linux/fs/nfs/dir.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996  Added silly rename for unlink   --okir
  10 * 28 Sep 1996  Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59        .llseek         = nfs_llseek_dir,
  60        .read           = generic_read_dir,
  61        .iterate        = nfs_readdir,
  62        .open           = nfs_opendir,
  63        .release        = nfs_closedir,
  64        .fsync          = nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68        .freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
  72{
  73        struct nfs_inode *nfsi = NFS_I(dir);
  74        struct nfs_open_dir_context *ctx;
  75        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  76        if (ctx != NULL) {
  77                ctx->duped = 0;
  78                ctx->attr_gencount = nfsi->attr_gencount;
  79                ctx->dir_cookie = 0;
  80                ctx->dup_cookie = 0;
  81                ctx->cred = get_cred(cred);
  82                spin_lock(&dir->i_lock);
  83                if (list_empty(&nfsi->open_files) &&
  84                    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  85                        nfsi->cache_validity |= NFS_INO_INVALID_DATA |
  86                                NFS_INO_REVAL_FORCED;
  87                list_add(&ctx->list, &nfsi->open_files);
  88                spin_unlock(&dir->i_lock);
  89                return ctx;
  90        }
  91        return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96        spin_lock(&dir->i_lock);
  97        list_del(&ctx->list);
  98        spin_unlock(&dir->i_lock);
  99        put_cred(ctx->cred);
 100        kfree(ctx);
 101}
 102
 103/*
 104 * Open file
 105 */
 106static int
 107nfs_opendir(struct inode *inode, struct file *filp)
 108{
 109        int res = 0;
 110        struct nfs_open_dir_context *ctx;
 111
 112        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 113
 114        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 115
 116        ctx = alloc_nfs_open_dir_context(inode, current_cred());
 117        if (IS_ERR(ctx)) {
 118                res = PTR_ERR(ctx);
 119                goto out;
 120        }
 121        filp->private_data = ctx;
 122out:
 123        return res;
 124}
 125
 126static int
 127nfs_closedir(struct inode *inode, struct file *filp)
 128{
 129        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 130        return 0;
 131}
 132
 133struct nfs_cache_array_entry {
 134        u64 cookie;
 135        u64 ino;
 136        struct qstr string;
 137        unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 141        int size;
 142        int eof_index;
 143        u64 last_cookie;
 144        struct nfs_cache_array_entry array[0];
 145};
 146
 147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
 148typedef struct {
 149        struct file     *file;
 150        struct page     *page;
 151        struct dir_context *ctx;
 152        unsigned long   page_index;
 153        u64             *dir_cookie;
 154        u64             last_cookie;
 155        loff_t          current_index;
 156        decode_dirent_t decode;
 157
 158        unsigned long   timestamp;
 159        unsigned long   gencount;
 160        unsigned int    cache_entry_index;
 161        bool plus;
 162        bool eof;
 163} nfs_readdir_descriptor_t;
 164
 165/*
 166 * we are freeing strings created by nfs_add_to_readdir_array()
 167 */
 168static
 169void nfs_readdir_clear_array(struct page *page)
 170{
 171        struct nfs_cache_array *array;
 172        int i;
 173
 174        array = kmap_atomic(page);
 175        for (i = 0; i < array->size; i++)
 176                kfree(array->array[i].string.name);
 177        kunmap_atomic(array);
 178}
 179
 180/*
 181 * the caller is responsible for freeing qstr.name
 182 * when called by nfs_readdir_add_to_array, the strings will be freed in
 183 * nfs_clear_readdir_array()
 184 */
 185static
 186int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 187{
 188        string->len = len;
 189        string->name = kmemdup(name, len, GFP_KERNEL);
 190        if (string->name == NULL)
 191                return -ENOMEM;
 192        /*
 193         * Avoid a kmemleak false positive. The pointer to the name is stored
 194         * in a page cache page which kmemleak does not scan.
 195         */
 196        kmemleak_not_leak(string->name);
 197        string->hash = full_name_hash(NULL, name, len);
 198        return 0;
 199}
 200
 201static
 202int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 203{
 204        struct nfs_cache_array *array = kmap(page);
 205        struct nfs_cache_array_entry *cache_entry;
 206        int ret;
 207
 208        cache_entry = &array->array[array->size];
 209
 210        /* Check that this entry lies within the page bounds */
 211        ret = -ENOSPC;
 212        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 213                goto out;
 214
 215        cache_entry->cookie = entry->prev_cookie;
 216        cache_entry->ino = entry->ino;
 217        cache_entry->d_type = entry->d_type;
 218        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 219        if (ret)
 220                goto out;
 221        array->last_cookie = entry->cookie;
 222        array->size++;
 223        if (entry->eof != 0)
 224                array->eof_index = array->size;
 225out:
 226        kunmap(page);
 227        return ret;
 228}
 229
 230static
 231int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 232{
 233        loff_t diff = desc->ctx->pos - desc->current_index;
 234        unsigned int index;
 235
 236        if (diff < 0)
 237                goto out_eof;
 238        if (diff >= array->size) {
 239                if (array->eof_index >= 0)
 240                        goto out_eof;
 241                return -EAGAIN;
 242        }
 243
 244        index = (unsigned int)diff;
 245        *desc->dir_cookie = array->array[index].cookie;
 246        desc->cache_entry_index = index;
 247        return 0;
 248out_eof:
 249        desc->eof = true;
 250        return -EBADCOOKIE;
 251}
 252
 253static bool
 254nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 255{
 256        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 257                return false;
 258        smp_rmb();
 259        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 260}
 261
 262static
 263int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 264{
 265        int i;
 266        loff_t new_pos;
 267        int status = -EAGAIN;
 268
 269        for (i = 0; i < array->size; i++) {
 270                if (array->array[i].cookie == *desc->dir_cookie) {
 271                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 272                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 273
 274                        new_pos = desc->current_index + i;
 275                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 276                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 277                                ctx->duped = 0;
 278                                ctx->attr_gencount = nfsi->attr_gencount;
 279                        } else if (new_pos < desc->ctx->pos) {
 280                                if (ctx->duped > 0
 281                                    && ctx->dup_cookie == *desc->dir_cookie) {
 282                                        if (printk_ratelimit()) {
 283                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 284                                                                "Please contact your server vendor.  "
 285                                                                "The file: %.*s has duplicate cookie %llu\n",
 286                                                                desc->file, array->array[i].string.len,
 287                                                                array->array[i].string.name, *desc->dir_cookie);
 288                                        }
 289                                        status = -ELOOP;
 290                                        goto out;
 291                                }
 292                                ctx->dup_cookie = *desc->dir_cookie;
 293                                ctx->duped = -1;
 294                        }
 295                        desc->ctx->pos = new_pos;
 296                        desc->cache_entry_index = i;
 297                        return 0;
 298                }
 299        }
 300        if (array->eof_index >= 0) {
 301                status = -EBADCOOKIE;
 302                if (*desc->dir_cookie == array->last_cookie)
 303                        desc->eof = true;
 304        }
 305out:
 306        return status;
 307}
 308
 309static
 310int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 311{
 312        struct nfs_cache_array *array;
 313        int status;
 314
 315        array = kmap(desc->page);
 316
 317        if (*desc->dir_cookie == 0)
 318                status = nfs_readdir_search_for_pos(array, desc);
 319        else
 320                status = nfs_readdir_search_for_cookie(array, desc);
 321
 322        if (status == -EAGAIN) {
 323                desc->last_cookie = array->last_cookie;
 324                desc->current_index += array->size;
 325                desc->page_index++;
 326        }
 327        kunmap(desc->page);
 328        return status;
 329}
 330
 331/* Fill a page with xdr information before transferring to the cache page */
 332static
 333int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 334                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 335{
 336        struct nfs_open_dir_context *ctx = file->private_data;
 337        const struct cred *cred = ctx->cred;
 338        unsigned long   timestamp, gencount;
 339        int             error;
 340
 341 again:
 342        timestamp = jiffies;
 343        gencount = nfs_inc_attr_generation_counter();
 344        error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 345                                          NFS_SERVER(inode)->dtsize, desc->plus);
 346        if (error < 0) {
 347                /* We requested READDIRPLUS, but the server doesn't grok it */
 348                if (error == -ENOTSUPP && desc->plus) {
 349                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 350                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 351                        desc->plus = false;
 352                        goto again;
 353                }
 354                goto error;
 355        }
 356        desc->timestamp = timestamp;
 357        desc->gencount = gencount;
 358error:
 359        return error;
 360}
 361
 362static int xdr_decode(nfs_readdir_descriptor_t *desc,
 363                      struct nfs_entry *entry, struct xdr_stream *xdr)
 364{
 365        int error;
 366
 367        error = desc->decode(xdr, entry, desc->plus);
 368        if (error)
 369                return error;
 370        entry->fattr->time_start = desc->timestamp;
 371        entry->fattr->gencount = desc->gencount;
 372        return 0;
 373}
 374
 375/* Match file and dirent using either filehandle or fileid
 376 * Note: caller is responsible for checking the fsid
 377 */
 378static
 379int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 380{
 381        struct inode *inode;
 382        struct nfs_inode *nfsi;
 383
 384        if (d_really_is_negative(dentry))
 385                return 0;
 386
 387        inode = d_inode(dentry);
 388        if (is_bad_inode(inode) || NFS_STALE(inode))
 389                return 0;
 390
 391        nfsi = NFS_I(inode);
 392        if (entry->fattr->fileid != nfsi->fileid)
 393                return 0;
 394        if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 395                return 0;
 396        return 1;
 397}
 398
 399static
 400bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 401{
 402        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 403                return false;
 404        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 405                return true;
 406        if (ctx->pos == 0)
 407                return true;
 408        return false;
 409}
 410
 411/*
 412 * This function is called by the lookup and getattr code to request the
 413 * use of readdirplus to accelerate any future lookups in the same
 414 * directory.
 415 */
 416void nfs_advise_use_readdirplus(struct inode *dir)
 417{
 418        struct nfs_inode *nfsi = NFS_I(dir);
 419
 420        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 421            !list_empty(&nfsi->open_files))
 422                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 423}
 424
 425/*
 426 * This function is mainly for use by nfs_getattr().
 427 *
 428 * If this is an 'ls -l', we want to force use of readdirplus.
 429 * Do this by checking if there is an active file descriptor
 430 * and calling nfs_advise_use_readdirplus, then forcing a
 431 * cache flush.
 432 */
 433void nfs_force_use_readdirplus(struct inode *dir)
 434{
 435        struct nfs_inode *nfsi = NFS_I(dir);
 436
 437        if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 438            !list_empty(&nfsi->open_files)) {
 439                set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 440                invalidate_mapping_pages(dir->i_mapping, 0, -1);
 441        }
 442}
 443
 444static
 445void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 446{
 447        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 448        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 449        struct dentry *dentry;
 450        struct dentry *alias;
 451        struct inode *dir = d_inode(parent);
 452        struct inode *inode;
 453        int status;
 454
 455        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 456                return;
 457        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 458                return;
 459        if (filename.len == 0)
 460                return;
 461        /* Validate that the name doesn't contain any illegal '\0' */
 462        if (strnlen(filename.name, filename.len) != filename.len)
 463                return;
 464        /* ...or '/' */
 465        if (strnchr(filename.name, filename.len, '/'))
 466                return;
 467        if (filename.name[0] == '.') {
 468                if (filename.len == 1)
 469                        return;
 470                if (filename.len == 2 && filename.name[1] == '.')
 471                        return;
 472        }
 473        filename.hash = full_name_hash(parent, filename.name, filename.len);
 474
 475        dentry = d_lookup(parent, &filename);
 476again:
 477        if (!dentry) {
 478                dentry = d_alloc_parallel(parent, &filename, &wq);
 479                if (IS_ERR(dentry))
 480                        return;
 481        }
 482        if (!d_in_lookup(dentry)) {
 483                /* Is there a mountpoint here? If so, just exit */
 484                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 485                                        &entry->fattr->fsid))
 486                        goto out;
 487                if (nfs_same_file(dentry, entry)) {
 488                        if (!entry->fh->size)
 489                                goto out;
 490                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 491                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 492                        if (!status)
 493                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 494                        goto out;
 495                } else {
 496                        d_invalidate(dentry);
 497                        dput(dentry);
 498                        dentry = NULL;
 499                        goto again;
 500                }
 501        }
 502        if (!entry->fh->size) {
 503                d_lookup_done(dentry);
 504                goto out;
 505        }
 506
 507        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 508        alias = d_splice_alias(inode, dentry);
 509        d_lookup_done(dentry);
 510        if (alias) {
 511                if (IS_ERR(alias))
 512                        goto out;
 513                dput(dentry);
 514                dentry = alias;
 515        }
 516        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 517out:
 518        dput(dentry);
 519}
 520
 521/* Perform conversion from xdr to cache array */
 522static
 523int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 524                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 525{
 526        struct xdr_stream stream;
 527        struct xdr_buf buf;
 528        struct page *scratch;
 529        struct nfs_cache_array *array;
 530        unsigned int count = 0;
 531        int status;
 532
 533        scratch = alloc_page(GFP_KERNEL);
 534        if (scratch == NULL)
 535                return -ENOMEM;
 536
 537        if (buflen == 0)
 538                goto out_nopages;
 539
 540        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 541        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 542
 543        do {
 544                status = xdr_decode(desc, entry, &stream);
 545                if (status != 0) {
 546                        if (status == -EAGAIN)
 547                                status = 0;
 548                        break;
 549                }
 550
 551                count++;
 552
 553                if (desc->plus)
 554                        nfs_prime_dcache(file_dentry(desc->file), entry);
 555
 556                status = nfs_readdir_add_to_array(entry, page);
 557                if (status != 0)
 558                        break;
 559        } while (!entry->eof);
 560
 561out_nopages:
 562        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 563                array = kmap(page);
 564                array->eof_index = array->size;
 565                status = 0;
 566                kunmap(page);
 567        }
 568
 569        put_page(scratch);
 570        return status;
 571}
 572
 573static
 574void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 575{
 576        unsigned int i;
 577        for (i = 0; i < npages; i++)
 578                put_page(pages[i]);
 579}
 580
 581/*
 582 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 583 * to nfs_readdir_free_pages()
 584 */
 585static
 586int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 587{
 588        unsigned int i;
 589
 590        for (i = 0; i < npages; i++) {
 591                struct page *page = alloc_page(GFP_KERNEL);
 592                if (page == NULL)
 593                        goto out_freepages;
 594                pages[i] = page;
 595        }
 596        return 0;
 597
 598out_freepages:
 599        nfs_readdir_free_pages(pages, i);
 600        return -ENOMEM;
 601}
 602
 603static
 604int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 605{
 606        struct page *pages[NFS_MAX_READDIR_PAGES];
 607        struct nfs_entry entry;
 608        struct file     *file = desc->file;
 609        struct nfs_cache_array *array;
 610        int status = -ENOMEM;
 611        unsigned int array_size = ARRAY_SIZE(pages);
 612
 613        entry.prev_cookie = 0;
 614        entry.cookie = desc->last_cookie;
 615        entry.eof = 0;
 616        entry.fh = nfs_alloc_fhandle();
 617        entry.fattr = nfs_alloc_fattr();
 618        entry.server = NFS_SERVER(inode);
 619        if (entry.fh == NULL || entry.fattr == NULL)
 620                goto out;
 621
 622        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 623        if (IS_ERR(entry.label)) {
 624                status = PTR_ERR(entry.label);
 625                goto out;
 626        }
 627
 628        array = kmap(page);
 629        memset(array, 0, sizeof(struct nfs_cache_array));
 630        array->eof_index = -1;
 631
 632        status = nfs_readdir_alloc_pages(pages, array_size);
 633        if (status < 0)
 634                goto out_release_array;
 635        do {
 636                unsigned int pglen;
 637                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 638
 639                if (status < 0)
 640                        break;
 641                pglen = status;
 642                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 643                if (status < 0) {
 644                        if (status == -ENOSPC)
 645                                status = 0;
 646                        break;
 647                }
 648        } while (array->eof_index < 0);
 649
 650        nfs_readdir_free_pages(pages, array_size);
 651out_release_array:
 652        kunmap(page);
 653        nfs4_label_free(entry.label);
 654out:
 655        nfs_free_fattr(entry.fattr);
 656        nfs_free_fhandle(entry.fh);
 657        return status;
 658}
 659
 660/*
 661 * Now we cache directories properly, by converting xdr information
 662 * to an array that can be used for lookups later.  This results in
 663 * fewer cache pages, since we can store more information on each page.
 664 * We only need to convert from xdr once so future lookups are much simpler
 665 */
 666static
 667int nfs_readdir_filler(void *data, struct page* page)
 668{
 669        nfs_readdir_descriptor_t *desc = data;
 670        struct inode    *inode = file_inode(desc->file);
 671        int ret;
 672
 673        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 674        if (ret < 0)
 675                goto error;
 676        SetPageUptodate(page);
 677
 678        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 679                /* Should never happen */
 680                nfs_zap_mapping(inode, inode->i_mapping);
 681        }
 682        unlock_page(page);
 683        return 0;
 684 error:
 685        unlock_page(page);
 686        return ret;
 687}
 688
 689static
 690void cache_page_release(nfs_readdir_descriptor_t *desc)
 691{
 692        if (!desc->page->mapping)
 693                nfs_readdir_clear_array(desc->page);
 694        put_page(desc->page);
 695        desc->page = NULL;
 696}
 697
 698static
 699struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 700{
 701        return read_cache_page(desc->file->f_mapping, desc->page_index,
 702                        nfs_readdir_filler, desc);
 703}
 704
 705/*
 706 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 707 */
 708static
 709int find_cache_page(nfs_readdir_descriptor_t *desc)
 710{
 711        int res;
 712
 713        desc->page = get_cache_page(desc);
 714        if (IS_ERR(desc->page))
 715                return PTR_ERR(desc->page);
 716
 717        res = nfs_readdir_search_array(desc);
 718        if (res != 0)
 719                cache_page_release(desc);
 720        return res;
 721}
 722
 723/* Search for desc->dir_cookie from the beginning of the page cache */
 724static inline
 725int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 726{
 727        int res;
 728
 729        if (desc->page_index == 0) {
 730                desc->current_index = 0;
 731                desc->last_cookie = 0;
 732        }
 733        do {
 734                res = find_cache_page(desc);
 735        } while (res == -EAGAIN);
 736        return res;
 737}
 738
 739/*
 740 * Once we've found the start of the dirent within a page: fill 'er up...
 741 */
 742static 
 743int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 744{
 745        struct file     *file = desc->file;
 746        int i = 0;
 747        int res = 0;
 748        struct nfs_cache_array *array = NULL;
 749        struct nfs_open_dir_context *ctx = file->private_data;
 750
 751        array = kmap(desc->page);
 752        for (i = desc->cache_entry_index; i < array->size; i++) {
 753                struct nfs_cache_array_entry *ent;
 754
 755                ent = &array->array[i];
 756                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 757                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 758                        desc->eof = true;
 759                        break;
 760                }
 761                desc->ctx->pos++;
 762                if (i < (array->size-1))
 763                        *desc->dir_cookie = array->array[i+1].cookie;
 764                else
 765                        *desc->dir_cookie = array->last_cookie;
 766                if (ctx->duped != 0)
 767                        ctx->duped = 1;
 768        }
 769        if (array->eof_index >= 0)
 770                desc->eof = true;
 771
 772        kunmap(desc->page);
 773        cache_page_release(desc);
 774        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 775                        (unsigned long long)*desc->dir_cookie, res);
 776        return res;
 777}
 778
 779/*
 780 * If we cannot find a cookie in our cache, we suspect that this is
 781 * because it points to a deleted file, so we ask the server to return
 782 * whatever it thinks is the next entry. We then feed this to filldir.
 783 * If all goes well, we should then be able to find our way round the
 784 * cache on the next call to readdir_search_pagecache();
 785 *
 786 * NOTE: we cannot add the anonymous page to the pagecache because
 787 *       the data it contains might not be page aligned. Besides,
 788 *       we should already have a complete representation of the
 789 *       directory in the page cache by the time we get here.
 790 */
 791static inline
 792int uncached_readdir(nfs_readdir_descriptor_t *desc)
 793{
 794        struct page     *page = NULL;
 795        int             status;
 796        struct inode *inode = file_inode(desc->file);
 797        struct nfs_open_dir_context *ctx = desc->file->private_data;
 798
 799        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 800                        (unsigned long long)*desc->dir_cookie);
 801
 802        page = alloc_page(GFP_HIGHUSER);
 803        if (!page) {
 804                status = -ENOMEM;
 805                goto out;
 806        }
 807
 808        desc->page_index = 0;
 809        desc->last_cookie = *desc->dir_cookie;
 810        desc->page = page;
 811        ctx->duped = 0;
 812
 813        status = nfs_readdir_xdr_to_array(desc, page, inode);
 814        if (status < 0)
 815                goto out_release;
 816
 817        status = nfs_do_filldir(desc);
 818
 819 out:
 820        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 821                        __func__, status);
 822        return status;
 823 out_release:
 824        cache_page_release(desc);
 825        goto out;
 826}
 827
 828/* The file offset position represents the dirent entry number.  A
 829   last cookie cache takes care of the common case of reading the
 830   whole directory.
 831 */
 832static int nfs_readdir(struct file *file, struct dir_context *ctx)
 833{
 834        struct dentry   *dentry = file_dentry(file);
 835        struct inode    *inode = d_inode(dentry);
 836        nfs_readdir_descriptor_t my_desc,
 837                        *desc = &my_desc;
 838        struct nfs_open_dir_context *dir_ctx = file->private_data;
 839        int res = 0;
 840
 841        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 842                        file, (long long)ctx->pos);
 843        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 844
 845        /*
 846         * ctx->pos points to the dirent entry number.
 847         * *desc->dir_cookie has the cookie for the next entry. We have
 848         * to either find the entry with the appropriate number or
 849         * revalidate the cookie.
 850         */
 851        memset(desc, 0, sizeof(*desc));
 852
 853        desc->file = file;
 854        desc->ctx = ctx;
 855        desc->dir_cookie = &dir_ctx->dir_cookie;
 856        desc->decode = NFS_PROTO(inode)->decode_dirent;
 857        desc->plus = nfs_use_readdirplus(inode, ctx);
 858
 859        if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 860                res = nfs_revalidate_mapping(inode, file->f_mapping);
 861        if (res < 0)
 862                goto out;
 863
 864        do {
 865                res = readdir_search_pagecache(desc);
 866
 867                if (res == -EBADCOOKIE) {
 868                        res = 0;
 869                        /* This means either end of directory */
 870                        if (*desc->dir_cookie && !desc->eof) {
 871                                /* Or that the server has 'lost' a cookie */
 872                                res = uncached_readdir(desc);
 873                                if (res == 0)
 874                                        continue;
 875                        }
 876                        break;
 877                }
 878                if (res == -ETOOSMALL && desc->plus) {
 879                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 880                        nfs_zap_caches(inode);
 881                        desc->page_index = 0;
 882                        desc->plus = false;
 883                        desc->eof = false;
 884                        continue;
 885                }
 886                if (res < 0)
 887                        break;
 888
 889                res = nfs_do_filldir(desc);
 890                if (res < 0)
 891                        break;
 892        } while (!desc->eof);
 893out:
 894        if (res > 0)
 895                res = 0;
 896        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 897        return res;
 898}
 899
 900static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 901{
 902        struct inode *inode = file_inode(filp);
 903        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 904
 905        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 906                        filp, offset, whence);
 907
 908        switch (whence) {
 909        default:
 910                return -EINVAL;
 911        case SEEK_SET:
 912                if (offset < 0)
 913                        return -EINVAL;
 914                inode_lock(inode);
 915                break;
 916        case SEEK_CUR:
 917                if (offset == 0)
 918                        return filp->f_pos;
 919                inode_lock(inode);
 920                offset += filp->f_pos;
 921                if (offset < 0) {
 922                        inode_unlock(inode);
 923                        return -EINVAL;
 924                }
 925        }
 926        if (offset != filp->f_pos) {
 927                filp->f_pos = offset;
 928                dir_ctx->dir_cookie = 0;
 929                dir_ctx->duped = 0;
 930        }
 931        inode_unlock(inode);
 932        return offset;
 933}
 934
 935/*
 936 * All directory operations under NFS are synchronous, so fsync()
 937 * is a dummy operation.
 938 */
 939static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 940                         int datasync)
 941{
 942        struct inode *inode = file_inode(filp);
 943
 944        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 945
 946        inode_lock(inode);
 947        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 948        inode_unlock(inode);
 949        return 0;
 950}
 951
 952/**
 953 * nfs_force_lookup_revalidate - Mark the directory as having changed
 954 * @dir: pointer to directory inode
 955 *
 956 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 957 * full lookup on all child dentries of 'dir' whenever a change occurs
 958 * on the server that might have invalidated our dcache.
 959 *
 960 * The caller should be holding dir->i_lock
 961 */
 962void nfs_force_lookup_revalidate(struct inode *dir)
 963{
 964        NFS_I(dir)->cache_change_attribute++;
 965}
 966EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 967
 968/*
 969 * A check for whether or not the parent directory has changed.
 970 * In the case it has, we assume that the dentries are untrustworthy
 971 * and may need to be looked up again.
 972 * If rcu_walk prevents us from performing a full check, return 0.
 973 */
 974static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
 975                              int rcu_walk)
 976{
 977        if (IS_ROOT(dentry))
 978                return 1;
 979        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 980                return 0;
 981        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 982                return 0;
 983        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 984        if (nfs_mapping_need_revalidate_inode(dir)) {
 985                if (rcu_walk)
 986                        return 0;
 987                if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 988                        return 0;
 989        }
 990        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 991                return 0;
 992        return 1;
 993}
 994
 995/*
 996 * Use intent information to check whether or not we're going to do
 997 * an O_EXCL create using this path component.
 998 */
 999static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000{
1001        if (NFS_PROTO(dir)->version == 2)
1002                return 0;
1003        return flags & LOOKUP_EXCL;
1004}
1005
1006/*
1007 * Inode and filehandle revalidation for lookups.
1008 *
1009 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010 * or if the intent information indicates that we're about to open this
1011 * particular file and the "nocto" mount flag is not set.
1012 *
1013 */
1014static
1015int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016{
1017        struct nfs_server *server = NFS_SERVER(inode);
1018        int ret;
1019
1020        if (IS_AUTOMOUNT(inode))
1021                return 0;
1022
1023        if (flags & LOOKUP_OPEN) {
1024                switch (inode->i_mode & S_IFMT) {
1025                case S_IFREG:
1026                        /* A NFSv4 OPEN will revalidate later */
1027                        if (server->caps & NFS_CAP_ATOMIC_OPEN)
1028                                goto out;
1029                        /* Fallthrough */
1030                case S_IFDIR:
1031                        if (server->flags & NFS_MOUNT_NOCTO)
1032                                break;
1033                        /* NFS close-to-open cache consistency validation */
1034                        goto out_force;
1035                }
1036        }
1037
1038        /* VFS wants an on-the-wire revalidation */
1039        if (flags & LOOKUP_REVAL)
1040                goto out_force;
1041out:
1042        return (inode->i_nlink == 0) ? -ESTALE : 0;
1043out_force:
1044        if (flags & LOOKUP_RCU)
1045                return -ECHILD;
1046        ret = __nfs_revalidate_inode(server, inode);
1047        if (ret != 0)
1048                return ret;
1049        goto out;
1050}
1051
1052/*
1053 * We judge how long we want to trust negative
1054 * dentries by looking at the parent inode mtime.
1055 *
1056 * If parent mtime has changed, we revalidate, else we wait for a
1057 * period corresponding to the parent's attribute cache timeout value.
1058 *
1059 * If LOOKUP_RCU prevents us from performing a full check, return 1
1060 * suggesting a reval is needed.
1061 *
1062 * Note that when creating a new file, or looking up a rename target,
1063 * then it shouldn't be necessary to revalidate a negative dentry.
1064 */
1065static inline
1066int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1067                       unsigned int flags)
1068{
1069        if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1070                return 0;
1071        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1072                return 1;
1073        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1074}
1075
1076static int
1077nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1078                           struct inode *inode, int error)
1079{
1080        switch (error) {
1081        case 1:
1082                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1083                        __func__, dentry);
1084                return 1;
1085        case 0:
1086                nfs_mark_for_revalidate(dir);
1087                if (inode && S_ISDIR(inode->i_mode)) {
1088                        /* Purge readdir caches. */
1089                        nfs_zap_caches(inode);
1090                        /*
1091                         * We can't d_drop the root of a disconnected tree:
1092                         * its d_hash is on the s_anon list and d_drop() would hide
1093                         * it from shrink_dcache_for_unmount(), leading to busy
1094                         * inodes on unmount and further oopses.
1095                         */
1096                        if (IS_ROOT(dentry))
1097                                return 1;
1098                }
1099                dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1100                                __func__, dentry);
1101                return 0;
1102        }
1103        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1104                                __func__, dentry, error);
1105        return error;
1106}
1107
1108static int
1109nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1110                               unsigned int flags)
1111{
1112        int ret = 1;
1113        if (nfs_neg_need_reval(dir, dentry, flags)) {
1114                if (flags & LOOKUP_RCU)
1115                        return -ECHILD;
1116                ret = 0;
1117        }
1118        return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1119}
1120
1121static int
1122nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1123                                struct inode *inode)
1124{
1125        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1126        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1127}
1128
1129static int
1130nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1131                             struct inode *inode)
1132{
1133        struct nfs_fh *fhandle;
1134        struct nfs_fattr *fattr;
1135        struct nfs4_label *label;
1136        int ret;
1137
1138        ret = -ENOMEM;
1139        fhandle = nfs_alloc_fhandle();
1140        fattr = nfs_alloc_fattr();
1141        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1142        if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1143                goto out;
1144
1145        ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1146        if (ret < 0) {
1147                if (ret == -ESTALE || ret == -ENOENT)
1148                        ret = 0;
1149                goto out;
1150        }
1151        ret = 0;
1152        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1153                goto out;
1154        if (nfs_refresh_inode(inode, fattr) < 0)
1155                goto out;
1156
1157        nfs_setsecurity(inode, fattr, label);
1158        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1159
1160        /* set a readdirplus hint that we had a cache miss */
1161        nfs_force_use_readdirplus(dir);
1162        ret = 1;
1163out:
1164        nfs_free_fattr(fattr);
1165        nfs_free_fhandle(fhandle);
1166        nfs4_label_free(label);
1167        return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1168}
1169
1170/*
1171 * This is called every time the dcache has a lookup hit,
1172 * and we should check whether we can really trust that
1173 * lookup.
1174 *
1175 * NOTE! The hit can be a negative hit too, don't assume
1176 * we have an inode!
1177 *
1178 * If the parent directory is seen to have changed, we throw out the
1179 * cached dentry and do a new lookup.
1180 */
1181static int
1182nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1183                         unsigned int flags)
1184{
1185        struct inode *inode;
1186        int error;
1187
1188        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1189        inode = d_inode(dentry);
1190
1191        if (!inode)
1192                return nfs_lookup_revalidate_negative(dir, dentry, flags);
1193
1194        if (is_bad_inode(inode)) {
1195                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1196                                __func__, dentry);
1197                goto out_bad;
1198        }
1199
1200        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1201                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1202
1203        /* Force a full look up iff the parent directory has changed */
1204        if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1205            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1206                error = nfs_lookup_verify_inode(inode, flags);
1207                if (error) {
1208                        if (error == -ESTALE)
1209                                nfs_zap_caches(dir);
1210                        goto out_bad;
1211                }
1212                nfs_advise_use_readdirplus(dir);
1213                goto out_valid;
1214        }
1215
1216        if (flags & LOOKUP_RCU)
1217                return -ECHILD;
1218
1219        if (NFS_STALE(inode))
1220                goto out_bad;
1221
1222        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1223        error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1224        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1225        return error;
1226out_valid:
1227        return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1228out_bad:
1229        if (flags & LOOKUP_RCU)
1230                return -ECHILD;
1231        return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1232}
1233
1234static int
1235__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1236                        int (*reval)(struct inode *, struct dentry *, unsigned int))
1237{
1238        struct dentry *parent;
1239        struct inode *dir;
1240        int ret;
1241
1242        if (flags & LOOKUP_RCU) {
1243                parent = READ_ONCE(dentry->d_parent);
1244                dir = d_inode_rcu(parent);
1245                if (!dir)
1246                        return -ECHILD;
1247                ret = reval(dir, dentry, flags);
1248                if (parent != READ_ONCE(dentry->d_parent))
1249                        return -ECHILD;
1250        } else {
1251                parent = dget_parent(dentry);
1252                ret = reval(d_inode(parent), dentry, flags);
1253                dput(parent);
1254        }
1255        return ret;
1256}
1257
1258static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1259{
1260        return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1261}
1262
1263/*
1264 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1265 * when we don't really care about the dentry name. This is called when a
1266 * pathwalk ends on a dentry that was not found via a normal lookup in the
1267 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1268 *
1269 * In this situation, we just want to verify that the inode itself is OK
1270 * since the dentry might have changed on the server.
1271 */
1272static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1273{
1274        struct inode *inode = d_inode(dentry);
1275        int error = 0;
1276
1277        /*
1278         * I believe we can only get a negative dentry here in the case of a
1279         * procfs-style symlink. Just assume it's correct for now, but we may
1280         * eventually need to do something more here.
1281         */
1282        if (!inode) {
1283                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1284                                __func__, dentry);
1285                return 1;
1286        }
1287
1288        if (is_bad_inode(inode)) {
1289                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1290                                __func__, dentry);
1291                return 0;
1292        }
1293
1294        error = nfs_lookup_verify_inode(inode, flags);
1295        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1296                        __func__, inode->i_ino, error ? "invalid" : "valid");
1297        return !error;
1298}
1299
1300/*
1301 * This is called from dput() when d_count is going to 0.
1302 */
1303static int nfs_dentry_delete(const struct dentry *dentry)
1304{
1305        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1306                dentry, dentry->d_flags);
1307
1308        /* Unhash any dentry with a stale inode */
1309        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1310                return 1;
1311
1312        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1313                /* Unhash it, so that ->d_iput() would be called */
1314                return 1;
1315        }
1316        if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1317                /* Unhash it, so that ancestors of killed async unlink
1318                 * files will be cleaned up during umount */
1319                return 1;
1320        }
1321        return 0;
1322
1323}
1324
1325/* Ensure that we revalidate inode->i_nlink */
1326static void nfs_drop_nlink(struct inode *inode)
1327{
1328        spin_lock(&inode->i_lock);
1329        /* drop the inode if we're reasonably sure this is the last link */
1330        if (inode->i_nlink > 0)
1331                drop_nlink(inode);
1332        NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1333        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1334                | NFS_INO_INVALID_CTIME
1335                | NFS_INO_INVALID_OTHER
1336                | NFS_INO_REVAL_FORCED;
1337        spin_unlock(&inode->i_lock);
1338}
1339
1340/*
1341 * Called when the dentry loses inode.
1342 * We use it to clean up silly-renamed files.
1343 */
1344static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1345{
1346        if (S_ISDIR(inode->i_mode))
1347                /* drop any readdir cache as it could easily be old */
1348                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1349
1350        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1351                nfs_complete_unlink(dentry, inode);
1352                nfs_drop_nlink(inode);
1353        }
1354        iput(inode);
1355}
1356
1357static void nfs_d_release(struct dentry *dentry)
1358{
1359        /* free cached devname value, if it survived that far */
1360        if (unlikely(dentry->d_fsdata)) {
1361                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1362                        WARN_ON(1);
1363                else
1364                        kfree(dentry->d_fsdata);
1365        }
1366}
1367
1368const struct dentry_operations nfs_dentry_operations = {
1369        .d_revalidate   = nfs_lookup_revalidate,
1370        .d_weak_revalidate      = nfs_weak_revalidate,
1371        .d_delete       = nfs_dentry_delete,
1372        .d_iput         = nfs_dentry_iput,
1373        .d_automount    = nfs_d_automount,
1374        .d_release      = nfs_d_release,
1375};
1376EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1377
1378struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1379{
1380        struct dentry *res;
1381        struct inode *inode = NULL;
1382        struct nfs_fh *fhandle = NULL;
1383        struct nfs_fattr *fattr = NULL;
1384        struct nfs4_label *label = NULL;
1385        int error;
1386
1387        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1388        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1389
1390        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1391                return ERR_PTR(-ENAMETOOLONG);
1392
1393        /*
1394         * If we're doing an exclusive create, optimize away the lookup
1395         * but don't hash the dentry.
1396         */
1397        if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1398                return NULL;
1399
1400        res = ERR_PTR(-ENOMEM);
1401        fhandle = nfs_alloc_fhandle();
1402        fattr = nfs_alloc_fattr();
1403        if (fhandle == NULL || fattr == NULL)
1404                goto out;
1405
1406        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1407        if (IS_ERR(label))
1408                goto out;
1409
1410        trace_nfs_lookup_enter(dir, dentry, flags);
1411        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1412        if (error == -ENOENT)
1413                goto no_entry;
1414        if (error < 0) {
1415                res = ERR_PTR(error);
1416                goto out_label;
1417        }
1418        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1419        res = ERR_CAST(inode);
1420        if (IS_ERR(res))
1421                goto out_label;
1422
1423        /* Notify readdir to use READDIRPLUS */
1424        nfs_force_use_readdirplus(dir);
1425
1426no_entry:
1427        res = d_splice_alias(inode, dentry);
1428        if (res != NULL) {
1429                if (IS_ERR(res))
1430                        goto out_label;
1431                dentry = res;
1432        }
1433        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1434out_label:
1435        trace_nfs_lookup_exit(dir, dentry, flags, error);
1436        nfs4_label_free(label);
1437out:
1438        nfs_free_fattr(fattr);
1439        nfs_free_fhandle(fhandle);
1440        return res;
1441}
1442EXPORT_SYMBOL_GPL(nfs_lookup);
1443
1444#if IS_ENABLED(CONFIG_NFS_V4)
1445static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1446
1447const struct dentry_operations nfs4_dentry_operations = {
1448        .d_revalidate   = nfs4_lookup_revalidate,
1449        .d_weak_revalidate      = nfs_weak_revalidate,
1450        .d_delete       = nfs_dentry_delete,
1451        .d_iput         = nfs_dentry_iput,
1452        .d_automount    = nfs_d_automount,
1453        .d_release      = nfs_d_release,
1454};
1455EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1456
1457static fmode_t flags_to_mode(int flags)
1458{
1459        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1460        if ((flags & O_ACCMODE) != O_WRONLY)
1461                res |= FMODE_READ;
1462        if ((flags & O_ACCMODE) != O_RDONLY)
1463                res |= FMODE_WRITE;
1464        return res;
1465}
1466
1467static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1468{
1469        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1470}
1471
1472static int do_open(struct inode *inode, struct file *filp)
1473{
1474        nfs_fscache_open_file(inode, filp);
1475        return 0;
1476}
1477
1478static int nfs_finish_open(struct nfs_open_context *ctx,
1479                           struct dentry *dentry,
1480                           struct file *file, unsigned open_flags)
1481{
1482        int err;
1483
1484        err = finish_open(file, dentry, do_open);
1485        if (err)
1486                goto out;
1487        if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1488                nfs_file_set_open_context(file, ctx);
1489        else
1490                err = -EOPENSTALE;
1491out:
1492        return err;
1493}
1494
1495int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1496                    struct file *file, unsigned open_flags,
1497                    umode_t mode)
1498{
1499        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1500        struct nfs_open_context *ctx;
1501        struct dentry *res;
1502        struct iattr attr = { .ia_valid = ATTR_OPEN };
1503        struct inode *inode;
1504        unsigned int lookup_flags = 0;
1505        bool switched = false;
1506        int created = 0;
1507        int err;
1508
1509        /* Expect a negative dentry */
1510        BUG_ON(d_inode(dentry));
1511
1512        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1513                        dir->i_sb->s_id, dir->i_ino, dentry);
1514
1515        err = nfs_check_flags(open_flags);
1516        if (err)
1517                return err;
1518
1519        /* NFS only supports OPEN on regular files */
1520        if ((open_flags & O_DIRECTORY)) {
1521                if (!d_in_lookup(dentry)) {
1522                        /*
1523                         * Hashed negative dentry with O_DIRECTORY: dentry was
1524                         * revalidated and is fine, no need to perform lookup
1525                         * again
1526                         */
1527                        return -ENOENT;
1528                }
1529                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1530                goto no_open;
1531        }
1532
1533        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1534                return -ENAMETOOLONG;
1535
1536        if (open_flags & O_CREAT) {
1537                struct nfs_server *server = NFS_SERVER(dir);
1538
1539                if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1540                        mode &= ~current_umask();
1541
1542                attr.ia_valid |= ATTR_MODE;
1543                attr.ia_mode = mode;
1544        }
1545        if (open_flags & O_TRUNC) {
1546                attr.ia_valid |= ATTR_SIZE;
1547                attr.ia_size = 0;
1548        }
1549
1550        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1551                d_drop(dentry);
1552                switched = true;
1553                dentry = d_alloc_parallel(dentry->d_parent,
1554                                          &dentry->d_name, &wq);
1555                if (IS_ERR(dentry))
1556                        return PTR_ERR(dentry);
1557                if (unlikely(!d_in_lookup(dentry)))
1558                        return finish_no_open(file, dentry);
1559        }
1560
1561        ctx = create_nfs_open_context(dentry, open_flags, file);
1562        err = PTR_ERR(ctx);
1563        if (IS_ERR(ctx))
1564                goto out;
1565
1566        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1567        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1568        if (created)
1569                file->f_mode |= FMODE_CREATED;
1570        if (IS_ERR(inode)) {
1571                err = PTR_ERR(inode);
1572                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1573                put_nfs_open_context(ctx);
1574                d_drop(dentry);
1575                switch (err) {
1576                case -ENOENT:
1577                        d_splice_alias(NULL, dentry);
1578                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1579                        break;
1580                case -EISDIR:
1581                case -ENOTDIR:
1582                        goto no_open;
1583                case -ELOOP:
1584                        if (!(open_flags & O_NOFOLLOW))
1585                                goto no_open;
1586                        break;
1587                        /* case -EINVAL: */
1588                default:
1589                        break;
1590                }
1591                goto out;
1592        }
1593
1594        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1595        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1596        put_nfs_open_context(ctx);
1597out:
1598        if (unlikely(switched)) {
1599                d_lookup_done(dentry);
1600                dput(dentry);
1601        }
1602        return err;
1603
1604no_open:
1605        res = nfs_lookup(dir, dentry, lookup_flags);
1606        if (switched) {
1607                d_lookup_done(dentry);
1608                if (!res)
1609                        res = dentry;
1610                else
1611                        dput(dentry);
1612        }
1613        if (IS_ERR(res))
1614                return PTR_ERR(res);
1615        return finish_no_open(file, res);
1616}
1617EXPORT_SYMBOL_GPL(nfs_atomic_open);
1618
1619static int
1620nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1621                          unsigned int flags)
1622{
1623        struct inode *inode;
1624
1625        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1626                goto full_reval;
1627        if (d_mountpoint(dentry))
1628                goto full_reval;
1629
1630        inode = d_inode(dentry);
1631
1632        /* We can't create new files in nfs_open_revalidate(), so we
1633         * optimize away revalidation of negative dentries.
1634         */
1635        if (inode == NULL)
1636                goto full_reval;
1637
1638        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1639                return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1640
1641        /* NFS only supports OPEN on regular files */
1642        if (!S_ISREG(inode->i_mode))
1643                goto full_reval;
1644
1645        /* We cannot do exclusive creation on a positive dentry */
1646        if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1647                goto reval_dentry;
1648
1649        /* Check if the directory changed */
1650        if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1651                goto reval_dentry;
1652
1653        /* Let f_op->open() actually open (and revalidate) the file */
1654        return 1;
1655reval_dentry:
1656        if (flags & LOOKUP_RCU)
1657                return -ECHILD;
1658        return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1659
1660full_reval:
1661        return nfs_do_lookup_revalidate(dir, dentry, flags);
1662}
1663
1664static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1665{
1666        return __nfs_lookup_revalidate(dentry, flags,
1667                        nfs4_do_lookup_revalidate);
1668}
1669
1670#endif /* CONFIG_NFSV4 */
1671
1672/*
1673 * Code common to create, mkdir, and mknod.
1674 */
1675int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1676                                struct nfs_fattr *fattr,
1677                                struct nfs4_label *label)
1678{
1679        struct dentry *parent = dget_parent(dentry);
1680        struct inode *dir = d_inode(parent);
1681        struct inode *inode;
1682        struct dentry *d;
1683        int error = -EACCES;
1684
1685        d_drop(dentry);
1686
1687        /* We may have been initialized further down */
1688        if (d_really_is_positive(dentry))
1689                goto out;
1690        if (fhandle->size == 0) {
1691                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692                if (error)
1693                        goto out_error;
1694        }
1695        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697                struct nfs_server *server = NFS_SB(dentry->d_sb);
1698                error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1699                                fattr, NULL, NULL);
1700                if (error < 0)
1701                        goto out_error;
1702        }
1703        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1704        d = d_splice_alias(inode, dentry);
1705        if (IS_ERR(d)) {
1706                error = PTR_ERR(d);
1707                goto out_error;
1708        }
1709        dput(d);
1710out:
1711        dput(parent);
1712        return 0;
1713out_error:
1714        nfs_mark_for_revalidate(dir);
1715        dput(parent);
1716        return error;
1717}
1718EXPORT_SYMBOL_GPL(nfs_instantiate);
1719
1720/*
1721 * Following a failed create operation, we drop the dentry rather
1722 * than retain a negative dentry. This avoids a problem in the event
1723 * that the operation succeeded on the server, but an error in the
1724 * reply path made it appear to have failed.
1725 */
1726int nfs_create(struct inode *dir, struct dentry *dentry,
1727                umode_t mode, bool excl)
1728{
1729        struct iattr attr;
1730        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1731        int error;
1732
1733        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1734                        dir->i_sb->s_id, dir->i_ino, dentry);
1735
1736        attr.ia_mode = mode;
1737        attr.ia_valid = ATTR_MODE;
1738
1739        trace_nfs_create_enter(dir, dentry, open_flags);
1740        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1741        trace_nfs_create_exit(dir, dentry, open_flags, error);
1742        if (error != 0)
1743                goto out_err;
1744        return 0;
1745out_err:
1746        d_drop(dentry);
1747        return error;
1748}
1749EXPORT_SYMBOL_GPL(nfs_create);
1750
1751/*
1752 * See comments for nfs_proc_create regarding failed operations.
1753 */
1754int
1755nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1756{
1757        struct iattr attr;
1758        int status;
1759
1760        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1761                        dir->i_sb->s_id, dir->i_ino, dentry);
1762
1763        attr.ia_mode = mode;
1764        attr.ia_valid = ATTR_MODE;
1765
1766        trace_nfs_mknod_enter(dir, dentry);
1767        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1768        trace_nfs_mknod_exit(dir, dentry, status);
1769        if (status != 0)
1770                goto out_err;
1771        return 0;
1772out_err:
1773        d_drop(dentry);
1774        return status;
1775}
1776EXPORT_SYMBOL_GPL(nfs_mknod);
1777
1778/*
1779 * See comments for nfs_proc_create regarding failed operations.
1780 */
1781int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1782{
1783        struct iattr attr;
1784        int error;
1785
1786        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1787                        dir->i_sb->s_id, dir->i_ino, dentry);
1788
1789        attr.ia_valid = ATTR_MODE;
1790        attr.ia_mode = mode | S_IFDIR;
1791
1792        trace_nfs_mkdir_enter(dir, dentry);
1793        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1794        trace_nfs_mkdir_exit(dir, dentry, error);
1795        if (error != 0)
1796                goto out_err;
1797        return 0;
1798out_err:
1799        d_drop(dentry);
1800        return error;
1801}
1802EXPORT_SYMBOL_GPL(nfs_mkdir);
1803
1804static void nfs_dentry_handle_enoent(struct dentry *dentry)
1805{
1806        if (simple_positive(dentry))
1807                d_delete(dentry);
1808}
1809
1810int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1811{
1812        int error;
1813
1814        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1815                        dir->i_sb->s_id, dir->i_ino, dentry);
1816
1817        trace_nfs_rmdir_enter(dir, dentry);
1818        if (d_really_is_positive(dentry)) {
1819                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1820                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1821                /* Ensure the VFS deletes this inode */
1822                switch (error) {
1823                case 0:
1824                        clear_nlink(d_inode(dentry));
1825                        break;
1826                case -ENOENT:
1827                        nfs_dentry_handle_enoent(dentry);
1828                }
1829                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1830        } else
1831                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1832        trace_nfs_rmdir_exit(dir, dentry, error);
1833
1834        return error;
1835}
1836EXPORT_SYMBOL_GPL(nfs_rmdir);
1837
1838/*
1839 * Remove a file after making sure there are no pending writes,
1840 * and after checking that the file has only one user. 
1841 *
1842 * We invalidate the attribute cache and free the inode prior to the operation
1843 * to avoid possible races if the server reuses the inode.
1844 */
1845static int nfs_safe_remove(struct dentry *dentry)
1846{
1847        struct inode *dir = d_inode(dentry->d_parent);
1848        struct inode *inode = d_inode(dentry);
1849        int error = -EBUSY;
1850                
1851        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1852
1853        /* If the dentry was sillyrenamed, we simply call d_delete() */
1854        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1855                error = 0;
1856                goto out;
1857        }
1858
1859        trace_nfs_remove_enter(dir, dentry);
1860        if (inode != NULL) {
1861                error = NFS_PROTO(dir)->remove(dir, dentry);
1862                if (error == 0)
1863                        nfs_drop_nlink(inode);
1864        } else
1865                error = NFS_PROTO(dir)->remove(dir, dentry);
1866        if (error == -ENOENT)
1867                nfs_dentry_handle_enoent(dentry);
1868        trace_nfs_remove_exit(dir, dentry, error);
1869out:
1870        return error;
1871}
1872
1873/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1874 *  belongs to an active ".nfs..." file and we return -EBUSY.
1875 *
1876 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1877 */
1878int nfs_unlink(struct inode *dir, struct dentry *dentry)
1879{
1880        int error;
1881        int need_rehash = 0;
1882
1883        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1884                dir->i_ino, dentry);
1885
1886        trace_nfs_unlink_enter(dir, dentry);
1887        spin_lock(&dentry->d_lock);
1888        if (d_count(dentry) > 1) {
1889                spin_unlock(&dentry->d_lock);
1890                /* Start asynchronous writeout of the inode */
1891                write_inode_now(d_inode(dentry), 0);
1892                error = nfs_sillyrename(dir, dentry);
1893                goto out;
1894        }
1895        if (!d_unhashed(dentry)) {
1896                __d_drop(dentry);
1897                need_rehash = 1;
1898        }
1899        spin_unlock(&dentry->d_lock);
1900        error = nfs_safe_remove(dentry);
1901        if (!error || error == -ENOENT) {
1902                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1903        } else if (need_rehash)
1904                d_rehash(dentry);
1905out:
1906        trace_nfs_unlink_exit(dir, dentry, error);
1907        return error;
1908}
1909EXPORT_SYMBOL_GPL(nfs_unlink);
1910
1911/*
1912 * To create a symbolic link, most file systems instantiate a new inode,
1913 * add a page to it containing the path, then write it out to the disk
1914 * using prepare_write/commit_write.
1915 *
1916 * Unfortunately the NFS client can't create the in-core inode first
1917 * because it needs a file handle to create an in-core inode (see
1918 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1919 * symlink request has completed on the server.
1920 *
1921 * So instead we allocate a raw page, copy the symname into it, then do
1922 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1923 * now have a new file handle and can instantiate an in-core NFS inode
1924 * and move the raw page into its mapping.
1925 */
1926int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1927{
1928        struct page *page;
1929        char *kaddr;
1930        struct iattr attr;
1931        unsigned int pathlen = strlen(symname);
1932        int error;
1933
1934        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1935                dir->i_ino, dentry, symname);
1936
1937        if (pathlen > PAGE_SIZE)
1938                return -ENAMETOOLONG;
1939
1940        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1941        attr.ia_valid = ATTR_MODE;
1942
1943        page = alloc_page(GFP_USER);
1944        if (!page)
1945                return -ENOMEM;
1946
1947        kaddr = page_address(page);
1948        memcpy(kaddr, symname, pathlen);
1949        if (pathlen < PAGE_SIZE)
1950                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1951
1952        trace_nfs_symlink_enter(dir, dentry);
1953        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1954        trace_nfs_symlink_exit(dir, dentry, error);
1955        if (error != 0) {
1956                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1957                        dir->i_sb->s_id, dir->i_ino,
1958                        dentry, symname, error);
1959                d_drop(dentry);
1960                __free_page(page);
1961                return error;
1962        }
1963
1964        /*
1965         * No big deal if we can't add this page to the page cache here.
1966         * READLINK will get the missing page from the server if needed.
1967         */
1968        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1969                                                        GFP_KERNEL)) {
1970                SetPageUptodate(page);
1971                unlock_page(page);
1972                /*
1973                 * add_to_page_cache_lru() grabs an extra page refcount.
1974                 * Drop it here to avoid leaking this page later.
1975                 */
1976                put_page(page);
1977        } else
1978                __free_page(page);
1979
1980        return 0;
1981}
1982EXPORT_SYMBOL_GPL(nfs_symlink);
1983
1984int
1985nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1986{
1987        struct inode *inode = d_inode(old_dentry);
1988        int error;
1989
1990        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1991                old_dentry, dentry);
1992
1993        trace_nfs_link_enter(inode, dir, dentry);
1994        d_drop(dentry);
1995        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996        if (error == 0) {
1997                ihold(inode);
1998                d_add(dentry, inode);
1999        }
2000        trace_nfs_link_exit(inode, dir, dentry, error);
2001        return error;
2002}
2003EXPORT_SYMBOL_GPL(nfs_link);
2004
2005/*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 * 
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation.  This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030               struct inode *new_dir, struct dentry *new_dentry,
2031               unsigned int flags)
2032{
2033        struct inode *old_inode = d_inode(old_dentry);
2034        struct inode *new_inode = d_inode(new_dentry);
2035        struct dentry *dentry = NULL, *rehash = NULL;
2036        struct rpc_task *task;
2037        int error = -EBUSY;
2038
2039        if (flags)
2040                return -EINVAL;
2041
2042        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043                 old_dentry, new_dentry,
2044                 d_count(new_dentry));
2045
2046        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047        /*
2048         * For non-directories, check whether the target is busy and if so,
2049         * make a copy of the dentry and then do a silly-rename. If the
2050         * silly-rename succeeds, the copied dentry is hashed and becomes
2051         * the new target.
2052         */
2053        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054                /*
2055                 * To prevent any new references to the target during the
2056                 * rename, we unhash the dentry in advance.
2057                 */
2058                if (!d_unhashed(new_dentry)) {
2059                        d_drop(new_dentry);
2060                        rehash = new_dentry;
2061                }
2062
2063                if (d_count(new_dentry) > 2) {
2064                        int err;
2065
2066                        /* copy the target dentry's name */
2067                        dentry = d_alloc(new_dentry->d_parent,
2068                                         &new_dentry->d_name);
2069                        if (!dentry)
2070                                goto out;
2071
2072                        /* silly-rename the existing target ... */
2073                        err = nfs_sillyrename(new_dir, new_dentry);
2074                        if (err)
2075                                goto out;
2076
2077                        new_dentry = dentry;
2078                        rehash = NULL;
2079                        new_inode = NULL;
2080                }
2081        }
2082
2083        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2084        if (IS_ERR(task)) {
2085                error = PTR_ERR(task);
2086                goto out;
2087        }
2088
2089        error = rpc_wait_for_completion_task(task);
2090        if (error != 0) {
2091                ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2092                /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2093                smp_wmb();
2094        } else
2095                error = task->tk_status;
2096        rpc_put_task(task);
2097        /* Ensure the inode attributes are revalidated */
2098        if (error == 0) {
2099                spin_lock(&old_inode->i_lock);
2100                NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2101                NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2102                        | NFS_INO_INVALID_CTIME
2103                        | NFS_INO_REVAL_FORCED;
2104                spin_unlock(&old_inode->i_lock);
2105        }
2106out:
2107        if (rehash)
2108                d_rehash(rehash);
2109        trace_nfs_rename_exit(old_dir, old_dentry,
2110                        new_dir, new_dentry, error);
2111        if (!error) {
2112                if (new_inode != NULL)
2113                        nfs_drop_nlink(new_inode);
2114                /*
2115                 * The d_move() should be here instead of in an async RPC completion
2116                 * handler because we need the proper locks to move the dentry.  If
2117                 * we're interrupted by a signal, the async RPC completion handler
2118                 * should mark the directories for revalidation.
2119                 */
2120                d_move(old_dentry, new_dentry);
2121                nfs_set_verifier(old_dentry,
2122                                        nfs_save_change_attribute(new_dir));
2123        } else if (error == -ENOENT)
2124                nfs_dentry_handle_enoent(old_dentry);
2125
2126        /* new dentry created? */
2127        if (dentry)
2128                dput(dentry);
2129        return error;
2130}
2131EXPORT_SYMBOL_GPL(nfs_rename);
2132
2133static DEFINE_SPINLOCK(nfs_access_lru_lock);
2134static LIST_HEAD(nfs_access_lru_list);
2135static atomic_long_t nfs_access_nr_entries;
2136
2137static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2138module_param(nfs_access_max_cachesize, ulong, 0644);
2139MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2140
2141static void nfs_access_free_entry(struct nfs_access_entry *entry)
2142{
2143        put_cred(entry->cred);
2144        kfree_rcu(entry, rcu_head);
2145        smp_mb__before_atomic();
2146        atomic_long_dec(&nfs_access_nr_entries);
2147        smp_mb__after_atomic();
2148}
2149
2150static void nfs_access_free_list(struct list_head *head)
2151{
2152        struct nfs_access_entry *cache;
2153
2154        while (!list_empty(head)) {
2155                cache = list_entry(head->next, struct nfs_access_entry, lru);
2156                list_del(&cache->lru);
2157                nfs_access_free_entry(cache);
2158        }
2159}
2160
2161static unsigned long
2162nfs_do_access_cache_scan(unsigned int nr_to_scan)
2163{
2164        LIST_HEAD(head);
2165        struct nfs_inode *nfsi, *next;
2166        struct nfs_access_entry *cache;
2167        long freed = 0;
2168
2169        spin_lock(&nfs_access_lru_lock);
2170        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2171                struct inode *inode;
2172
2173                if (nr_to_scan-- == 0)
2174                        break;
2175                inode = &nfsi->vfs_inode;
2176                spin_lock(&inode->i_lock);
2177                if (list_empty(&nfsi->access_cache_entry_lru))
2178                        goto remove_lru_entry;
2179                cache = list_entry(nfsi->access_cache_entry_lru.next,
2180                                struct nfs_access_entry, lru);
2181                list_move(&cache->lru, &head);
2182                rb_erase(&cache->rb_node, &nfsi->access_cache);
2183                freed++;
2184                if (!list_empty(&nfsi->access_cache_entry_lru))
2185                        list_move_tail(&nfsi->access_cache_inode_lru,
2186                                        &nfs_access_lru_list);
2187                else {
2188remove_lru_entry:
2189                        list_del_init(&nfsi->access_cache_inode_lru);
2190                        smp_mb__before_atomic();
2191                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2192                        smp_mb__after_atomic();
2193                }
2194                spin_unlock(&inode->i_lock);
2195        }
2196        spin_unlock(&nfs_access_lru_lock);
2197        nfs_access_free_list(&head);
2198        return freed;
2199}
2200
2201unsigned long
2202nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2203{
2204        int nr_to_scan = sc->nr_to_scan;
2205        gfp_t gfp_mask = sc->gfp_mask;
2206
2207        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2208                return SHRINK_STOP;
2209        return nfs_do_access_cache_scan(nr_to_scan);
2210}
2211
2212
2213unsigned long
2214nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2215{
2216        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2217}
2218
2219static void
2220nfs_access_cache_enforce_limit(void)
2221{
2222        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2223        unsigned long diff;
2224        unsigned int nr_to_scan;
2225
2226        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2227                return;
2228        nr_to_scan = 100;
2229        diff = nr_entries - nfs_access_max_cachesize;
2230        if (diff < nr_to_scan)
2231                nr_to_scan = diff;
2232        nfs_do_access_cache_scan(nr_to_scan);
2233}
2234
2235static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2236{
2237        struct rb_root *root_node = &nfsi->access_cache;
2238        struct rb_node *n;
2239        struct nfs_access_entry *entry;
2240
2241        /* Unhook entries from the cache */
2242        while ((n = rb_first(root_node)) != NULL) {
2243                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2244                rb_erase(n, root_node);
2245                list_move(&entry->lru, head);
2246        }
2247        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2248}
2249
2250void nfs_access_zap_cache(struct inode *inode)
2251{
2252        LIST_HEAD(head);
2253
2254        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2255                return;
2256        /* Remove from global LRU init */
2257        spin_lock(&nfs_access_lru_lock);
2258        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2259                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2260
2261        spin_lock(&inode->i_lock);
2262        __nfs_access_zap_cache(NFS_I(inode), &head);
2263        spin_unlock(&inode->i_lock);
2264        spin_unlock(&nfs_access_lru_lock);
2265        nfs_access_free_list(&head);
2266}
2267EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2268
2269static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2270{
2271        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2272
2273        while (n != NULL) {
2274                struct nfs_access_entry *entry =
2275                        rb_entry(n, struct nfs_access_entry, rb_node);
2276                int cmp = cred_fscmp(cred, entry->cred);
2277
2278                if (cmp < 0)
2279                        n = n->rb_left;
2280                else if (cmp > 0)
2281                        n = n->rb_right;
2282                else
2283                        return entry;
2284        }
2285        return NULL;
2286}
2287
2288static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2289{
2290        struct nfs_inode *nfsi = NFS_I(inode);
2291        struct nfs_access_entry *cache;
2292        bool retry = true;
2293        int err;
2294
2295        spin_lock(&inode->i_lock);
2296        for(;;) {
2297                if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2298                        goto out_zap;
2299                cache = nfs_access_search_rbtree(inode, cred);
2300                err = -ENOENT;
2301                if (cache == NULL)
2302                        goto out;
2303                /* Found an entry, is our attribute cache valid? */
2304                if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2305                        break;
2306                err = -ECHILD;
2307                if (!may_block)
2308                        goto out;
2309                if (!retry)
2310                        goto out_zap;
2311                spin_unlock(&inode->i_lock);
2312                err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2313                if (err)
2314                        return err;
2315                spin_lock(&inode->i_lock);
2316                retry = false;
2317        }
2318        res->cred = cache->cred;
2319        res->mask = cache->mask;
2320        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2321        err = 0;
2322out:
2323        spin_unlock(&inode->i_lock);
2324        return err;
2325out_zap:
2326        spin_unlock(&inode->i_lock);
2327        nfs_access_zap_cache(inode);
2328        return -ENOENT;
2329}
2330
2331static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2332{
2333        /* Only check the most recently returned cache entry,
2334         * but do it without locking.
2335         */
2336        struct nfs_inode *nfsi = NFS_I(inode);
2337        struct nfs_access_entry *cache;
2338        int err = -ECHILD;
2339        struct list_head *lh;
2340
2341        rcu_read_lock();
2342        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2343                goto out;
2344        lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2345        cache = list_entry(lh, struct nfs_access_entry, lru);
2346        if (lh == &nfsi->access_cache_entry_lru ||
2347            cred != cache->cred)
2348                cache = NULL;
2349        if (cache == NULL)
2350                goto out;
2351        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2352                goto out;
2353        res->cred = cache->cred;
2354        res->mask = cache->mask;
2355        err = 0;
2356out:
2357        rcu_read_unlock();
2358        return err;
2359}
2360
2361static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2362{
2363        struct nfs_inode *nfsi = NFS_I(inode);
2364        struct rb_root *root_node = &nfsi->access_cache;
2365        struct rb_node **p = &root_node->rb_node;
2366        struct rb_node *parent = NULL;
2367        struct nfs_access_entry *entry;
2368        int cmp;
2369
2370        spin_lock(&inode->i_lock);
2371        while (*p != NULL) {
2372                parent = *p;
2373                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2374                cmp = cred_fscmp(set->cred, entry->cred);
2375
2376                if (cmp < 0)
2377                        p = &parent->rb_left;
2378                else if (cmp > 0)
2379                        p = &parent->rb_right;
2380                else
2381                        goto found;
2382        }
2383        rb_link_node(&set->rb_node, parent, p);
2384        rb_insert_color(&set->rb_node, root_node);
2385        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2386        spin_unlock(&inode->i_lock);
2387        return;
2388found:
2389        rb_replace_node(parent, &set->rb_node, root_node);
2390        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2391        list_del(&entry->lru);
2392        spin_unlock(&inode->i_lock);
2393        nfs_access_free_entry(entry);
2394}
2395
2396void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2397{
2398        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2399        if (cache == NULL)
2400                return;
2401        RB_CLEAR_NODE(&cache->rb_node);
2402        cache->cred = get_cred(set->cred);
2403        cache->mask = set->mask;
2404
2405        /* The above field assignments must be visible
2406         * before this item appears on the lru.  We cannot easily
2407         * use rcu_assign_pointer, so just force the memory barrier.
2408         */
2409        smp_wmb();
2410        nfs_access_add_rbtree(inode, cache);
2411
2412        /* Update accounting */
2413        smp_mb__before_atomic();
2414        atomic_long_inc(&nfs_access_nr_entries);
2415        smp_mb__after_atomic();
2416
2417        /* Add inode to global LRU list */
2418        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2419                spin_lock(&nfs_access_lru_lock);
2420                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2421                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2422                                        &nfs_access_lru_list);
2423                spin_unlock(&nfs_access_lru_lock);
2424        }
2425        nfs_access_cache_enforce_limit();
2426}
2427EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2428
2429#define NFS_MAY_READ (NFS_ACCESS_READ)
2430#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2431                NFS_ACCESS_EXTEND | \
2432                NFS_ACCESS_DELETE)
2433#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2434                NFS_ACCESS_EXTEND)
2435#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2436#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2437#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2438static int
2439nfs_access_calc_mask(u32 access_result, umode_t umode)
2440{
2441        int mask = 0;
2442
2443        if (access_result & NFS_MAY_READ)
2444                mask |= MAY_READ;
2445        if (S_ISDIR(umode)) {
2446                if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2447                        mask |= MAY_WRITE;
2448                if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2449                        mask |= MAY_EXEC;
2450        } else if (S_ISREG(umode)) {
2451                if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2452                        mask |= MAY_WRITE;
2453                if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2454                        mask |= MAY_EXEC;
2455        } else if (access_result & NFS_MAY_WRITE)
2456                        mask |= MAY_WRITE;
2457        return mask;
2458}
2459
2460void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2461{
2462        entry->mask = access_result;
2463}
2464EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2465
2466static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2467{
2468        struct nfs_access_entry cache;
2469        bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2470        int cache_mask;
2471        int status;
2472
2473        trace_nfs_access_enter(inode);
2474
2475        status = nfs_access_get_cached_rcu(inode, cred, &cache);
2476        if (status != 0)
2477                status = nfs_access_get_cached(inode, cred, &cache, may_block);
2478        if (status == 0)
2479                goto out_cached;
2480
2481        status = -ECHILD;
2482        if (!may_block)
2483                goto out;
2484
2485        /*
2486         * Determine which access bits we want to ask for...
2487         */
2488        cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2489        if (S_ISDIR(inode->i_mode))
2490                cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2491        else
2492                cache.mask |= NFS_ACCESS_EXECUTE;
2493        cache.cred = cred;
2494        status = NFS_PROTO(inode)->access(inode, &cache);
2495        if (status != 0) {
2496                if (status == -ESTALE) {
2497                        nfs_zap_caches(inode);
2498                        if (!S_ISDIR(inode->i_mode))
2499                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2500                }
2501                goto out;
2502        }
2503        nfs_access_add_cache(inode, &cache);
2504out_cached:
2505        cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2506        if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2507                status = -EACCES;
2508out:
2509        trace_nfs_access_exit(inode, status);
2510        return status;
2511}
2512
2513static int nfs_open_permission_mask(int openflags)
2514{
2515        int mask = 0;
2516
2517        if (openflags & __FMODE_EXEC) {
2518                /* ONLY check exec rights */
2519                mask = MAY_EXEC;
2520        } else {
2521                if ((openflags & O_ACCMODE) != O_WRONLY)
2522                        mask |= MAY_READ;
2523                if ((openflags & O_ACCMODE) != O_RDONLY)
2524                        mask |= MAY_WRITE;
2525        }
2526
2527        return mask;
2528}
2529
2530int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2531{
2532        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2533}
2534EXPORT_SYMBOL_GPL(nfs_may_open);
2535
2536static int nfs_execute_ok(struct inode *inode, int mask)
2537{
2538        struct nfs_server *server = NFS_SERVER(inode);
2539        int ret = 0;
2540
2541        if (S_ISDIR(inode->i_mode))
2542                return 0;
2543        if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2544                if (mask & MAY_NOT_BLOCK)
2545                        return -ECHILD;
2546                ret = __nfs_revalidate_inode(server, inode);
2547        }
2548        if (ret == 0 && !execute_ok(inode))
2549                ret = -EACCES;
2550        return ret;
2551}
2552
2553int nfs_permission(struct inode *inode, int mask)
2554{
2555        const struct cred *cred = current_cred();
2556        int res = 0;
2557
2558        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2559
2560        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2561                goto out;
2562        /* Is this sys_access() ? */
2563        if (mask & (MAY_ACCESS | MAY_CHDIR))
2564                goto force_lookup;
2565
2566        switch (inode->i_mode & S_IFMT) {
2567                case S_IFLNK:
2568                        goto out;
2569                case S_IFREG:
2570                        if ((mask & MAY_OPEN) &&
2571                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2572                                return 0;
2573                        break;
2574                case S_IFDIR:
2575                        /*
2576                         * Optimize away all write operations, since the server
2577                         * will check permissions when we perform the op.
2578                         */
2579                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2580                                goto out;
2581        }
2582
2583force_lookup:
2584        if (!NFS_PROTO(inode)->access)
2585                goto out_notsup;
2586
2587        /* Always try fast lookups first */
2588        rcu_read_lock();
2589        res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2590        rcu_read_unlock();
2591        if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2592                /* Fast lookup failed, try the slow way */
2593                res = nfs_do_access(inode, cred, mask);
2594        }
2595out:
2596        if (!res && (mask & MAY_EXEC))
2597                res = nfs_execute_ok(inode, mask);
2598
2599        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2600                inode->i_sb->s_id, inode->i_ino, mask, res);
2601        return res;
2602out_notsup:
2603        if (mask & MAY_NOT_BLOCK)
2604                return -ECHILD;
2605
2606        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2607        if (res == 0)
2608                res = generic_permission(inode, mask);
2609        goto out;
2610}
2611EXPORT_SYMBOL_GPL(nfs_permission);
2612
2613/*
2614 * Local variables:
2615 *  version-control: t
2616 *  kept-new-versions: 5
2617 * End:
2618 */
2619