linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22
  23#include <linux/uaccess.h>
  24
  25#include "internal.h"
  26
  27int simple_getattr(const struct path *path, struct kstat *stat,
  28                   u32 request_mask, unsigned int query_flags)
  29{
  30        struct inode *inode = d_inode(path->dentry);
  31        generic_fillattr(inode, stat);
  32        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  33        return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39        buf->f_type = dentry->d_sb->s_magic;
  40        buf->f_bsize = PAGE_SIZE;
  41        buf->f_namelen = NAME_MAX;
  42        return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52        return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57        .d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67        if (dentry->d_name.len > NAME_MAX)
  68                return ERR_PTR(-ENAMETOOLONG);
  69        if (!dentry->d_sb->s_d_op)
  70                d_set_d_op(dentry, &simple_dentry_operations);
  71        d_add(dentry, NULL);
  72        return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78        file->private_data = d_alloc_cursor(file->f_path.dentry);
  79
  80        return file->private_data ? 0 : -ENOMEM;
  81}
  82EXPORT_SYMBOL(dcache_dir_open);
  83
  84int dcache_dir_close(struct inode *inode, struct file *file)
  85{
  86        dput(file->private_data);
  87        return 0;
  88}
  89EXPORT_SYMBOL(dcache_dir_close);
  90
  91/* parent is locked at least shared */
  92static struct dentry *next_positive(struct dentry *parent,
  93                                    struct list_head *from,
  94                                    int count)
  95{
  96        unsigned *seq = &parent->d_inode->i_dir_seq, n;
  97        struct dentry *res;
  98        struct list_head *p;
  99        bool skipped;
 100        int i;
 101
 102retry:
 103        i = count;
 104        skipped = false;
 105        n = smp_load_acquire(seq) & ~1;
 106        res = NULL;
 107        rcu_read_lock();
 108        for (p = from->next; p != &parent->d_subdirs; p = p->next) {
 109                struct dentry *d = list_entry(p, struct dentry, d_child);
 110                if (!simple_positive(d)) {
 111                        skipped = true;
 112                } else if (!--i) {
 113                        res = d;
 114                        break;
 115                }
 116        }
 117        rcu_read_unlock();
 118        if (skipped) {
 119                smp_rmb();
 120                if (unlikely(*seq != n))
 121                        goto retry;
 122        }
 123        return res;
 124}
 125
 126static void move_cursor(struct dentry *cursor, struct list_head *after)
 127{
 128        struct dentry *parent = cursor->d_parent;
 129        unsigned n, *seq = &parent->d_inode->i_dir_seq;
 130        spin_lock(&parent->d_lock);
 131        for (;;) {
 132                n = *seq;
 133                if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
 134                        break;
 135                cpu_relax();
 136        }
 137        __list_del(cursor->d_child.prev, cursor->d_child.next);
 138        if (after)
 139                list_add(&cursor->d_child, after);
 140        else
 141                list_add_tail(&cursor->d_child, &parent->d_subdirs);
 142        smp_store_release(seq, n + 2);
 143        spin_unlock(&parent->d_lock);
 144}
 145
 146loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 147{
 148        struct dentry *dentry = file->f_path.dentry;
 149        switch (whence) {
 150                case 1:
 151                        offset += file->f_pos;
 152                        /* fall through */
 153                case 0:
 154                        if (offset >= 0)
 155                                break;
 156                        /* fall through */
 157                default:
 158                        return -EINVAL;
 159        }
 160        if (offset != file->f_pos) {
 161                file->f_pos = offset;
 162                if (file->f_pos >= 2) {
 163                        struct dentry *cursor = file->private_data;
 164                        struct dentry *to;
 165                        loff_t n = file->f_pos - 2;
 166
 167                        inode_lock_shared(dentry->d_inode);
 168                        to = next_positive(dentry, &dentry->d_subdirs, n);
 169                        move_cursor(cursor, to ? &to->d_child : NULL);
 170                        inode_unlock_shared(dentry->d_inode);
 171                }
 172        }
 173        return offset;
 174}
 175EXPORT_SYMBOL(dcache_dir_lseek);
 176
 177/* Relationship between i_mode and the DT_xxx types */
 178static inline unsigned char dt_type(struct inode *inode)
 179{
 180        return (inode->i_mode >> 12) & 15;
 181}
 182
 183/*
 184 * Directory is locked and all positive dentries in it are safe, since
 185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 186 * both impossible due to the lock on directory.
 187 */
 188
 189int dcache_readdir(struct file *file, struct dir_context *ctx)
 190{
 191        struct dentry *dentry = file->f_path.dentry;
 192        struct dentry *cursor = file->private_data;
 193        struct list_head *p = &cursor->d_child;
 194        struct dentry *next;
 195        bool moved = false;
 196
 197        if (!dir_emit_dots(file, ctx))
 198                return 0;
 199
 200        if (ctx->pos == 2)
 201                p = &dentry->d_subdirs;
 202        while ((next = next_positive(dentry, p, 1)) != NULL) {
 203                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 204                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 205                        break;
 206                moved = true;
 207                p = &next->d_child;
 208                ctx->pos++;
 209        }
 210        if (moved)
 211                move_cursor(cursor, p);
 212        return 0;
 213}
 214EXPORT_SYMBOL(dcache_readdir);
 215
 216ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 217{
 218        return -EISDIR;
 219}
 220EXPORT_SYMBOL(generic_read_dir);
 221
 222const struct file_operations simple_dir_operations = {
 223        .open           = dcache_dir_open,
 224        .release        = dcache_dir_close,
 225        .llseek         = dcache_dir_lseek,
 226        .read           = generic_read_dir,
 227        .iterate_shared = dcache_readdir,
 228        .fsync          = noop_fsync,
 229};
 230EXPORT_SYMBOL(simple_dir_operations);
 231
 232const struct inode_operations simple_dir_inode_operations = {
 233        .lookup         = simple_lookup,
 234};
 235EXPORT_SYMBOL(simple_dir_inode_operations);
 236
 237static const struct super_operations simple_super_operations = {
 238        .statfs         = simple_statfs,
 239};
 240
 241static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 242{
 243        struct pseudo_fs_context *ctx = fc->fs_private;
 244        struct inode *root;
 245
 246        s->s_maxbytes = MAX_LFS_FILESIZE;
 247        s->s_blocksize = PAGE_SIZE;
 248        s->s_blocksize_bits = PAGE_SHIFT;
 249        s->s_magic = ctx->magic;
 250        s->s_op = ctx->ops ?: &simple_super_operations;
 251        s->s_xattr = ctx->xattr;
 252        s->s_time_gran = 1;
 253        root = new_inode(s);
 254        if (!root)
 255                return -ENOMEM;
 256
 257        /*
 258         * since this is the first inode, make it number 1. New inodes created
 259         * after this must take care not to collide with it (by passing
 260         * max_reserved of 1 to iunique).
 261         */
 262        root->i_ino = 1;
 263        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 264        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 265        s->s_root = d_make_root(root);
 266        if (!s->s_root)
 267                return -ENOMEM;
 268        s->s_d_op = ctx->dops;
 269        return 0;
 270}
 271
 272static int pseudo_fs_get_tree(struct fs_context *fc)
 273{
 274        return get_tree_nodev(fc, pseudo_fs_fill_super);
 275}
 276
 277static void pseudo_fs_free(struct fs_context *fc)
 278{
 279        kfree(fc->fs_private);
 280}
 281
 282static const struct fs_context_operations pseudo_fs_context_ops = {
 283        .free           = pseudo_fs_free,
 284        .get_tree       = pseudo_fs_get_tree,
 285};
 286
 287/*
 288 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 289 * will never be mountable)
 290 */
 291struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 292                                        unsigned long magic)
 293{
 294        struct pseudo_fs_context *ctx;
 295
 296        ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 297        if (likely(ctx)) {
 298                ctx->magic = magic;
 299                fc->fs_private = ctx;
 300                fc->ops = &pseudo_fs_context_ops;
 301                fc->sb_flags |= SB_NOUSER;
 302                fc->global = true;
 303        }
 304        return ctx;
 305}
 306EXPORT_SYMBOL(init_pseudo);
 307
 308int simple_open(struct inode *inode, struct file *file)
 309{
 310        if (inode->i_private)
 311                file->private_data = inode->i_private;
 312        return 0;
 313}
 314EXPORT_SYMBOL(simple_open);
 315
 316int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 317{
 318        struct inode *inode = d_inode(old_dentry);
 319
 320        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 321        inc_nlink(inode);
 322        ihold(inode);
 323        dget(dentry);
 324        d_instantiate(dentry, inode);
 325        return 0;
 326}
 327EXPORT_SYMBOL(simple_link);
 328
 329int simple_empty(struct dentry *dentry)
 330{
 331        struct dentry *child;
 332        int ret = 0;
 333
 334        spin_lock(&dentry->d_lock);
 335        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 336                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 337                if (simple_positive(child)) {
 338                        spin_unlock(&child->d_lock);
 339                        goto out;
 340                }
 341                spin_unlock(&child->d_lock);
 342        }
 343        ret = 1;
 344out:
 345        spin_unlock(&dentry->d_lock);
 346        return ret;
 347}
 348EXPORT_SYMBOL(simple_empty);
 349
 350int simple_unlink(struct inode *dir, struct dentry *dentry)
 351{
 352        struct inode *inode = d_inode(dentry);
 353
 354        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 355        drop_nlink(inode);
 356        dput(dentry);
 357        return 0;
 358}
 359EXPORT_SYMBOL(simple_unlink);
 360
 361int simple_rmdir(struct inode *dir, struct dentry *dentry)
 362{
 363        if (!simple_empty(dentry))
 364                return -ENOTEMPTY;
 365
 366        drop_nlink(d_inode(dentry));
 367        simple_unlink(dir, dentry);
 368        drop_nlink(dir);
 369        return 0;
 370}
 371EXPORT_SYMBOL(simple_rmdir);
 372
 373int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 374                  struct inode *new_dir, struct dentry *new_dentry,
 375                  unsigned int flags)
 376{
 377        struct inode *inode = d_inode(old_dentry);
 378        int they_are_dirs = d_is_dir(old_dentry);
 379
 380        if (flags & ~RENAME_NOREPLACE)
 381                return -EINVAL;
 382
 383        if (!simple_empty(new_dentry))
 384                return -ENOTEMPTY;
 385
 386        if (d_really_is_positive(new_dentry)) {
 387                simple_unlink(new_dir, new_dentry);
 388                if (they_are_dirs) {
 389                        drop_nlink(d_inode(new_dentry));
 390                        drop_nlink(old_dir);
 391                }
 392        } else if (they_are_dirs) {
 393                drop_nlink(old_dir);
 394                inc_nlink(new_dir);
 395        }
 396
 397        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 398                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 399
 400        return 0;
 401}
 402EXPORT_SYMBOL(simple_rename);
 403
 404/**
 405 * simple_setattr - setattr for simple filesystem
 406 * @dentry: dentry
 407 * @iattr: iattr structure
 408 *
 409 * Returns 0 on success, -error on failure.
 410 *
 411 * simple_setattr is a simple ->setattr implementation without a proper
 412 * implementation of size changes.
 413 *
 414 * It can either be used for in-memory filesystems or special files
 415 * on simple regular filesystems.  Anything that needs to change on-disk
 416 * or wire state on size changes needs its own setattr method.
 417 */
 418int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 419{
 420        struct inode *inode = d_inode(dentry);
 421        int error;
 422
 423        error = setattr_prepare(dentry, iattr);
 424        if (error)
 425                return error;
 426
 427        if (iattr->ia_valid & ATTR_SIZE)
 428                truncate_setsize(inode, iattr->ia_size);
 429        setattr_copy(inode, iattr);
 430        mark_inode_dirty(inode);
 431        return 0;
 432}
 433EXPORT_SYMBOL(simple_setattr);
 434
 435int simple_readpage(struct file *file, struct page *page)
 436{
 437        clear_highpage(page);
 438        flush_dcache_page(page);
 439        SetPageUptodate(page);
 440        unlock_page(page);
 441        return 0;
 442}
 443EXPORT_SYMBOL(simple_readpage);
 444
 445int simple_write_begin(struct file *file, struct address_space *mapping,
 446                        loff_t pos, unsigned len, unsigned flags,
 447                        struct page **pagep, void **fsdata)
 448{
 449        struct page *page;
 450        pgoff_t index;
 451
 452        index = pos >> PAGE_SHIFT;
 453
 454        page = grab_cache_page_write_begin(mapping, index, flags);
 455        if (!page)
 456                return -ENOMEM;
 457
 458        *pagep = page;
 459
 460        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 461                unsigned from = pos & (PAGE_SIZE - 1);
 462
 463                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 464        }
 465        return 0;
 466}
 467EXPORT_SYMBOL(simple_write_begin);
 468
 469/**
 470 * simple_write_end - .write_end helper for non-block-device FSes
 471 * @available: See .write_end of address_space_operations
 472 * @file:               "
 473 * @mapping:            "
 474 * @pos:                "
 475 * @len:                "
 476 * @copied:             "
 477 * @page:               "
 478 * @fsdata:             "
 479 *
 480 * simple_write_end does the minimum needed for updating a page after writing is
 481 * done. It has the same API signature as the .write_end of
 482 * address_space_operations vector. So it can just be set onto .write_end for
 483 * FSes that don't need any other processing. i_mutex is assumed to be held.
 484 * Block based filesystems should use generic_write_end().
 485 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 486 * is not called, so a filesystem that actually does store data in .write_inode
 487 * should extend on what's done here with a call to mark_inode_dirty() in the
 488 * case that i_size has changed.
 489 *
 490 * Use *ONLY* with simple_readpage()
 491 */
 492int simple_write_end(struct file *file, struct address_space *mapping,
 493                        loff_t pos, unsigned len, unsigned copied,
 494                        struct page *page, void *fsdata)
 495{
 496        struct inode *inode = page->mapping->host;
 497        loff_t last_pos = pos + copied;
 498
 499        /* zero the stale part of the page if we did a short copy */
 500        if (!PageUptodate(page)) {
 501                if (copied < len) {
 502                        unsigned from = pos & (PAGE_SIZE - 1);
 503
 504                        zero_user(page, from + copied, len - copied);
 505                }
 506                SetPageUptodate(page);
 507        }
 508        /*
 509         * No need to use i_size_read() here, the i_size
 510         * cannot change under us because we hold the i_mutex.
 511         */
 512        if (last_pos > inode->i_size)
 513                i_size_write(inode, last_pos);
 514
 515        set_page_dirty(page);
 516        unlock_page(page);
 517        put_page(page);
 518
 519        return copied;
 520}
 521EXPORT_SYMBOL(simple_write_end);
 522
 523/*
 524 * the inodes created here are not hashed. If you use iunique to generate
 525 * unique inode values later for this filesystem, then you must take care
 526 * to pass it an appropriate max_reserved value to avoid collisions.
 527 */
 528int simple_fill_super(struct super_block *s, unsigned long magic,
 529                      const struct tree_descr *files)
 530{
 531        struct inode *inode;
 532        struct dentry *root;
 533        struct dentry *dentry;
 534        int i;
 535
 536        s->s_blocksize = PAGE_SIZE;
 537        s->s_blocksize_bits = PAGE_SHIFT;
 538        s->s_magic = magic;
 539        s->s_op = &simple_super_operations;
 540        s->s_time_gran = 1;
 541
 542        inode = new_inode(s);
 543        if (!inode)
 544                return -ENOMEM;
 545        /*
 546         * because the root inode is 1, the files array must not contain an
 547         * entry at index 1
 548         */
 549        inode->i_ino = 1;
 550        inode->i_mode = S_IFDIR | 0755;
 551        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 552        inode->i_op = &simple_dir_inode_operations;
 553        inode->i_fop = &simple_dir_operations;
 554        set_nlink(inode, 2);
 555        root = d_make_root(inode);
 556        if (!root)
 557                return -ENOMEM;
 558        for (i = 0; !files->name || files->name[0]; i++, files++) {
 559                if (!files->name)
 560                        continue;
 561
 562                /* warn if it tries to conflict with the root inode */
 563                if (unlikely(i == 1))
 564                        printk(KERN_WARNING "%s: %s passed in a files array"
 565                                "with an index of 1!\n", __func__,
 566                                s->s_type->name);
 567
 568                dentry = d_alloc_name(root, files->name);
 569                if (!dentry)
 570                        goto out;
 571                inode = new_inode(s);
 572                if (!inode) {
 573                        dput(dentry);
 574                        goto out;
 575                }
 576                inode->i_mode = S_IFREG | files->mode;
 577                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 578                inode->i_fop = files->ops;
 579                inode->i_ino = i;
 580                d_add(dentry, inode);
 581        }
 582        s->s_root = root;
 583        return 0;
 584out:
 585        d_genocide(root);
 586        shrink_dcache_parent(root);
 587        dput(root);
 588        return -ENOMEM;
 589}
 590EXPORT_SYMBOL(simple_fill_super);
 591
 592static DEFINE_SPINLOCK(pin_fs_lock);
 593
 594int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 595{
 596        struct vfsmount *mnt = NULL;
 597        spin_lock(&pin_fs_lock);
 598        if (unlikely(!*mount)) {
 599                spin_unlock(&pin_fs_lock);
 600                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 601                if (IS_ERR(mnt))
 602                        return PTR_ERR(mnt);
 603                spin_lock(&pin_fs_lock);
 604                if (!*mount)
 605                        *mount = mnt;
 606        }
 607        mntget(*mount);
 608        ++*count;
 609        spin_unlock(&pin_fs_lock);
 610        mntput(mnt);
 611        return 0;
 612}
 613EXPORT_SYMBOL(simple_pin_fs);
 614
 615void simple_release_fs(struct vfsmount **mount, int *count)
 616{
 617        struct vfsmount *mnt;
 618        spin_lock(&pin_fs_lock);
 619        mnt = *mount;
 620        if (!--*count)
 621                *mount = NULL;
 622        spin_unlock(&pin_fs_lock);
 623        mntput(mnt);
 624}
 625EXPORT_SYMBOL(simple_release_fs);
 626
 627/**
 628 * simple_read_from_buffer - copy data from the buffer to user space
 629 * @to: the user space buffer to read to
 630 * @count: the maximum number of bytes to read
 631 * @ppos: the current position in the buffer
 632 * @from: the buffer to read from
 633 * @available: the size of the buffer
 634 *
 635 * The simple_read_from_buffer() function reads up to @count bytes from the
 636 * buffer @from at offset @ppos into the user space address starting at @to.
 637 *
 638 * On success, the number of bytes read is returned and the offset @ppos is
 639 * advanced by this number, or negative value is returned on error.
 640 **/
 641ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 642                                const void *from, size_t available)
 643{
 644        loff_t pos = *ppos;
 645        size_t ret;
 646
 647        if (pos < 0)
 648                return -EINVAL;
 649        if (pos >= available || !count)
 650                return 0;
 651        if (count > available - pos)
 652                count = available - pos;
 653        ret = copy_to_user(to, from + pos, count);
 654        if (ret == count)
 655                return -EFAULT;
 656        count -= ret;
 657        *ppos = pos + count;
 658        return count;
 659}
 660EXPORT_SYMBOL(simple_read_from_buffer);
 661
 662/**
 663 * simple_write_to_buffer - copy data from user space to the buffer
 664 * @to: the buffer to write to
 665 * @available: the size of the buffer
 666 * @ppos: the current position in the buffer
 667 * @from: the user space buffer to read from
 668 * @count: the maximum number of bytes to read
 669 *
 670 * The simple_write_to_buffer() function reads up to @count bytes from the user
 671 * space address starting at @from into the buffer @to at offset @ppos.
 672 *
 673 * On success, the number of bytes written is returned and the offset @ppos is
 674 * advanced by this number, or negative value is returned on error.
 675 **/
 676ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 677                const void __user *from, size_t count)
 678{
 679        loff_t pos = *ppos;
 680        size_t res;
 681
 682        if (pos < 0)
 683                return -EINVAL;
 684        if (pos >= available || !count)
 685                return 0;
 686        if (count > available - pos)
 687                count = available - pos;
 688        res = copy_from_user(to + pos, from, count);
 689        if (res == count)
 690                return -EFAULT;
 691        count -= res;
 692        *ppos = pos + count;
 693        return count;
 694}
 695EXPORT_SYMBOL(simple_write_to_buffer);
 696
 697/**
 698 * memory_read_from_buffer - copy data from the buffer
 699 * @to: the kernel space buffer to read to
 700 * @count: the maximum number of bytes to read
 701 * @ppos: the current position in the buffer
 702 * @from: the buffer to read from
 703 * @available: the size of the buffer
 704 *
 705 * The memory_read_from_buffer() function reads up to @count bytes from the
 706 * buffer @from at offset @ppos into the kernel space address starting at @to.
 707 *
 708 * On success, the number of bytes read is returned and the offset @ppos is
 709 * advanced by this number, or negative value is returned on error.
 710 **/
 711ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 712                                const void *from, size_t available)
 713{
 714        loff_t pos = *ppos;
 715
 716        if (pos < 0)
 717                return -EINVAL;
 718        if (pos >= available)
 719                return 0;
 720        if (count > available - pos)
 721                count = available - pos;
 722        memcpy(to, from + pos, count);
 723        *ppos = pos + count;
 724
 725        return count;
 726}
 727EXPORT_SYMBOL(memory_read_from_buffer);
 728
 729/*
 730 * Transaction based IO.
 731 * The file expects a single write which triggers the transaction, and then
 732 * possibly a read which collects the result - which is stored in a
 733 * file-local buffer.
 734 */
 735
 736void simple_transaction_set(struct file *file, size_t n)
 737{
 738        struct simple_transaction_argresp *ar = file->private_data;
 739
 740        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 741
 742        /*
 743         * The barrier ensures that ar->size will really remain zero until
 744         * ar->data is ready for reading.
 745         */
 746        smp_mb();
 747        ar->size = n;
 748}
 749EXPORT_SYMBOL(simple_transaction_set);
 750
 751char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 752{
 753        struct simple_transaction_argresp *ar;
 754        static DEFINE_SPINLOCK(simple_transaction_lock);
 755
 756        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 757                return ERR_PTR(-EFBIG);
 758
 759        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 760        if (!ar)
 761                return ERR_PTR(-ENOMEM);
 762
 763        spin_lock(&simple_transaction_lock);
 764
 765        /* only one write allowed per open */
 766        if (file->private_data) {
 767                spin_unlock(&simple_transaction_lock);
 768                free_page((unsigned long)ar);
 769                return ERR_PTR(-EBUSY);
 770        }
 771
 772        file->private_data = ar;
 773
 774        spin_unlock(&simple_transaction_lock);
 775
 776        if (copy_from_user(ar->data, buf, size))
 777                return ERR_PTR(-EFAULT);
 778
 779        return ar->data;
 780}
 781EXPORT_SYMBOL(simple_transaction_get);
 782
 783ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 784{
 785        struct simple_transaction_argresp *ar = file->private_data;
 786
 787        if (!ar)
 788                return 0;
 789        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 790}
 791EXPORT_SYMBOL(simple_transaction_read);
 792
 793int simple_transaction_release(struct inode *inode, struct file *file)
 794{
 795        free_page((unsigned long)file->private_data);
 796        return 0;
 797}
 798EXPORT_SYMBOL(simple_transaction_release);
 799
 800/* Simple attribute files */
 801
 802struct simple_attr {
 803        int (*get)(void *, u64 *);
 804        int (*set)(void *, u64);
 805        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 806        char set_buf[24];
 807        void *data;
 808        const char *fmt;        /* format for read operation */
 809        struct mutex mutex;     /* protects access to these buffers */
 810};
 811
 812/* simple_attr_open is called by an actual attribute open file operation
 813 * to set the attribute specific access operations. */
 814int simple_attr_open(struct inode *inode, struct file *file,
 815                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 816                     const char *fmt)
 817{
 818        struct simple_attr *attr;
 819
 820        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 821        if (!attr)
 822                return -ENOMEM;
 823
 824        attr->get = get;
 825        attr->set = set;
 826        attr->data = inode->i_private;
 827        attr->fmt = fmt;
 828        mutex_init(&attr->mutex);
 829
 830        file->private_data = attr;
 831
 832        return nonseekable_open(inode, file);
 833}
 834EXPORT_SYMBOL_GPL(simple_attr_open);
 835
 836int simple_attr_release(struct inode *inode, struct file *file)
 837{
 838        kfree(file->private_data);
 839        return 0;
 840}
 841EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 842
 843/* read from the buffer that is filled with the get function */
 844ssize_t simple_attr_read(struct file *file, char __user *buf,
 845                         size_t len, loff_t *ppos)
 846{
 847        struct simple_attr *attr;
 848        size_t size;
 849        ssize_t ret;
 850
 851        attr = file->private_data;
 852
 853        if (!attr->get)
 854                return -EACCES;
 855
 856        ret = mutex_lock_interruptible(&attr->mutex);
 857        if (ret)
 858                return ret;
 859
 860        if (*ppos) {            /* continued read */
 861                size = strlen(attr->get_buf);
 862        } else {                /* first read */
 863                u64 val;
 864                ret = attr->get(attr->data, &val);
 865                if (ret)
 866                        goto out;
 867
 868                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 869                                 attr->fmt, (unsigned long long)val);
 870        }
 871
 872        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 873out:
 874        mutex_unlock(&attr->mutex);
 875        return ret;
 876}
 877EXPORT_SYMBOL_GPL(simple_attr_read);
 878
 879/* interpret the buffer as a number to call the set function with */
 880ssize_t simple_attr_write(struct file *file, const char __user *buf,
 881                          size_t len, loff_t *ppos)
 882{
 883        struct simple_attr *attr;
 884        u64 val;
 885        size_t size;
 886        ssize_t ret;
 887
 888        attr = file->private_data;
 889        if (!attr->set)
 890                return -EACCES;
 891
 892        ret = mutex_lock_interruptible(&attr->mutex);
 893        if (ret)
 894                return ret;
 895
 896        ret = -EFAULT;
 897        size = min(sizeof(attr->set_buf) - 1, len);
 898        if (copy_from_user(attr->set_buf, buf, size))
 899                goto out;
 900
 901        attr->set_buf[size] = '\0';
 902        val = simple_strtoll(attr->set_buf, NULL, 0);
 903        ret = attr->set(attr->data, val);
 904        if (ret == 0)
 905                ret = len; /* on success, claim we got the whole input */
 906out:
 907        mutex_unlock(&attr->mutex);
 908        return ret;
 909}
 910EXPORT_SYMBOL_GPL(simple_attr_write);
 911
 912/**
 913 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 914 * @sb:         filesystem to do the file handle conversion on
 915 * @fid:        file handle to convert
 916 * @fh_len:     length of the file handle in bytes
 917 * @fh_type:    type of file handle
 918 * @get_inode:  filesystem callback to retrieve inode
 919 *
 920 * This function decodes @fid as long as it has one of the well-known
 921 * Linux filehandle types and calls @get_inode on it to retrieve the
 922 * inode for the object specified in the file handle.
 923 */
 924struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 925                int fh_len, int fh_type, struct inode *(*get_inode)
 926                        (struct super_block *sb, u64 ino, u32 gen))
 927{
 928        struct inode *inode = NULL;
 929
 930        if (fh_len < 2)
 931                return NULL;
 932
 933        switch (fh_type) {
 934        case FILEID_INO32_GEN:
 935        case FILEID_INO32_GEN_PARENT:
 936                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 937                break;
 938        }
 939
 940        return d_obtain_alias(inode);
 941}
 942EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 943
 944/**
 945 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 946 * @sb:         filesystem to do the file handle conversion on
 947 * @fid:        file handle to convert
 948 * @fh_len:     length of the file handle in bytes
 949 * @fh_type:    type of file handle
 950 * @get_inode:  filesystem callback to retrieve inode
 951 *
 952 * This function decodes @fid as long as it has one of the well-known
 953 * Linux filehandle types and calls @get_inode on it to retrieve the
 954 * inode for the _parent_ object specified in the file handle if it
 955 * is specified in the file handle, or NULL otherwise.
 956 */
 957struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 958                int fh_len, int fh_type, struct inode *(*get_inode)
 959                        (struct super_block *sb, u64 ino, u32 gen))
 960{
 961        struct inode *inode = NULL;
 962
 963        if (fh_len <= 2)
 964                return NULL;
 965
 966        switch (fh_type) {
 967        case FILEID_INO32_GEN_PARENT:
 968                inode = get_inode(sb, fid->i32.parent_ino,
 969                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 970                break;
 971        }
 972
 973        return d_obtain_alias(inode);
 974}
 975EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 976
 977/**
 978 * __generic_file_fsync - generic fsync implementation for simple filesystems
 979 *
 980 * @file:       file to synchronize
 981 * @start:      start offset in bytes
 982 * @end:        end offset in bytes (inclusive)
 983 * @datasync:   only synchronize essential metadata if true
 984 *
 985 * This is a generic implementation of the fsync method for simple
 986 * filesystems which track all non-inode metadata in the buffers list
 987 * hanging off the address_space structure.
 988 */
 989int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
 990                                 int datasync)
 991{
 992        struct inode *inode = file->f_mapping->host;
 993        int err;
 994        int ret;
 995
 996        err = file_write_and_wait_range(file, start, end);
 997        if (err)
 998                return err;
 999
1000        inode_lock(inode);
1001        ret = sync_mapping_buffers(inode->i_mapping);
1002        if (!(inode->i_state & I_DIRTY_ALL))
1003                goto out;
1004        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1005                goto out;
1006
1007        err = sync_inode_metadata(inode, 1);
1008        if (ret == 0)
1009                ret = err;
1010
1011out:
1012        inode_unlock(inode);
1013        /* check and advance again to catch errors after syncing out buffers */
1014        err = file_check_and_advance_wb_err(file);
1015        if (ret == 0)
1016                ret = err;
1017        return ret;
1018}
1019EXPORT_SYMBOL(__generic_file_fsync);
1020
1021/**
1022 * generic_file_fsync - generic fsync implementation for simple filesystems
1023 *                      with flush
1024 * @file:       file to synchronize
1025 * @start:      start offset in bytes
1026 * @end:        end offset in bytes (inclusive)
1027 * @datasync:   only synchronize essential metadata if true
1028 *
1029 */
1030
1031int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1032                       int datasync)
1033{
1034        struct inode *inode = file->f_mapping->host;
1035        int err;
1036
1037        err = __generic_file_fsync(file, start, end, datasync);
1038        if (err)
1039                return err;
1040        return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1041}
1042EXPORT_SYMBOL(generic_file_fsync);
1043
1044/**
1045 * generic_check_addressable - Check addressability of file system
1046 * @blocksize_bits:     log of file system block size
1047 * @num_blocks:         number of blocks in file system
1048 *
1049 * Determine whether a file system with @num_blocks blocks (and a
1050 * block size of 2**@blocksize_bits) is addressable by the sector_t
1051 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1052 */
1053int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1054{
1055        u64 last_fs_block = num_blocks - 1;
1056        u64 last_fs_page =
1057                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1058
1059        if (unlikely(num_blocks == 0))
1060                return 0;
1061
1062        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1063                return -EINVAL;
1064
1065        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1066            (last_fs_page > (pgoff_t)(~0ULL))) {
1067                return -EFBIG;
1068        }
1069        return 0;
1070}
1071EXPORT_SYMBOL(generic_check_addressable);
1072
1073/*
1074 * No-op implementation of ->fsync for in-memory filesystems.
1075 */
1076int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1077{
1078        return 0;
1079}
1080EXPORT_SYMBOL(noop_fsync);
1081
1082int noop_set_page_dirty(struct page *page)
1083{
1084        /*
1085         * Unlike __set_page_dirty_no_writeback that handles dirty page
1086         * tracking in the page object, dax does all dirty tracking in
1087         * the inode address_space in response to mkwrite faults. In the
1088         * dax case we only need to worry about potentially dirty CPU
1089         * caches, not dirty page cache pages to write back.
1090         *
1091         * This callback is defined to prevent fallback to
1092         * __set_page_dirty_buffers() in set_page_dirty().
1093         */
1094        return 0;
1095}
1096EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1097
1098void noop_invalidatepage(struct page *page, unsigned int offset,
1099                unsigned int length)
1100{
1101        /*
1102         * There is no page cache to invalidate in the dax case, however
1103         * we need this callback defined to prevent falling back to
1104         * block_invalidatepage() in do_invalidatepage().
1105         */
1106}
1107EXPORT_SYMBOL_GPL(noop_invalidatepage);
1108
1109ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1110{
1111        /*
1112         * iomap based filesystems support direct I/O without need for
1113         * this callback. However, it still needs to be set in
1114         * inode->a_ops so that open/fcntl know that direct I/O is
1115         * generally supported.
1116         */
1117        return -EINVAL;
1118}
1119EXPORT_SYMBOL_GPL(noop_direct_IO);
1120
1121/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1122void kfree_link(void *p)
1123{
1124        kfree(p);
1125}
1126EXPORT_SYMBOL(kfree_link);
1127
1128/*
1129 * nop .set_page_dirty method so that people can use .page_mkwrite on
1130 * anon inodes.
1131 */
1132static int anon_set_page_dirty(struct page *page)
1133{
1134        return 0;
1135};
1136
1137/*
1138 * A single inode exists for all anon_inode files. Contrary to pipes,
1139 * anon_inode inodes have no associated per-instance data, so we need
1140 * only allocate one of them.
1141 */
1142struct inode *alloc_anon_inode(struct super_block *s)
1143{
1144        static const struct address_space_operations anon_aops = {
1145                .set_page_dirty = anon_set_page_dirty,
1146        };
1147        struct inode *inode = new_inode_pseudo(s);
1148
1149        if (!inode)
1150                return ERR_PTR(-ENOMEM);
1151
1152        inode->i_ino = get_next_ino();
1153        inode->i_mapping->a_ops = &anon_aops;
1154
1155        /*
1156         * Mark the inode dirty from the very beginning,
1157         * that way it will never be moved to the dirty
1158         * list because mark_inode_dirty() will think
1159         * that it already _is_ on the dirty list.
1160         */
1161        inode->i_state = I_DIRTY;
1162        inode->i_mode = S_IRUSR | S_IWUSR;
1163        inode->i_uid = current_fsuid();
1164        inode->i_gid = current_fsgid();
1165        inode->i_flags |= S_PRIVATE;
1166        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1167        return inode;
1168}
1169EXPORT_SYMBOL(alloc_anon_inode);
1170
1171/**
1172 * simple_nosetlease - generic helper for prohibiting leases
1173 * @filp: file pointer
1174 * @arg: type of lease to obtain
1175 * @flp: new lease supplied for insertion
1176 * @priv: private data for lm_setup operation
1177 *
1178 * Generic helper for filesystems that do not wish to allow leases to be set.
1179 * All arguments are ignored and it just returns -EINVAL.
1180 */
1181int
1182simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1183                  void **priv)
1184{
1185        return -EINVAL;
1186}
1187EXPORT_SYMBOL(simple_nosetlease);
1188
1189/**
1190 * simple_get_link - generic helper to get the target of "fast" symlinks
1191 * @dentry: not used here
1192 * @inode: the symlink inode
1193 * @done: not used here
1194 *
1195 * Generic helper for filesystems to use for symlink inodes where a pointer to
1196 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1197 * since as an optimization the path lookup code uses any non-NULL ->i_link
1198 * directly, without calling ->get_link().  But ->get_link() still must be set,
1199 * to mark the inode_operations as being for a symlink.
1200 *
1201 * Return: the symlink target
1202 */
1203const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1204                            struct delayed_call *done)
1205{
1206        return inode->i_link;
1207}
1208EXPORT_SYMBOL(simple_get_link);
1209
1210const struct inode_operations simple_symlink_inode_operations = {
1211        .get_link = simple_get_link,
1212};
1213EXPORT_SYMBOL(simple_symlink_inode_operations);
1214
1215/*
1216 * Operations for a permanently empty directory.
1217 */
1218static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1219{
1220        return ERR_PTR(-ENOENT);
1221}
1222
1223static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1224                             u32 request_mask, unsigned int query_flags)
1225{
1226        struct inode *inode = d_inode(path->dentry);
1227        generic_fillattr(inode, stat);
1228        return 0;
1229}
1230
1231static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1232{
1233        return -EPERM;
1234}
1235
1236static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1237{
1238        return -EOPNOTSUPP;
1239}
1240
1241static const struct inode_operations empty_dir_inode_operations = {
1242        .lookup         = empty_dir_lookup,
1243        .permission     = generic_permission,
1244        .setattr        = empty_dir_setattr,
1245        .getattr        = empty_dir_getattr,
1246        .listxattr      = empty_dir_listxattr,
1247};
1248
1249static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1250{
1251        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1252        return generic_file_llseek_size(file, offset, whence, 2, 2);
1253}
1254
1255static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1256{
1257        dir_emit_dots(file, ctx);
1258        return 0;
1259}
1260
1261static const struct file_operations empty_dir_operations = {
1262        .llseek         = empty_dir_llseek,
1263        .read           = generic_read_dir,
1264        .iterate_shared = empty_dir_readdir,
1265        .fsync          = noop_fsync,
1266};
1267
1268
1269void make_empty_dir_inode(struct inode *inode)
1270{
1271        set_nlink(inode, 2);
1272        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1273        inode->i_uid = GLOBAL_ROOT_UID;
1274        inode->i_gid = GLOBAL_ROOT_GID;
1275        inode->i_rdev = 0;
1276        inode->i_size = 0;
1277        inode->i_blkbits = PAGE_SHIFT;
1278        inode->i_blocks = 0;
1279
1280        inode->i_op = &empty_dir_inode_operations;
1281        inode->i_opflags &= ~IOP_XATTR;
1282        inode->i_fop = &empty_dir_operations;
1283}
1284
1285bool is_empty_dir_inode(struct inode *inode)
1286{
1287        return (inode->i_fop == &empty_dir_operations) &&
1288                (inode->i_op == &empty_dir_inode_operations);
1289}
1290