
2206
2207        jh = jbd2_journal_grab_journal_head(bh);
2208        if (!jh)
2209                goto zap_buffer_no_jh;
2210
2211        /*
2212         * We cannot remove the buffer from checkpoint lists until the
2213         * transaction adding inode to orphan list (let's call it T)
2214         * is committed.  Otherwise if the transaction changing the
2215         * buffer would be cleaned from the journal before T is
2216         * committed, a crash will cause that the correct contents of
2217         * the buffer will be lost.  On the other hand we have to
2218         * clear the buffer dirty bit at latest at the moment when the
2219         * transaction marking the buffer as freed in the filesystem
2220         * structures is committed because from that moment on the
2221         * block can be reallocated and used by a different page.
2222         * Since the block hasn't been freed yet but the inode has
2223         * already been added to orphan list, it is safe for us to add
2224         * the buffer to BJ_Forget list of the newest transaction.
2225         *
2226         * Also we have to clear buffer_mapped flag of a truncated buffer
2227         * because the buffer_head may be attached to the page straddling
2228         * i_size (can happen only when blocksize < pagesize) and thus the
2229         * buffer_head can be reused when the file is extended again. So we end
2230         * up keeping around invalidated buffers attached to transactions'
2231         * BJ_Forget list just to stop checkpointing code from cleaning up
2232         * the transaction this buffer was modified in.
2233         */
2234        transaction = jh->b_transaction;
2235        if (transaction == NULL) {
2236                /* First case: not on any transaction.  If it
2237                 * has no checkpoint link, then we can zap it:
2238                 * it's a writeback-mode buffer so we don't care
2239                 * if it hits disk safely. */
2240                if (!jh->b_cp_transaction) {
2241                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2242                        goto zap_buffer;
2243                }
2244
2245                if (!buffer_dirty(bh)) {
2246                        /* bdflush has written it.  We can drop it now */
2247                        __jbd2_journal_remove_checkpoint(jh);
2248                        goto zap_buffer;
2249                }
2250
2251                /* OK, it must be in the journal but still not
2252                 * written fully to disk: it's metadata or
2253                 * journaled data... */
2254
2255                if (journal->j_running_transaction) {
2256                        /* ... and once the current transaction has
2257                         * committed, the buffer won't be needed any
2258                         * longer. */
2259                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2260                        may_free = __dispose_buffer(jh,
2261                                        journal->j_running_transaction);
2262                        goto zap_buffer;
2263                } else {
2264                        /* There is no currently-running transaction. So the
2265                         * orphan record which we wrote for this file must have
2266                         * passed into commit.  We must attach this buffer to
2267                         * the committing transaction, if it exists. */
2268                        if (journal->j_committing_transaction) {
2269                                JBUFFER_TRACE(jh, "give to committing trans");
2270                                may_free = __dispose_buffer(jh,
2271                                        journal->j_committing_transaction);
2272                                goto zap_buffer;
2273                        } else {
2274                                /* The orphan record's transaction has
2275                                 * committed.  We can cleanse this buffer */
2276                                clear_buffer_jbddirty(bh);
2277                                __jbd2_journal_remove_checkpoint(jh);
2278                                goto zap_buffer;
2279                        }
2280                }
2281        } else if (transaction == journal->j_committing_transaction) {
2282                JBUFFER_TRACE(jh, "on committing transaction");
2283                /*
2284                 * The buffer is committing, we simply cannot touch
2285                 * it. If the page is straddling i_size we have to wait
2286                 * for commit and try again.
2287                 */
2288                if (partial_page) {
2289                        jbd2_journal_put_journal_head(jh);
2290                        spin_unlock(&journal->j_list_lock);
2291                        jbd_unlock_bh_state(bh);
2292                        write_unlock(&journal->j_state_lock);
2293                        return -EBUSY;
2294                }
2295                /*
2296                 * OK, buffer won't be reachable after truncate. We just set
2297                 * j_next_transaction to the running transaction (if there is
2298                 * one) and mark buffer as freed so that commit code knows it
2299                 * should clear dirty bits when it is done with the buffer.
2300                 */
2301                set_buffer_freed(bh);
2302                if (journal->j_running_transaction && buffer_jbddirty(bh))
2303                        jh->b_next_transaction = journal->j_running_transaction;
2304                jbd2_journal_put_journal_head(jh);
2305                spin_unlock(&journal->j_list_lock);
2306                jbd_unlock_bh_state(bh);
2307                write_unlock(&journal->j_state_lock);
2308                return 0;
2309        } else {
2310                /* Good, the buffer belongs to the running transaction.
2311                 * We are writing our own transaction's data, not any
2312                 * previous one's, so it is safe to throw it away
2313                 * (remember that we expect the filesystem to have set
2314                 * i_size already for this truncate so recovery will not
2315                 * expose the disk blocks we are discarding here.) */
2316                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2317                JBUFFER_TRACE(jh, "on running transaction");
2318                may_free = __dispose_buffer(jh, transaction);
2319        }
2320
2321zap_buffer:
2322        /*
2323         * This is tricky. Although the buffer is truncated, it may be reused
2324         * if blocksize < pagesize and it is attached to the page straddling
2325         * EOF. Since the buffer might have been added to BJ_Forget list of the
2326         * running transaction, journal_get_write_access() won't clear
2327         * b_modified and credit accounting gets confused. So clear b_modified
2328         * here.
2329         */
2330        jh->b_modified = 0;
2331        jbd2_journal_put_journal_head(jh);
2332zap_buffer_no_jh:
2333        spin_unlock(&journal->j_list_lock);
2334        jbd_unlock_bh_state(bh);
2335        write_unlock(&journal->j_state_lock);
2336zap_buffer_unlocked:
2337        clear_buffer_dirty(bh);
2338        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2339        clear_buffer_mapped(bh);
2340        clear_buffer_req(bh);
2341        clear_buffer_new(bh);
2342        clear_buffer_delay(bh);
2343        clear_buffer_unwritten(bh);
2344        bh->b_bdev = NULL;
2345        return may_free;
2346}
2347
2348/**
2349 * void jbd2_journal_invalidatepage()
2350 * @journal: journal to use for flush...
2351 * @page:    page to flush
2352 * @offset:  start of the range to invalidate
2353 * @length:  length of the range to invalidate
2354 *
2355 * Reap page buffers containing data after in the specified range in page.
2356 * Can return -EBUSY if buffers are part of the committing transaction and
2357 * the page is straddling i_size. Caller then has to wait for current commit
2358 * and try again.
2359 */
2360int jbd2_journal_invalidatepage(journal_t *journal,
2361                                struct page *page,
2362                                unsigned int offset,
2363                                unsigned int length)
2364{
2365        struct buffer_head *head, *bh, *next;
2366        unsigned int stop = offset + length;
2367        unsigned int curr_off = 0;
2368        int partial_page = (offset || length < PAGE_SIZE);
2369        int may_free = 1;
2370        int ret = 0;
2371
2372        if (!PageLocked(page))
2373                BUG();
2374        if (!page_has_buffers(page))
2375                return 0;
2376
2377        BUG_ON(stop > PAGE_SIZE || stop < length);
2378
2379        /* We will potentially be playing with lists other than just the
2380         * data lists (especially for journaled data mode), so be
2381         * cautious in our locking. */
2382
2383        head = bh = page_buffers(page);
2384        do {
2385                unsigned int next_off = curr_off + bh->b_size;
2386                next = bh->b_this_page;
2387
2388                if (next_off > stop)
2389                        return 0;
2390
2391                if (offset <= curr_off) {
2392                        /* This block is wholly outside the truncation point */
2393                        lock_buffer(bh);
2394                        ret = journal_unmap_buffer(journal, bh, partial_page);
2395                        unlock_buffer(bh);
2396                        if (ret < 0)
2397                                return ret;
2398                        may_free &= ret;
2399                }
2400                curr_off = next_off;
2401                bh = next;
2402
2403        } while (bh != head);
2404
2405        if (!partial_page) {
2406                if (may_free && try_to_free_buffers(page))
2407                        J_ASSERT(!page_has_buffers(page));
2408        }
2409        return 0;
2410}
2411
2412/*
2413 * File a buffer on the given transaction list.
2414 */
2415void __jbd2_journal_file_buffer(struct journal_head *jh,
2416                        transaction_t *transaction, int jlist)
2417{
2418        struct journal_head **list = NULL;
2419        int was_dirty = 0;
2420        struct buffer_head *bh = jh2bh(jh);
2421
2422        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2423        assert_spin_locked(&transaction->t_journal->j_list_lock);
2424
2425        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2426        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2427                                jh->b_transaction == NULL);
2428
2429        if (jh->b_transaction && jh->b_jlist == jlist)
2430                return;
2431
2432        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2433            jlist == BJ_Shadow || jlist == BJ_Forget) {
2434                /*
2435                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2436                 * instead of buffer_dirty. We should not see a dirty bit set
2437                 * here because we clear it in do_get_write_access but e.g.
2438                 * tune2fs can modify the sb and set the dirty bit at any time
2439                 * so we try to gracefully handle that.
2440                 */
2441                if (buffer_dirty(bh))
2442                        warn_dirty_buffer(bh);
2443                if (test_clear_buffer_dirty(bh) ||
2444                    test_clear_buffer_jbddirty(bh))
2445                        was_dirty = 1;
2446        }
2447
2448        if (jh->b_transaction)
2449                __jbd2_journal_temp_unlink_buffer(jh);
2450        else
2451                jbd2_journal_grab_journal_head(bh);
2452        jh->b_transaction = transaction;
2453
2454        switch (jlist) {
2455        case BJ_None:
2456                J_ASSERT_JH(jh, !jh->b_committed_data);
2457                J_ASSERT_JH(jh, !jh->b_frozen_data);
2458                return;
2459        case BJ_Metadata:
2460                transaction->t_nr_buffers++;
2461                list = &transaction->t_buffers;
2462                break;
2463        case BJ_Forget:
2464                list = &transaction->t_forget;
2465                break;
2466        case BJ_Shadow:
2467                list = &transaction->t_shadow_list;
2468                break;
2469        case BJ_Reserved:
2470                list = &transaction->t_reserved_list;
2471                break;
2472        }
2473
2474        __blist_add_buffer(list, jh);
2475        jh->b_jlist = jlist;
2476
2477        if (was_dirty)
2478                set_buffer_jbddirty(bh);
2479}
2480
2481void jbd2_journal_file_buffer(struct journal_head *jh,
2482                                transaction_t *transaction, int jlist)
2483{
2484        jbd_lock_bh_state(jh2bh(jh));
2485        spin_lock(&transaction->t_journal->j_list_lock);
2486        __jbd2_journal_file_buffer(jh, transaction, jlist);
2487        spin_unlock(&transaction->t_journal->j_list_lock);
2488        jbd_unlock_bh_state(jh2bh(jh));
2489}
2490
2491/*
2492 * Remove a buffer from its current buffer list in preparation for
2493 * dropping it from its current transaction entirely.  If the buffer has
2494 * already started to be used by a subsequent transaction, refile the
2495 * buffer on that transaction's metadata list.
2496 *
2497 * Called under j_list_lock
2498 * Called under jbd_lock_bh_state(jh2bh(jh))
2499 *
2500 * jh and bh may be already free when this function returns
2501 */
2502void __jbd2_journal_refile_buffer(struct journal_head *jh)
2503{
2504        int was_dirty, jlist;
2505        struct buffer_head *bh = jh2bh(jh);
2506
2507        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2508        if (jh->b_transaction)
2509                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2510
2511        /* If the buffer is now unused, just drop it. */
2512        if (jh->b_next_transaction == NULL) {
2513                __jbd2_journal_unfile_buffer(jh);
2514                return;
2515        }
2516
2517        /*
2518         * It has been modified by a later transaction: add it to the new
2519         * transaction's metadata list.
2520         */
2521
2522        was_dirty = test_clear_buffer_jbddirty(bh);
2523        __jbd2_journal_temp_unlink_buffer(jh);
2524        /*
2525         * We set b_transaction here because b_next_transaction will inherit
2526         * our jh reference and thus __jbd2_journal_file_buffer() must not
2527         * take a new one.
2528         */
2529        jh->b_transaction = jh->b_next_transaction;
2530        jh->b_next_transaction = NULL;
2531        if (buffer_freed(bh))
2532                jlist = BJ_Forget;
2533        else if (jh->b_modified)
2534                jlist = BJ_Metadata;
2535        else
2536                jlist = BJ_Reserved;
2537        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2538        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2539
2540        if (was_dirty)
2541                set_buffer_jbddirty(bh);
2542}
2543
2544/*
2545 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2546 * bh reference so that we can safely unlock bh.
2547 *
2548 * The jh and bh may be freed by this call.
2549 */
2550void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2551{
2552        struct buffer_head *bh = jh2bh(jh);
2553
2554        /* Get reference so that buffer cannot be freed before we unlock it */
2555        get_bh(bh);
2556        jbd_lock_bh_state(bh);
2557        spin_lock(&journal->j_list_lock);
2558        __jbd2_journal_refile_buffer(jh);
2559        jbd_unlock_bh_state(bh);
2560        spin_unlock(&journal->j_list_lock);
2561        __brelse(bh);
2562}
2563
2564/*
2565 * File inode in the inode list of the handle's transaction
2566 */
2567static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2568                unsigned long flags, loff_t start_byte, loff_t end_byte)
2569{
2570        transaction_t *transaction = handle->h_transaction;
2571        journal_t *journal;
2572
2573        if (is_handle_aborted(handle))
2574                return -EROFS;
2575        journal = transaction->t_journal;
2576
2577        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2578                        transaction->t_tid);
2579
2580        spin_lock(&journal->j_list_lock);
2581        jinode->i_flags |= flags;
2582
2583        if (jinode->i_dirty_end) {
2584                jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2585                jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2586        } else {
2587                jinode->i_dirty_start = start_byte;
2588                jinode->i_dirty_end = end_byte;
2589        }
2590
2591        /* Is inode already attached where we need it? */
2592        if (jinode->i_transaction == transaction ||
2593            jinode->i_next_transaction == transaction)
2594                goto done;
2595
2596        /*
2597         * We only ever set this variable to 1 so the test is safe. Since
2598         * t_need_data_flush is likely to be set, we do the test to save some
2599         * cacheline bouncing
2600         */
2601        if (!transaction->t_need_data_flush)
2602                transaction->t_need_data_flush = 1;
2603        /* On some different transaction's list - should be
2604         * the committing one */
2605        if (jinode->i_transaction) {
2606                J_ASSERT(jinode->i_next_transaction == NULL);
2607                J_ASSERT(jinode->i_transaction ==
2608                                        journal->j_committing_transaction);
2609                jinode->i_next_transaction = transaction;
2610                goto done;
2611        }
2612        /* Not on any transaction list... */
2613        J_ASSERT(!jinode->i_next_transaction);
2614        jinode->i_transaction = transaction;
2615        list_add(&jinode->i_list, &transaction->t_inode_list);
2616done:
2617        spin_unlock(&journal->j_list_lock);
2618
2619        return 0;
2620}
2621
2622int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2623{
2624        return jbd2_journal_file_inode(handle, jinode,
2625                        JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2626}
2627
2628int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2629{
2630        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2631                        LLONG_MAX);
2632}
2633
2634int jbd2_journal_inode_ranged_write(handle_t *handle,
2635                struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2636{
2637        return jbd2_journal_file_inode(handle, jinode,
2638                        JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2639                        start_byte + length - 1);
2640}
2641
2642int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2643                loff_t start_byte, loff_t length)
2644{
2645        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2646                        start_byte, start_byte + length - 1);
2647}
2648
2649/*
2650 * File truncate and transaction commit interact with each other in a
2651 * non-trivial way.  If a transaction writing data block A is
2652 * committing, we cannot discard the data by truncate until we have
2653 * written them.  Otherwise if we crashed after the transaction with
2654 * write has committed but before the transaction with truncate has
2655 * committed, we could see stale data in block A.  This function is a
2656 * helper to solve this problem.  It starts writeout of the truncated
2657 * part in case it is in the committing transaction.
2658 *
2659 * Filesystem code must call this function when inode is journaled in
2660 * ordered mode before truncation happens and after the inode has been
2661 * placed on orphan list with the new inode size. The second condition
2662 * avoids the race that someone writes new data and we start
2663 * committing the transaction after this function has been called but
2664 * before a transaction for truncate is started (and furthermore it
2665 * allows us to optimize the case where the addition to orphan list
2666 * happens in the same transaction as write --- we don't have to write
2667 * any data in such case).
2668 */
2669int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2670                                        struct jbd2_inode *jinode,
2671                                        loff_t new_size)
2672{
2673        transaction_t *inode_trans, *commit_trans;
2674        int ret = 0;
2675
2676        /* This is a quick check to avoid locking if not necessary */
2677        if (!jinode->i_transaction)
2678                goto out;
2679        /* Locks are here just to force reading of recent values, it is
2680         * enough that the transaction was not committing before we started
2681         * a transaction adding the inode to orphan list */
2682        read_lock(&journal->j_state_lock);
2683        commit_trans = journal->j_committing_transaction;
2684        read_unlock(&journal->j_state_lock);
2685        spin_lock(&journal->j_list_lock);
2686        inode_trans = jinode->i_transaction;
2687        spin_unlock(&journal->j_list_lock);
2688        if (inode_trans == commit_trans) {
2689                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2690                        new_size, LLONG_MAX);
2691                if (ret)
2692                        jbd2_journal_abort(journal, ret);
2693        }
2694out:
2695        return ret;
2696}
2697