linux/fs/namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/namespace.c
   4 *
   5 * (C) Copyright Al Viro 2000, 2001
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/cred.h>
  19#include <linux/idr.h>
  20#include <linux/init.h>         /* init_rootfs */
  21#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  22#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  23#include <linux/file.h>
  24#include <linux/uaccess.h>
  25#include <linux/proc_ns.h>
  26#include <linux/magic.h>
  27#include <linux/memblock.h>
  28#include <linux/task_work.h>
  29#include <linux/sched/task.h>
  30#include <uapi/linux/mount.h>
  31#include <linux/fs_context.h>
  32#include <linux/shmem_fs.h>
  33
  34#include "pnode.h"
  35#include "internal.h"
  36
  37/* Maximum number of mounts in a mount namespace */
  38unsigned int sysctl_mount_max __read_mostly = 100000;
  39
  40static unsigned int m_hash_mask __read_mostly;
  41static unsigned int m_hash_shift __read_mostly;
  42static unsigned int mp_hash_mask __read_mostly;
  43static unsigned int mp_hash_shift __read_mostly;
  44
  45static __initdata unsigned long mhash_entries;
  46static int __init set_mhash_entries(char *str)
  47{
  48        if (!str)
  49                return 0;
  50        mhash_entries = simple_strtoul(str, &str, 0);
  51        return 1;
  52}
  53__setup("mhash_entries=", set_mhash_entries);
  54
  55static __initdata unsigned long mphash_entries;
  56static int __init set_mphash_entries(char *str)
  57{
  58        if (!str)
  59                return 0;
  60        mphash_entries = simple_strtoul(str, &str, 0);
  61        return 1;
  62}
  63__setup("mphash_entries=", set_mphash_entries);
  64
  65static u64 event;
  66static DEFINE_IDA(mnt_id_ida);
  67static DEFINE_IDA(mnt_group_ida);
  68
  69static struct hlist_head *mount_hashtable __read_mostly;
  70static struct hlist_head *mountpoint_hashtable __read_mostly;
  71static struct kmem_cache *mnt_cache __read_mostly;
  72static DECLARE_RWSEM(namespace_sem);
  73static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
  74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
  75
  76/* /sys/fs */
  77struct kobject *fs_kobj;
  78EXPORT_SYMBOL_GPL(fs_kobj);
  79
  80/*
  81 * vfsmount lock may be taken for read to prevent changes to the
  82 * vfsmount hash, ie. during mountpoint lookups or walking back
  83 * up the tree.
  84 *
  85 * It should be taken for write in all cases where the vfsmount
  86 * tree or hash is modified or when a vfsmount structure is modified.
  87 */
  88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  89
  90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  91{
  92        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  93        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  94        tmp = tmp + (tmp >> m_hash_shift);
  95        return &mount_hashtable[tmp & m_hash_mask];
  96}
  97
  98static inline struct hlist_head *mp_hash(struct dentry *dentry)
  99{
 100        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 101        tmp = tmp + (tmp >> mp_hash_shift);
 102        return &mountpoint_hashtable[tmp & mp_hash_mask];
 103}
 104
 105static int mnt_alloc_id(struct mount *mnt)
 106{
 107        int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 108
 109        if (res < 0)
 110                return res;
 111        mnt->mnt_id = res;
 112        return 0;
 113}
 114
 115static void mnt_free_id(struct mount *mnt)
 116{
 117        ida_free(&mnt_id_ida, mnt->mnt_id);
 118}
 119
 120/*
 121 * Allocate a new peer group ID
 122 */
 123static int mnt_alloc_group_id(struct mount *mnt)
 124{
 125        int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 126
 127        if (res < 0)
 128                return res;
 129        mnt->mnt_group_id = res;
 130        return 0;
 131}
 132
 133/*
 134 * Release a peer group ID
 135 */
 136void mnt_release_group_id(struct mount *mnt)
 137{
 138        ida_free(&mnt_group_ida, mnt->mnt_group_id);
 139        mnt->mnt_group_id = 0;
 140}
 141
 142/*
 143 * vfsmount lock must be held for read
 144 */
 145static inline void mnt_add_count(struct mount *mnt, int n)
 146{
 147#ifdef CONFIG_SMP
 148        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 149#else
 150        preempt_disable();
 151        mnt->mnt_count += n;
 152        preempt_enable();
 153#endif
 154}
 155
 156/*
 157 * vfsmount lock must be held for write
 158 */
 159unsigned int mnt_get_count(struct mount *mnt)
 160{
 161#ifdef CONFIG_SMP
 162        unsigned int count = 0;
 163        int cpu;
 164
 165        for_each_possible_cpu(cpu) {
 166                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 167        }
 168
 169        return count;
 170#else
 171        return mnt->mnt_count;
 172#endif
 173}
 174
 175static struct mount *alloc_vfsmnt(const char *name)
 176{
 177        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 178        if (mnt) {
 179                int err;
 180
 181                err = mnt_alloc_id(mnt);
 182                if (err)
 183                        goto out_free_cache;
 184
 185                if (name) {
 186                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 187                        if (!mnt->mnt_devname)
 188                                goto out_free_id;
 189                }
 190
 191#ifdef CONFIG_SMP
 192                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 193                if (!mnt->mnt_pcp)
 194                        goto out_free_devname;
 195
 196                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 197#else
 198                mnt->mnt_count = 1;
 199                mnt->mnt_writers = 0;
 200#endif
 201
 202                INIT_HLIST_NODE(&mnt->mnt_hash);
 203                INIT_LIST_HEAD(&mnt->mnt_child);
 204                INIT_LIST_HEAD(&mnt->mnt_mounts);
 205                INIT_LIST_HEAD(&mnt->mnt_list);
 206                INIT_LIST_HEAD(&mnt->mnt_expire);
 207                INIT_LIST_HEAD(&mnt->mnt_share);
 208                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 209                INIT_LIST_HEAD(&mnt->mnt_slave);
 210                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 211                INIT_LIST_HEAD(&mnt->mnt_umounting);
 212                INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 213        }
 214        return mnt;
 215
 216#ifdef CONFIG_SMP
 217out_free_devname:
 218        kfree_const(mnt->mnt_devname);
 219#endif
 220out_free_id:
 221        mnt_free_id(mnt);
 222out_free_cache:
 223        kmem_cache_free(mnt_cache, mnt);
 224        return NULL;
 225}
 226
 227/*
 228 * Most r/o checks on a fs are for operations that take
 229 * discrete amounts of time, like a write() or unlink().
 230 * We must keep track of when those operations start
 231 * (for permission checks) and when they end, so that
 232 * we can determine when writes are able to occur to
 233 * a filesystem.
 234 */
 235/*
 236 * __mnt_is_readonly: check whether a mount is read-only
 237 * @mnt: the mount to check for its write status
 238 *
 239 * This shouldn't be used directly ouside of the VFS.
 240 * It does not guarantee that the filesystem will stay
 241 * r/w, just that it is right *now*.  This can not and
 242 * should not be used in place of IS_RDONLY(inode).
 243 * mnt_want/drop_write() will _keep_ the filesystem
 244 * r/w.
 245 */
 246bool __mnt_is_readonly(struct vfsmount *mnt)
 247{
 248        return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 249}
 250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 251
 252static inline void mnt_inc_writers(struct mount *mnt)
 253{
 254#ifdef CONFIG_SMP
 255        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 256#else
 257        mnt->mnt_writers++;
 258#endif
 259}
 260
 261static inline void mnt_dec_writers(struct mount *mnt)
 262{
 263#ifdef CONFIG_SMP
 264        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 265#else
 266        mnt->mnt_writers--;
 267#endif
 268}
 269
 270static unsigned int mnt_get_writers(struct mount *mnt)
 271{
 272#ifdef CONFIG_SMP
 273        unsigned int count = 0;
 274        int cpu;
 275
 276        for_each_possible_cpu(cpu) {
 277                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 278        }
 279
 280        return count;
 281#else
 282        return mnt->mnt_writers;
 283#endif
 284}
 285
 286static int mnt_is_readonly(struct vfsmount *mnt)
 287{
 288        if (mnt->mnt_sb->s_readonly_remount)
 289                return 1;
 290        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 291        smp_rmb();
 292        return __mnt_is_readonly(mnt);
 293}
 294
 295/*
 296 * Most r/o & frozen checks on a fs are for operations that take discrete
 297 * amounts of time, like a write() or unlink().  We must keep track of when
 298 * those operations start (for permission checks) and when they end, so that we
 299 * can determine when writes are able to occur to a filesystem.
 300 */
 301/**
 302 * __mnt_want_write - get write access to a mount without freeze protection
 303 * @m: the mount on which to take a write
 304 *
 305 * This tells the low-level filesystem that a write is about to be performed to
 306 * it, and makes sure that writes are allowed (mnt it read-write) before
 307 * returning success. This operation does not protect against filesystem being
 308 * frozen. When the write operation is finished, __mnt_drop_write() must be
 309 * called. This is effectively a refcount.
 310 */
 311int __mnt_want_write(struct vfsmount *m)
 312{
 313        struct mount *mnt = real_mount(m);
 314        int ret = 0;
 315
 316        preempt_disable();
 317        mnt_inc_writers(mnt);
 318        /*
 319         * The store to mnt_inc_writers must be visible before we pass
 320         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 321         * incremented count after it has set MNT_WRITE_HOLD.
 322         */
 323        smp_mb();
 324        while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 325                cpu_relax();
 326        /*
 327         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 328         * be set to match its requirements. So we must not load that until
 329         * MNT_WRITE_HOLD is cleared.
 330         */
 331        smp_rmb();
 332        if (mnt_is_readonly(m)) {
 333                mnt_dec_writers(mnt);
 334                ret = -EROFS;
 335        }
 336        preempt_enable();
 337
 338        return ret;
 339}
 340
 341/**
 342 * mnt_want_write - get write access to a mount
 343 * @m: the mount on which to take a write
 344 *
 345 * This tells the low-level filesystem that a write is about to be performed to
 346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 347 * is not frozen) before returning success.  When the write operation is
 348 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 349 */
 350int mnt_want_write(struct vfsmount *m)
 351{
 352        int ret;
 353
 354        sb_start_write(m->mnt_sb);
 355        ret = __mnt_want_write(m);
 356        if (ret)
 357                sb_end_write(m->mnt_sb);
 358        return ret;
 359}
 360EXPORT_SYMBOL_GPL(mnt_want_write);
 361
 362/**
 363 * mnt_clone_write - get write access to a mount
 364 * @mnt: the mount on which to take a write
 365 *
 366 * This is effectively like mnt_want_write, except
 367 * it must only be used to take an extra write reference
 368 * on a mountpoint that we already know has a write reference
 369 * on it. This allows some optimisation.
 370 *
 371 * After finished, mnt_drop_write must be called as usual to
 372 * drop the reference.
 373 */
 374int mnt_clone_write(struct vfsmount *mnt)
 375{
 376        /* superblock may be r/o */
 377        if (__mnt_is_readonly(mnt))
 378                return -EROFS;
 379        preempt_disable();
 380        mnt_inc_writers(real_mount(mnt));
 381        preempt_enable();
 382        return 0;
 383}
 384EXPORT_SYMBOL_GPL(mnt_clone_write);
 385
 386/**
 387 * __mnt_want_write_file - get write access to a file's mount
 388 * @file: the file who's mount on which to take a write
 389 *
 390 * This is like __mnt_want_write, but it takes a file and can
 391 * do some optimisations if the file is open for write already
 392 */
 393int __mnt_want_write_file(struct file *file)
 394{
 395        if (!(file->f_mode & FMODE_WRITER))
 396                return __mnt_want_write(file->f_path.mnt);
 397        else
 398                return mnt_clone_write(file->f_path.mnt);
 399}
 400
 401/**
 402 * mnt_want_write_file - get write access to a file's mount
 403 * @file: the file who's mount on which to take a write
 404 *
 405 * This is like mnt_want_write, but it takes a file and can
 406 * do some optimisations if the file is open for write already
 407 */
 408int mnt_want_write_file(struct file *file)
 409{
 410        int ret;
 411
 412        sb_start_write(file_inode(file)->i_sb);
 413        ret = __mnt_want_write_file(file);
 414        if (ret)
 415                sb_end_write(file_inode(file)->i_sb);
 416        return ret;
 417}
 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
 419
 420/**
 421 * __mnt_drop_write - give up write access to a mount
 422 * @mnt: the mount on which to give up write access
 423 *
 424 * Tells the low-level filesystem that we are done
 425 * performing writes to it.  Must be matched with
 426 * __mnt_want_write() call above.
 427 */
 428void __mnt_drop_write(struct vfsmount *mnt)
 429{
 430        preempt_disable();
 431        mnt_dec_writers(real_mount(mnt));
 432        preempt_enable();
 433}
 434
 435/**
 436 * mnt_drop_write - give up write access to a mount
 437 * @mnt: the mount on which to give up write access
 438 *
 439 * Tells the low-level filesystem that we are done performing writes to it and
 440 * also allows filesystem to be frozen again.  Must be matched with
 441 * mnt_want_write() call above.
 442 */
 443void mnt_drop_write(struct vfsmount *mnt)
 444{
 445        __mnt_drop_write(mnt);
 446        sb_end_write(mnt->mnt_sb);
 447}
 448EXPORT_SYMBOL_GPL(mnt_drop_write);
 449
 450void __mnt_drop_write_file(struct file *file)
 451{
 452        __mnt_drop_write(file->f_path.mnt);
 453}
 454
 455void mnt_drop_write_file(struct file *file)
 456{
 457        __mnt_drop_write_file(file);
 458        sb_end_write(file_inode(file)->i_sb);
 459}
 460EXPORT_SYMBOL(mnt_drop_write_file);
 461
 462static int mnt_make_readonly(struct mount *mnt)
 463{
 464        int ret = 0;
 465
 466        lock_mount_hash();
 467        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 468        /*
 469         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 470         * should be visible before we do.
 471         */
 472        smp_mb();
 473
 474        /*
 475         * With writers on hold, if this value is zero, then there are
 476         * definitely no active writers (although held writers may subsequently
 477         * increment the count, they'll have to wait, and decrement it after
 478         * seeing MNT_READONLY).
 479         *
 480         * It is OK to have counter incremented on one CPU and decremented on
 481         * another: the sum will add up correctly. The danger would be when we
 482         * sum up each counter, if we read a counter before it is incremented,
 483         * but then read another CPU's count which it has been subsequently
 484         * decremented from -- we would see more decrements than we should.
 485         * MNT_WRITE_HOLD protects against this scenario, because
 486         * mnt_want_write first increments count, then smp_mb, then spins on
 487         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 488         * we're counting up here.
 489         */
 490        if (mnt_get_writers(mnt) > 0)
 491                ret = -EBUSY;
 492        else
 493                mnt->mnt.mnt_flags |= MNT_READONLY;
 494        /*
 495         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 496         * that become unheld will see MNT_READONLY.
 497         */
 498        smp_wmb();
 499        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 500        unlock_mount_hash();
 501        return ret;
 502}
 503
 504static int __mnt_unmake_readonly(struct mount *mnt)
 505{
 506        lock_mount_hash();
 507        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 508        unlock_mount_hash();
 509        return 0;
 510}
 511
 512int sb_prepare_remount_readonly(struct super_block *sb)
 513{
 514        struct mount *mnt;
 515        int err = 0;
 516
 517        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 518        if (atomic_long_read(&sb->s_remove_count))
 519                return -EBUSY;
 520
 521        lock_mount_hash();
 522        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 523                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 524                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 525                        smp_mb();
 526                        if (mnt_get_writers(mnt) > 0) {
 527                                err = -EBUSY;
 528                                break;
 529                        }
 530                }
 531        }
 532        if (!err && atomic_long_read(&sb->s_remove_count))
 533                err = -EBUSY;
 534
 535        if (!err) {
 536                sb->s_readonly_remount = 1;
 537                smp_wmb();
 538        }
 539        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 540                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 541                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 542        }
 543        unlock_mount_hash();
 544
 545        return err;
 546}
 547
 548static void free_vfsmnt(struct mount *mnt)
 549{
 550        kfree_const(mnt->mnt_devname);
 551#ifdef CONFIG_SMP
 552        free_percpu(mnt->mnt_pcp);
 553#endif
 554        kmem_cache_free(mnt_cache, mnt);
 555}
 556
 557static void delayed_free_vfsmnt(struct rcu_head *head)
 558{
 559        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 560}
 561
 562/* call under rcu_read_lock */
 563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 564{
 565        struct mount *mnt;
 566        if (read_seqretry(&mount_lock, seq))
 567                return 1;
 568        if (bastard == NULL)
 569                return 0;
 570        mnt = real_mount(bastard);
 571        mnt_add_count(mnt, 1);
 572        smp_mb();                       // see mntput_no_expire()
 573        if (likely(!read_seqretry(&mount_lock, seq)))
 574                return 0;
 575        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 576                mnt_add_count(mnt, -1);
 577                return 1;
 578        }
 579        lock_mount_hash();
 580        if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 581                mnt_add_count(mnt, -1);
 582                unlock_mount_hash();
 583                return 1;
 584        }
 585        unlock_mount_hash();
 586        /* caller will mntput() */
 587        return -1;
 588}
 589
 590/* call under rcu_read_lock */
 591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 592{
 593        int res = __legitimize_mnt(bastard, seq);
 594        if (likely(!res))
 595                return true;
 596        if (unlikely(res < 0)) {
 597                rcu_read_unlock();
 598                mntput(bastard);
 599                rcu_read_lock();
 600        }
 601        return false;
 602}
 603
 604/*
 605 * find the first mount at @dentry on vfsmount @mnt.
 606 * call under rcu_read_lock()
 607 */
 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 609{
 610        struct hlist_head *head = m_hash(mnt, dentry);
 611        struct mount *p;
 612
 613        hlist_for_each_entry_rcu(p, head, mnt_hash)
 614                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 615                        return p;
 616        return NULL;
 617}
 618
 619/*
 620 * lookup_mnt - Return the first child mount mounted at path
 621 *
 622 * "First" means first mounted chronologically.  If you create the
 623 * following mounts:
 624 *
 625 * mount /dev/sda1 /mnt
 626 * mount /dev/sda2 /mnt
 627 * mount /dev/sda3 /mnt
 628 *
 629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 630 * return successively the root dentry and vfsmount of /dev/sda1, then
 631 * /dev/sda2, then /dev/sda3, then NULL.
 632 *
 633 * lookup_mnt takes a reference to the found vfsmount.
 634 */
 635struct vfsmount *lookup_mnt(const struct path *path)
 636{
 637        struct mount *child_mnt;
 638        struct vfsmount *m;
 639        unsigned seq;
 640
 641        rcu_read_lock();
 642        do {
 643                seq = read_seqbegin(&mount_lock);
 644                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 645                m = child_mnt ? &child_mnt->mnt : NULL;
 646        } while (!legitimize_mnt(m, seq));
 647        rcu_read_unlock();
 648        return m;
 649}
 650
 651/*
 652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 653 *                         current mount namespace.
 654 *
 655 * The common case is dentries are not mountpoints at all and that
 656 * test is handled inline.  For the slow case when we are actually
 657 * dealing with a mountpoint of some kind, walk through all of the
 658 * mounts in the current mount namespace and test to see if the dentry
 659 * is a mountpoint.
 660 *
 661 * The mount_hashtable is not usable in the context because we
 662 * need to identify all mounts that may be in the current mount
 663 * namespace not just a mount that happens to have some specified
 664 * parent mount.
 665 */
 666bool __is_local_mountpoint(struct dentry *dentry)
 667{
 668        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 669        struct mount *mnt;
 670        bool is_covered = false;
 671
 672        if (!d_mountpoint(dentry))
 673                goto out;
 674
 675        down_read(&namespace_sem);
 676        list_for_each_entry(mnt, &ns->list, mnt_list) {
 677                is_covered = (mnt->mnt_mountpoint == dentry);
 678                if (is_covered)
 679                        break;
 680        }
 681        up_read(&namespace_sem);
 682out:
 683        return is_covered;
 684}
 685
 686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 687{
 688        struct hlist_head *chain = mp_hash(dentry);
 689        struct mountpoint *mp;
 690
 691        hlist_for_each_entry(mp, chain, m_hash) {
 692                if (mp->m_dentry == dentry) {
 693                        mp->m_count++;
 694                        return mp;
 695                }
 696        }
 697        return NULL;
 698}
 699
 700static struct mountpoint *get_mountpoint(struct dentry *dentry)
 701{
 702        struct mountpoint *mp, *new = NULL;
 703        int ret;
 704
 705        if (d_mountpoint(dentry)) {
 706                /* might be worth a WARN_ON() */
 707                if (d_unlinked(dentry))
 708                        return ERR_PTR(-ENOENT);
 709mountpoint:
 710                read_seqlock_excl(&mount_lock);
 711                mp = lookup_mountpoint(dentry);
 712                read_sequnlock_excl(&mount_lock);
 713                if (mp)
 714                        goto done;
 715        }
 716
 717        if (!new)
 718                new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 719        if (!new)
 720                return ERR_PTR(-ENOMEM);
 721
 722
 723        /* Exactly one processes may set d_mounted */
 724        ret = d_set_mounted(dentry);
 725
 726        /* Someone else set d_mounted? */
 727        if (ret == -EBUSY)
 728                goto mountpoint;
 729
 730        /* The dentry is not available as a mountpoint? */
 731        mp = ERR_PTR(ret);
 732        if (ret)
 733                goto done;
 734
 735        /* Add the new mountpoint to the hash table */
 736        read_seqlock_excl(&mount_lock);
 737        new->m_dentry = dget(dentry);
 738        new->m_count = 1;
 739        hlist_add_head(&new->m_hash, mp_hash(dentry));
 740        INIT_HLIST_HEAD(&new->m_list);
 741        read_sequnlock_excl(&mount_lock);
 742
 743        mp = new;
 744        new = NULL;
 745done:
 746        kfree(new);
 747        return mp;
 748}
 749
 750/*
 751 * vfsmount lock must be held.  Additionally, the caller is responsible
 752 * for serializing calls for given disposal list.
 753 */
 754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 755{
 756        if (!--mp->m_count) {
 757                struct dentry *dentry = mp->m_dentry;
 758                BUG_ON(!hlist_empty(&mp->m_list));
 759                spin_lock(&dentry->d_lock);
 760                dentry->d_flags &= ~DCACHE_MOUNTED;
 761                spin_unlock(&dentry->d_lock);
 762                dput_to_list(dentry, list);
 763                hlist_del(&mp->m_hash);
 764                kfree(mp);
 765        }
 766}
 767
 768/* called with namespace_lock and vfsmount lock */
 769static void put_mountpoint(struct mountpoint *mp)
 770{
 771        __put_mountpoint(mp, &ex_mountpoints);
 772}
 773
 774static inline int check_mnt(struct mount *mnt)
 775{
 776        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 777}
 778
 779/*
 780 * vfsmount lock must be held for write
 781 */
 782static void touch_mnt_namespace(struct mnt_namespace *ns)
 783{
 784        if (ns) {
 785                ns->event = ++event;
 786                wake_up_interruptible(&ns->poll);
 787        }
 788}
 789
 790/*
 791 * vfsmount lock must be held for write
 792 */
 793static void __touch_mnt_namespace(struct mnt_namespace *ns)
 794{
 795        if (ns && ns->event != event) {
 796                ns->event = event;
 797                wake_up_interruptible(&ns->poll);
 798        }
 799}
 800
 801/*
 802 * vfsmount lock must be held for write
 803 */
 804static struct mountpoint *unhash_mnt(struct mount *mnt)
 805{
 806        struct mountpoint *mp;
 807        mnt->mnt_parent = mnt;
 808        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 809        list_del_init(&mnt->mnt_child);
 810        hlist_del_init_rcu(&mnt->mnt_hash);
 811        hlist_del_init(&mnt->mnt_mp_list);
 812        mp = mnt->mnt_mp;
 813        mnt->mnt_mp = NULL;
 814        return mp;
 815}
 816
 817/*
 818 * vfsmount lock must be held for write
 819 */
 820static void umount_mnt(struct mount *mnt)
 821{
 822        put_mountpoint(unhash_mnt(mnt));
 823}
 824
 825/*
 826 * vfsmount lock must be held for write
 827 */
 828void mnt_set_mountpoint(struct mount *mnt,
 829                        struct mountpoint *mp,
 830                        struct mount *child_mnt)
 831{
 832        mp->m_count++;
 833        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 834        child_mnt->mnt_mountpoint = mp->m_dentry;
 835        child_mnt->mnt_parent = mnt;
 836        child_mnt->mnt_mp = mp;
 837        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 838}
 839
 840static void __attach_mnt(struct mount *mnt, struct mount *parent)
 841{
 842        hlist_add_head_rcu(&mnt->mnt_hash,
 843                           m_hash(&parent->mnt, mnt->mnt_mountpoint));
 844        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 845}
 846
 847/*
 848 * vfsmount lock must be held for write
 849 */
 850static void attach_mnt(struct mount *mnt,
 851                        struct mount *parent,
 852                        struct mountpoint *mp)
 853{
 854        mnt_set_mountpoint(parent, mp, mnt);
 855        __attach_mnt(mnt, parent);
 856}
 857
 858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 859{
 860        struct mountpoint *old_mp = mnt->mnt_mp;
 861        struct mount *old_parent = mnt->mnt_parent;
 862
 863        list_del_init(&mnt->mnt_child);
 864        hlist_del_init(&mnt->mnt_mp_list);
 865        hlist_del_init_rcu(&mnt->mnt_hash);
 866
 867        attach_mnt(mnt, parent, mp);
 868
 869        put_mountpoint(old_mp);
 870        mnt_add_count(old_parent, -1);
 871}
 872
 873/*
 874 * vfsmount lock must be held for write
 875 */
 876static void commit_tree(struct mount *mnt)
 877{
 878        struct mount *parent = mnt->mnt_parent;
 879        struct mount *m;
 880        LIST_HEAD(head);
 881        struct mnt_namespace *n = parent->mnt_ns;
 882
 883        BUG_ON(parent == mnt);
 884
 885        list_add_tail(&head, &mnt->mnt_list);
 886        list_for_each_entry(m, &head, mnt_list)
 887                m->mnt_ns = n;
 888
 889        list_splice(&head, n->list.prev);
 890
 891        n->mounts += n->pending_mounts;
 892        n->pending_mounts = 0;
 893
 894        __attach_mnt(mnt, parent);
 895        touch_mnt_namespace(n);
 896}
 897
 898static struct mount *next_mnt(struct mount *p, struct mount *root)
 899{
 900        struct list_head *next = p->mnt_mounts.next;
 901        if (next == &p->mnt_mounts) {
 902                while (1) {
 903                        if (p == root)
 904                                return NULL;
 905                        next = p->mnt_child.next;
 906                        if (next != &p->mnt_parent->mnt_mounts)
 907                                break;
 908                        p = p->mnt_parent;
 909                }
 910        }
 911        return list_entry(next, struct mount, mnt_child);
 912}
 913
 914static struct mount *skip_mnt_tree(struct mount *p)
 915{
 916        struct list_head *prev = p->mnt_mounts.prev;
 917        while (prev != &p->mnt_mounts) {
 918                p = list_entry(prev, struct mount, mnt_child);
 919                prev = p->mnt_mounts.prev;
 920        }
 921        return p;
 922}
 923
 924/**
 925 * vfs_create_mount - Create a mount for a configured superblock
 926 * @fc: The configuration context with the superblock attached
 927 *
 928 * Create a mount to an already configured superblock.  If necessary, the
 929 * caller should invoke vfs_get_tree() before calling this.
 930 *
 931 * Note that this does not attach the mount to anything.
 932 */
 933struct vfsmount *vfs_create_mount(struct fs_context *fc)
 934{
 935        struct mount *mnt;
 936
 937        if (!fc->root)
 938                return ERR_PTR(-EINVAL);
 939
 940        mnt = alloc_vfsmnt(fc->source ?: "none");
 941        if (!mnt)
 942                return ERR_PTR(-ENOMEM);
 943
 944        if (fc->sb_flags & SB_KERNMOUNT)
 945                mnt->mnt.mnt_flags = MNT_INTERNAL;
 946
 947        atomic_inc(&fc->root->d_sb->s_active);
 948        mnt->mnt.mnt_sb         = fc->root->d_sb;
 949        mnt->mnt.mnt_root       = dget(fc->root);
 950        mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
 951        mnt->mnt_parent         = mnt;
 952
 953        lock_mount_hash();
 954        list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 955        unlock_mount_hash();
 956        return &mnt->mnt;
 957}
 958EXPORT_SYMBOL(vfs_create_mount);
 959
 960struct vfsmount *fc_mount(struct fs_context *fc)
 961{
 962        int err = vfs_get_tree(fc);
 963        if (!err) {
 964                up_write(&fc->root->d_sb->s_umount);
 965                return vfs_create_mount(fc);
 966        }
 967        return ERR_PTR(err);
 968}
 969EXPORT_SYMBOL(fc_mount);
 970
 971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 972                                int flags, const char *name,
 973                                void *data)
 974{
 975        struct fs_context *fc;
 976        struct vfsmount *mnt;
 977        int ret = 0;
 978
 979        if (!type)
 980                return ERR_PTR(-EINVAL);
 981
 982        fc = fs_context_for_mount(type, flags);
 983        if (IS_ERR(fc))
 984                return ERR_CAST(fc);
 985
 986        if (name)
 987                ret = vfs_parse_fs_string(fc, "source",
 988                                          name, strlen(name));
 989        if (!ret)
 990                ret = parse_monolithic_mount_data(fc, data);
 991        if (!ret)
 992                mnt = fc_mount(fc);
 993        else
 994                mnt = ERR_PTR(ret);
 995
 996        put_fs_context(fc);
 997        return mnt;
 998}
 999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003             const char *name, void *data)
1004{
1005        /* Until it is worked out how to pass the user namespace
1006         * through from the parent mount to the submount don't support
1007         * unprivileged mounts with submounts.
1008         */
1009        if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010                return ERR_PTR(-EPERM);
1011
1012        return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017                                        int flag)
1018{
1019        struct super_block *sb = old->mnt.mnt_sb;
1020        struct mount *mnt;
1021        int err;
1022
1023        mnt = alloc_vfsmnt(old->mnt_devname);
1024        if (!mnt)
1025                return ERR_PTR(-ENOMEM);
1026
1027        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028                mnt->mnt_group_id = 0; /* not a peer of original */
1029        else
1030                mnt->mnt_group_id = old->mnt_group_id;
1031
1032        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033                err = mnt_alloc_group_id(mnt);
1034                if (err)
1035                        goto out_free;
1036        }
1037
1038        mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039        mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041        atomic_inc(&sb->s_active);
1042        mnt->mnt.mnt_sb = sb;
1043        mnt->mnt.mnt_root = dget(root);
1044        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045        mnt->mnt_parent = mnt;
1046        lock_mount_hash();
1047        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048        unlock_mount_hash();
1049
1050        if ((flag & CL_SLAVE) ||
1051            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053                mnt->mnt_master = old;
1054                CLEAR_MNT_SHARED(mnt);
1055        } else if (!(flag & CL_PRIVATE)) {
1056                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057                        list_add(&mnt->mnt_share, &old->mnt_share);
1058                if (IS_MNT_SLAVE(old))
1059                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1060                mnt->mnt_master = old->mnt_master;
1061        } else {
1062                CLEAR_MNT_SHARED(mnt);
1063        }
1064        if (flag & CL_MAKE_SHARED)
1065                set_mnt_shared(mnt);
1066
1067        /* stick the duplicate mount on the same expiry list
1068         * as the original if that was on one */
1069        if (flag & CL_EXPIRE) {
1070                if (!list_empty(&old->mnt_expire))
1071                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1072        }
1073
1074        return mnt;
1075
1076 out_free:
1077        mnt_free_id(mnt);
1078        free_vfsmnt(mnt);
1079        return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084        struct hlist_node *p;
1085        struct mount *m;
1086        /*
1087         * The warning here probably indicates that somebody messed
1088         * up a mnt_want/drop_write() pair.  If this happens, the
1089         * filesystem was probably unable to make r/w->r/o transitions.
1090         * The locking used to deal with mnt_count decrement provides barriers,
1091         * so mnt_get_writers() below is safe.
1092         */
1093        WARN_ON(mnt_get_writers(mnt));
1094        if (unlikely(mnt->mnt_pins.first))
1095                mnt_pin_kill(mnt);
1096        hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097                hlist_del(&m->mnt_umount);
1098                mntput(&m->mnt);
1099        }
1100        fsnotify_vfsmount_delete(&mnt->mnt);
1101        dput(mnt->mnt.mnt_root);
1102        deactivate_super(mnt->mnt.mnt_sb);
1103        mnt_free_id(mnt);
1104        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116        struct mount *m, *t;
1117
1118        llist_for_each_entry_safe(m, t, node, mnt_llist)
1119                cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125        LIST_HEAD(list);
1126
1127        rcu_read_lock();
1128        if (likely(READ_ONCE(mnt->mnt_ns))) {
1129                /*
1130                 * Since we don't do lock_mount_hash() here,
1131                 * ->mnt_ns can change under us.  However, if it's
1132                 * non-NULL, then there's a reference that won't
1133                 * be dropped until after an RCU delay done after
1134                 * turning ->mnt_ns NULL.  So if we observe it
1135                 * non-NULL under rcu_read_lock(), the reference
1136                 * we are dropping is not the final one.
1137                 */
1138                mnt_add_count(mnt, -1);
1139                rcu_read_unlock();
1140                return;
1141        }
1142        lock_mount_hash();
1143        /*
1144         * make sure that if __legitimize_mnt() has not seen us grab
1145         * mount_lock, we'll see their refcount increment here.
1146         */
1147        smp_mb();
1148        mnt_add_count(mnt, -1);
1149        if (mnt_get_count(mnt)) {
1150                rcu_read_unlock();
1151                unlock_mount_hash();
1152                return;
1153        }
1154        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155                rcu_read_unlock();
1156                unlock_mount_hash();
1157                return;
1158        }
1159        mnt->mnt.mnt_flags |= MNT_DOOMED;
1160        rcu_read_unlock();
1161
1162        list_del(&mnt->mnt_instance);
1163
1164        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165                struct mount *p, *tmp;
1166                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1167                        __put_mountpoint(unhash_mnt(p), &list);
1168                        hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169                }
1170        }
1171        unlock_mount_hash();
1172        shrink_dentry_list(&list);
1173
1174        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175                struct task_struct *task = current;
1176                if (likely(!(task->flags & PF_KTHREAD))) {
1177                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1179                                return;
1180                }
1181                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182                        schedule_delayed_work(&delayed_mntput_work, 1);
1183                return;
1184        }
1185        cleanup_mnt(mnt);
1186}
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190        if (mnt) {
1191                struct mount *m = real_mount(mnt);
1192                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193                if (unlikely(m->mnt_expiry_mark))
1194                        m->mnt_expiry_mark = 0;
1195                mntput_no_expire(m);
1196        }
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202        if (mnt)
1203                mnt_add_count(real_mount(mnt), 1);
1204        return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 *                          namespace.
1210 *
1211 *  d_mountpoint() can only be used reliably to establish if a dentry is
1212 *  not mounted in any namespace and that common case is handled inline.
1213 *  d_mountpoint() isn't aware of the possibility there may be multiple
1214 *  mounts using a given dentry in a different namespace. This function
1215 *  checks if the passed in path is a mountpoint rather than the dentry
1216 *  alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220        unsigned seq;
1221        bool res;
1222
1223        if (!d_mountpoint(path->dentry))
1224                return false;
1225
1226        rcu_read_lock();
1227        do {
1228                seq = read_seqbegin(&mount_lock);
1229                res = __path_is_mountpoint(path);
1230        } while (read_seqretry(&mount_lock, seq));
1231        rcu_read_unlock();
1232
1233        return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
1237struct vfsmount *mnt_clone_internal(const struct path *path)
1238{
1239        struct mount *p;
1240        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241        if (IS_ERR(p))
1242                return ERR_CAST(p);
1243        p->mnt.mnt_flags |= MNT_INTERNAL;
1244        return &p->mnt;
1245}
1246
1247#ifdef CONFIG_PROC_FS
1248/* iterator; we want it to have access to namespace_sem, thus here... */
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
1251        struct proc_mounts *p = m->private;
1252
1253        down_read(&namespace_sem);
1254        if (p->cached_event == p->ns->event) {
1255                void *v = p->cached_mount;
1256                if (*pos == p->cached_index)
1257                        return v;
1258                if (*pos == p->cached_index + 1) {
1259                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260                        return p->cached_mount = v;
1261                }
1262        }
1263
1264        p->cached_event = p->ns->event;
1265        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266        p->cached_index = *pos;
1267        return p->cached_mount;
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
1272        struct proc_mounts *p = m->private;
1273
1274        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275        p->cached_index = *pos;
1276        return p->cached_mount;
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
1281        up_read(&namespace_sem);
1282}
1283
1284static int m_show(struct seq_file *m, void *v)
1285{
1286        struct proc_mounts *p = m->private;
1287        struct mount *r = list_entry(v, struct mount, mnt_list);
1288        return p->show(m, &r->mnt);
1289}
1290
1291const struct seq_operations mounts_op = {
1292        .start  = m_start,
1293        .next   = m_next,
1294        .stop   = m_stop,
1295        .show   = m_show,
1296};
1297#endif  /* CONFIG_PROC_FS */
1298
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
1307int may_umount_tree(struct vfsmount *m)
1308{
1309        struct mount *mnt = real_mount(m);
1310        int actual_refs = 0;
1311        int minimum_refs = 0;
1312        struct mount *p;
1313        BUG_ON(!m);
1314
1315        /* write lock needed for mnt_get_count */
1316        lock_mount_hash();
1317        for (p = mnt; p; p = next_mnt(p, mnt)) {
1318                actual_refs += mnt_get_count(p);
1319                minimum_refs += 2;
1320        }
1321        unlock_mount_hash();
1322
1323        if (actual_refs > minimum_refs)
1324                return 0;
1325
1326        return 1;
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
1346        int ret = 1;
1347        down_read(&namespace_sem);
1348        lock_mount_hash();
1349        if (propagate_mount_busy(real_mount(mnt), 2))
1350                ret = 0;
1351        unlock_mount_hash();
1352        up_read(&namespace_sem);
1353        return ret;
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
1358static void namespace_unlock(void)
1359{
1360        struct hlist_head head;
1361        struct hlist_node *p;
1362        struct mount *m;
1363        LIST_HEAD(list);
1364
1365        hlist_move_list(&unmounted, &head);
1366        list_splice_init(&ex_mountpoints, &list);
1367
1368        up_write(&namespace_sem);
1369
1370        shrink_dentry_list(&list);
1371
1372        if (likely(hlist_empty(&head)))
1373                return;
1374
1375        synchronize_rcu_expedited();
1376
1377        hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378                hlist_del(&m->mnt_umount);
1379                mntput(&m->mnt);
1380        }
1381}
1382
1383static inline void namespace_lock(void)
1384{
1385        down_write(&namespace_sem);
1386}
1387
1388enum umount_tree_flags {
1389        UMOUNT_SYNC = 1,
1390        UMOUNT_PROPAGATE = 2,
1391        UMOUNT_CONNECTED = 4,
1392};
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396        /* Leaving mounts connected is only valid for lazy umounts */
1397        if (how & UMOUNT_SYNC)
1398                return true;
1399
1400        /* A mount without a parent has nothing to be connected to */
1401        if (!mnt_has_parent(mnt))
1402                return true;
1403
1404        /* Because the reference counting rules change when mounts are
1405         * unmounted and connected, umounted mounts may not be
1406         * connected to mounted mounts.
1407         */
1408        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409                return true;
1410
1411        /* Has it been requested that the mount remain connected? */
1412        if (how & UMOUNT_CONNECTED)
1413                return false;
1414
1415        /* Is the mount locked such that it needs to remain connected? */
1416        if (IS_MNT_LOCKED(mnt))
1417                return false;
1418
1419        /* By default disconnect the mount */
1420        return true;
1421}
1422
1423/*
1424 * mount_lock must be held
1425 * namespace_sem must be held for write
1426 */
1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428{
1429        LIST_HEAD(tmp_list);
1430        struct mount *p;
1431
1432        if (how & UMOUNT_PROPAGATE)
1433                propagate_mount_unlock(mnt);
1434
1435        /* Gather the mounts to umount */
1436        for (p = mnt; p; p = next_mnt(p, mnt)) {
1437                p->mnt.mnt_flags |= MNT_UMOUNT;
1438                list_move(&p->mnt_list, &tmp_list);
1439        }
1440
1441        /* Hide the mounts from mnt_mounts */
1442        list_for_each_entry(p, &tmp_list, mnt_list) {
1443                list_del_init(&p->mnt_child);
1444        }
1445
1446        /* Add propogated mounts to the tmp_list */
1447        if (how & UMOUNT_PROPAGATE)
1448                propagate_umount(&tmp_list);
1449
1450        while (!list_empty(&tmp_list)) {
1451                struct mnt_namespace *ns;
1452                bool disconnect;
1453                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454                list_del_init(&p->mnt_expire);
1455                list_del_init(&p->mnt_list);
1456                ns = p->mnt_ns;
1457                if (ns) {
1458                        ns->mounts--;
1459                        __touch_mnt_namespace(ns);
1460                }
1461                p->mnt_ns = NULL;
1462                if (how & UMOUNT_SYNC)
1463                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464
1465                disconnect = disconnect_mount(p, how);
1466                if (mnt_has_parent(p)) {
1467                        mnt_add_count(p->mnt_parent, -1);
1468                        if (!disconnect) {
1469                                /* Don't forget about p */
1470                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471                        } else {
1472                                umount_mnt(p);
1473                        }
1474                }
1475                change_mnt_propagation(p, MS_PRIVATE);
1476                if (disconnect)
1477                        hlist_add_head(&p->mnt_umount, &unmounted);
1478        }
1479}
1480
1481static void shrink_submounts(struct mount *mnt);
1482
1483static int do_umount_root(struct super_block *sb)
1484{
1485        int ret = 0;
1486
1487        down_write(&sb->s_umount);
1488        if (!sb_rdonly(sb)) {
1489                struct fs_context *fc;
1490
1491                fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492                                                SB_RDONLY);
1493                if (IS_ERR(fc)) {
1494                        ret = PTR_ERR(fc);
1495                } else {
1496                        ret = parse_monolithic_mount_data(fc, NULL);
1497                        if (!ret)
1498                                ret = reconfigure_super(fc);
1499                        put_fs_context(fc);
1500                }
1501        }
1502        up_write(&sb->s_umount);
1503        return ret;
1504}
1505
1506static int do_umount(struct mount *mnt, int flags)
1507{
1508        struct super_block *sb = mnt->mnt.mnt_sb;
1509        int retval;
1510
1511        retval = security_sb_umount(&mnt->mnt, flags);
1512        if (retval)
1513                return retval;
1514
1515        /*
1516         * Allow userspace to request a mountpoint be expired rather than
1517         * unmounting unconditionally. Unmount only happens if:
1518         *  (1) the mark is already set (the mark is cleared by mntput())
1519         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520         */
1521        if (flags & MNT_EXPIRE) {
1522                if (&mnt->mnt == current->fs->root.mnt ||
1523                    flags & (MNT_FORCE | MNT_DETACH))
1524                        return -EINVAL;
1525
1526                /*
1527                 * probably don't strictly need the lock here if we examined
1528                 * all race cases, but it's a slowpath.
1529                 */
1530                lock_mount_hash();
1531                if (mnt_get_count(mnt) != 2) {
1532                        unlock_mount_hash();
1533                        return -EBUSY;
1534                }
1535                unlock_mount_hash();
1536
1537                if (!xchg(&mnt->mnt_expiry_mark, 1))
1538                        return -EAGAIN;
1539        }
1540
1541        /*
1542         * If we may have to abort operations to get out of this
1543         * mount, and they will themselves hold resources we must
1544         * allow the fs to do things. In the Unix tradition of
1545         * 'Gee thats tricky lets do it in userspace' the umount_begin
1546         * might fail to complete on the first run through as other tasks
1547         * must return, and the like. Thats for the mount program to worry
1548         * about for the moment.
1549         */
1550
1551        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552                sb->s_op->umount_begin(sb);
1553        }
1554
1555        /*
1556         * No sense to grab the lock for this test, but test itself looks
1557         * somewhat bogus. Suggestions for better replacement?
1558         * Ho-hum... In principle, we might treat that as umount + switch
1559         * to rootfs. GC would eventually take care of the old vfsmount.
1560         * Actually it makes sense, especially if rootfs would contain a
1561         * /reboot - static binary that would close all descriptors and
1562         * call reboot(9). Then init(8) could umount root and exec /reboot.
1563         */
1564        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565                /*
1566                 * Special case for "unmounting" root ...
1567                 * we just try to remount it readonly.
1568                 */
1569                if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570                        return -EPERM;
1571                return do_umount_root(sb);
1572        }
1573
1574        namespace_lock();
1575        lock_mount_hash();
1576
1577        /* Recheck MNT_LOCKED with the locks held */
1578        retval = -EINVAL;
1579        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580                goto out;
1581
1582        event++;
1583        if (flags & MNT_DETACH) {
1584                if (!list_empty(&mnt->mnt_list))
1585                        umount_tree(mnt, UMOUNT_PROPAGATE);
1586                retval = 0;
1587        } else {
1588                shrink_submounts(mnt);
1589                retval = -EBUSY;
1590                if (!propagate_mount_busy(mnt, 2)) {
1591                        if (!list_empty(&mnt->mnt_list))
1592                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593                        retval = 0;
1594                }
1595        }
1596out:
1597        unlock_mount_hash();
1598        namespace_unlock();
1599        return retval;
1600}
1601
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614        struct mountpoint *mp;
1615        struct mount *mnt;
1616
1617        namespace_lock();
1618        lock_mount_hash();
1619        mp = lookup_mountpoint(dentry);
1620        if (!mp)
1621                goto out_unlock;
1622
1623        event++;
1624        while (!hlist_empty(&mp->m_list)) {
1625                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627                        umount_mnt(mnt);
1628                        hlist_add_head(&mnt->mnt_umount, &unmounted);
1629                }
1630                else umount_tree(mnt, UMOUNT_CONNECTED);
1631        }
1632        put_mountpoint(mp);
1633out_unlock:
1634        unlock_mount_hash();
1635        namespace_unlock();
1636}
1637
1638/*
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
1646static inline bool may_mandlock(void)
1647{
1648#ifndef CONFIG_MANDATORY_FILE_LOCKING
1649        return false;
1650#endif
1651        return capable(CAP_SYS_ADMIN);
1652}
1653
1654/*
1655 * Now umount can handle mount points as well as block devices.
1656 * This is important for filesystems which use unnamed block devices.
1657 *
1658 * We now support a flag for forced unmount like the other 'big iron'
1659 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1660 */
1661
1662int ksys_umount(char __user *name, int flags)
1663{
1664        struct path path;
1665        struct mount *mnt;
1666        int retval;
1667        int lookup_flags = 0;
1668
1669        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1670                return -EINVAL;
1671
1672        if (!may_mount())
1673                return -EPERM;
1674
1675        if (!(flags & UMOUNT_NOFOLLOW))
1676                lookup_flags |= LOOKUP_FOLLOW;
1677
1678        lookup_flags |= LOOKUP_NO_EVAL;
1679
1680        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1681        if (retval)
1682                goto out;
1683        mnt = real_mount(path.mnt);
1684        retval = -EINVAL;
1685        if (path.dentry != path.mnt->mnt_root)
1686                goto dput_and_out;
1687        if (!check_mnt(mnt))
1688                goto dput_and_out;
1689        if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1690                goto dput_and_out;
1691        retval = -EPERM;
1692        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1693                goto dput_and_out;
1694
1695        retval = do_umount(mnt, flags);
1696dput_and_out:
1697        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1698        dput(path.dentry);
1699        mntput_no_expire(mnt);
1700out:
1701        return retval;
1702}
1703
1704SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1705{
1706        return ksys_umount(name, flags);
1707}
1708
1709#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1710
1711/*
1712 *      The 2.0 compatible umount. No flags.
1713 */
1714SYSCALL_DEFINE1(oldumount, char __user *, name)
1715{
1716        return ksys_umount(name, 0);
1717}
1718
1719#endif
1720
1721static bool is_mnt_ns_file(struct dentry *dentry)
1722{
1723        /* Is this a proxy for a mount namespace? */
1724        return dentry->d_op == &ns_dentry_operations &&
1725               dentry->d_fsdata == &mntns_operations;
1726}
1727
1728struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1729{
1730        return container_of(ns, struct mnt_namespace, ns);
1731}
1732
1733static bool mnt_ns_loop(struct dentry *dentry)
1734{
1735        /* Could bind mounting the mount namespace inode cause a
1736         * mount namespace loop?
1737         */
1738        struct mnt_namespace *mnt_ns;
1739        if (!is_mnt_ns_file(dentry))
1740                return false;
1741
1742        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1743        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1744}
1745
1746struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1747                                        int flag)
1748{
1749        struct mount *res, *p, *q, *r, *parent;
1750
1751        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1752                return ERR_PTR(-EINVAL);
1753
1754        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1755                return ERR_PTR(-EINVAL);
1756
1757        res = q = clone_mnt(mnt, dentry, flag);
1758        if (IS_ERR(q))
1759                return q;
1760
1761        q->mnt_mountpoint = mnt->mnt_mountpoint;
1762
1763        p = mnt;
1764        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1765                struct mount *s;
1766                if (!is_subdir(r->mnt_mountpoint, dentry))
1767                        continue;
1768
1769                for (s = r; s; s = next_mnt(s, r)) {
1770                        if (!(flag & CL_COPY_UNBINDABLE) &&
1771                            IS_MNT_UNBINDABLE(s)) {
1772                                if (s->mnt.mnt_flags & MNT_LOCKED) {
1773                                        /* Both unbindable and locked. */
1774                                        q = ERR_PTR(-EPERM);
1775                                        goto out;
1776                                } else {
1777                                        s = skip_mnt_tree(s);
1778                                        continue;
1779                                }
1780                        }
1781                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1782                            is_mnt_ns_file(s->mnt.mnt_root)) {
1783                                s = skip_mnt_tree(s);
1784                                continue;
1785                        }
1786                        while (p != s->mnt_parent) {
1787                                p = p->mnt_parent;
1788                                q = q->mnt_parent;
1789                        }
1790                        p = s;
1791                        parent = q;
1792                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1793                        if (IS_ERR(q))
1794                                goto out;
1795                        lock_mount_hash();
1796                        list_add_tail(&q->mnt_list, &res->mnt_list);
1797                        attach_mnt(q, parent, p->mnt_mp);
1798                        unlock_mount_hash();
1799                }
1800        }
1801        return res;
1802out:
1803        if (res) {
1804                lock_mount_hash();
1805                umount_tree(res, UMOUNT_SYNC);
1806                unlock_mount_hash();
1807        }
1808        return q;
1809}
1810
1811/* Caller should check returned pointer for errors */
1812
1813struct vfsmount *collect_mounts(const struct path *path)
1814{
1815        struct mount *tree;
1816        namespace_lock();
1817        if (!check_mnt(real_mount(path->mnt)))
1818                tree = ERR_PTR(-EINVAL);
1819        else
1820                tree = copy_tree(real_mount(path->mnt), path->dentry,
1821                                 CL_COPY_ALL | CL_PRIVATE);
1822        namespace_unlock();
1823        if (IS_ERR(tree))
1824                return ERR_CAST(tree);
1825        return &tree->mnt;
1826}
1827
1828static void free_mnt_ns(struct mnt_namespace *);
1829static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1830
1831void dissolve_on_fput(struct vfsmount *mnt)
1832{
1833        struct mnt_namespace *ns;
1834        namespace_lock();
1835        lock_mount_hash();
1836        ns = real_mount(mnt)->mnt_ns;
1837        if (ns) {
1838                if (is_anon_ns(ns))
1839                        umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1840                else
1841                        ns = NULL;
1842        }
1843        unlock_mount_hash();
1844        namespace_unlock();
1845        if (ns)
1846                free_mnt_ns(ns);
1847}
1848
1849void drop_collected_mounts(struct vfsmount *mnt)
1850{
1851        namespace_lock();
1852        lock_mount_hash();
1853        umount_tree(real_mount(mnt), 0);
1854        unlock_mount_hash();
1855        namespace_unlock();
1856}
1857
1858/**
1859 * clone_private_mount - create a private clone of a path
1860 *
1861 * This creates a new vfsmount, which will be the clone of @path.  The new will
1862 * not be attached anywhere in the namespace and will be private (i.e. changes
1863 * to the originating mount won't be propagated into this).
1864 *
1865 * Release with mntput().
1866 */
1867struct vfsmount *clone_private_mount(const struct path *path)
1868{
1869        struct mount *old_mnt = real_mount(path->mnt);
1870        struct mount *new_mnt;
1871
1872        if (IS_MNT_UNBINDABLE(old_mnt))
1873                return ERR_PTR(-EINVAL);
1874
1875        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1876        if (IS_ERR(new_mnt))
1877                return ERR_CAST(new_mnt);
1878
1879        return &new_mnt->mnt;
1880}
1881EXPORT_SYMBOL_GPL(clone_private_mount);
1882
1883int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1884                   struct vfsmount *root)
1885{
1886        struct mount *mnt;
1887        int res = f(root, arg);
1888        if (res)
1889                return res;
1890        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1891                res = f(&mnt->mnt, arg);
1892                if (res)
1893                        return res;
1894        }
1895        return 0;
1896}
1897
1898static void lock_mnt_tree(struct mount *mnt)
1899{
1900        struct mount *p;
1901
1902        for (p = mnt; p; p = next_mnt(p, mnt)) {
1903                int flags = p->mnt.mnt_flags;
1904                /* Don't allow unprivileged users to change mount flags */
1905                flags |= MNT_LOCK_ATIME;
1906
1907                if (flags & MNT_READONLY)
1908                        flags |= MNT_LOCK_READONLY;
1909
1910                if (flags & MNT_NODEV)
1911                        flags |= MNT_LOCK_NODEV;
1912
1913                if (flags & MNT_NOSUID)
1914                        flags |= MNT_LOCK_NOSUID;
1915
1916                if (flags & MNT_NOEXEC)
1917                        flags |= MNT_LOCK_NOEXEC;
1918                /* Don't allow unprivileged users to reveal what is under a mount */
1919                if (list_empty(&p->mnt_expire))
1920                        flags |= MNT_LOCKED;
1921                p->mnt.mnt_flags = flags;
1922        }
1923}
1924
1925static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1926{
1927        struct mount *p;
1928
1929        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1930                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1931                        mnt_release_group_id(p);
1932        }
1933}
1934
1935static int invent_group_ids(struct mount *mnt, bool recurse)
1936{
1937        struct mount *p;
1938
1939        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1940                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1941                        int err = mnt_alloc_group_id(p);
1942                        if (err) {
1943                                cleanup_group_ids(mnt, p);
1944                                return err;
1945                        }
1946                }
1947        }
1948
1949        return 0;
1950}
1951
1952int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1953{
1954        unsigned int max = READ_ONCE(sysctl_mount_max);
1955        unsigned int mounts = 0, old, pending, sum;
1956        struct mount *p;
1957
1958        for (p = mnt; p; p = next_mnt(p, mnt))
1959                mounts++;
1960
1961        old = ns->mounts;
1962        pending = ns->pending_mounts;
1963        sum = old + pending;
1964        if ((old > sum) ||
1965            (pending > sum) ||
1966            (max < sum) ||
1967            (mounts > (max - sum)))
1968                return -ENOSPC;
1969
1970        ns->pending_mounts = pending + mounts;
1971        return 0;
1972}
1973
1974/*
1975 *  @source_mnt : mount tree to be attached
1976 *  @nd         : place the mount tree @source_mnt is attached
1977 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1978 *                 store the parent mount and mountpoint dentry.
1979 *                 (done when source_mnt is moved)
1980 *
1981 *  NOTE: in the table below explains the semantics when a source mount
1982 *  of a given type is attached to a destination mount of a given type.
1983 * ---------------------------------------------------------------------------
1984 * |         BIND MOUNT OPERATION                                            |
1985 * |**************************************************************************
1986 * | source-->| shared        |       private  |       slave    | unbindable |
1987 * | dest     |               |                |                |            |
1988 * |   |      |               |                |                |            |
1989 * |   v      |               |                |                |            |
1990 * |**************************************************************************
1991 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1992 * |          |               |                |                |            |
1993 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1994 * ***************************************************************************
1995 * A bind operation clones the source mount and mounts the clone on the
1996 * destination mount.
1997 *
1998 * (++)  the cloned mount is propagated to all the mounts in the propagation
1999 *       tree of the destination mount and the cloned mount is added to
2000 *       the peer group of the source mount.
2001 * (+)   the cloned mount is created under the destination mount and is marked
2002 *       as shared. The cloned mount is added to the peer group of the source
2003 *       mount.
2004 * (+++) the mount is propagated to all the mounts in the propagation tree
2005 *       of the destination mount and the cloned mount is made slave
2006 *       of the same master as that of the source mount. The cloned mount
2007 *       is marked as 'shared and slave'.
2008 * (*)   the cloned mount is made a slave of the same master as that of the
2009 *       source mount.
2010 *
2011 * ---------------------------------------------------------------------------
2012 * |                    MOVE MOUNT OPERATION                                 |
2013 * |**************************************************************************
2014 * | source-->| shared        |       private  |       slave    | unbindable |
2015 * | dest     |               |                |                |            |
2016 * |   |      |               |                |                |            |
2017 * |   v      |               |                |                |            |
2018 * |**************************************************************************
2019 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2020 * |          |               |                |                |            |
2021 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2022 * ***************************************************************************
2023 *
2024 * (+)  the mount is moved to the destination. And is then propagated to
2025 *      all the mounts in the propagation tree of the destination mount.
2026 * (+*)  the mount is moved to the destination.
2027 * (+++)  the mount is moved to the destination and is then propagated to
2028 *      all the mounts belonging to the destination mount's propagation tree.
2029 *      the mount is marked as 'shared and slave'.
2030 * (*)  the mount continues to be a slave at the new location.
2031 *
2032 * if the source mount is a tree, the operations explained above is
2033 * applied to each mount in the tree.
2034 * Must be called without spinlocks held, since this function can sleep
2035 * in allocations.
2036 */
2037static int attach_recursive_mnt(struct mount *source_mnt,
2038                        struct mount *dest_mnt,
2039                        struct mountpoint *dest_mp,
2040                        bool moving)
2041{
2042        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2043        HLIST_HEAD(tree_list);
2044        struct mnt_namespace *ns = dest_mnt->mnt_ns;
2045        struct mountpoint *smp;
2046        struct mount *child, *p;
2047        struct hlist_node *n;
2048        int err;
2049
2050        /* Preallocate a mountpoint in case the new mounts need
2051         * to be tucked under other mounts.
2052         */
2053        smp = get_mountpoint(source_mnt->mnt.mnt_root);
2054        if (IS_ERR(smp))
2055                return PTR_ERR(smp);
2056
2057        /* Is there space to add these mounts to the mount namespace? */
2058        if (!moving) {
2059                err = count_mounts(ns, source_mnt);
2060                if (err)
2061                        goto out;
2062        }
2063
2064        if (IS_MNT_SHARED(dest_mnt)) {
2065                err = invent_group_ids(source_mnt, true);
2066                if (err)
2067                        goto out;
2068                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2069                lock_mount_hash();
2070                if (err)
2071                        goto out_cleanup_ids;
2072                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2073                        set_mnt_shared(p);
2074        } else {
2075                lock_mount_hash();
2076        }
2077        if (moving) {
2078                unhash_mnt(source_mnt);
2079                attach_mnt(source_mnt, dest_mnt, dest_mp);
2080                touch_mnt_namespace(source_mnt->mnt_ns);
2081        } else {
2082                if (source_mnt->mnt_ns) {
2083                        /* move from anon - the caller will destroy */
2084                        list_del_init(&source_mnt->mnt_ns->list);
2085                }
2086                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2087                commit_tree(source_mnt);
2088        }
2089
2090        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2091                struct mount *q;
2092                hlist_del_init(&child->mnt_hash);
2093                q = __lookup_mnt(&child->mnt_parent->mnt,
2094                                 child->mnt_mountpoint);
2095                if (q)
2096                        mnt_change_mountpoint(child, smp, q);
2097                /* Notice when we are propagating across user namespaces */
2098                if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2099                        lock_mnt_tree(child);
2100                child->mnt.mnt_flags &= ~MNT_LOCKED;
2101                commit_tree(child);
2102        }
2103        put_mountpoint(smp);
2104        unlock_mount_hash();
2105
2106        return 0;
2107
2108 out_cleanup_ids:
2109        while (!hlist_empty(&tree_list)) {
2110                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2111                child->mnt_parent->mnt_ns->pending_mounts = 0;
2112                umount_tree(child, UMOUNT_SYNC);
2113        }
2114        unlock_mount_hash();
2115        cleanup_group_ids(source_mnt, NULL);
2116 out:
2117        ns->pending_mounts = 0;
2118
2119        read_seqlock_excl(&mount_lock);
2120        put_mountpoint(smp);
2121        read_sequnlock_excl(&mount_lock);
2122
2123        return err;
2124}
2125
2126static struct mountpoint *lock_mount(struct path *path)
2127{
2128        struct vfsmount *mnt;
2129        struct dentry *dentry = path->dentry;
2130retry:
2131        inode_lock(dentry->d_inode);
2132        if (unlikely(cant_mount(dentry))) {
2133                inode_unlock(dentry->d_inode);
2134                return ERR_PTR(-ENOENT);
2135        }
2136        namespace_lock();
2137        mnt = lookup_mnt(path);
2138        if (likely(!mnt)) {
2139                struct mountpoint *mp = get_mountpoint(dentry);
2140                if (IS_ERR(mp)) {
2141                        namespace_unlock();
2142                        inode_unlock(dentry->d_inode);
2143                        return mp;
2144                }
2145                return mp;
2146        }
2147        namespace_unlock();
2148        inode_unlock(path->dentry->d_inode);
2149        path_put(path);
2150        path->mnt = mnt;
2151        dentry = path->dentry = dget(mnt->mnt_root);
2152        goto retry;
2153}
2154
2155static void unlock_mount(struct mountpoint *where)
2156{
2157        struct dentry *dentry = where->m_dentry;
2158
2159        read_seqlock_excl(&mount_lock);
2160        put_mountpoint(where);
2161        read_sequnlock_excl(&mount_lock);
2162
2163        namespace_unlock();
2164        inode_unlock(dentry->d_inode);
2165}
2166
2167static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2168{
2169        if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2170                return -EINVAL;
2171
2172        if (d_is_dir(mp->m_dentry) !=
2173              d_is_dir(mnt->mnt.mnt_root))
2174                return -ENOTDIR;
2175
2176        return attach_recursive_mnt(mnt, p, mp, false);
2177}
2178
2179/*
2180 * Sanity check the flags to change_mnt_propagation.
2181 */
2182
2183static int flags_to_propagation_type(int ms_flags)
2184{
2185        int type = ms_flags & ~(MS_REC | MS_SILENT);
2186
2187        /* Fail if any non-propagation flags are set */
2188        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2189                return 0;
2190        /* Only one propagation flag should be set */
2191        if (!is_power_of_2(type))
2192                return 0;
2193        return type;
2194}
2195
2196/*
2197 * recursively change the type of the mountpoint.
2198 */
2199static int do_change_type(struct path *path, int ms_flags)
2200{
2201        struct mount *m;
2202        struct mount *mnt = real_mount(path->mnt);
2203        int recurse = ms_flags & MS_REC;
2204        int type;
2205        int err = 0;
2206
2207        if (path->dentry != path->mnt->mnt_root)
2208                return -EINVAL;
2209
2210        type = flags_to_propagation_type(ms_flags);
2211        if (!type)
2212                return -EINVAL;
2213
2214        namespace_lock();
2215        if (type == MS_SHARED) {
2216                err = invent_group_ids(mnt, recurse);
2217                if (err)
2218                        goto out_unlock;
2219        }
2220
2221        lock_mount_hash();
2222        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2223                change_mnt_propagation(m, type);
2224        unlock_mount_hash();
2225
2226 out_unlock:
2227        namespace_unlock();
2228        return err;
2229}
2230
2231static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2232{
2233        struct mount *child;
2234        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2235                if (!is_subdir(child->mnt_mountpoint, dentry))
2236                        continue;
2237
2238                if (child->mnt.mnt_flags & MNT_LOCKED)
2239                        return true;
2240        }
2241        return false;
2242}
2243
2244static struct mount *__do_loopback(struct path *old_path, int recurse)
2245{
2246        struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2247
2248        if (IS_MNT_UNBINDABLE(old))
2249                return mnt;
2250
2251        if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2252                return mnt;
2253
2254        if (!recurse && has_locked_children(old, old_path->dentry))
2255                return mnt;
2256
2257        if (recurse)
2258                mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2259        else
2260                mnt = clone_mnt(old, old_path->dentry, 0);
2261
2262        if (!IS_ERR(mnt))
2263                mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2264
2265        return mnt;
2266}
2267
2268/*
2269 * do loopback mount.
2270 */
2271static int do_loopback(struct path *path, const char *old_name,
2272                                int recurse)
2273{
2274        struct path old_path;
2275        struct mount *mnt = NULL, *parent;
2276        struct mountpoint *mp;
2277        int err;
2278        if (!old_name || !*old_name)
2279                return -EINVAL;
2280        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2281        if (err)
2282                return err;
2283
2284        err = -EINVAL;
2285        if (mnt_ns_loop(old_path.dentry))
2286                goto out;
2287
2288        mp = lock_mount(path);
2289        if (IS_ERR(mp)) {
2290                err = PTR_ERR(mp);
2291                goto out;
2292        }
2293
2294        parent = real_mount(path->mnt);
2295        if (!check_mnt(parent))
2296                goto out2;
2297
2298        mnt = __do_loopback(&old_path, recurse);
2299        if (IS_ERR(mnt)) {
2300                err = PTR_ERR(mnt);
2301                goto out2;
2302        }
2303
2304        err = graft_tree(mnt, parent, mp);
2305        if (err) {
2306                lock_mount_hash();
2307                umount_tree(mnt, UMOUNT_SYNC);
2308                unlock_mount_hash();
2309        }
2310out2:
2311        unlock_mount(mp);
2312out:
2313        path_put(&old_path);
2314        return err;
2315}
2316
2317static struct file *open_detached_copy(struct path *path, bool recursive)
2318{
2319        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2320        struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2321        struct mount *mnt, *p;
2322        struct file *file;
2323
2324        if (IS_ERR(ns))
2325                return ERR_CAST(ns);
2326
2327        namespace_lock();
2328        mnt = __do_loopback(path, recursive);
2329        if (IS_ERR(mnt)) {
2330                namespace_unlock();
2331                free_mnt_ns(ns);
2332                return ERR_CAST(mnt);
2333        }
2334
2335        lock_mount_hash();
2336        for (p = mnt; p; p = next_mnt(p, mnt)) {
2337                p->mnt_ns = ns;
2338                ns->mounts++;
2339        }
2340        ns->root = mnt;
2341        list_add_tail(&ns->list, &mnt->mnt_list);
2342        mntget(&mnt->mnt);
2343        unlock_mount_hash();
2344        namespace_unlock();
2345
2346        mntput(path->mnt);
2347        path->mnt = &mnt->mnt;
2348        file = dentry_open(path, O_PATH, current_cred());
2349        if (IS_ERR(file))
2350                dissolve_on_fput(path->mnt);
2351        else
2352                file->f_mode |= FMODE_NEED_UNMOUNT;
2353        return file;
2354}
2355
2356SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2357{
2358        struct file *file;
2359        struct path path;
2360        int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2361        bool detached = flags & OPEN_TREE_CLONE;
2362        int error;
2363        int fd;
2364
2365        BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2366
2367        if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2368                      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2369                      OPEN_TREE_CLOEXEC))
2370                return -EINVAL;
2371
2372        if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2373                return -EINVAL;
2374
2375        if (flags & AT_NO_AUTOMOUNT)
2376                lookup_flags &= ~LOOKUP_AUTOMOUNT;
2377        if (flags & AT_SYMLINK_NOFOLLOW)
2378                lookup_flags &= ~LOOKUP_FOLLOW;
2379        if (flags & AT_EMPTY_PATH)
2380                lookup_flags |= LOOKUP_EMPTY;
2381
2382        if (detached && !may_mount())
2383                return -EPERM;
2384
2385        fd = get_unused_fd_flags(flags & O_CLOEXEC);
2386        if (fd < 0)
2387                return fd;
2388
2389        error = user_path_at(dfd, filename, lookup_flags, &path);
2390        if (unlikely(error)) {
2391                file = ERR_PTR(error);
2392        } else {
2393                if (detached)
2394                        file = open_detached_copy(&path, flags & AT_RECURSIVE);
2395                else
2396                        file = dentry_open(&path, O_PATH, current_cred());
2397                path_put(&path);
2398        }
2399        if (IS_ERR(file)) {
2400                put_unused_fd(fd);
2401                return PTR_ERR(file);
2402        }
2403        fd_install(fd, file);
2404        return fd;
2405}
2406
2407/*
2408 * Don't allow locked mount flags to be cleared.
2409 *
2410 * No locks need to be held here while testing the various MNT_LOCK
2411 * flags because those flags can never be cleared once they are set.
2412 */
2413static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2414{
2415        unsigned int fl = mnt->mnt.mnt_flags;
2416
2417        if ((fl & MNT_LOCK_READONLY) &&
2418            !(mnt_flags & MNT_READONLY))
2419                return false;
2420
2421        if ((fl & MNT_LOCK_NODEV) &&
2422            !(mnt_flags & MNT_NODEV))
2423                return false;
2424
2425        if ((fl & MNT_LOCK_NOSUID) &&
2426            !(mnt_flags & MNT_NOSUID))
2427                return false;
2428
2429        if ((fl & MNT_LOCK_NOEXEC) &&
2430            !(mnt_flags & MNT_NOEXEC))
2431                return false;
2432
2433        if ((fl & MNT_LOCK_ATIME) &&
2434            ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2435                return false;
2436
2437        return true;
2438}
2439
2440static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2441{
2442        bool readonly_request = (mnt_flags & MNT_READONLY);
2443
2444        if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2445                return 0;
2446
2447        if (readonly_request)
2448                return mnt_make_readonly(mnt);
2449
2450        return __mnt_unmake_readonly(mnt);
2451}
2452
2453/*
2454 * Update the user-settable attributes on a mount.  The caller must hold
2455 * sb->s_umount for writing.
2456 */
2457static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2458{
2459        lock_mount_hash();
2460        mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2461        mnt->mnt.mnt_flags = mnt_flags;
2462        touch_mnt_namespace(mnt->mnt_ns);
2463        unlock_mount_hash();
2464}
2465
2466/*
2467 * Handle reconfiguration of the mountpoint only without alteration of the
2468 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2469 * to mount(2).
2470 */
2471static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2472{
2473        struct super_block *sb = path->mnt->mnt_sb;
2474        struct mount *mnt = real_mount(path->mnt);
2475        int ret;
2476
2477        if (!check_mnt(mnt))
2478                return -EINVAL;
2479
2480        if (path->dentry != mnt->mnt.mnt_root)
2481                return -EINVAL;
2482
2483        if (!can_change_locked_flags(mnt, mnt_flags))
2484                return -EPERM;
2485
2486        down_write(&sb->s_umount);
2487        ret = change_mount_ro_state(mnt, mnt_flags);
2488        if (ret == 0)
2489                set_mount_attributes(mnt, mnt_flags);
2490        up_write(&sb->s_umount);
2491        return ret;
2492}
2493
2494/*
2495 * change filesystem flags. dir should be a physical root of filesystem.
2496 * If you've mounted a non-root directory somewhere and want to do remount
2497 * on it - tough luck.
2498 */
2499static int do_remount(struct path *path, int ms_flags, int sb_flags,
2500                      int mnt_flags, void *data)
2501{
2502        int err;
2503        struct super_block *sb = path->mnt->mnt_sb;
2504        struct mount *mnt = real_mount(path->mnt);
2505        struct fs_context *fc;
2506
2507        if (!check_mnt(mnt))
2508                return -EINVAL;
2509
2510        if (path->dentry != path->mnt->mnt_root)
2511                return -EINVAL;
2512
2513        if (!can_change_locked_flags(mnt, mnt_flags))
2514                return -EPERM;
2515
2516        fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2517        if (IS_ERR(fc))
2518                return PTR_ERR(fc);
2519
2520        err = parse_monolithic_mount_data(fc, data);
2521        if (!err) {
2522                down_write(&sb->s_umount);
2523                err = -EPERM;
2524                if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2525                        err = reconfigure_super(fc);
2526                        if (!err)
2527                                set_mount_attributes(mnt, mnt_flags);
2528                }
2529                up_write(&sb->s_umount);
2530        }
2531        put_fs_context(fc);
2532        return err;
2533}
2534
2535static inline int tree_contains_unbindable(struct mount *mnt)
2536{
2537        struct mount *p;
2538        for (p = mnt; p; p = next_mnt(p, mnt)) {
2539                if (IS_MNT_UNBINDABLE(p))
2540                        return 1;
2541        }
2542        return 0;
2543}
2544
2545/*
2546 * Check that there aren't references to earlier/same mount namespaces in the
2547 * specified subtree.  Such references can act as pins for mount namespaces
2548 * that aren't checked by the mount-cycle checking code, thereby allowing
2549 * cycles to be made.
2550 */
2551static bool check_for_nsfs_mounts(struct mount *subtree)
2552{
2553        struct mount *p;
2554        bool ret = false;
2555
2556        lock_mount_hash();
2557        for (p = subtree; p; p = next_mnt(p, subtree))
2558                if (mnt_ns_loop(p->mnt.mnt_root))
2559                        goto out;
2560
2561        ret = true;
2562out:
2563        unlock_mount_hash();
2564        return ret;
2565}
2566
2567static int do_move_mount(struct path *old_path, struct path *new_path)
2568{
2569        struct mnt_namespace *ns;
2570        struct mount *p;
2571        struct mount *old;
2572        struct mount *parent;
2573        struct mountpoint *mp, *old_mp;
2574        int err;
2575        bool attached;
2576
2577        mp = lock_mount(new_path);
2578        if (IS_ERR(mp))
2579                return PTR_ERR(mp);
2580
2581        old = real_mount(old_path->mnt);
2582        p = real_mount(new_path->mnt);
2583        parent = old->mnt_parent;
2584        attached = mnt_has_parent(old);
2585        old_mp = old->mnt_mp;
2586        ns = old->mnt_ns;
2587
2588        err = -EINVAL;
2589        /* The mountpoint must be in our namespace. */
2590        if (!check_mnt(p))
2591                goto out;
2592
2593        /* The thing moved must be mounted... */
2594        if (!is_mounted(&old->mnt))
2595                goto out;
2596
2597        /* ... and either ours or the root of anon namespace */
2598        if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2599                goto out;
2600
2601        if (old->mnt.mnt_flags & MNT_LOCKED)
2602                goto out;
2603
2604        if (old_path->dentry != old_path->mnt->mnt_root)
2605                goto out;
2606
2607        if (d_is_dir(new_path->dentry) !=
2608            d_is_dir(old_path->dentry))
2609                goto out;
2610        /*
2611         * Don't move a mount residing in a shared parent.
2612         */
2613        if (attached && IS_MNT_SHARED(parent))
2614                goto out;
2615        /*
2616         * Don't move a mount tree containing unbindable mounts to a destination
2617         * mount which is shared.
2618         */
2619        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2620                goto out;
2621        err = -ELOOP;
2622        if (!check_for_nsfs_mounts(old))
2623                goto out;
2624        for (; mnt_has_parent(p); p = p->mnt_parent)
2625                if (p == old)
2626                        goto out;
2627
2628        err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2629                                   attached);
2630        if (err)
2631                goto out;
2632
2633        /* if the mount is moved, it should no longer be expire
2634         * automatically */
2635        list_del_init(&old->mnt_expire);
2636        if (attached)
2637                put_mountpoint(old_mp);
2638out:
2639        unlock_mount(mp);
2640        if (!err) {
2641                if (attached)
2642                        mntput_no_expire(parent);
2643                else
2644                        free_mnt_ns(ns);
2645        }
2646        return err;
2647}
2648
2649static int do_move_mount_old(struct path *path, const char *old_name)
2650{
2651        struct path old_path;
2652        int err;
2653
2654        if (!old_name || !*old_name)
2655                return -EINVAL;
2656
2657        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2658        if (err)
2659                return err;
2660
2661        err = do_move_mount(&old_path, path);
2662        path_put(&old_path);
2663        return err;
2664}
2665
2666/*
2667 * add a mount into a namespace's mount tree
2668 */
2669static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2670{
2671        struct mountpoint *mp;
2672        struct mount *parent;
2673        int err;
2674
2675        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2676
2677        mp = lock_mount(path);
2678        if (IS_ERR(mp))
2679                return PTR_ERR(mp);
2680
2681        parent = real_mount(path->mnt);
2682        err = -EINVAL;
2683        if (unlikely(!check_mnt(parent))) {
2684                /* that's acceptable only for automounts done in private ns */
2685                if (!(mnt_flags & MNT_SHRINKABLE))
2686                        goto unlock;
2687                /* ... and for those we'd better have mountpoint still alive */
2688                if (!parent->mnt_ns)
2689                        goto unlock;
2690        }
2691
2692        /* Refuse the same filesystem on the same mount point */
2693        err = -EBUSY;
2694        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2695            path->mnt->mnt_root == path->dentry)
2696                goto unlock;
2697
2698        err = -EINVAL;
2699        if (d_is_symlink(newmnt->mnt.mnt_root))
2700                goto unlock;
2701
2702        newmnt->mnt.mnt_flags = mnt_flags;
2703        err = graft_tree(newmnt, parent, mp);
2704
2705unlock:
2706        unlock_mount(mp);
2707        return err;
2708}
2709
2710static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2711
2712/*
2713 * Create a new mount using a superblock configuration and request it
2714 * be added to the namespace tree.
2715 */
2716static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2717                           unsigned int mnt_flags)
2718{
2719        struct vfsmount *mnt;
2720        struct super_block *sb = fc->root->d_sb;
2721        int error;
2722
2723        error = security_sb_kern_mount(sb);
2724        if (!error && mount_too_revealing(sb, &mnt_flags))
2725                error = -EPERM;
2726
2727        if (unlikely(error)) {
2728                fc_drop_locked(fc);
2729                return error;
2730        }
2731
2732        up_write(&sb->s_umount);
2733
2734        mnt = vfs_create_mount(fc);
2735        if (IS_ERR(mnt))
2736                return PTR_ERR(mnt);
2737
2738        error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2739        if (error < 0)
2740                mntput(mnt);
2741        return error;
2742}
2743
2744/*
2745 * create a new mount for userspace and request it to be added into the
2746 * namespace's tree
2747 */
2748static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2749                        int mnt_flags, const char *name, void *data)
2750{
2751        struct file_system_type *type;
2752        struct fs_context *fc;
2753        const char *subtype = NULL;
2754        int err = 0;
2755
2756        if (!fstype)
2757                return -EINVAL;
2758
2759        type = get_fs_type(fstype);
2760        if (!type)
2761                return -ENODEV;
2762
2763        if (type->fs_flags & FS_HAS_SUBTYPE) {
2764                subtype = strchr(fstype, '.');
2765                if (subtype) {
2766                        subtype++;
2767                        if (!*subtype) {
2768                                put_filesystem(type);
2769                                return -EINVAL;
2770                        }
2771                } else {
2772                        subtype = "";
2773                }
2774        }
2775
2776        fc = fs_context_for_mount(type, sb_flags);
2777        put_filesystem(type);
2778        if (IS_ERR(fc))
2779                return PTR_ERR(fc);
2780
2781        if (subtype)
2782                err = vfs_parse_fs_string(fc, "subtype",
2783                                          subtype, strlen(subtype));
2784        if (!err && name)
2785                err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2786        if (!err)
2787                err = parse_monolithic_mount_data(fc, data);
2788        if (!err && !mount_capable(fc))
2789                err = -EPERM;
2790        if (!err)
2791                err = vfs_get_tree(fc);
2792        if (!err)
2793                err = do_new_mount_fc(fc, path, mnt_flags);
2794
2795        put_fs_context(fc);
2796        return err;
2797}
2798
2799int finish_automount(struct vfsmount *m, struct path *path)
2800{
2801        struct mount *mnt = real_mount(m);
2802        int err;
2803        /* The new mount record should have at least 2 refs to prevent it being
2804         * expired before we get a chance to add it
2805         */
2806        BUG_ON(mnt_get_count(mnt) < 2);
2807
2808        if (m->mnt_sb == path->mnt->mnt_sb &&
2809            m->mnt_root == path->dentry) {
2810                err = -ELOOP;
2811                goto fail;
2812        }
2813
2814        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2815        if (!err)
2816                return 0;
2817fail:
2818        /* remove m from any expiration list it may be on */
2819        if (!list_empty(&mnt->mnt_expire)) {
2820                namespace_lock();
2821                list_del_init(&mnt->mnt_expire);
2822                namespace_unlock();
2823        }
2824        mntput(m);
2825        mntput(m);
2826        return err;
2827}
2828
2829/**
2830 * mnt_set_expiry - Put a mount on an expiration list
2831 * @mnt: The mount to list.
2832 * @expiry_list: The list to add the mount to.
2833 */
2834void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2835{
2836        namespace_lock();
2837
2838        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2839
2840        namespace_unlock();
2841}
2842EXPORT_SYMBOL(mnt_set_expiry);
2843
2844/*
2845 * process a list of expirable mountpoints with the intent of discarding any
2846 * mountpoints that aren't in use and haven't been touched since last we came
2847 * here
2848 */
2849void mark_mounts_for_expiry(struct list_head *mounts)
2850{
2851        struct mount *mnt, *next;
2852        LIST_HEAD(graveyard);
2853
2854        if (list_empty(mounts))
2855                return;
2856
2857        namespace_lock();
2858        lock_mount_hash();
2859
2860        /* extract from the expiration list every vfsmount that matches the
2861         * following criteria:
2862         * - only referenced by its parent vfsmount
2863         * - still marked for expiry (marked on the last call here; marks are
2864         *   cleared by mntput())
2865         */
2866        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2867                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2868                        propagate_mount_busy(mnt, 1))
2869                        continue;
2870                list_move(&mnt->mnt_expire, &graveyard);
2871        }
2872        while (!list_empty(&graveyard)) {
2873                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2874                touch_mnt_namespace(mnt->mnt_ns);
2875                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2876        }
2877        unlock_mount_hash();
2878        namespace_unlock();
2879}
2880
2881EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2882
2883/*
2884 * Ripoff of 'select_parent()'
2885 *
2886 * search the list of submounts for a given mountpoint, and move any
2887 * shrinkable submounts to the 'graveyard' list.
2888 */
2889static int select_submounts(struct mount *parent, struct list_head *graveyard)
2890{
2891        struct mount *this_parent = parent;
2892        struct list_head *next;
2893        int found = 0;
2894
2895repeat:
2896        next = this_parent->mnt_mounts.next;
2897resume:
2898        while (next != &this_parent->mnt_mounts) {
2899                struct list_head *tmp = next;
2900                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2901
2902                next = tmp->next;
2903                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2904                        continue;
2905                /*
2906                 * Descend a level if the d_mounts list is non-empty.
2907                 */
2908                if (!list_empty(&mnt->mnt_mounts)) {
2909                        this_parent = mnt;
2910                        goto repeat;
2911                }
2912
2913                if (!propagate_mount_busy(mnt, 1)) {
2914                        list_move_tail(&mnt->mnt_expire, graveyard);
2915                        found++;
2916                }
2917        }
2918        /*
2919         * All done at this level ... ascend and resume the search
2920         */
2921        if (this_parent != parent) {
2922                next = this_parent->mnt_child.next;
2923                this_parent = this_parent->mnt_parent;
2924                goto resume;
2925        }
2926        return found;
2927}
2928
2929/*
2930 * process a list of expirable mountpoints with the intent of discarding any
2931 * submounts of a specific parent mountpoint
2932 *
2933 * mount_lock must be held for write
2934 */
2935static void shrink_submounts(struct mount *mnt)
2936{
2937        LIST_HEAD(graveyard);
2938        struct mount *m;
2939
2940        /* extract submounts of 'mountpoint' from the expiration list */
2941        while (select_submounts(mnt, &graveyard)) {
2942                while (!list_empty(&graveyard)) {
2943                        m = list_first_entry(&graveyard, struct mount,
2944                                                mnt_expire);
2945                        touch_mnt_namespace(m->mnt_ns);
2946                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2947                }
2948        }
2949}
2950
2951/*
2952 * Some copy_from_user() implementations do not return the exact number of
2953 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2954 * Note that this function differs from copy_from_user() in that it will oops
2955 * on bad values of `to', rather than returning a short copy.
2956 */
2957static long exact_copy_from_user(void *to, const void __user * from,
2958                                 unsigned long n)
2959{
2960        char *t = to;
2961        const char __user *f = from;
2962        char c;
2963
2964        if (!access_ok(from, n))
2965                return n;
2966
2967        while (n) {
2968                if (__get_user(c, f)) {
2969                        memset(t, 0, n);
2970                        break;
2971                }
2972                *t++ = c;
2973                f++;
2974                n--;
2975        }
2976        return n;
2977}
2978
2979void *copy_mount_options(const void __user * data)
2980{
2981        int i;
2982        unsigned long size;
2983        char *copy;
2984
2985        if (!data)
2986                return NULL;
2987
2988        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2989        if (!copy)
2990                return ERR_PTR(-ENOMEM);
2991
2992        /* We only care that *some* data at the address the user
2993         * gave us is valid.  Just in case, we'll zero
2994         * the remainder of the page.
2995         */
2996        /* copy_from_user cannot cross TASK_SIZE ! */
2997        size = TASK_SIZE - (unsigned long)data;
2998        if (size > PAGE_SIZE)
2999                size = PAGE_SIZE;
3000
3001        i = size - exact_copy_from_user(copy, data, size);
3002        if (!i) {
3003                kfree(copy);
3004                return ERR_PTR(-EFAULT);
3005        }
3006        if (i != PAGE_SIZE)
3007                memset(copy + i, 0, PAGE_SIZE - i);
3008        return copy;
3009}
3010
3011char *copy_mount_string(const void __user *data)
3012{
3013        return data ? strndup_user(data, PATH_MAX) : NULL;
3014}
3015
3016/*
3017 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3018 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3019 *
3020 * data is a (void *) that can point to any structure up to
3021 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3022 * information (or be NULL).
3023 *
3024 * Pre-0.97 versions of mount() didn't have a flags word.
3025 * When the flags word was introduced its top half was required
3026 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3027 * Therefore, if this magic number is present, it carries no information
3028 * and must be discarded.
3029 */
3030long do_mount(const char *dev_name, const char __user *dir_name,
3031                const char *type_page, unsigned long flags, void *data_page)
3032{
3033        struct path path;
3034        unsigned int mnt_flags = 0, sb_flags;
3035        int retval = 0;
3036
3037        /* Discard magic */
3038        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3039                flags &= ~MS_MGC_MSK;
3040
3041        /* Basic sanity checks */
3042        if (data_page)
3043                ((char *)data_page)[PAGE_SIZE - 1] = 0;
3044
3045        if (flags & MS_NOUSER)
3046                return -EINVAL;
3047
3048        /* ... and get the mountpoint */
3049        retval = user_path(dir_name, &path);
3050        if (retval)
3051                return retval;
3052
3053        retval = security_sb_mount(dev_name, &path,
3054                                   type_page, flags, data_page);
3055        if (!retval && !may_mount())
3056                retval = -EPERM;
3057        if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3058                retval = -EPERM;
3059        if (retval)
3060                goto dput_out;
3061
3062        /* Default to relatime unless overriden */
3063        if (!(flags & MS_NOATIME))
3064                mnt_flags |= MNT_RELATIME;
3065
3066        /* Separate the per-mountpoint flags */
3067        if (flags & MS_NOSUID)
3068                mnt_flags |= MNT_NOSUID;
3069        if (flags & MS_NODEV)
3070                mnt_flags |= MNT_NODEV;
3071        if (flags & MS_NOEXEC)
3072                mnt_flags |= MNT_NOEXEC;
3073        if (flags & MS_NOATIME)
3074                mnt_flags |= MNT_NOATIME;
3075        if (flags & MS_NODIRATIME)
3076                mnt_flags |= MNT_NODIRATIME;
3077        if (flags & MS_STRICTATIME)
3078                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3079        if (flags & MS_RDONLY)
3080                mnt_flags |= MNT_READONLY;
3081
3082        /* The default atime for remount is preservation */
3083        if ((flags & MS_REMOUNT) &&
3084            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3085                       MS_STRICTATIME)) == 0)) {
3086                mnt_flags &= ~MNT_ATIME_MASK;
3087                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3088        }
3089
3090        sb_flags = flags & (SB_RDONLY |
3091                            SB_SYNCHRONOUS |
3092                            SB_MANDLOCK |
3093                            SB_DIRSYNC |
3094                            SB_SILENT |
3095                            SB_POSIXACL |
3096                            SB_LAZYTIME |
3097                            SB_I_VERSION);
3098
3099        if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3100                retval = do_reconfigure_mnt(&path, mnt_flags);
3101        else if (flags & MS_REMOUNT)
3102                retval = do_remount(&path, flags, sb_flags, mnt_flags,
3103                                    data_page);
3104        else if (flags & MS_BIND)
3105                retval = do_loopback(&path, dev_name, flags & MS_REC);
3106        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3107                retval = do_change_type(&path, flags);
3108        else if (flags & MS_MOVE)
3109                retval = do_move_mount_old(&path, dev_name);
3110        else
3111                retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3112                                      dev_name, data_page);
3113dput_out:
3114        path_put(&path);
3115        return retval;
3116}
3117
3118static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3119{
3120        return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3121}
3122
3123static void dec_mnt_namespaces(struct ucounts *ucounts)
3124{
3125        dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3126}
3127
3128static void free_mnt_ns(struct mnt_namespace *ns)
3129{
3130        if (!is_anon_ns(ns))
3131                ns_free_inum(&ns->ns);
3132        dec_mnt_namespaces(ns->ucounts);
3133        put_user_ns(ns->user_ns);
3134        kfree(ns);
3135}
3136
3137/*
3138 * Assign a sequence number so we can detect when we attempt to bind
3139 * mount a reference to an older mount namespace into the current
3140 * mount namespace, preventing reference counting loops.  A 64bit
3141 * number incrementing at 10Ghz will take 12,427 years to wrap which
3142 * is effectively never, so we can ignore the possibility.
3143 */
3144static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3145
3146static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3147{
3148        struct mnt_namespace *new_ns;
3149        struct ucounts *ucounts;
3150        int ret;
3151
3152        ucounts = inc_mnt_namespaces(user_ns);
3153        if (!ucounts)
3154                return ERR_PTR(-ENOSPC);
3155
3156        new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3157        if (!new_ns) {
3158                dec_mnt_namespaces(ucounts);
3159                return ERR_PTR(-ENOMEM);
3160        }
3161        if (!anon) {
3162                ret = ns_alloc_inum(&new_ns->ns);
3163                if (ret) {
3164                        kfree(new_ns);
3165                        dec_mnt_namespaces(ucounts);
3166                        return ERR_PTR(ret);
3167                }
3168        }
3169        new_ns->ns.ops = &mntns_operations;
3170        if (!anon)
3171                new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3172        atomic_set(&new_ns->count, 1);
3173        INIT_LIST_HEAD(&new_ns->list);
3174        init_waitqueue_head(&new_ns->poll);
3175        new_ns->user_ns = get_user_ns(user_ns);
3176        new_ns->ucounts = ucounts;
3177        return new_ns;
3178}
3179
3180__latent_entropy
3181struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3182                struct user_namespace *user_ns, struct fs_struct *new_fs)
3183{
3184        struct mnt_namespace *new_ns;
3185        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3186        struct mount *p, *q;
3187        struct mount *old;
3188        struct mount *new;
3189        int copy_flags;
3190
3191        BUG_ON(!ns);
3192
3193        if (likely(!(flags & CLONE_NEWNS))) {
3194                get_mnt_ns(ns);
3195                return ns;
3196        }
3197
3198        old = ns->root;
3199
3200        new_ns = alloc_mnt_ns(user_ns, false);
3201        if (IS_ERR(new_ns))
3202                return new_ns;
3203
3204        namespace_lock();
3205        /* First pass: copy the tree topology */
3206        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3207        if (user_ns != ns->user_ns)
3208                copy_flags |= CL_SHARED_TO_SLAVE;
3209        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3210        if (IS_ERR(new)) {
3211                namespace_unlock();
3212                free_mnt_ns(new_ns);
3213                return ERR_CAST(new);
3214        }
3215        if (user_ns != ns->user_ns) {
3216                lock_mount_hash();
3217                lock_mnt_tree(new);
3218                unlock_mount_hash();
3219        }
3220        new_ns->root = new;
3221        list_add_tail(&new_ns->list, &new->mnt_list);
3222
3223        /*
3224         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3225         * as belonging to new namespace.  We have already acquired a private
3226         * fs_struct, so tsk->fs->lock is not needed.
3227         */
3228        p = old;
3229        q = new;
3230        while (p) {
3231                q->mnt_ns = new_ns;
3232                new_ns->mounts++;
3233                if (new_fs) {
3234                        if (&p->mnt == new_fs->root.mnt) {
3235                                new_fs->root.mnt = mntget(&q->mnt);
3236                                rootmnt = &p->mnt;
3237                        }
3238                        if (&p->mnt == new_fs->pwd.mnt) {
3239                                new_fs->pwd.mnt = mntget(&q->mnt);
3240                                pwdmnt = &p->mnt;
3241                        }
3242                }
3243                p = next_mnt(p, old);
3244                q = next_mnt(q, new);
3245                if (!q)
3246                        break;
3247                while (p->mnt.mnt_root != q->mnt.mnt_root)
3248                        p = next_mnt(p, old);
3249        }
3250        namespace_unlock();
3251
3252        if (rootmnt)
3253                mntput(rootmnt);
3254        if (pwdmnt)
3255                mntput(pwdmnt);
3256
3257        return new_ns;
3258}
3259
3260struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3261{
3262        struct mount *mnt = real_mount(m);
3263        struct mnt_namespace *ns;
3264        struct super_block *s;
3265        struct path path;
3266        int err;
3267
3268        ns = alloc_mnt_ns(&init_user_ns, true);
3269        if (IS_ERR(ns)) {
3270                mntput(m);
3271                return ERR_CAST(ns);
3272        }
3273        mnt->mnt_ns = ns;
3274        ns->root = mnt;
3275        ns->mounts++;
3276        list_add(&mnt->mnt_list, &ns->list);
3277
3278        err = vfs_path_lookup(m->mnt_root, m,
3279                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3280
3281        put_mnt_ns(ns);
3282
3283        if (err)
3284                return ERR_PTR(err);
3285
3286        /* trade a vfsmount reference for active sb one */
3287        s = path.mnt->mnt_sb;
3288        atomic_inc(&s->s_active);
3289        mntput(path.mnt);
3290        /* lock the sucker */
3291        down_write(&s->s_umount);
3292        /* ... and return the root of (sub)tree on it */
3293        return path.dentry;
3294}
3295EXPORT_SYMBOL(mount_subtree);
3296
3297int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3298               const char __user *type, unsigned long flags, void __user *data)
3299{
3300        int ret;
3301        char *kernel_type;
3302        char *kernel_dev;
3303        void *options;
3304
3305        kernel_type = copy_mount_string(type);
3306        ret = PTR_ERR(kernel_type);
3307        if (IS_ERR(kernel_type))
3308                goto out_type;
3309
3310        kernel_dev = copy_mount_string(dev_name);
3311        ret = PTR_ERR(kernel_dev);
3312        if (IS_ERR(kernel_dev))
3313                goto out_dev;
3314
3315        options = copy_mount_options(data);
3316        ret = PTR_ERR(options);
3317        if (IS_ERR(options))
3318                goto out_data;
3319
3320        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3321
3322        kfree(options);
3323out_data:
3324        kfree(kernel_dev);
3325out_dev:
3326        kfree(kernel_type);
3327out_type:
3328        return ret;
3329}
3330
3331SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3332                char __user *, type, unsigned long, flags, void __user *, data)
3333{
3334        return ksys_mount(dev_name, dir_name, type, flags, data);
3335}
3336
3337/*
3338 * Create a kernel mount representation for a new, prepared superblock
3339 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3340 */
3341SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3342                unsigned int, attr_flags)
3343{
3344        struct mnt_namespace *ns;
3345        struct fs_context *fc;
3346        struct file *file;
3347        struct path newmount;
3348        struct mount *mnt;
3349        struct fd f;
3350        unsigned int mnt_flags = 0;
3351        long ret;
3352
3353        if (!may_mount())
3354                return -EPERM;
3355
3356        if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3357                return -EINVAL;
3358
3359        if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3360                           MOUNT_ATTR_NOSUID |
3361                           MOUNT_ATTR_NODEV |
3362                           MOUNT_ATTR_NOEXEC |
3363                           MOUNT_ATTR__ATIME |
3364                           MOUNT_ATTR_NODIRATIME))
3365                return -EINVAL;
3366
3367        if (attr_flags & MOUNT_ATTR_RDONLY)
3368                mnt_flags |= MNT_READONLY;
3369        if (attr_flags & MOUNT_ATTR_NOSUID)
3370                mnt_flags |= MNT_NOSUID;
3371        if (attr_flags & MOUNT_ATTR_NODEV)
3372                mnt_flags |= MNT_NODEV;
3373        if (attr_flags & MOUNT_ATTR_NOEXEC)
3374                mnt_flags |= MNT_NOEXEC;
3375        if (attr_flags & MOUNT_ATTR_NODIRATIME)
3376                mnt_flags |= MNT_NODIRATIME;
3377
3378        switch (attr_flags & MOUNT_ATTR__ATIME) {
3379        case MOUNT_ATTR_STRICTATIME:
3380                break;
3381        case MOUNT_ATTR_NOATIME:
3382                mnt_flags |= MNT_NOATIME;
3383                break;
3384        case MOUNT_ATTR_RELATIME:
3385                mnt_flags |= MNT_RELATIME;
3386                break;
3387        default:
3388                return -EINVAL;
3389        }
3390
3391        f = fdget(fs_fd);
3392        if (!f.file)
3393                return -EBADF;
3394
3395        ret = -EINVAL;
3396        if (f.file->f_op != &fscontext_fops)
3397                goto err_fsfd;
3398
3399        fc = f.file->private_data;
3400
3401        ret = mutex_lock_interruptible(&fc->uapi_mutex);
3402        if (ret < 0)
3403                goto err_fsfd;
3404
3405        /* There must be a valid superblock or we can't mount it */
3406        ret = -EINVAL;
3407        if (!fc->root)
3408                goto err_unlock;
3409
3410        ret = -EPERM;
3411        if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3412                pr_warn("VFS: Mount too revealing\n");
3413                goto err_unlock;
3414        }
3415
3416        ret = -EBUSY;
3417        if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3418                goto err_unlock;
3419
3420        ret = -EPERM;
3421        if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3422                goto err_unlock;
3423
3424        newmount.mnt = vfs_create_mount(fc);
3425        if (IS_ERR(newmount.mnt)) {
3426                ret = PTR_ERR(newmount.mnt);
3427                goto err_unlock;
3428        }
3429        newmount.dentry = dget(fc->root);
3430        newmount.mnt->mnt_flags = mnt_flags;
3431
3432        /* We've done the mount bit - now move the file context into more or
3433         * less the same state as if we'd done an fspick().  We don't want to
3434         * do any memory allocation or anything like that at this point as we
3435         * don't want to have to handle any errors incurred.
3436         */
3437        vfs_clean_context(fc);
3438
3439        ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3440        if (IS_ERR(ns)) {
3441                ret = PTR_ERR(ns);
3442                goto err_path;
3443        }
3444        mnt = real_mount(newmount.mnt);
3445        mnt->mnt_ns = ns;
3446        ns->root = mnt;
3447        ns->mounts = 1;
3448        list_add(&mnt->mnt_list, &ns->list);
3449        mntget(newmount.mnt);
3450
3451        /* Attach to an apparent O_PATH fd with a note that we need to unmount
3452         * it, not just simply put it.
3453         */
3454        file = dentry_open(&newmount, O_PATH, fc->cred);
3455        if (IS_ERR(file)) {
3456                dissolve_on_fput(newmount.mnt);
3457                ret = PTR_ERR(file);
3458                goto err_path;
3459        }
3460        file->f_mode |= FMODE_NEED_UNMOUNT;
3461
3462        ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3463        if (ret >= 0)
3464                fd_install(ret, file);
3465        else
3466                fput(file);
3467
3468err_path:
3469        path_put(&newmount);
3470err_unlock:
3471        mutex_unlock(&fc->uapi_mutex);
3472err_fsfd:
3473        fdput(f);
3474        return ret;
3475}
3476
3477/*
3478 * Move a mount from one place to another.  In combination with
3479 * fsopen()/fsmount() this is used to install a new mount and in combination
3480 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3481 * a mount subtree.
3482 *
3483 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3484 */
3485SYSCALL_DEFINE5(move_mount,
3486                int, from_dfd, const char *, from_pathname,
3487                int, to_dfd, const char *, to_pathname,
3488                unsigned int, flags)
3489{
3490        struct path from_path, to_path;
3491        unsigned int lflags;
3492        int ret = 0;
3493
3494        if (!may_mount())
3495                return -EPERM;
3496
3497        if (flags & ~MOVE_MOUNT__MASK)
3498                return -EINVAL;
3499
3500        /* If someone gives a pathname, they aren't permitted to move
3501         * from an fd that requires unmount as we can't get at the flag
3502         * to clear it afterwards.
3503         */
3504        lflags = 0;
3505        if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3506        if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3507        if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3508
3509        ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3510        if (ret < 0)
3511                return ret;
3512
3513        lflags = 0;
3514        if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3515        if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3516        if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3517
3518        ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3519        if (ret < 0)
3520                goto out_from;
3521
3522        ret = security_move_mount(&from_path, &to_path);
3523        if (ret < 0)
3524                goto out_to;
3525
3526        ret = do_move_mount(&from_path, &to_path);
3527
3528out_to:
3529        path_put(&to_path);
3530out_from:
3531        path_put(&from_path);
3532        return ret;
3533}
3534
3535/*
3536 * Return true if path is reachable from root
3537 *
3538 * namespace_sem or mount_lock is held
3539 */
3540bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3541                         const struct path *root)
3542{
3543        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3544                dentry = mnt->mnt_mountpoint;
3545                mnt = mnt->mnt_parent;
3546        }
3547        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3548}
3549
3550bool path_is_under(const struct path *path1, const struct path *path2)
3551{
3552        bool res;
3553        read_seqlock_excl(&mount_lock);
3554        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3555        read_sequnlock_excl(&mount_lock);
3556        return res;
3557}
3558EXPORT_SYMBOL(path_is_under);
3559
3560/*
3561 * pivot_root Semantics:
3562 * Moves the root file system of the current process to the directory put_old,
3563 * makes new_root as the new root file system of the current process, and sets
3564 * root/cwd of all processes which had them on the current root to new_root.
3565 *
3566 * Restrictions:
3567 * The new_root and put_old must be directories, and  must not be on the
3568 * same file  system as the current process root. The put_old  must  be
3569 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3570 * pointed to by put_old must yield the same directory as new_root. No other
3571 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3572 *
3573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3575 * in this situation.
3576 *
3577 * Notes:
3578 *  - we don't move root/cwd if they are not at the root (reason: if something
3579 *    cared enough to change them, it's probably wrong to force them elsewhere)
3580 *  - it's okay to pick a root that isn't the root of a file system, e.g.
3581 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3582 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3583 *    first.
3584 */
3585SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3586                const char __user *, put_old)
3587{
3588        struct path new, old, root;
3589        struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3590        struct mountpoint *old_mp, *root_mp;
3591        int error;
3592
3593        if (!may_mount())
3594                return -EPERM;
3595
3596        error = user_path_dir(new_root, &new);
3597        if (error)
3598                goto out0;
3599
3600        error = user_path_dir(put_old, &old);
3601        if (error)
3602                goto out1;
3603
3604        error = security_sb_pivotroot(&old, &new);
3605        if (error)
3606                goto out2;
3607
3608        get_fs_root(current->fs, &root);
3609        old_mp = lock_mount(&old);
3610        error = PTR_ERR(old_mp);
3611        if (IS_ERR(old_mp))
3612                goto out3;
3613
3614        error = -EINVAL;
3615        new_mnt = real_mount(new.mnt);
3616        root_mnt = real_mount(root.mnt);
3617        old_mnt = real_mount(old.mnt);
3618        ex_parent = new_mnt->mnt_parent;
3619        root_parent = root_mnt->mnt_parent;
3620        if (IS_MNT_SHARED(old_mnt) ||
3621                IS_MNT_SHARED(ex_parent) ||
3622                IS_MNT_SHARED(root_parent))
3623                goto out4;
3624        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3625                goto out4;
3626        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3627                goto out4;
3628        error = -ENOENT;
3629        if (d_unlinked(new.dentry))
3630                goto out4;
3631        error = -EBUSY;
3632        if (new_mnt == root_mnt || old_mnt == root_mnt)
3633                goto out4; /* loop, on the same file system  */
3634        error = -EINVAL;
3635        if (root.mnt->mnt_root != root.dentry)
3636                goto out4; /* not a mountpoint */
3637        if (!mnt_has_parent(root_mnt))
3638                goto out4; /* not attached */
3639        if (new.mnt->mnt_root != new.dentry)
3640                goto out4; /* not a mountpoint */
3641        if (!mnt_has_parent(new_mnt))
3642                goto out4; /* not attached */
3643        /* make sure we can reach put_old from new_root */
3644        if (!is_path_reachable(old_mnt, old.dentry, &new))
3645                goto out4;
3646        /* make certain new is below the root */
3647        if (!is_path_reachable(new_mnt, new.dentry, &root))
3648                goto out4;
3649        lock_mount_hash();
3650        umount_mnt(new_mnt);
3651        root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3652        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3653                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3654                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3655        }
3656        /* mount old root on put_old */
3657        attach_mnt(root_mnt, old_mnt, old_mp);
3658        /* mount new_root on / */
3659        attach_mnt(new_mnt, root_parent, root_mp);
3660        mnt_add_count(root_parent, -1);
3661        touch_mnt_namespace(current->nsproxy->mnt_ns);
3662        /* A moved mount should not expire automatically */
3663        list_del_init(&new_mnt->mnt_expire);
3664        put_mountpoint(root_mp);
3665        unlock_mount_hash();
3666        chroot_fs_refs(&root, &new);
3667        error = 0;
3668out4:
3669        unlock_mount(old_mp);
3670        if (!error)
3671                mntput_no_expire(ex_parent);
3672out3:
3673        path_put(&root);
3674out2:
3675        path_put(&old);
3676out1:
3677        path_put(&new);
3678out0:
3679        return error;
3680}
3681
3682static void __init init_mount_tree(void)
3683{
3684        struct vfsmount *mnt;
3685        struct mount *m;
3686        struct mnt_namespace *ns;
3687        struct path root;
3688
3689        mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3690        if (IS_ERR(mnt))
3691                panic("Can't create rootfs");
3692
3693        ns = alloc_mnt_ns(&init_user_ns, false);
3694        if (IS_ERR(ns))
3695                panic("Can't allocate initial namespace");
3696        m = real_mount(mnt);
3697        m->mnt_ns = ns;
3698        ns->root = m;
3699        ns->mounts = 1;
3700        list_add(&m->mnt_list, &ns->list);
3701        init_task.nsproxy->mnt_ns = ns;
3702        get_mnt_ns(ns);
3703
3704        root.mnt = mnt;
3705        root.dentry = mnt->mnt_root;
3706        mnt->mnt_flags |= MNT_LOCKED;
3707
3708        set_fs_pwd(current->fs, &root);
3709        set_fs_root(current->fs, &root);
3710}
3711
3712void __init mnt_init(void)
3713{
3714        int err;
3715
3716        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3717                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3718
3719        mount_hashtable = alloc_large_system_hash("Mount-cache",
3720                                sizeof(struct hlist_head),
3721                                mhash_entries, 19,
3722                                HASH_ZERO,
3723                                &m_hash_shift, &m_hash_mask, 0, 0);
3724        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3725                                sizeof(struct hlist_head),
3726                                mphash_entries, 19,
3727                                HASH_ZERO,
3728                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3729
3730        if (!mount_hashtable || !mountpoint_hashtable)
3731                panic("Failed to allocate mount hash table\n");
3732
3733        kernfs_init();
3734
3735        err = sysfs_init();
3736        if (err)
3737                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3738                        __func__, err);
3739        fs_kobj = kobject_create_and_add("fs", NULL);
3740        if (!fs_kobj)
3741                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3742        shmem_init();
3743        init_rootfs();
3744        init_mount_tree();
3745}
3746
3747void put_mnt_ns(struct mnt_namespace *ns)
3748{
3749        if (!atomic_dec_and_test(&ns->count))
3750                return;
3751        drop_collected_mounts(&ns->root->mnt);
3752        free_mnt_ns(ns);
3753}
3754
3755struct vfsmount *kern_mount(struct file_system_type *type)
3756{
3757        struct vfsmount *mnt;
3758        mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3759        if (!IS_ERR(mnt)) {
3760                /*
3761                 * it is a longterm mount, don't release mnt until
3762                 * we unmount before file sys is unregistered
3763                */
3764                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3765        }
3766        return mnt;
3767}
3768EXPORT_SYMBOL_GPL(kern_mount);
3769
3770void kern_unmount(struct vfsmount *mnt)
3771{
3772        /* release long term mount so mount point can be released */
3773        if (!IS_ERR_OR_NULL(mnt)) {
3774                real_mount(mnt)->mnt_ns = NULL;
3775                synchronize_rcu();      /* yecchhh... */
3776                mntput(mnt);
3777        }
3778}
3779EXPORT_SYMBOL(kern_unmount);
3780
3781bool our_mnt(struct vfsmount *mnt)
3782{
3783        return check_mnt(real_mount(mnt));
3784}
3785
3786bool current_chrooted(void)
3787{
3788        /* Does the current process have a non-standard root */
3789        struct path ns_root;
3790        struct path fs_root;
3791        bool chrooted;
3792
3793        /* Find the namespace root */
3794        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3795        ns_root.dentry = ns_root.mnt->mnt_root;
3796        path_get(&ns_root);
3797        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3798                ;
3799
3800        get_fs_root(current->fs, &fs_root);
3801
3802        chrooted = !path_equal(&fs_root, &ns_root);
3803
3804        path_put(&fs_root);
3805        path_put(&ns_root);
3806
3807        return chrooted;
3808}
3809
3810static bool mnt_already_visible(struct mnt_namespace *ns,
3811                                const struct super_block *sb,
3812                                int *new_mnt_flags)
3813{
3814        int new_flags = *new_mnt_flags;
3815        struct mount *mnt;
3816        bool visible = false;
3817
3818        down_read(&namespace_sem);
3819        list_for_each_entry(mnt, &ns->list, mnt_list) {
3820                struct mount *child;
3821                int mnt_flags;
3822
3823                if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3824                        continue;
3825
3826                /* This mount is not fully visible if it's root directory
3827                 * is not the root directory of the filesystem.
3828                 */
3829                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3830                        continue;
3831
3832                /* A local view of the mount flags */
3833                mnt_flags = mnt->mnt.mnt_flags;
3834
3835                /* Don't miss readonly hidden in the superblock flags */
3836                if (sb_rdonly(mnt->mnt.mnt_sb))
3837                        mnt_flags |= MNT_LOCK_READONLY;
3838
3839                /* Verify the mount flags are equal to or more permissive
3840                 * than the proposed new mount.
3841                 */
3842                if ((mnt_flags & MNT_LOCK_READONLY) &&
3843                    !(new_flags & MNT_READONLY))
3844                        continue;
3845                if ((mnt_flags & MNT_LOCK_ATIME) &&
3846                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3847                        continue;
3848
3849                /* This mount is not fully visible if there are any
3850                 * locked child mounts that cover anything except for
3851                 * empty directories.
3852                 */
3853                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3854                        struct inode *inode = child->mnt_mountpoint->d_inode;
3855                        /* Only worry about locked mounts */
3856                        if (!(child->mnt.mnt_flags & MNT_LOCKED))
3857                                continue;
3858                        /* Is the directory permanetly empty? */
3859                        if (!is_empty_dir_inode(inode))
3860                                goto next;
3861                }
3862                /* Preserve the locked attributes */
3863                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3864                                               MNT_LOCK_ATIME);
3865                visible = true;
3866                goto found;
3867        next:   ;
3868        }
3869found:
3870        up_read(&namespace_sem);
3871        return visible;
3872}
3873
3874static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3875{
3876        const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3877        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3878        unsigned long s_iflags;
3879
3880        if (ns->user_ns == &init_user_ns)
3881                return false;
3882
3883        /* Can this filesystem be too revealing? */
3884        s_iflags = sb->s_iflags;
3885        if (!(s_iflags & SB_I_USERNS_VISIBLE))
3886                return false;
3887
3888        if ((s_iflags & required_iflags) != required_iflags) {
3889                WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3890                          required_iflags);
3891                return true;
3892        }
3893
3894        return !mnt_already_visible(ns, sb, new_mnt_flags);
3895}
3896
3897bool mnt_may_suid(struct vfsmount *mnt)
3898{
3899        /*
3900         * Foreign mounts (accessed via fchdir or through /proc
3901         * symlinks) are always treated as if they are nosuid.  This
3902         * prevents namespaces from trusting potentially unsafe
3903         * suid/sgid bits, file caps, or security labels that originate
3904         * in other namespaces.
3905         */
3906        return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3907               current_in_userns(mnt->mnt_sb->s_user_ns);
3908}
3909
3910static struct ns_common *mntns_get(struct task_struct *task)
3911{
3912        struct ns_common *ns = NULL;
3913        struct nsproxy *nsproxy;
3914
3915        task_lock(task);
3916        nsproxy = task->nsproxy;
3917        if (nsproxy) {
3918                ns = &nsproxy->mnt_ns->ns;
3919                get_mnt_ns(to_mnt_ns(ns));
3920        }
3921        task_unlock(task);
3922
3923        return ns;
3924}
3925
3926static void mntns_put(struct ns_common *ns)
3927{
3928        put_mnt_ns(to_mnt_ns(ns));
3929}
3930
3931static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3932{
3933        struct fs_struct *fs = current->fs;
3934        struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3935        struct path root;
3936        int err;
3937
3938        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3939            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3940            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3941                return -EPERM;
3942
3943        if (is_anon_ns(mnt_ns))
3944                return -EINVAL;
3945
3946        if (fs->users != 1)
3947                return -EINVAL;
3948
3949        get_mnt_ns(mnt_ns);
3950        old_mnt_ns = nsproxy->mnt_ns;
3951        nsproxy->mnt_ns = mnt_ns;
3952
3953        /* Find the root */
3954        err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3955                                "/", LOOKUP_DOWN, &root);
3956        if (err) {
3957                /* revert to old namespace */
3958                nsproxy->mnt_ns = old_mnt_ns;
3959                put_mnt_ns(mnt_ns);
3960                return err;
3961        }
3962
3963        put_mnt_ns(old_mnt_ns);
3964
3965        /* Update the pwd and root */
3966        set_fs_pwd(fs, &root);
3967        set_fs_root(fs, &root);
3968
3969        path_put(&root);
3970        return 0;
3971}
3972
3973static struct user_namespace *mntns_owner(struct ns_common *ns)
3974{
3975        return to_mnt_ns(ns)->user_ns;
3976}
3977
3978const struct proc_ns_operations mntns_operations = {
3979        .name           = "mnt",
3980        .type           = CLONE_NEWNS,
3981        .get            = mntns_get,
3982        .put            = mntns_put,
3983        .install        = mntns_install,
3984        .owner          = mntns_owner,
3985};
3986