linux/fs/kernfs/dir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/dir.c - kernfs directory implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/fs.h>
  12#include <linux/namei.h>
  13#include <linux/idr.h>
  14#include <linux/slab.h>
  15#include <linux/security.h>
  16#include <linux/hash.h>
  17
  18#include "kernfs-internal.h"
  19
  20DEFINE_MUTEX(kernfs_mutex);
  21static DEFINE_SPINLOCK(kernfs_rename_lock);     /* kn->parent and ->name */
  22static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by rename_lock */
  23static DEFINE_SPINLOCK(kernfs_idr_lock);        /* root->ino_idr */
  24
  25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  26
  27static bool kernfs_active(struct kernfs_node *kn)
  28{
  29        lockdep_assert_held(&kernfs_mutex);
  30        return atomic_read(&kn->active) >= 0;
  31}
  32
  33static bool kernfs_lockdep(struct kernfs_node *kn)
  34{
  35#ifdef CONFIG_DEBUG_LOCK_ALLOC
  36        return kn->flags & KERNFS_LOCKDEP;
  37#else
  38        return false;
  39#endif
  40}
  41
  42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
  43{
  44        if (!kn)
  45                return strlcpy(buf, "(null)", buflen);
  46
  47        return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
  48}
  49
  50/* kernfs_node_depth - compute depth from @from to @to */
  51static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
  52{
  53        size_t depth = 0;
  54
  55        while (to->parent && to != from) {
  56                depth++;
  57                to = to->parent;
  58        }
  59        return depth;
  60}
  61
  62static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
  63                                                  struct kernfs_node *b)
  64{
  65        size_t da, db;
  66        struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
  67
  68        if (ra != rb)
  69                return NULL;
  70
  71        da = kernfs_depth(ra->kn, a);
  72        db = kernfs_depth(rb->kn, b);
  73
  74        while (da > db) {
  75                a = a->parent;
  76                da--;
  77        }
  78        while (db > da) {
  79                b = b->parent;
  80                db--;
  81        }
  82
  83        /* worst case b and a will be the same at root */
  84        while (b != a) {
  85                b = b->parent;
  86                a = a->parent;
  87        }
  88
  89        return a;
  90}
  91
  92/**
  93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
  94 * where kn_from is treated as root of the path.
  95 * @kn_from: kernfs node which should be treated as root for the path
  96 * @kn_to: kernfs node to which path is needed
  97 * @buf: buffer to copy the path into
  98 * @buflen: size of @buf
  99 *
 100 * We need to handle couple of scenarios here:
 101 * [1] when @kn_from is an ancestor of @kn_to at some level
 102 * kn_from: /n1/n2/n3
 103 * kn_to:   /n1/n2/n3/n4/n5
 104 * result:  /n4/n5
 105 *
 106 * [2] when @kn_from is on a different hierarchy and we need to find common
 107 * ancestor between @kn_from and @kn_to.
 108 * kn_from: /n1/n2/n3/n4
 109 * kn_to:   /n1/n2/n5
 110 * result:  /../../n5
 111 * OR
 112 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 113 * kn_to:   /n1/n2/n3         [depth=3]
 114 * result:  /../..
 115 *
 116 * [3] when @kn_to is NULL result will be "(null)"
 117 *
 118 * Returns the length of the full path.  If the full length is equal to or
 119 * greater than @buflen, @buf contains the truncated path with the trailing
 120 * '\0'.  On error, -errno is returned.
 121 */
 122static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
 123                                        struct kernfs_node *kn_from,
 124                                        char *buf, size_t buflen)
 125{
 126        struct kernfs_node *kn, *common;
 127        const char parent_str[] = "/..";
 128        size_t depth_from, depth_to, len = 0;
 129        int i, j;
 130
 131        if (!kn_to)
 132                return strlcpy(buf, "(null)", buflen);
 133
 134        if (!kn_from)
 135                kn_from = kernfs_root(kn_to)->kn;
 136
 137        if (kn_from == kn_to)
 138                return strlcpy(buf, "/", buflen);
 139
 140        common = kernfs_common_ancestor(kn_from, kn_to);
 141        if (WARN_ON(!common))
 142                return -EINVAL;
 143
 144        depth_to = kernfs_depth(common, kn_to);
 145        depth_from = kernfs_depth(common, kn_from);
 146
 147        if (buf)
 148                buf[0] = '\0';
 149
 150        for (i = 0; i < depth_from; i++)
 151                len += strlcpy(buf + len, parent_str,
 152                               len < buflen ? buflen - len : 0);
 153
 154        /* Calculate how many bytes we need for the rest */
 155        for (i = depth_to - 1; i >= 0; i--) {
 156                for (kn = kn_to, j = 0; j < i; j++)
 157                        kn = kn->parent;
 158                len += strlcpy(buf + len, "/",
 159                               len < buflen ? buflen - len : 0);
 160                len += strlcpy(buf + len, kn->name,
 161                               len < buflen ? buflen - len : 0);
 162        }
 163
 164        return len;
 165}
 166
 167/**
 168 * kernfs_name - obtain the name of a given node
 169 * @kn: kernfs_node of interest
 170 * @buf: buffer to copy @kn's name into
 171 * @buflen: size of @buf
 172 *
 173 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 174 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 175 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 176 *
 177 * Fills buffer with "(null)" if @kn is NULL.
 178 *
 179 * This function can be called from any context.
 180 */
 181int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
 182{
 183        unsigned long flags;
 184        int ret;
 185
 186        spin_lock_irqsave(&kernfs_rename_lock, flags);
 187        ret = kernfs_name_locked(kn, buf, buflen);
 188        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 189        return ret;
 190}
 191
 192/**
 193 * kernfs_path_from_node - build path of node @to relative to @from.
 194 * @from: parent kernfs_node relative to which we need to build the path
 195 * @to: kernfs_node of interest
 196 * @buf: buffer to copy @to's path into
 197 * @buflen: size of @buf
 198 *
 199 * Builds @to's path relative to @from in @buf. @from and @to must
 200 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 201 * path (which includes '..'s) as needed to reach from @from to @to is
 202 * returned.
 203 *
 204 * Returns the length of the full path.  If the full length is equal to or
 205 * greater than @buflen, @buf contains the truncated path with the trailing
 206 * '\0'.  On error, -errno is returned.
 207 */
 208int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
 209                          char *buf, size_t buflen)
 210{
 211        unsigned long flags;
 212        int ret;
 213
 214        spin_lock_irqsave(&kernfs_rename_lock, flags);
 215        ret = kernfs_path_from_node_locked(to, from, buf, buflen);
 216        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 217        return ret;
 218}
 219EXPORT_SYMBOL_GPL(kernfs_path_from_node);
 220
 221/**
 222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 223 * @kn: kernfs_node of interest
 224 *
 225 * This function can be called from any context.
 226 */
 227void pr_cont_kernfs_name(struct kernfs_node *kn)
 228{
 229        unsigned long flags;
 230
 231        spin_lock_irqsave(&kernfs_rename_lock, flags);
 232
 233        kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
 234        pr_cont("%s", kernfs_pr_cont_buf);
 235
 236        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 237}
 238
 239/**
 240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 241 * @kn: kernfs_node of interest
 242 *
 243 * This function can be called from any context.
 244 */
 245void pr_cont_kernfs_path(struct kernfs_node *kn)
 246{
 247        unsigned long flags;
 248        int sz;
 249
 250        spin_lock_irqsave(&kernfs_rename_lock, flags);
 251
 252        sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
 253                                          sizeof(kernfs_pr_cont_buf));
 254        if (sz < 0) {
 255                pr_cont("(error)");
 256                goto out;
 257        }
 258
 259        if (sz >= sizeof(kernfs_pr_cont_buf)) {
 260                pr_cont("(name too long)");
 261                goto out;
 262        }
 263
 264        pr_cont("%s", kernfs_pr_cont_buf);
 265
 266out:
 267        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 268}
 269
 270/**
 271 * kernfs_get_parent - determine the parent node and pin it
 272 * @kn: kernfs_node of interest
 273 *
 274 * Determines @kn's parent, pins and returns it.  This function can be
 275 * called from any context.
 276 */
 277struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
 278{
 279        struct kernfs_node *parent;
 280        unsigned long flags;
 281
 282        spin_lock_irqsave(&kernfs_rename_lock, flags);
 283        parent = kn->parent;
 284        kernfs_get(parent);
 285        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 286
 287        return parent;
 288}
 289
 290/**
 291 *      kernfs_name_hash
 292 *      @name: Null terminated string to hash
 293 *      @ns:   Namespace tag to hash
 294 *
 295 *      Returns 31 bit hash of ns + name (so it fits in an off_t )
 296 */
 297static unsigned int kernfs_name_hash(const char *name, const void *ns)
 298{
 299        unsigned long hash = init_name_hash(ns);
 300        unsigned int len = strlen(name);
 301        while (len--)
 302                hash = partial_name_hash(*name++, hash);
 303        hash = end_name_hash(hash);
 304        hash &= 0x7fffffffU;
 305        /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
 306        if (hash < 2)
 307                hash += 2;
 308        if (hash >= INT_MAX)
 309                hash = INT_MAX - 1;
 310        return hash;
 311}
 312
 313static int kernfs_name_compare(unsigned int hash, const char *name,
 314                               const void *ns, const struct kernfs_node *kn)
 315{
 316        if (hash < kn->hash)
 317                return -1;
 318        if (hash > kn->hash)
 319                return 1;
 320        if (ns < kn->ns)
 321                return -1;
 322        if (ns > kn->ns)
 323                return 1;
 324        return strcmp(name, kn->name);
 325}
 326
 327static int kernfs_sd_compare(const struct kernfs_node *left,
 328                             const struct kernfs_node *right)
 329{
 330        return kernfs_name_compare(left->hash, left->name, left->ns, right);
 331}
 332
 333/**
 334 *      kernfs_link_sibling - link kernfs_node into sibling rbtree
 335 *      @kn: kernfs_node of interest
 336 *
 337 *      Link @kn into its sibling rbtree which starts from
 338 *      @kn->parent->dir.children.
 339 *
 340 *      Locking:
 341 *      mutex_lock(kernfs_mutex)
 342 *
 343 *      RETURNS:
 344 *      0 on susccess -EEXIST on failure.
 345 */
 346static int kernfs_link_sibling(struct kernfs_node *kn)
 347{
 348        struct rb_node **node = &kn->parent->dir.children.rb_node;
 349        struct rb_node *parent = NULL;
 350
 351        while (*node) {
 352                struct kernfs_node *pos;
 353                int result;
 354
 355                pos = rb_to_kn(*node);
 356                parent = *node;
 357                result = kernfs_sd_compare(kn, pos);
 358                if (result < 0)
 359                        node = &pos->rb.rb_left;
 360                else if (result > 0)
 361                        node = &pos->rb.rb_right;
 362                else
 363                        return -EEXIST;
 364        }
 365
 366        /* add new node and rebalance the tree */
 367        rb_link_node(&kn->rb, parent, node);
 368        rb_insert_color(&kn->rb, &kn->parent->dir.children);
 369
 370        /* successfully added, account subdir number */
 371        if (kernfs_type(kn) == KERNFS_DIR)
 372                kn->parent->dir.subdirs++;
 373
 374        return 0;
 375}
 376
 377/**
 378 *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
 379 *      @kn: kernfs_node of interest
 380 *
 381 *      Try to unlink @kn from its sibling rbtree which starts from
 382 *      kn->parent->dir.children.  Returns %true if @kn was actually
 383 *      removed, %false if @kn wasn't on the rbtree.
 384 *
 385 *      Locking:
 386 *      mutex_lock(kernfs_mutex)
 387 */
 388static bool kernfs_unlink_sibling(struct kernfs_node *kn)
 389{
 390        if (RB_EMPTY_NODE(&kn->rb))
 391                return false;
 392
 393        if (kernfs_type(kn) == KERNFS_DIR)
 394                kn->parent->dir.subdirs--;
 395
 396        rb_erase(&kn->rb, &kn->parent->dir.children);
 397        RB_CLEAR_NODE(&kn->rb);
 398        return true;
 399}
 400
 401/**
 402 *      kernfs_get_active - get an active reference to kernfs_node
 403 *      @kn: kernfs_node to get an active reference to
 404 *
 405 *      Get an active reference of @kn.  This function is noop if @kn
 406 *      is NULL.
 407 *
 408 *      RETURNS:
 409 *      Pointer to @kn on success, NULL on failure.
 410 */
 411struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
 412{
 413        if (unlikely(!kn))
 414                return NULL;
 415
 416        if (!atomic_inc_unless_negative(&kn->active))
 417                return NULL;
 418
 419        if (kernfs_lockdep(kn))
 420                rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
 421        return kn;
 422}
 423
 424/**
 425 *      kernfs_put_active - put an active reference to kernfs_node
 426 *      @kn: kernfs_node to put an active reference to
 427 *
 428 *      Put an active reference to @kn.  This function is noop if @kn
 429 *      is NULL.
 430 */
 431void kernfs_put_active(struct kernfs_node *kn)
 432{
 433        struct kernfs_root *root = kernfs_root(kn);
 434        int v;
 435
 436        if (unlikely(!kn))
 437                return;
 438
 439        if (kernfs_lockdep(kn))
 440                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 441        v = atomic_dec_return(&kn->active);
 442        if (likely(v != KN_DEACTIVATED_BIAS))
 443                return;
 444
 445        wake_up_all(&root->deactivate_waitq);
 446}
 447
 448/**
 449 * kernfs_drain - drain kernfs_node
 450 * @kn: kernfs_node to drain
 451 *
 452 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 453 * removers may invoke this function concurrently on @kn and all will
 454 * return after draining is complete.
 455 */
 456static void kernfs_drain(struct kernfs_node *kn)
 457        __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
 458{
 459        struct kernfs_root *root = kernfs_root(kn);
 460
 461        lockdep_assert_held(&kernfs_mutex);
 462        WARN_ON_ONCE(kernfs_active(kn));
 463
 464        mutex_unlock(&kernfs_mutex);
 465
 466        if (kernfs_lockdep(kn)) {
 467                rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
 468                if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
 469                        lock_contended(&kn->dep_map, _RET_IP_);
 470        }
 471
 472        /* but everyone should wait for draining */
 473        wait_event(root->deactivate_waitq,
 474                   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
 475
 476        if (kernfs_lockdep(kn)) {
 477                lock_acquired(&kn->dep_map, _RET_IP_);
 478                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 479        }
 480
 481        kernfs_drain_open_files(kn);
 482
 483        mutex_lock(&kernfs_mutex);
 484}
 485
 486/**
 487 * kernfs_get - get a reference count on a kernfs_node
 488 * @kn: the target kernfs_node
 489 */
 490void kernfs_get(struct kernfs_node *kn)
 491{
 492        if (kn) {
 493                WARN_ON(!atomic_read(&kn->count));
 494                atomic_inc(&kn->count);
 495        }
 496}
 497EXPORT_SYMBOL_GPL(kernfs_get);
 498
 499/**
 500 * kernfs_put - put a reference count on a kernfs_node
 501 * @kn: the target kernfs_node
 502 *
 503 * Put a reference count of @kn and destroy it if it reached zero.
 504 */
 505void kernfs_put(struct kernfs_node *kn)
 506{
 507        struct kernfs_node *parent;
 508        struct kernfs_root *root;
 509
 510        /*
 511         * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
 512         * depends on this to filter reused stale node
 513         */
 514        if (!kn || !atomic_dec_and_test(&kn->count))
 515                return;
 516        root = kernfs_root(kn);
 517 repeat:
 518        /*
 519         * Moving/renaming is always done while holding reference.
 520         * kn->parent won't change beneath us.
 521         */
 522        parent = kn->parent;
 523
 524        WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
 525                  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
 526                  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
 527
 528        if (kernfs_type(kn) == KERNFS_LINK)
 529                kernfs_put(kn->symlink.target_kn);
 530
 531        kfree_const(kn->name);
 532
 533        if (kn->iattr) {
 534                simple_xattrs_free(&kn->iattr->xattrs);
 535                kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
 536        }
 537        spin_lock(&kernfs_idr_lock);
 538        idr_remove(&root->ino_idr, kn->id.ino);
 539        spin_unlock(&kernfs_idr_lock);
 540        kmem_cache_free(kernfs_node_cache, kn);
 541
 542        kn = parent;
 543        if (kn) {
 544                if (atomic_dec_and_test(&kn->count))
 545                        goto repeat;
 546        } else {
 547                /* just released the root kn, free @root too */
 548                idr_destroy(&root->ino_idr);
 549                kfree(root);
 550        }
 551}
 552EXPORT_SYMBOL_GPL(kernfs_put);
 553
 554static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
 555{
 556        struct kernfs_node *kn;
 557
 558        if (flags & LOOKUP_RCU)
 559                return -ECHILD;
 560
 561        /* Always perform fresh lookup for negatives */
 562        if (d_really_is_negative(dentry))
 563                goto out_bad_unlocked;
 564
 565        kn = kernfs_dentry_node(dentry);
 566        mutex_lock(&kernfs_mutex);
 567
 568        /* The kernfs node has been deactivated */
 569        if (!kernfs_active(kn))
 570                goto out_bad;
 571
 572        /* The kernfs node has been moved? */
 573        if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
 574                goto out_bad;
 575
 576        /* The kernfs node has been renamed */
 577        if (strcmp(dentry->d_name.name, kn->name) != 0)
 578                goto out_bad;
 579
 580        /* The kernfs node has been moved to a different namespace */
 581        if (kn->parent && kernfs_ns_enabled(kn->parent) &&
 582            kernfs_info(dentry->d_sb)->ns != kn->ns)
 583                goto out_bad;
 584
 585        mutex_unlock(&kernfs_mutex);
 586        return 1;
 587out_bad:
 588        mutex_unlock(&kernfs_mutex);
 589out_bad_unlocked:
 590        return 0;
 591}
 592
 593const struct dentry_operations kernfs_dops = {
 594        .d_revalidate   = kernfs_dop_revalidate,
 595};
 596
 597/**
 598 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 599 * @dentry: the dentry in question
 600 *
 601 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 602 * kernfs one, %NULL is returned.
 603 *
 604 * While the returned kernfs_node will stay accessible as long as @dentry
 605 * is accessible, the returned node can be in any state and the caller is
 606 * fully responsible for determining what's accessible.
 607 */
 608struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
 609{
 610        if (dentry->d_sb->s_op == &kernfs_sops &&
 611            !d_really_is_negative(dentry))
 612                return kernfs_dentry_node(dentry);
 613        return NULL;
 614}
 615
 616static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
 617                                             struct kernfs_node *parent,
 618                                             const char *name, umode_t mode,
 619                                             kuid_t uid, kgid_t gid,
 620                                             unsigned flags)
 621{
 622        struct kernfs_node *kn;
 623        u32 gen;
 624        int cursor;
 625        int ret;
 626
 627        name = kstrdup_const(name, GFP_KERNEL);
 628        if (!name)
 629                return NULL;
 630
 631        kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
 632        if (!kn)
 633                goto err_out1;
 634
 635        idr_preload(GFP_KERNEL);
 636        spin_lock(&kernfs_idr_lock);
 637        cursor = idr_get_cursor(&root->ino_idr);
 638        ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
 639        if (ret >= 0 && ret < cursor)
 640                root->next_generation++;
 641        gen = root->next_generation;
 642        spin_unlock(&kernfs_idr_lock);
 643        idr_preload_end();
 644        if (ret < 0)
 645                goto err_out2;
 646        kn->id.ino = ret;
 647        kn->id.generation = gen;
 648
 649        /*
 650         * set ino first. This RELEASE is paired with atomic_inc_not_zero in
 651         * kernfs_find_and_get_node_by_ino
 652         */
 653        atomic_set_release(&kn->count, 1);
 654        atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
 655        RB_CLEAR_NODE(&kn->rb);
 656
 657        kn->name = name;
 658        kn->mode = mode;
 659        kn->flags = flags;
 660
 661        if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
 662                struct iattr iattr = {
 663                        .ia_valid = ATTR_UID | ATTR_GID,
 664                        .ia_uid = uid,
 665                        .ia_gid = gid,
 666                };
 667
 668                ret = __kernfs_setattr(kn, &iattr);
 669                if (ret < 0)
 670                        goto err_out3;
 671        }
 672
 673        if (parent) {
 674                ret = security_kernfs_init_security(parent, kn);
 675                if (ret)
 676                        goto err_out3;
 677        }
 678
 679        return kn;
 680
 681 err_out3:
 682        idr_remove(&root->ino_idr, kn->id.ino);
 683 err_out2:
 684        kmem_cache_free(kernfs_node_cache, kn);
 685 err_out1:
 686        kfree_const(name);
 687        return NULL;
 688}
 689
 690struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
 691                                    const char *name, umode_t mode,
 692                                    kuid_t uid, kgid_t gid,
 693                                    unsigned flags)
 694{
 695        struct kernfs_node *kn;
 696
 697        kn = __kernfs_new_node(kernfs_root(parent), parent,
 698                               name, mode, uid, gid, flags);
 699        if (kn) {
 700                kernfs_get(parent);
 701                kn->parent = parent;
 702        }
 703        return kn;
 704}
 705
 706/*
 707 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
 708 * @root: the kernfs root
 709 * @ino: inode number
 710 *
 711 * RETURNS:
 712 * NULL on failure. Return a kernfs node with reference counter incremented
 713 */
 714struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
 715                                                    unsigned int ino)
 716{
 717        struct kernfs_node *kn;
 718
 719        rcu_read_lock();
 720        kn = idr_find(&root->ino_idr, ino);
 721        if (!kn)
 722                goto out;
 723
 724        /*
 725         * Since kernfs_node is freed in RCU, it's possible an old node for ino
 726         * is freed, but reused before RCU grace period. But a freed node (see
 727         * kernfs_put) or an incompletedly initialized node (see
 728         * __kernfs_new_node) should have 'count' 0. We can use this fact to
 729         * filter out such node.
 730         */
 731        if (!atomic_inc_not_zero(&kn->count)) {
 732                kn = NULL;
 733                goto out;
 734        }
 735
 736        /*
 737         * The node could be a new node or a reused node. If it's a new node,
 738         * we are ok. If it's reused because of RCU (because of
 739         * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
 740         * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
 741         * hence we can use 'ino' to filter stale node.
 742         */
 743        if (kn->id.ino != ino)
 744                goto out;
 745        rcu_read_unlock();
 746
 747        return kn;
 748out:
 749        rcu_read_unlock();
 750        kernfs_put(kn);
 751        return NULL;
 752}
 753
 754/**
 755 *      kernfs_add_one - add kernfs_node to parent without warning
 756 *      @kn: kernfs_node to be added
 757 *
 758 *      The caller must already have initialized @kn->parent.  This
 759 *      function increments nlink of the parent's inode if @kn is a
 760 *      directory and link into the children list of the parent.
 761 *
 762 *      RETURNS:
 763 *      0 on success, -EEXIST if entry with the given name already
 764 *      exists.
 765 */
 766int kernfs_add_one(struct kernfs_node *kn)
 767{
 768        struct kernfs_node *parent = kn->parent;
 769        struct kernfs_iattrs *ps_iattr;
 770        bool has_ns;
 771        int ret;
 772
 773        mutex_lock(&kernfs_mutex);
 774
 775        ret = -EINVAL;
 776        has_ns = kernfs_ns_enabled(parent);
 777        if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 778                 has_ns ? "required" : "invalid", parent->name, kn->name))
 779                goto out_unlock;
 780
 781        if (kernfs_type(parent) != KERNFS_DIR)
 782                goto out_unlock;
 783
 784        ret = -ENOENT;
 785        if (parent->flags & KERNFS_EMPTY_DIR)
 786                goto out_unlock;
 787
 788        if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
 789                goto out_unlock;
 790
 791        kn->hash = kernfs_name_hash(kn->name, kn->ns);
 792
 793        ret = kernfs_link_sibling(kn);
 794        if (ret)
 795                goto out_unlock;
 796
 797        /* Update timestamps on the parent */
 798        ps_iattr = parent->iattr;
 799        if (ps_iattr) {
 800                ktime_get_real_ts64(&ps_iattr->ia_ctime);
 801                ps_iattr->ia_mtime = ps_iattr->ia_ctime;
 802        }
 803
 804        mutex_unlock(&kernfs_mutex);
 805
 806        /*
 807         * Activate the new node unless CREATE_DEACTIVATED is requested.
 808         * If not activated here, the kernfs user is responsible for
 809         * activating the node with kernfs_activate().  A node which hasn't
 810         * been activated is not visible to userland and its removal won't
 811         * trigger deactivation.
 812         */
 813        if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 814                kernfs_activate(kn);
 815        return 0;
 816
 817out_unlock:
 818        mutex_unlock(&kernfs_mutex);
 819        return ret;
 820}
 821
 822/**
 823 * kernfs_find_ns - find kernfs_node with the given name
 824 * @parent: kernfs_node to search under
 825 * @name: name to look for
 826 * @ns: the namespace tag to use
 827 *
 828 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 829 * the found kernfs_node on success, %NULL on failure.
 830 */
 831static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
 832                                          const unsigned char *name,
 833                                          const void *ns)
 834{
 835        struct rb_node *node = parent->dir.children.rb_node;
 836        bool has_ns = kernfs_ns_enabled(parent);
 837        unsigned int hash;
 838
 839        lockdep_assert_held(&kernfs_mutex);
 840
 841        if (has_ns != (bool)ns) {
 842                WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 843                     has_ns ? "required" : "invalid", parent->name, name);
 844                return NULL;
 845        }
 846
 847        hash = kernfs_name_hash(name, ns);
 848        while (node) {
 849                struct kernfs_node *kn;
 850                int result;
 851
 852                kn = rb_to_kn(node);
 853                result = kernfs_name_compare(hash, name, ns, kn);
 854                if (result < 0)
 855                        node = node->rb_left;
 856                else if (result > 0)
 857                        node = node->rb_right;
 858                else
 859                        return kn;
 860        }
 861        return NULL;
 862}
 863
 864static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
 865                                          const unsigned char *path,
 866                                          const void *ns)
 867{
 868        size_t len;
 869        char *p, *name;
 870
 871        lockdep_assert_held(&kernfs_mutex);
 872
 873        /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
 874        spin_lock_irq(&kernfs_rename_lock);
 875
 876        len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
 877
 878        if (len >= sizeof(kernfs_pr_cont_buf)) {
 879                spin_unlock_irq(&kernfs_rename_lock);
 880                return NULL;
 881        }
 882
 883        p = kernfs_pr_cont_buf;
 884
 885        while ((name = strsep(&p, "/")) && parent) {
 886                if (*name == '\0')
 887                        continue;
 888                parent = kernfs_find_ns(parent, name, ns);
 889        }
 890
 891        spin_unlock_irq(&kernfs_rename_lock);
 892
 893        return parent;
 894}
 895
 896/**
 897 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 898 * @parent: kernfs_node to search under
 899 * @name: name to look for
 900 * @ns: the namespace tag to use
 901 *
 902 * Look for kernfs_node with name @name under @parent and get a reference
 903 * if found.  This function may sleep and returns pointer to the found
 904 * kernfs_node on success, %NULL on failure.
 905 */
 906struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
 907                                           const char *name, const void *ns)
 908{
 909        struct kernfs_node *kn;
 910
 911        mutex_lock(&kernfs_mutex);
 912        kn = kernfs_find_ns(parent, name, ns);
 913        kernfs_get(kn);
 914        mutex_unlock(&kernfs_mutex);
 915
 916        return kn;
 917}
 918EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
 919
 920/**
 921 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 922 * @parent: kernfs_node to search under
 923 * @path: path to look for
 924 * @ns: the namespace tag to use
 925 *
 926 * Look for kernfs_node with path @path under @parent and get a reference
 927 * if found.  This function may sleep and returns pointer to the found
 928 * kernfs_node on success, %NULL on failure.
 929 */
 930struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
 931                                           const char *path, const void *ns)
 932{
 933        struct kernfs_node *kn;
 934
 935        mutex_lock(&kernfs_mutex);
 936        kn = kernfs_walk_ns(parent, path, ns);
 937        kernfs_get(kn);
 938        mutex_unlock(&kernfs_mutex);
 939
 940        return kn;
 941}
 942
 943/**
 944 * kernfs_create_root - create a new kernfs hierarchy
 945 * @scops: optional syscall operations for the hierarchy
 946 * @flags: KERNFS_ROOT_* flags
 947 * @priv: opaque data associated with the new directory
 948 *
 949 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 950 * failure.
 951 */
 952struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
 953                                       unsigned int flags, void *priv)
 954{
 955        struct kernfs_root *root;
 956        struct kernfs_node *kn;
 957
 958        root = kzalloc(sizeof(*root), GFP_KERNEL);
 959        if (!root)
 960                return ERR_PTR(-ENOMEM);
 961
 962        idr_init(&root->ino_idr);
 963        INIT_LIST_HEAD(&root->supers);
 964        root->next_generation = 1;
 965
 966        kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
 967                               GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 968                               KERNFS_DIR);
 969        if (!kn) {
 970                idr_destroy(&root->ino_idr);
 971                kfree(root);
 972                return ERR_PTR(-ENOMEM);
 973        }
 974
 975        kn->priv = priv;
 976        kn->dir.root = root;
 977
 978        root->syscall_ops = scops;
 979        root->flags = flags;
 980        root->kn = kn;
 981        init_waitqueue_head(&root->deactivate_waitq);
 982
 983        if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 984                kernfs_activate(kn);
 985
 986        return root;
 987}
 988
 989/**
 990 * kernfs_destroy_root - destroy a kernfs hierarchy
 991 * @root: root of the hierarchy to destroy
 992 *
 993 * Destroy the hierarchy anchored at @root by removing all existing
 994 * directories and destroying @root.
 995 */
 996void kernfs_destroy_root(struct kernfs_root *root)
 997{
 998        kernfs_remove(root->kn);        /* will also free @root */
 999}
1000
1001/**
1002 * kernfs_create_dir_ns - create a directory
1003 * @parent: parent in which to create a new directory
1004 * @name: name of the new directory
1005 * @mode: mode of the new directory
1006 * @uid: uid of the new directory
1007 * @gid: gid of the new directory
1008 * @priv: opaque data associated with the new directory
1009 * @ns: optional namespace tag of the directory
1010 *
1011 * Returns the created node on success, ERR_PTR() value on failure.
1012 */
1013struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1014                                         const char *name, umode_t mode,
1015                                         kuid_t uid, kgid_t gid,
1016                                         void *priv, const void *ns)
1017{
1018        struct kernfs_node *kn;
1019        int rc;
1020
1021        /* allocate */
1022        kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1023                             uid, gid, KERNFS_DIR);
1024        if (!kn)
1025                return ERR_PTR(-ENOMEM);
1026
1027        kn->dir.root = parent->dir.root;
1028        kn->ns = ns;
1029        kn->priv = priv;
1030
1031        /* link in */
1032        rc = kernfs_add_one(kn);
1033        if (!rc)
1034                return kn;
1035
1036        kernfs_put(kn);
1037        return ERR_PTR(rc);
1038}
1039
1040/**
1041 * kernfs_create_empty_dir - create an always empty directory
1042 * @parent: parent in which to create a new directory
1043 * @name: name of the new directory
1044 *
1045 * Returns the created node on success, ERR_PTR() value on failure.
1046 */
1047struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1048                                            const char *name)
1049{
1050        struct kernfs_node *kn;
1051        int rc;
1052
1053        /* allocate */
1054        kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1055                             GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1056        if (!kn)
1057                return ERR_PTR(-ENOMEM);
1058
1059        kn->flags |= KERNFS_EMPTY_DIR;
1060        kn->dir.root = parent->dir.root;
1061        kn->ns = NULL;
1062        kn->priv = NULL;
1063
1064        /* link in */
1065        rc = kernfs_add_one(kn);
1066        if (!rc)
1067                return kn;
1068
1069        kernfs_put(kn);
1070        return ERR_PTR(rc);
1071}
1072
1073static struct dentry *kernfs_iop_lookup(struct inode *dir,
1074                                        struct dentry *dentry,
1075                                        unsigned int flags)
1076{
1077        struct dentry *ret;
1078        struct kernfs_node *parent = dir->i_private;
1079        struct kernfs_node *kn;
1080        struct inode *inode;
1081        const void *ns = NULL;
1082
1083        mutex_lock(&kernfs_mutex);
1084
1085        if (kernfs_ns_enabled(parent))
1086                ns = kernfs_info(dir->i_sb)->ns;
1087
1088        kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1089
1090        /* no such entry */
1091        if (!kn || !kernfs_active(kn)) {
1092                ret = NULL;
1093                goto out_unlock;
1094        }
1095
1096        /* attach dentry and inode */
1097        inode = kernfs_get_inode(dir->i_sb, kn);
1098        if (!inode) {
1099                ret = ERR_PTR(-ENOMEM);
1100                goto out_unlock;
1101        }
1102
1103        /* instantiate and hash dentry */
1104        ret = d_splice_alias(inode, dentry);
1105 out_unlock:
1106        mutex_unlock(&kernfs_mutex);
1107        return ret;
1108}
1109
1110static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1111                            umode_t mode)
1112{
1113        struct kernfs_node *parent = dir->i_private;
1114        struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1115        int ret;
1116
1117        if (!scops || !scops->mkdir)
1118                return -EPERM;
1119
1120        if (!kernfs_get_active(parent))
1121                return -ENODEV;
1122
1123        ret = scops->mkdir(parent, dentry->d_name.name, mode);
1124
1125        kernfs_put_active(parent);
1126        return ret;
1127}
1128
1129static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1130{
1131        struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1132        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1133        int ret;
1134
1135        if (!scops || !scops->rmdir)
1136                return -EPERM;
1137
1138        if (!kernfs_get_active(kn))
1139                return -ENODEV;
1140
1141        ret = scops->rmdir(kn);
1142
1143        kernfs_put_active(kn);
1144        return ret;
1145}
1146
1147static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1148                             struct inode *new_dir, struct dentry *new_dentry,
1149                             unsigned int flags)
1150{
1151        struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1152        struct kernfs_node *new_parent = new_dir->i_private;
1153        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1154        int ret;
1155
1156        if (flags)
1157                return -EINVAL;
1158
1159        if (!scops || !scops->rename)
1160                return -EPERM;
1161
1162        if (!kernfs_get_active(kn))
1163                return -ENODEV;
1164
1165        if (!kernfs_get_active(new_parent)) {
1166                kernfs_put_active(kn);
1167                return -ENODEV;
1168        }
1169
1170        ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1171
1172        kernfs_put_active(new_parent);
1173        kernfs_put_active(kn);
1174        return ret;
1175}
1176
1177const struct inode_operations kernfs_dir_iops = {
1178        .lookup         = kernfs_iop_lookup,
1179        .permission     = kernfs_iop_permission,
1180        .setattr        = kernfs_iop_setattr,
1181        .getattr        = kernfs_iop_getattr,
1182        .listxattr      = kernfs_iop_listxattr,
1183
1184        .mkdir          = kernfs_iop_mkdir,
1185        .rmdir          = kernfs_iop_rmdir,
1186        .rename         = kernfs_iop_rename,
1187};
1188
1189static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1190{
1191        struct kernfs_node *last;
1192
1193        while (true) {
1194                struct rb_node *rbn;
1195
1196                last = pos;
1197
1198                if (kernfs_type(pos) != KERNFS_DIR)
1199                        break;
1200
1201                rbn = rb_first(&pos->dir.children);
1202                if (!rbn)
1203                        break;
1204
1205                pos = rb_to_kn(rbn);
1206        }
1207
1208        return last;
1209}
1210
1211/**
1212 * kernfs_next_descendant_post - find the next descendant for post-order walk
1213 * @pos: the current position (%NULL to initiate traversal)
1214 * @root: kernfs_node whose descendants to walk
1215 *
1216 * Find the next descendant to visit for post-order traversal of @root's
1217 * descendants.  @root is included in the iteration and the last node to be
1218 * visited.
1219 */
1220static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1221                                                       struct kernfs_node *root)
1222{
1223        struct rb_node *rbn;
1224
1225        lockdep_assert_held(&kernfs_mutex);
1226
1227        /* if first iteration, visit leftmost descendant which may be root */
1228        if (!pos)
1229                return kernfs_leftmost_descendant(root);
1230
1231        /* if we visited @root, we're done */
1232        if (pos == root)
1233                return NULL;
1234
1235        /* if there's an unvisited sibling, visit its leftmost descendant */
1236        rbn = rb_next(&pos->rb);
1237        if (rbn)
1238                return kernfs_leftmost_descendant(rb_to_kn(rbn));
1239
1240        /* no sibling left, visit parent */
1241        return pos->parent;
1242}
1243
1244/**
1245 * kernfs_activate - activate a node which started deactivated
1246 * @kn: kernfs_node whose subtree is to be activated
1247 *
1248 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1249 * needs to be explicitly activated.  A node which hasn't been activated
1250 * isn't visible to userland and deactivation is skipped during its
1251 * removal.  This is useful to construct atomic init sequences where
1252 * creation of multiple nodes should either succeed or fail atomically.
1253 *
1254 * The caller is responsible for ensuring that this function is not called
1255 * after kernfs_remove*() is invoked on @kn.
1256 */
1257void kernfs_activate(struct kernfs_node *kn)
1258{
1259        struct kernfs_node *pos;
1260
1261        mutex_lock(&kernfs_mutex);
1262
1263        pos = NULL;
1264        while ((pos = kernfs_next_descendant_post(pos, kn))) {
1265                if (!pos || (pos->flags & KERNFS_ACTIVATED))
1266                        continue;
1267
1268                WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1269                WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1270
1271                atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1272                pos->flags |= KERNFS_ACTIVATED;
1273        }
1274
1275        mutex_unlock(&kernfs_mutex);
1276}
1277
1278static void __kernfs_remove(struct kernfs_node *kn)
1279{
1280        struct kernfs_node *pos;
1281
1282        lockdep_assert_held(&kernfs_mutex);
1283
1284        /*
1285         * Short-circuit if non-root @kn has already finished removal.
1286         * This is for kernfs_remove_self() which plays with active ref
1287         * after removal.
1288         */
1289        if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1290                return;
1291
1292        pr_debug("kernfs %s: removing\n", kn->name);
1293
1294        /* prevent any new usage under @kn by deactivating all nodes */
1295        pos = NULL;
1296        while ((pos = kernfs_next_descendant_post(pos, kn)))
1297                if (kernfs_active(pos))
1298                        atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1299
1300        /* deactivate and unlink the subtree node-by-node */
1301        do {
1302                pos = kernfs_leftmost_descendant(kn);
1303
1304                /*
1305                 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1306                 * base ref could have been put by someone else by the time
1307                 * the function returns.  Make sure it doesn't go away
1308                 * underneath us.
1309                 */
1310                kernfs_get(pos);
1311
1312                /*
1313                 * Drain iff @kn was activated.  This avoids draining and
1314                 * its lockdep annotations for nodes which have never been
1315                 * activated and allows embedding kernfs_remove() in create
1316                 * error paths without worrying about draining.
1317                 */
1318                if (kn->flags & KERNFS_ACTIVATED)
1319                        kernfs_drain(pos);
1320                else
1321                        WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1322
1323                /*
1324                 * kernfs_unlink_sibling() succeeds once per node.  Use it
1325                 * to decide who's responsible for cleanups.
1326                 */
1327                if (!pos->parent || kernfs_unlink_sibling(pos)) {
1328                        struct kernfs_iattrs *ps_iattr =
1329                                pos->parent ? pos->parent->iattr : NULL;
1330
1331                        /* update timestamps on the parent */
1332                        if (ps_iattr) {
1333                                ktime_get_real_ts64(&ps_iattr->ia_ctime);
1334                                ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1335                        }
1336
1337                        kernfs_put(pos);
1338                }
1339
1340                kernfs_put(pos);
1341        } while (pos != kn);
1342}
1343
1344/**
1345 * kernfs_remove - remove a kernfs_node recursively
1346 * @kn: the kernfs_node to remove
1347 *
1348 * Remove @kn along with all its subdirectories and files.
1349 */
1350void kernfs_remove(struct kernfs_node *kn)
1351{
1352        mutex_lock(&kernfs_mutex);
1353        __kernfs_remove(kn);
1354        mutex_unlock(&kernfs_mutex);
1355}
1356
1357/**
1358 * kernfs_break_active_protection - break out of active protection
1359 * @kn: the self kernfs_node
1360 *
1361 * The caller must be running off of a kernfs operation which is invoked
1362 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1363 * this function must also be matched with an invocation of
1364 * kernfs_unbreak_active_protection().
1365 *
1366 * This function releases the active reference of @kn the caller is
1367 * holding.  Once this function is called, @kn may be removed at any point
1368 * and the caller is solely responsible for ensuring that the objects it
1369 * dereferences are accessible.
1370 */
1371void kernfs_break_active_protection(struct kernfs_node *kn)
1372{
1373        /*
1374         * Take out ourself out of the active ref dependency chain.  If
1375         * we're called without an active ref, lockdep will complain.
1376         */
1377        kernfs_put_active(kn);
1378}
1379
1380/**
1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382 * @kn: the self kernfs_node
1383 *
1384 * If kernfs_break_active_protection() was called, this function must be
1385 * invoked before finishing the kernfs operation.  Note that while this
1386 * function restores the active reference, it doesn't and can't actually
1387 * restore the active protection - @kn may already or be in the process of
1388 * being removed.  Once kernfs_break_active_protection() is invoked, that
1389 * protection is irreversibly gone for the kernfs operation instance.
1390 *
1391 * While this function may be called at any point after
1392 * kernfs_break_active_protection() is invoked, its most useful location
1393 * would be right before the enclosing kernfs operation returns.
1394 */
1395void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396{
1397        /*
1398         * @kn->active could be in any state; however, the increment we do
1399         * here will be undone as soon as the enclosing kernfs operation
1400         * finishes and this temporary bump can't break anything.  If @kn
1401         * is alive, nothing changes.  If @kn is being deactivated, the
1402         * soon-to-follow put will either finish deactivation or restore
1403         * deactivated state.  If @kn is already removed, the temporary
1404         * bump is guaranteed to be gone before @kn is released.
1405         */
1406        atomic_inc(&kn->active);
1407        if (kernfs_lockdep(kn))
1408                rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1409}
1410
1411/**
1412 * kernfs_remove_self - remove a kernfs_node from its own method
1413 * @kn: the self kernfs_node to remove
1414 *
1415 * The caller must be running off of a kernfs operation which is invoked
1416 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1417 * implement a file operation which deletes itself.
1418 *
1419 * For example, the "delete" file for a sysfs device directory can be
1420 * implemented by invoking kernfs_remove_self() on the "delete" file
1421 * itself.  This function breaks the circular dependency of trying to
1422 * deactivate self while holding an active ref itself.  It isn't necessary
1423 * to modify the usual removal path to use kernfs_remove_self().  The
1424 * "delete" implementation can simply invoke kernfs_remove_self() on self
1425 * before proceeding with the usual removal path.  kernfs will ignore later
1426 * kernfs_remove() on self.
1427 *
1428 * kernfs_remove_self() can be called multiple times concurrently on the
1429 * same kernfs_node.  Only the first one actually performs removal and
1430 * returns %true.  All others will wait until the kernfs operation which
1431 * won self-removal finishes and return %false.  Note that the losers wait
1432 * for the completion of not only the winning kernfs_remove_self() but also
1433 * the whole kernfs_ops which won the arbitration.  This can be used to
1434 * guarantee, for example, all concurrent writes to a "delete" file to
1435 * finish only after the whole operation is complete.
1436 */
1437bool kernfs_remove_self(struct kernfs_node *kn)
1438{
1439        bool ret;
1440
1441        mutex_lock(&kernfs_mutex);
1442        kernfs_break_active_protection(kn);
1443
1444        /*
1445         * SUICIDAL is used to arbitrate among competing invocations.  Only
1446         * the first one will actually perform removal.  When the removal
1447         * is complete, SUICIDED is set and the active ref is restored
1448         * while holding kernfs_mutex.  The ones which lost arbitration
1449         * waits for SUICDED && drained which can happen only after the
1450         * enclosing kernfs operation which executed the winning instance
1451         * of kernfs_remove_self() finished.
1452         */
1453        if (!(kn->flags & KERNFS_SUICIDAL)) {
1454                kn->flags |= KERNFS_SUICIDAL;
1455                __kernfs_remove(kn);
1456                kn->flags |= KERNFS_SUICIDED;
1457                ret = true;
1458        } else {
1459                wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1460                DEFINE_WAIT(wait);
1461
1462                while (true) {
1463                        prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1464
1465                        if ((kn->flags & KERNFS_SUICIDED) &&
1466                            atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467                                break;
1468
1469                        mutex_unlock(&kernfs_mutex);
1470                        schedule();
1471                        mutex_lock(&kernfs_mutex);
1472                }
1473                finish_wait(waitq, &wait);
1474                WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1475                ret = false;
1476        }
1477
1478        /*
1479         * This must be done while holding kernfs_mutex; otherwise, waiting
1480         * for SUICIDED && deactivated could finish prematurely.
1481         */
1482        kernfs_unbreak_active_protection(kn);
1483
1484        mutex_unlock(&kernfs_mutex);
1485        return ret;
1486}
1487
1488/**
1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490 * @parent: parent of the target
1491 * @name: name of the kernfs_node to remove
1492 * @ns: namespace tag of the kernfs_node to remove
1493 *
1494 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1496 */
1497int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498                             const void *ns)
1499{
1500        struct kernfs_node *kn;
1501
1502        if (!parent) {
1503                WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1504                        name);
1505                return -ENOENT;
1506        }
1507
1508        mutex_lock(&kernfs_mutex);
1509
1510        kn = kernfs_find_ns(parent, name, ns);
1511        if (kn)
1512                __kernfs_remove(kn);
1513
1514        mutex_unlock(&kernfs_mutex);
1515
1516        if (kn)
1517                return 0;
1518        else
1519                return -ENOENT;
1520}
1521
1522/**
1523 * kernfs_rename_ns - move and rename a kernfs_node
1524 * @kn: target node
1525 * @new_parent: new parent to put @sd under
1526 * @new_name: new name
1527 * @new_ns: new namespace tag
1528 */
1529int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530                     const char *new_name, const void *new_ns)
1531{
1532        struct kernfs_node *old_parent;
1533        const char *old_name = NULL;
1534        int error;
1535
1536        /* can't move or rename root */
1537        if (!kn->parent)
1538                return -EINVAL;
1539
1540        mutex_lock(&kernfs_mutex);
1541
1542        error = -ENOENT;
1543        if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544            (new_parent->flags & KERNFS_EMPTY_DIR))
1545                goto out;
1546
1547        error = 0;
1548        if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549            (strcmp(kn->name, new_name) == 0))
1550                goto out;       /* nothing to rename */
1551
1552        error = -EEXIST;
1553        if (kernfs_find_ns(new_parent, new_name, new_ns))
1554                goto out;
1555
1556        /* rename kernfs_node */
1557        if (strcmp(kn->name, new_name) != 0) {
1558                error = -ENOMEM;
1559                new_name = kstrdup_const(new_name, GFP_KERNEL);
1560                if (!new_name)
1561                        goto out;
1562        } else {
1563                new_name = NULL;
1564        }
1565
1566        /*
1567         * Move to the appropriate place in the appropriate directories rbtree.
1568         */
1569        kernfs_unlink_sibling(kn);
1570        kernfs_get(new_parent);
1571
1572        /* rename_lock protects ->parent and ->name accessors */
1573        spin_lock_irq(&kernfs_rename_lock);
1574
1575        old_parent = kn->parent;
1576        kn->parent = new_parent;
1577
1578        kn->ns = new_ns;
1579        if (new_name) {
1580                old_name = kn->name;
1581                kn->name = new_name;
1582        }
1583
1584        spin_unlock_irq(&kernfs_rename_lock);
1585
1586        kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587        kernfs_link_sibling(kn);
1588
1589        kernfs_put(old_parent);
1590        kfree_const(old_name);
1591
1592        error = 0;
1593 out:
1594        mutex_unlock(&kernfs_mutex);
1595        return error;
1596}
1597
1598/* Relationship between s_mode and the DT_xxx types */
1599static inline unsigned char dt_type(struct kernfs_node *kn)
1600{
1601        return (kn->mode >> 12) & 15;
1602}
1603
1604static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1605{
1606        kernfs_put(filp->private_data);
1607        return 0;
1608}
1609
1610static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611        struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612{
1613        if (pos) {
1614                int valid = kernfs_active(pos) &&
1615                        pos->parent == parent && hash == pos->hash;
1616                kernfs_put(pos);
1617                if (!valid)
1618                        pos = NULL;
1619        }
1620        if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621                struct rb_node *node = parent->dir.children.rb_node;
1622                while (node) {
1623                        pos = rb_to_kn(node);
1624
1625                        if (hash < pos->hash)
1626                                node = node->rb_left;
1627                        else if (hash > pos->hash)
1628                                node = node->rb_right;
1629                        else
1630                                break;
1631                }
1632        }
1633        /* Skip over entries which are dying/dead or in the wrong namespace */
1634        while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635                struct rb_node *node = rb_next(&pos->rb);
1636                if (!node)
1637                        pos = NULL;
1638                else
1639                        pos = rb_to_kn(node);
1640        }
1641        return pos;
1642}
1643
1644static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645        struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1646{
1647        pos = kernfs_dir_pos(ns, parent, ino, pos);
1648        if (pos) {
1649                do {
1650                        struct rb_node *node = rb_next(&pos->rb);
1651                        if (!node)
1652                                pos = NULL;
1653                        else
1654                                pos = rb_to_kn(node);
1655                } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1656        }
1657        return pos;
1658}
1659
1660static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1661{
1662        struct dentry *dentry = file->f_path.dentry;
1663        struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664        struct kernfs_node *pos = file->private_data;
1665        const void *ns = NULL;
1666
1667        if (!dir_emit_dots(file, ctx))
1668                return 0;
1669        mutex_lock(&kernfs_mutex);
1670
1671        if (kernfs_ns_enabled(parent))
1672                ns = kernfs_info(dentry->d_sb)->ns;
1673
1674        for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1675             pos;
1676             pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677                const char *name = pos->name;
1678                unsigned int type = dt_type(pos);
1679                int len = strlen(name);
1680                ino_t ino = pos->id.ino;
1681
1682                ctx->pos = pos->hash;
1683                file->private_data = pos;
1684                kernfs_get(pos);
1685
1686                mutex_unlock(&kernfs_mutex);
1687                if (!dir_emit(ctx, name, len, ino, type))
1688                        return 0;
1689                mutex_lock(&kernfs_mutex);
1690        }
1691        mutex_unlock(&kernfs_mutex);
1692        file->private_data = NULL;
1693        ctx->pos = INT_MAX;
1694        return 0;
1695}
1696
1697const struct file_operations kernfs_dir_fops = {
1698        .read           = generic_read_dir,
1699        .iterate_shared = kernfs_fop_readdir,
1700        .release        = kernfs_dir_fop_release,
1701        .llseek         = generic_file_llseek,
1702};
1703