linux/fs/mpage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/mpage.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains functions related to preparing and submitting BIOs which contain
   8 * multiple pagecache pages.
   9 *
  10 * 15May2002    Andrew Morton
  11 *              Initial version
  12 * 27Jun2002    axboe@suse.de
  13 *              use bio_add_page() to build bio's just the right size
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/mm.h>
  19#include <linux/kdev_t.h>
  20#include <linux/gfp.h>
  21#include <linux/bio.h>
  22#include <linux/fs.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/highmem.h>
  26#include <linux/prefetch.h>
  27#include <linux/mpage.h>
  28#include <linux/mm_inline.h>
  29#include <linux/writeback.h>
  30#include <linux/backing-dev.h>
  31#include <linux/pagevec.h>
  32#include <linux/cleancache.h>
  33#include "internal.h"
  34
  35/*
  36 * I/O completion handler for multipage BIOs.
  37 *
  38 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  39 * If a page does not map to a contiguous run of blocks then it simply falls
  40 * back to block_read_full_page().
  41 *
  42 * Why is this?  If a page's completion depends on a number of different BIOs
  43 * which can complete in any order (or at the same time) then determining the
  44 * status of that page is hard.  See end_buffer_async_read() for the details.
  45 * There is no point in duplicating all that complexity.
  46 */
  47static void mpage_end_io(struct bio *bio)
  48{
  49        struct bio_vec *bv;
  50        struct bvec_iter_all iter_all;
  51
  52        bio_for_each_segment_all(bv, bio, iter_all) {
  53                struct page *page = bv->bv_page;
  54                page_endio(page, bio_op(bio),
  55                           blk_status_to_errno(bio->bi_status));
  56        }
  57
  58        bio_put(bio);
  59}
  60
  61static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
  62{
  63        bio->bi_end_io = mpage_end_io;
  64        bio_set_op_attrs(bio, op, op_flags);
  65        guard_bio_eod(op, bio);
  66        submit_bio(bio);
  67        return NULL;
  68}
  69
  70static struct bio *
  71mpage_alloc(struct block_device *bdev,
  72                sector_t first_sector, int nr_vecs,
  73                gfp_t gfp_flags)
  74{
  75        struct bio *bio;
  76
  77        /* Restrict the given (page cache) mask for slab allocations */
  78        gfp_flags &= GFP_KERNEL;
  79        bio = bio_alloc(gfp_flags, nr_vecs);
  80
  81        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  82                while (!bio && (nr_vecs /= 2))
  83                        bio = bio_alloc(gfp_flags, nr_vecs);
  84        }
  85
  86        if (bio) {
  87                bio_set_dev(bio, bdev);
  88                bio->bi_iter.bi_sector = first_sector;
  89        }
  90        return bio;
  91}
  92
  93/*
  94 * support function for mpage_readpages.  The fs supplied get_block might
  95 * return an up to date buffer.  This is used to map that buffer into
  96 * the page, which allows readpage to avoid triggering a duplicate call
  97 * to get_block.
  98 *
  99 * The idea is to avoid adding buffers to pages that don't already have
 100 * them.  So when the buffer is up to date and the page size == block size,
 101 * this marks the page up to date instead of adding new buffers.
 102 */
 103static void 
 104map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 105{
 106        struct inode *inode = page->mapping->host;
 107        struct buffer_head *page_bh, *head;
 108        int block = 0;
 109
 110        if (!page_has_buffers(page)) {
 111                /*
 112                 * don't make any buffers if there is only one buffer on
 113                 * the page and the page just needs to be set up to date
 114                 */
 115                if (inode->i_blkbits == PAGE_SHIFT &&
 116                    buffer_uptodate(bh)) {
 117                        SetPageUptodate(page);    
 118                        return;
 119                }
 120                create_empty_buffers(page, i_blocksize(inode), 0);
 121        }
 122        head = page_buffers(page);
 123        page_bh = head;
 124        do {
 125                if (block == page_block) {
 126                        page_bh->b_state = bh->b_state;
 127                        page_bh->b_bdev = bh->b_bdev;
 128                        page_bh->b_blocknr = bh->b_blocknr;
 129                        break;
 130                }
 131                page_bh = page_bh->b_this_page;
 132                block++;
 133        } while (page_bh != head);
 134}
 135
 136struct mpage_readpage_args {
 137        struct bio *bio;
 138        struct page *page;
 139        unsigned int nr_pages;
 140        bool is_readahead;
 141        sector_t last_block_in_bio;
 142        struct buffer_head map_bh;
 143        unsigned long first_logical_block;
 144        get_block_t *get_block;
 145};
 146
 147/*
 148 * This is the worker routine which does all the work of mapping the disk
 149 * blocks and constructs largest possible bios, submits them for IO if the
 150 * blocks are not contiguous on the disk.
 151 *
 152 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 153 * represent the validity of its disk mapping and to decide when to do the next
 154 * get_block() call.
 155 */
 156static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 157{
 158        struct page *page = args->page;
 159        struct inode *inode = page->mapping->host;
 160        const unsigned blkbits = inode->i_blkbits;
 161        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 162        const unsigned blocksize = 1 << blkbits;
 163        struct buffer_head *map_bh = &args->map_bh;
 164        sector_t block_in_file;
 165        sector_t last_block;
 166        sector_t last_block_in_file;
 167        sector_t blocks[MAX_BUF_PER_PAGE];
 168        unsigned page_block;
 169        unsigned first_hole = blocks_per_page;
 170        struct block_device *bdev = NULL;
 171        int length;
 172        int fully_mapped = 1;
 173        int op_flags;
 174        unsigned nblocks;
 175        unsigned relative_block;
 176        gfp_t gfp;
 177
 178        if (args->is_readahead) {
 179                op_flags = REQ_RAHEAD;
 180                gfp = readahead_gfp_mask(page->mapping);
 181        } else {
 182                op_flags = 0;
 183                gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 184        }
 185
 186        if (page_has_buffers(page))
 187                goto confused;
 188
 189        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 190        last_block = block_in_file + args->nr_pages * blocks_per_page;
 191        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 192        if (last_block > last_block_in_file)
 193                last_block = last_block_in_file;
 194        page_block = 0;
 195
 196        /*
 197         * Map blocks using the result from the previous get_blocks call first.
 198         */
 199        nblocks = map_bh->b_size >> blkbits;
 200        if (buffer_mapped(map_bh) &&
 201                        block_in_file > args->first_logical_block &&
 202                        block_in_file < (args->first_logical_block + nblocks)) {
 203                unsigned map_offset = block_in_file - args->first_logical_block;
 204                unsigned last = nblocks - map_offset;
 205
 206                for (relative_block = 0; ; relative_block++) {
 207                        if (relative_block == last) {
 208                                clear_buffer_mapped(map_bh);
 209                                break;
 210                        }
 211                        if (page_block == blocks_per_page)
 212                                break;
 213                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 214                                                relative_block;
 215                        page_block++;
 216                        block_in_file++;
 217                }
 218                bdev = map_bh->b_bdev;
 219        }
 220
 221        /*
 222         * Then do more get_blocks calls until we are done with this page.
 223         */
 224        map_bh->b_page = page;
 225        while (page_block < blocks_per_page) {
 226                map_bh->b_state = 0;
 227                map_bh->b_size = 0;
 228
 229                if (block_in_file < last_block) {
 230                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 231                        if (args->get_block(inode, block_in_file, map_bh, 0))
 232                                goto confused;
 233                        args->first_logical_block = block_in_file;
 234                }
 235
 236                if (!buffer_mapped(map_bh)) {
 237                        fully_mapped = 0;
 238                        if (first_hole == blocks_per_page)
 239                                first_hole = page_block;
 240                        page_block++;
 241                        block_in_file++;
 242                        continue;
 243                }
 244
 245                /* some filesystems will copy data into the page during
 246                 * the get_block call, in which case we don't want to
 247                 * read it again.  map_buffer_to_page copies the data
 248                 * we just collected from get_block into the page's buffers
 249                 * so readpage doesn't have to repeat the get_block call
 250                 */
 251                if (buffer_uptodate(map_bh)) {
 252                        map_buffer_to_page(page, map_bh, page_block);
 253                        goto confused;
 254                }
 255        
 256                if (first_hole != blocks_per_page)
 257                        goto confused;          /* hole -> non-hole */
 258
 259                /* Contiguous blocks? */
 260                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 261                        goto confused;
 262                nblocks = map_bh->b_size >> blkbits;
 263                for (relative_block = 0; ; relative_block++) {
 264                        if (relative_block == nblocks) {
 265                                clear_buffer_mapped(map_bh);
 266                                break;
 267                        } else if (page_block == blocks_per_page)
 268                                break;
 269                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 270                        page_block++;
 271                        block_in_file++;
 272                }
 273                bdev = map_bh->b_bdev;
 274        }
 275
 276        if (first_hole != blocks_per_page) {
 277                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 278                if (first_hole == 0) {
 279                        SetPageUptodate(page);
 280                        unlock_page(page);
 281                        goto out;
 282                }
 283        } else if (fully_mapped) {
 284                SetPageMappedToDisk(page);
 285        }
 286
 287        if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
 288            cleancache_get_page(page) == 0) {
 289                SetPageUptodate(page);
 290                goto confused;
 291        }
 292
 293        /*
 294         * This page will go to BIO.  Do we need to send this BIO off first?
 295         */
 296        if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
 297                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 298
 299alloc_new:
 300        if (args->bio == NULL) {
 301                if (first_hole == blocks_per_page) {
 302                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 303                                                                page))
 304                                goto out;
 305                }
 306                args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 307                                        min_t(int, args->nr_pages,
 308                                              BIO_MAX_PAGES),
 309                                        gfp);
 310                if (args->bio == NULL)
 311                        goto confused;
 312        }
 313
 314        length = first_hole << blkbits;
 315        if (bio_add_page(args->bio, page, length, 0) < length) {
 316                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 317                goto alloc_new;
 318        }
 319
 320        relative_block = block_in_file - args->first_logical_block;
 321        nblocks = map_bh->b_size >> blkbits;
 322        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 323            (first_hole != blocks_per_page))
 324                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 325        else
 326                args->last_block_in_bio = blocks[blocks_per_page - 1];
 327out:
 328        return args->bio;
 329
 330confused:
 331        if (args->bio)
 332                args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
 333        if (!PageUptodate(page))
 334                block_read_full_page(page, args->get_block);
 335        else
 336                unlock_page(page);
 337        goto out;
 338}
 339
 340/**
 341 * mpage_readpages - populate an address space with some pages & start reads against them
 342 * @mapping: the address_space
 343 * @pages: The address of a list_head which contains the target pages.  These
 344 *   pages have their ->index populated and are otherwise uninitialised.
 345 *   The page at @pages->prev has the lowest file offset, and reads should be
 346 *   issued in @pages->prev to @pages->next order.
 347 * @nr_pages: The number of pages at *@pages
 348 * @get_block: The filesystem's block mapper function.
 349 *
 350 * This function walks the pages and the blocks within each page, building and
 351 * emitting large BIOs.
 352 *
 353 * If anything unusual happens, such as:
 354 *
 355 * - encountering a page which has buffers
 356 * - encountering a page which has a non-hole after a hole
 357 * - encountering a page with non-contiguous blocks
 358 *
 359 * then this code just gives up and calls the buffer_head-based read function.
 360 * It does handle a page which has holes at the end - that is a common case:
 361 * the end-of-file on blocksize < PAGE_SIZE setups.
 362 *
 363 * BH_Boundary explanation:
 364 *
 365 * There is a problem.  The mpage read code assembles several pages, gets all
 366 * their disk mappings, and then submits them all.  That's fine, but obtaining
 367 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 368 *
 369 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 370 * submitted in the following order:
 371 *
 372 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 373 *
 374 * because the indirect block has to be read to get the mappings of blocks
 375 * 13,14,15,16.  Obviously, this impacts performance.
 376 *
 377 * So what we do it to allow the filesystem's get_block() function to set
 378 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 379 * after this one will require I/O against a block which is probably close to
 380 * this one.  So you should push what I/O you have currently accumulated.
 381 *
 382 * This all causes the disk requests to be issued in the correct order.
 383 */
 384int
 385mpage_readpages(struct address_space *mapping, struct list_head *pages,
 386                                unsigned nr_pages, get_block_t get_block)
 387{
 388        struct mpage_readpage_args args = {
 389                .get_block = get_block,
 390                .is_readahead = true,
 391        };
 392        unsigned page_idx;
 393
 394        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 395                struct page *page = lru_to_page(pages);
 396
 397                prefetchw(&page->flags);
 398                list_del(&page->lru);
 399                if (!add_to_page_cache_lru(page, mapping,
 400                                        page->index,
 401                                        readahead_gfp_mask(mapping))) {
 402                        args.page = page;
 403                        args.nr_pages = nr_pages - page_idx;
 404                        args.bio = do_mpage_readpage(&args);
 405                }
 406                put_page(page);
 407        }
 408        BUG_ON(!list_empty(pages));
 409        if (args.bio)
 410                mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
 411        return 0;
 412}
 413EXPORT_SYMBOL(mpage_readpages);
 414
 415/*
 416 * This isn't called much at all
 417 */
 418int mpage_readpage(struct page *page, get_block_t get_block)
 419{
 420        struct mpage_readpage_args args = {
 421                .page = page,
 422                .nr_pages = 1,
 423                .get_block = get_block,
 424        };
 425
 426        args.bio = do_mpage_readpage(&args);
 427        if (args.bio)
 428                mpage_bio_submit(REQ_OP_READ, 0, args.bio);
 429        return 0;
 430}
 431EXPORT_SYMBOL(mpage_readpage);
 432
 433/*
 434 * Writing is not so simple.
 435 *
 436 * If the page has buffers then they will be used for obtaining the disk
 437 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 438 * special case for pages which are unmapped at the end: end-of-file.
 439 *
 440 * If the page has no buffers (preferred) then the page is mapped here.
 441 *
 442 * If all blocks are found to be contiguous then the page can go into the
 443 * BIO.  Otherwise fall back to the mapping's writepage().
 444 * 
 445 * FIXME: This code wants an estimate of how many pages are still to be
 446 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 447 * just allocate full-size (16-page) BIOs.
 448 */
 449
 450struct mpage_data {
 451        struct bio *bio;
 452        sector_t last_block_in_bio;
 453        get_block_t *get_block;
 454        unsigned use_writepage;
 455};
 456
 457/*
 458 * We have our BIO, so we can now mark the buffers clean.  Make
 459 * sure to only clean buffers which we know we'll be writing.
 460 */
 461static void clean_buffers(struct page *page, unsigned first_unmapped)
 462{
 463        unsigned buffer_counter = 0;
 464        struct buffer_head *bh, *head;
 465        if (!page_has_buffers(page))
 466                return;
 467        head = page_buffers(page);
 468        bh = head;
 469
 470        do {
 471                if (buffer_counter++ == first_unmapped)
 472                        break;
 473                clear_buffer_dirty(bh);
 474                bh = bh->b_this_page;
 475        } while (bh != head);
 476
 477        /*
 478         * we cannot drop the bh if the page is not uptodate or a concurrent
 479         * readpage would fail to serialize with the bh and it would read from
 480         * disk before we reach the platter.
 481         */
 482        if (buffer_heads_over_limit && PageUptodate(page))
 483                try_to_free_buffers(page);
 484}
 485
 486/*
 487 * For situations where we want to clean all buffers attached to a page.
 488 * We don't need to calculate how many buffers are attached to the page,
 489 * we just need to specify a number larger than the maximum number of buffers.
 490 */
 491void clean_page_buffers(struct page *page)
 492{
 493        clean_buffers(page, ~0U);
 494}
 495
 496static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 497                      void *data)
 498{
 499        struct mpage_data *mpd = data;
 500        struct bio *bio = mpd->bio;
 501        struct address_space *mapping = page->mapping;
 502        struct inode *inode = page->mapping->host;
 503        const unsigned blkbits = inode->i_blkbits;
 504        unsigned long end_index;
 505        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 506        sector_t last_block;
 507        sector_t block_in_file;
 508        sector_t blocks[MAX_BUF_PER_PAGE];
 509        unsigned page_block;
 510        unsigned first_unmapped = blocks_per_page;
 511        struct block_device *bdev = NULL;
 512        int boundary = 0;
 513        sector_t boundary_block = 0;
 514        struct block_device *boundary_bdev = NULL;
 515        int length;
 516        struct buffer_head map_bh;
 517        loff_t i_size = i_size_read(inode);
 518        int ret = 0;
 519        int op_flags = wbc_to_write_flags(wbc);
 520
 521        if (page_has_buffers(page)) {
 522                struct buffer_head *head = page_buffers(page);
 523                struct buffer_head *bh = head;
 524
 525                /* If they're all mapped and dirty, do it */
 526                page_block = 0;
 527                do {
 528                        BUG_ON(buffer_locked(bh));
 529                        if (!buffer_mapped(bh)) {
 530                                /*
 531                                 * unmapped dirty buffers are created by
 532                                 * __set_page_dirty_buffers -> mmapped data
 533                                 */
 534                                if (buffer_dirty(bh))
 535                                        goto confused;
 536                                if (first_unmapped == blocks_per_page)
 537                                        first_unmapped = page_block;
 538                                continue;
 539                        }
 540
 541                        if (first_unmapped != blocks_per_page)
 542                                goto confused;  /* hole -> non-hole */
 543
 544                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 545                                goto confused;
 546                        if (page_block) {
 547                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 548                                        goto confused;
 549                        }
 550                        blocks[page_block++] = bh->b_blocknr;
 551                        boundary = buffer_boundary(bh);
 552                        if (boundary) {
 553                                boundary_block = bh->b_blocknr;
 554                                boundary_bdev = bh->b_bdev;
 555                        }
 556                        bdev = bh->b_bdev;
 557                } while ((bh = bh->b_this_page) != head);
 558
 559                if (first_unmapped)
 560                        goto page_is_mapped;
 561
 562                /*
 563                 * Page has buffers, but they are all unmapped. The page was
 564                 * created by pagein or read over a hole which was handled by
 565                 * block_read_full_page().  If this address_space is also
 566                 * using mpage_readpages then this can rarely happen.
 567                 */
 568                goto confused;
 569        }
 570
 571        /*
 572         * The page has no buffers: map it to disk
 573         */
 574        BUG_ON(!PageUptodate(page));
 575        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 576        last_block = (i_size - 1) >> blkbits;
 577        map_bh.b_page = page;
 578        for (page_block = 0; page_block < blocks_per_page; ) {
 579
 580                map_bh.b_state = 0;
 581                map_bh.b_size = 1 << blkbits;
 582                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 583                        goto confused;
 584                if (buffer_new(&map_bh))
 585                        clean_bdev_bh_alias(&map_bh);
 586                if (buffer_boundary(&map_bh)) {
 587                        boundary_block = map_bh.b_blocknr;
 588                        boundary_bdev = map_bh.b_bdev;
 589                }
 590                if (page_block) {
 591                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 592                                goto confused;
 593                }
 594                blocks[page_block++] = map_bh.b_blocknr;
 595                boundary = buffer_boundary(&map_bh);
 596                bdev = map_bh.b_bdev;
 597                if (block_in_file == last_block)
 598                        break;
 599                block_in_file++;
 600        }
 601        BUG_ON(page_block == 0);
 602
 603        first_unmapped = page_block;
 604
 605page_is_mapped:
 606        end_index = i_size >> PAGE_SHIFT;
 607        if (page->index >= end_index) {
 608                /*
 609                 * The page straddles i_size.  It must be zeroed out on each
 610                 * and every writepage invocation because it may be mmapped.
 611                 * "A file is mapped in multiples of the page size.  For a file
 612                 * that is not a multiple of the page size, the remaining memory
 613                 * is zeroed when mapped, and writes to that region are not
 614                 * written out to the file."
 615                 */
 616                unsigned offset = i_size & (PAGE_SIZE - 1);
 617
 618                if (page->index > end_index || !offset)
 619                        goto confused;
 620                zero_user_segment(page, offset, PAGE_SIZE);
 621        }
 622
 623        /*
 624         * This page will go to BIO.  Do we need to send this BIO off first?
 625         */
 626        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 627                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 628
 629alloc_new:
 630        if (bio == NULL) {
 631                if (first_unmapped == blocks_per_page) {
 632                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 633                                                                page, wbc))
 634                                goto out;
 635                }
 636                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 637                                BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
 638                if (bio == NULL)
 639                        goto confused;
 640
 641                wbc_init_bio(wbc, bio);
 642                bio->bi_write_hint = inode->i_write_hint;
 643        }
 644
 645        /*
 646         * Must try to add the page before marking the buffer clean or
 647         * the confused fail path above (OOM) will be very confused when
 648         * it finds all bh marked clean (i.e. it will not write anything)
 649         */
 650        wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
 651        length = first_unmapped << blkbits;
 652        if (bio_add_page(bio, page, length, 0) < length) {
 653                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 654                goto alloc_new;
 655        }
 656
 657        clean_buffers(page, first_unmapped);
 658
 659        BUG_ON(PageWriteback(page));
 660        set_page_writeback(page);
 661        unlock_page(page);
 662        if (boundary || (first_unmapped != blocks_per_page)) {
 663                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 664                if (boundary_block) {
 665                        write_boundary_block(boundary_bdev,
 666                                        boundary_block, 1 << blkbits);
 667                }
 668        } else {
 669                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 670        }
 671        goto out;
 672
 673confused:
 674        if (bio)
 675                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 676
 677        if (mpd->use_writepage) {
 678                ret = mapping->a_ops->writepage(page, wbc);
 679        } else {
 680                ret = -EAGAIN;
 681                goto out;
 682        }
 683        /*
 684         * The caller has a ref on the inode, so *mapping is stable
 685         */
 686        mapping_set_error(mapping, ret);
 687out:
 688        mpd->bio = bio;
 689        return ret;
 690}
 691
 692/**
 693 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 694 * @mapping: address space structure to write
 695 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 696 * @get_block: the filesystem's block mapper function.
 697 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 698 *             direct-to-BIO.
 699 *
 700 * This is a library function, which implements the writepages()
 701 * address_space_operation.
 702 *
 703 * If a page is already under I/O, generic_writepages() skips it, even
 704 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 705 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 706 * and msync() need to guarantee that all the data which was dirty at the time
 707 * the call was made get new I/O started against them.  If wbc->sync_mode is
 708 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 709 * existing IO to complete.
 710 */
 711int
 712mpage_writepages(struct address_space *mapping,
 713                struct writeback_control *wbc, get_block_t get_block)
 714{
 715        struct blk_plug plug;
 716        int ret;
 717
 718        blk_start_plug(&plug);
 719
 720        if (!get_block)
 721                ret = generic_writepages(mapping, wbc);
 722        else {
 723                struct mpage_data mpd = {
 724                        .bio = NULL,
 725                        .last_block_in_bio = 0,
 726                        .get_block = get_block,
 727                        .use_writepage = 1,
 728                };
 729
 730                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 731                if (mpd.bio) {
 732                        int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 733                                  REQ_SYNC : 0);
 734                        mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 735                }
 736        }
 737        blk_finish_plug(&plug);
 738        return ret;
 739}
 740EXPORT_SYMBOL(mpage_writepages);
 741
 742int mpage_writepage(struct page *page, get_block_t get_block,
 743        struct writeback_control *wbc)
 744{
 745        struct mpage_data mpd = {
 746                .bio = NULL,
 747                .last_block_in_bio = 0,
 748                .get_block = get_block,
 749                .use_writepage = 0,
 750        };
 751        int ret = __mpage_writepage(page, wbc, &mpd);
 752        if (mpd.bio) {
 753                int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 754                          REQ_SYNC : 0);
 755                mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 756        }
 757        return ret;
 758}
 759EXPORT_SYMBOL(mpage_writepage);
 760