linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fsnotify.h>
  36#include <linux/lockdep.h>
  37#include <linux/user_namespace.h>
  38#include <linux/fs_context.h>
  39#include <uapi/linux/mount.h>
  40#include "internal.h"
  41
  42static int thaw_super_locked(struct super_block *sb);
  43
  44static LIST_HEAD(super_blocks);
  45static DEFINE_SPINLOCK(sb_lock);
  46
  47static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  48        "sb_writers",
  49        "sb_pagefaults",
  50        "sb_internal",
  51};
  52
  53/*
  54 * One thing we have to be careful of with a per-sb shrinker is that we don't
  55 * drop the last active reference to the superblock from within the shrinker.
  56 * If that happens we could trigger unregistering the shrinker from within the
  57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  58 * take a passive reference to the superblock to avoid this from occurring.
  59 */
  60static unsigned long super_cache_scan(struct shrinker *shrink,
  61                                      struct shrink_control *sc)
  62{
  63        struct super_block *sb;
  64        long    fs_objects = 0;
  65        long    total_objects;
  66        long    freed = 0;
  67        long    dentries;
  68        long    inodes;
  69
  70        sb = container_of(shrink, struct super_block, s_shrink);
  71
  72        /*
  73         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  74         * to recurse into the FS that called us in clear_inode() and friends..
  75         */
  76        if (!(sc->gfp_mask & __GFP_FS))
  77                return SHRINK_STOP;
  78
  79        if (!trylock_super(sb))
  80                return SHRINK_STOP;
  81
  82        if (sb->s_op->nr_cached_objects)
  83                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  84
  85        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  86        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  87        total_objects = dentries + inodes + fs_objects + 1;
  88        if (!total_objects)
  89                total_objects = 1;
  90
  91        /* proportion the scan between the caches */
  92        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  93        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  94        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  95
  96        /*
  97         * prune the dcache first as the icache is pinned by it, then
  98         * prune the icache, followed by the filesystem specific caches
  99         *
 100         * Ensure that we always scan at least one object - memcg kmem
 101         * accounting uses this to fully empty the caches.
 102         */
 103        sc->nr_to_scan = dentries + 1;
 104        freed = prune_dcache_sb(sb, sc);
 105        sc->nr_to_scan = inodes + 1;
 106        freed += prune_icache_sb(sb, sc);
 107
 108        if (fs_objects) {
 109                sc->nr_to_scan = fs_objects + 1;
 110                freed += sb->s_op->free_cached_objects(sb, sc);
 111        }
 112
 113        up_read(&sb->s_umount);
 114        return freed;
 115}
 116
 117static unsigned long super_cache_count(struct shrinker *shrink,
 118                                       struct shrink_control *sc)
 119{
 120        struct super_block *sb;
 121        long    total_objects = 0;
 122
 123        sb = container_of(shrink, struct super_block, s_shrink);
 124
 125        /*
 126         * We don't call trylock_super() here as it is a scalability bottleneck,
 127         * so we're exposed to partial setup state. The shrinker rwsem does not
 128         * protect filesystem operations backing list_lru_shrink_count() or
 129         * s_op->nr_cached_objects(). Counts can change between
 130         * super_cache_count and super_cache_scan, so we really don't need locks
 131         * here.
 132         *
 133         * However, if we are currently mounting the superblock, the underlying
 134         * filesystem might be in a state of partial construction and hence it
 135         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 136         * avoid this situation, so do the same here. The memory barrier is
 137         * matched with the one in mount_fs() as we don't hold locks here.
 138         */
 139        if (!(sb->s_flags & SB_BORN))
 140                return 0;
 141        smp_rmb();
 142
 143        if (sb->s_op && sb->s_op->nr_cached_objects)
 144                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 145
 146        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 147        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 148
 149        if (!total_objects)
 150                return SHRINK_EMPTY;
 151
 152        total_objects = vfs_pressure_ratio(total_objects);
 153        return total_objects;
 154}
 155
 156static void destroy_super_work(struct work_struct *work)
 157{
 158        struct super_block *s = container_of(work, struct super_block,
 159                                                        destroy_work);
 160        int i;
 161
 162        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 163                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 164        kfree(s);
 165}
 166
 167static void destroy_super_rcu(struct rcu_head *head)
 168{
 169        struct super_block *s = container_of(head, struct super_block, rcu);
 170        INIT_WORK(&s->destroy_work, destroy_super_work);
 171        schedule_work(&s->destroy_work);
 172}
 173
 174/* Free a superblock that has never been seen by anyone */
 175static void destroy_unused_super(struct super_block *s)
 176{
 177        if (!s)
 178                return;
 179        up_write(&s->s_umount);
 180        list_lru_destroy(&s->s_dentry_lru);
 181        list_lru_destroy(&s->s_inode_lru);
 182        security_sb_free(s);
 183        put_user_ns(s->s_user_ns);
 184        kfree(s->s_subtype);
 185        free_prealloced_shrinker(&s->s_shrink);
 186        /* no delays needed */
 187        destroy_super_work(&s->destroy_work);
 188}
 189
 190/**
 191 *      alloc_super     -       create new superblock
 192 *      @type:  filesystem type superblock should belong to
 193 *      @flags: the mount flags
 194 *      @user_ns: User namespace for the super_block
 195 *
 196 *      Allocates and initializes a new &struct super_block.  alloc_super()
 197 *      returns a pointer new superblock or %NULL if allocation had failed.
 198 */
 199static struct super_block *alloc_super(struct file_system_type *type, int flags,
 200                                       struct user_namespace *user_ns)
 201{
 202        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 203        static const struct super_operations default_op;
 204        int i;
 205
 206        if (!s)
 207                return NULL;
 208
 209        INIT_LIST_HEAD(&s->s_mounts);
 210        s->s_user_ns = get_user_ns(user_ns);
 211        init_rwsem(&s->s_umount);
 212        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 213        /*
 214         * sget() can have s_umount recursion.
 215         *
 216         * When it cannot find a suitable sb, it allocates a new
 217         * one (this one), and tries again to find a suitable old
 218         * one.
 219         *
 220         * In case that succeeds, it will acquire the s_umount
 221         * lock of the old one. Since these are clearly distrinct
 222         * locks, and this object isn't exposed yet, there's no
 223         * risk of deadlocks.
 224         *
 225         * Annotate this by putting this lock in a different
 226         * subclass.
 227         */
 228        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 229
 230        if (security_sb_alloc(s))
 231                goto fail;
 232
 233        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 234                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 235                                        sb_writers_name[i],
 236                                        &type->s_writers_key[i]))
 237                        goto fail;
 238        }
 239        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 240        s->s_bdi = &noop_backing_dev_info;
 241        s->s_flags = flags;
 242        if (s->s_user_ns != &init_user_ns)
 243                s->s_iflags |= SB_I_NODEV;
 244        INIT_HLIST_NODE(&s->s_instances);
 245        INIT_HLIST_BL_HEAD(&s->s_roots);
 246        mutex_init(&s->s_sync_lock);
 247        INIT_LIST_HEAD(&s->s_inodes);
 248        spin_lock_init(&s->s_inode_list_lock);
 249        INIT_LIST_HEAD(&s->s_inodes_wb);
 250        spin_lock_init(&s->s_inode_wblist_lock);
 251
 252        s->s_count = 1;
 253        atomic_set(&s->s_active, 1);
 254        mutex_init(&s->s_vfs_rename_mutex);
 255        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 256        init_rwsem(&s->s_dquot.dqio_sem);
 257        s->s_maxbytes = MAX_NON_LFS;
 258        s->s_op = &default_op;
 259        s->s_time_gran = 1000000000;
 260        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 261
 262        s->s_shrink.seeks = DEFAULT_SEEKS;
 263        s->s_shrink.scan_objects = super_cache_scan;
 264        s->s_shrink.count_objects = super_cache_count;
 265        s->s_shrink.batch = 1024;
 266        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 267        if (prealloc_shrinker(&s->s_shrink))
 268                goto fail;
 269        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 270                goto fail;
 271        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 272                goto fail;
 273        return s;
 274
 275fail:
 276        destroy_unused_super(s);
 277        return NULL;
 278}
 279
 280/* Superblock refcounting  */
 281
 282/*
 283 * Drop a superblock's refcount.  The caller must hold sb_lock.
 284 */
 285static void __put_super(struct super_block *s)
 286{
 287        if (!--s->s_count) {
 288                list_del_init(&s->s_list);
 289                WARN_ON(s->s_dentry_lru.node);
 290                WARN_ON(s->s_inode_lru.node);
 291                WARN_ON(!list_empty(&s->s_mounts));
 292                security_sb_free(s);
 293                put_user_ns(s->s_user_ns);
 294                kfree(s->s_subtype);
 295                call_rcu(&s->rcu, destroy_super_rcu);
 296        }
 297}
 298
 299/**
 300 *      put_super       -       drop a temporary reference to superblock
 301 *      @sb: superblock in question
 302 *
 303 *      Drops a temporary reference, frees superblock if there's no
 304 *      references left.
 305 */
 306static void put_super(struct super_block *sb)
 307{
 308        spin_lock(&sb_lock);
 309        __put_super(sb);
 310        spin_unlock(&sb_lock);
 311}
 312
 313
 314/**
 315 *      deactivate_locked_super -       drop an active reference to superblock
 316 *      @s: superblock to deactivate
 317 *
 318 *      Drops an active reference to superblock, converting it into a temporary
 319 *      one if there is no other active references left.  In that case we
 320 *      tell fs driver to shut it down and drop the temporary reference we
 321 *      had just acquired.
 322 *
 323 *      Caller holds exclusive lock on superblock; that lock is released.
 324 */
 325void deactivate_locked_super(struct super_block *s)
 326{
 327        struct file_system_type *fs = s->s_type;
 328        if (atomic_dec_and_test(&s->s_active)) {
 329                cleancache_invalidate_fs(s);
 330                unregister_shrinker(&s->s_shrink);
 331                fs->kill_sb(s);
 332
 333                /*
 334                 * Since list_lru_destroy() may sleep, we cannot call it from
 335                 * put_super(), where we hold the sb_lock. Therefore we destroy
 336                 * the lru lists right now.
 337                 */
 338                list_lru_destroy(&s->s_dentry_lru);
 339                list_lru_destroy(&s->s_inode_lru);
 340
 341                put_filesystem(fs);
 342                put_super(s);
 343        } else {
 344                up_write(&s->s_umount);
 345        }
 346}
 347
 348EXPORT_SYMBOL(deactivate_locked_super);
 349
 350/**
 351 *      deactivate_super        -       drop an active reference to superblock
 352 *      @s: superblock to deactivate
 353 *
 354 *      Variant of deactivate_locked_super(), except that superblock is *not*
 355 *      locked by caller.  If we are going to drop the final active reference,
 356 *      lock will be acquired prior to that.
 357 */
 358void deactivate_super(struct super_block *s)
 359{
 360        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 361                down_write(&s->s_umount);
 362                deactivate_locked_super(s);
 363        }
 364}
 365
 366EXPORT_SYMBOL(deactivate_super);
 367
 368/**
 369 *      grab_super - acquire an active reference
 370 *      @s: reference we are trying to make active
 371 *
 372 *      Tries to acquire an active reference.  grab_super() is used when we
 373 *      had just found a superblock in super_blocks or fs_type->fs_supers
 374 *      and want to turn it into a full-blown active reference.  grab_super()
 375 *      is called with sb_lock held and drops it.  Returns 1 in case of
 376 *      success, 0 if we had failed (superblock contents was already dead or
 377 *      dying when grab_super() had been called).  Note that this is only
 378 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 379 *      of their type), so increment of ->s_count is OK here.
 380 */
 381static int grab_super(struct super_block *s) __releases(sb_lock)
 382{
 383        s->s_count++;
 384        spin_unlock(&sb_lock);
 385        down_write(&s->s_umount);
 386        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 387                put_super(s);
 388                return 1;
 389        }
 390        up_write(&s->s_umount);
 391        put_super(s);
 392        return 0;
 393}
 394
 395/*
 396 *      trylock_super - try to grab ->s_umount shared
 397 *      @sb: reference we are trying to grab
 398 *
 399 *      Try to prevent fs shutdown.  This is used in places where we
 400 *      cannot take an active reference but we need to ensure that the
 401 *      filesystem is not shut down while we are working on it. It returns
 402 *      false if we cannot acquire s_umount or if we lose the race and
 403 *      filesystem already got into shutdown, and returns true with the s_umount
 404 *      lock held in read mode in case of success. On successful return,
 405 *      the caller must drop the s_umount lock when done.
 406 *
 407 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 408 *      The reason why it's safe is that we are OK with doing trylock instead
 409 *      of down_read().  There's a couple of places that are OK with that, but
 410 *      it's very much not a general-purpose interface.
 411 */
 412bool trylock_super(struct super_block *sb)
 413{
 414        if (down_read_trylock(&sb->s_umount)) {
 415                if (!hlist_unhashed(&sb->s_instances) &&
 416                    sb->s_root && (sb->s_flags & SB_BORN))
 417                        return true;
 418                up_read(&sb->s_umount);
 419        }
 420
 421        return false;
 422}
 423
 424/**
 425 *      generic_shutdown_super  -       common helper for ->kill_sb()
 426 *      @sb: superblock to kill
 427 *
 428 *      generic_shutdown_super() does all fs-independent work on superblock
 429 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 430 *      that need destruction out of superblock, call generic_shutdown_super()
 431 *      and release aforementioned objects.  Note: dentries and inodes _are_
 432 *      taken care of and do not need specific handling.
 433 *
 434 *      Upon calling this function, the filesystem may no longer alter or
 435 *      rearrange the set of dentries belonging to this super_block, nor may it
 436 *      change the attachments of dentries to inodes.
 437 */
 438void generic_shutdown_super(struct super_block *sb)
 439{
 440        const struct super_operations *sop = sb->s_op;
 441
 442        if (sb->s_root) {
 443                shrink_dcache_for_umount(sb);
 444                sync_filesystem(sb);
 445                sb->s_flags &= ~SB_ACTIVE;
 446
 447                fsnotify_sb_delete(sb);
 448                cgroup_writeback_umount();
 449
 450                evict_inodes(sb);
 451
 452                if (sb->s_dio_done_wq) {
 453                        destroy_workqueue(sb->s_dio_done_wq);
 454                        sb->s_dio_done_wq = NULL;
 455                }
 456
 457                if (sop->put_super)
 458                        sop->put_super(sb);
 459
 460                if (!list_empty(&sb->s_inodes)) {
 461                        printk("VFS: Busy inodes after unmount of %s. "
 462                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 463                           sb->s_id);
 464                }
 465        }
 466        spin_lock(&sb_lock);
 467        /* should be initialized for __put_super_and_need_restart() */
 468        hlist_del_init(&sb->s_instances);
 469        spin_unlock(&sb_lock);
 470        up_write(&sb->s_umount);
 471        if (sb->s_bdi != &noop_backing_dev_info) {
 472                bdi_put(sb->s_bdi);
 473                sb->s_bdi = &noop_backing_dev_info;
 474        }
 475}
 476
 477EXPORT_SYMBOL(generic_shutdown_super);
 478
 479bool mount_capable(struct fs_context *fc)
 480{
 481        if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 482                return capable(CAP_SYS_ADMIN);
 483        else
 484                return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 485}
 486
 487/**
 488 * sget_fc - Find or create a superblock
 489 * @fc: Filesystem context.
 490 * @test: Comparison callback
 491 * @set: Setup callback
 492 *
 493 * Find or create a superblock using the parameters stored in the filesystem
 494 * context and the two callback functions.
 495 *
 496 * If an extant superblock is matched, then that will be returned with an
 497 * elevated reference count that the caller must transfer or discard.
 498 *
 499 * If no match is made, a new superblock will be allocated and basic
 500 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 501 * the set() callback will be invoked), the superblock will be published and it
 502 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 503 * as yet unset.
 504 */
 505struct super_block *sget_fc(struct fs_context *fc,
 506                            int (*test)(struct super_block *, struct fs_context *),
 507                            int (*set)(struct super_block *, struct fs_context *))
 508{
 509        struct super_block *s = NULL;
 510        struct super_block *old;
 511        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 512        int err;
 513
 514retry:
 515        spin_lock(&sb_lock);
 516        if (test) {
 517                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 518                        if (test(old, fc))
 519                                goto share_extant_sb;
 520                }
 521        }
 522        if (!s) {
 523                spin_unlock(&sb_lock);
 524                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 525                if (!s)
 526                        return ERR_PTR(-ENOMEM);
 527                goto retry;
 528        }
 529
 530        s->s_fs_info = fc->s_fs_info;
 531        err = set(s, fc);
 532        if (err) {
 533                s->s_fs_info = NULL;
 534                spin_unlock(&sb_lock);
 535                destroy_unused_super(s);
 536                return ERR_PTR(err);
 537        }
 538        fc->s_fs_info = NULL;
 539        s->s_type = fc->fs_type;
 540        s->s_iflags |= fc->s_iflags;
 541        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 542        list_add_tail(&s->s_list, &super_blocks);
 543        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 544        spin_unlock(&sb_lock);
 545        get_filesystem(s->s_type);
 546        register_shrinker_prepared(&s->s_shrink);
 547        return s;
 548
 549share_extant_sb:
 550        if (user_ns != old->s_user_ns) {
 551                spin_unlock(&sb_lock);
 552                destroy_unused_super(s);
 553                return ERR_PTR(-EBUSY);
 554        }
 555        if (!grab_super(old))
 556                goto retry;
 557        destroy_unused_super(s);
 558        return old;
 559}
 560EXPORT_SYMBOL(sget_fc);
 561
 562/**
 563 *      sget    -       find or create a superblock
 564 *      @type:    filesystem type superblock should belong to
 565 *      @test:    comparison callback
 566 *      @set:     setup callback
 567 *      @flags:   mount flags
 568 *      @data:    argument to each of them
 569 */
 570struct super_block *sget(struct file_system_type *type,
 571                        int (*test)(struct super_block *,void *),
 572                        int (*set)(struct super_block *,void *),
 573                        int flags,
 574                        void *data)
 575{
 576        struct user_namespace *user_ns = current_user_ns();
 577        struct super_block *s = NULL;
 578        struct super_block *old;
 579        int err;
 580
 581        /* We don't yet pass the user namespace of the parent
 582         * mount through to here so always use &init_user_ns
 583         * until that changes.
 584         */
 585        if (flags & SB_SUBMOUNT)
 586                user_ns = &init_user_ns;
 587
 588retry:
 589        spin_lock(&sb_lock);
 590        if (test) {
 591                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 592                        if (!test(old, data))
 593                                continue;
 594                        if (user_ns != old->s_user_ns) {
 595                                spin_unlock(&sb_lock);
 596                                destroy_unused_super(s);
 597                                return ERR_PTR(-EBUSY);
 598                        }
 599                        if (!grab_super(old))
 600                                goto retry;
 601                        destroy_unused_super(s);
 602                        return old;
 603                }
 604        }
 605        if (!s) {
 606                spin_unlock(&sb_lock);
 607                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 608                if (!s)
 609                        return ERR_PTR(-ENOMEM);
 610                goto retry;
 611        }
 612
 613        err = set(s, data);
 614        if (err) {
 615                spin_unlock(&sb_lock);
 616                destroy_unused_super(s);
 617                return ERR_PTR(err);
 618        }
 619        s->s_type = type;
 620        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 621        list_add_tail(&s->s_list, &super_blocks);
 622        hlist_add_head(&s->s_instances, &type->fs_supers);
 623        spin_unlock(&sb_lock);
 624        get_filesystem(type);
 625        register_shrinker_prepared(&s->s_shrink);
 626        return s;
 627}
 628EXPORT_SYMBOL(sget);
 629
 630void drop_super(struct super_block *sb)
 631{
 632        up_read(&sb->s_umount);
 633        put_super(sb);
 634}
 635
 636EXPORT_SYMBOL(drop_super);
 637
 638void drop_super_exclusive(struct super_block *sb)
 639{
 640        up_write(&sb->s_umount);
 641        put_super(sb);
 642}
 643EXPORT_SYMBOL(drop_super_exclusive);
 644
 645static void __iterate_supers(void (*f)(struct super_block *))
 646{
 647        struct super_block *sb, *p = NULL;
 648
 649        spin_lock(&sb_lock);
 650        list_for_each_entry(sb, &super_blocks, s_list) {
 651                if (hlist_unhashed(&sb->s_instances))
 652                        continue;
 653                sb->s_count++;
 654                spin_unlock(&sb_lock);
 655
 656                f(sb);
 657
 658                spin_lock(&sb_lock);
 659                if (p)
 660                        __put_super(p);
 661                p = sb;
 662        }
 663        if (p)
 664                __put_super(p);
 665        spin_unlock(&sb_lock);
 666}
 667/**
 668 *      iterate_supers - call function for all active superblocks
 669 *      @f: function to call
 670 *      @arg: argument to pass to it
 671 *
 672 *      Scans the superblock list and calls given function, passing it
 673 *      locked superblock and given argument.
 674 */
 675void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 676{
 677        struct super_block *sb, *p = NULL;
 678
 679        spin_lock(&sb_lock);
 680        list_for_each_entry(sb, &super_blocks, s_list) {
 681                if (hlist_unhashed(&sb->s_instances))
 682                        continue;
 683                sb->s_count++;
 684                spin_unlock(&sb_lock);
 685
 686                down_read(&sb->s_umount);
 687                if (sb->s_root && (sb->s_flags & SB_BORN))
 688                        f(sb, arg);
 689                up_read(&sb->s_umount);
 690
 691                spin_lock(&sb_lock);
 692                if (p)
 693                        __put_super(p);
 694                p = sb;
 695        }
 696        if (p)
 697                __put_super(p);
 698        spin_unlock(&sb_lock);
 699}
 700
 701/**
 702 *      iterate_supers_type - call function for superblocks of given type
 703 *      @type: fs type
 704 *      @f: function to call
 705 *      @arg: argument to pass to it
 706 *
 707 *      Scans the superblock list and calls given function, passing it
 708 *      locked superblock and given argument.
 709 */
 710void iterate_supers_type(struct file_system_type *type,
 711        void (*f)(struct super_block *, void *), void *arg)
 712{
 713        struct super_block *sb, *p = NULL;
 714
 715        spin_lock(&sb_lock);
 716        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 717                sb->s_count++;
 718                spin_unlock(&sb_lock);
 719
 720                down_read(&sb->s_umount);
 721                if (sb->s_root && (sb->s_flags & SB_BORN))
 722                        f(sb, arg);
 723                up_read(&sb->s_umount);
 724
 725                spin_lock(&sb_lock);
 726                if (p)
 727                        __put_super(p);
 728                p = sb;
 729        }
 730        if (p)
 731                __put_super(p);
 732        spin_unlock(&sb_lock);
 733}
 734
 735EXPORT_SYMBOL(iterate_supers_type);
 736
 737static struct super_block *__get_super(struct block_device *bdev, bool excl)
 738{
 739        struct super_block *sb;
 740
 741        if (!bdev)
 742                return NULL;
 743
 744        spin_lock(&sb_lock);
 745rescan:
 746        list_for_each_entry(sb, &super_blocks, s_list) {
 747                if (hlist_unhashed(&sb->s_instances))
 748                        continue;
 749                if (sb->s_bdev == bdev) {
 750                        sb->s_count++;
 751                        spin_unlock(&sb_lock);
 752                        if (!excl)
 753                                down_read(&sb->s_umount);
 754                        else
 755                                down_write(&sb->s_umount);
 756                        /* still alive? */
 757                        if (sb->s_root && (sb->s_flags & SB_BORN))
 758                                return sb;
 759                        if (!excl)
 760                                up_read(&sb->s_umount);
 761                        else
 762                                up_write(&sb->s_umount);
 763                        /* nope, got unmounted */
 764                        spin_lock(&sb_lock);
 765                        __put_super(sb);
 766                        goto rescan;
 767                }
 768        }
 769        spin_unlock(&sb_lock);
 770        return NULL;
 771}
 772
 773/**
 774 *      get_super - get the superblock of a device
 775 *      @bdev: device to get the superblock for
 776 *
 777 *      Scans the superblock list and finds the superblock of the file system
 778 *      mounted on the device given. %NULL is returned if no match is found.
 779 */
 780struct super_block *get_super(struct block_device *bdev)
 781{
 782        return __get_super(bdev, false);
 783}
 784EXPORT_SYMBOL(get_super);
 785
 786static struct super_block *__get_super_thawed(struct block_device *bdev,
 787                                              bool excl)
 788{
 789        while (1) {
 790                struct super_block *s = __get_super(bdev, excl);
 791                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 792                        return s;
 793                if (!excl)
 794                        up_read(&s->s_umount);
 795                else
 796                        up_write(&s->s_umount);
 797                wait_event(s->s_writers.wait_unfrozen,
 798                           s->s_writers.frozen == SB_UNFROZEN);
 799                put_super(s);
 800        }
 801}
 802
 803/**
 804 *      get_super_thawed - get thawed superblock of a device
 805 *      @bdev: device to get the superblock for
 806 *
 807 *      Scans the superblock list and finds the superblock of the file system
 808 *      mounted on the device. The superblock is returned once it is thawed
 809 *      (or immediately if it was not frozen). %NULL is returned if no match
 810 *      is found.
 811 */
 812struct super_block *get_super_thawed(struct block_device *bdev)
 813{
 814        return __get_super_thawed(bdev, false);
 815}
 816EXPORT_SYMBOL(get_super_thawed);
 817
 818/**
 819 *      get_super_exclusive_thawed - get thawed superblock of a device
 820 *      @bdev: device to get the superblock for
 821 *
 822 *      Scans the superblock list and finds the superblock of the file system
 823 *      mounted on the device. The superblock is returned once it is thawed
 824 *      (or immediately if it was not frozen) and s_umount semaphore is held
 825 *      in exclusive mode. %NULL is returned if no match is found.
 826 */
 827struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 828{
 829        return __get_super_thawed(bdev, true);
 830}
 831EXPORT_SYMBOL(get_super_exclusive_thawed);
 832
 833/**
 834 * get_active_super - get an active reference to the superblock of a device
 835 * @bdev: device to get the superblock for
 836 *
 837 * Scans the superblock list and finds the superblock of the file system
 838 * mounted on the device given.  Returns the superblock with an active
 839 * reference or %NULL if none was found.
 840 */
 841struct super_block *get_active_super(struct block_device *bdev)
 842{
 843        struct super_block *sb;
 844
 845        if (!bdev)
 846                return NULL;
 847
 848restart:
 849        spin_lock(&sb_lock);
 850        list_for_each_entry(sb, &super_blocks, s_list) {
 851                if (hlist_unhashed(&sb->s_instances))
 852                        continue;
 853                if (sb->s_bdev == bdev) {
 854                        if (!grab_super(sb))
 855                                goto restart;
 856                        up_write(&sb->s_umount);
 857                        return sb;
 858                }
 859        }
 860        spin_unlock(&sb_lock);
 861        return NULL;
 862}
 863
 864struct super_block *user_get_super(dev_t dev)
 865{
 866        struct super_block *sb;
 867
 868        spin_lock(&sb_lock);
 869rescan:
 870        list_for_each_entry(sb, &super_blocks, s_list) {
 871                if (hlist_unhashed(&sb->s_instances))
 872                        continue;
 873                if (sb->s_dev ==  dev) {
 874                        sb->s_count++;
 875                        spin_unlock(&sb_lock);
 876                        down_read(&sb->s_umount);
 877                        /* still alive? */
 878                        if (sb->s_root && (sb->s_flags & SB_BORN))
 879                                return sb;
 880                        up_read(&sb->s_umount);
 881                        /* nope, got unmounted */
 882                        spin_lock(&sb_lock);
 883                        __put_super(sb);
 884                        goto rescan;
 885                }
 886        }
 887        spin_unlock(&sb_lock);
 888        return NULL;
 889}
 890
 891/**
 892 * reconfigure_super - asks filesystem to change superblock parameters
 893 * @fc: The superblock and configuration
 894 *
 895 * Alters the configuration parameters of a live superblock.
 896 */
 897int reconfigure_super(struct fs_context *fc)
 898{
 899        struct super_block *sb = fc->root->d_sb;
 900        int retval;
 901        bool remount_ro = false;
 902        bool force = fc->sb_flags & SB_FORCE;
 903
 904        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 905                return -EINVAL;
 906        if (sb->s_writers.frozen != SB_UNFROZEN)
 907                return -EBUSY;
 908
 909        retval = security_sb_remount(sb, fc->security);
 910        if (retval)
 911                return retval;
 912
 913        if (fc->sb_flags_mask & SB_RDONLY) {
 914#ifdef CONFIG_BLOCK
 915                if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 916                        return -EACCES;
 917#endif
 918
 919                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 920        }
 921
 922        if (remount_ro) {
 923                if (!hlist_empty(&sb->s_pins)) {
 924                        up_write(&sb->s_umount);
 925                        group_pin_kill(&sb->s_pins);
 926                        down_write(&sb->s_umount);
 927                        if (!sb->s_root)
 928                                return 0;
 929                        if (sb->s_writers.frozen != SB_UNFROZEN)
 930                                return -EBUSY;
 931                        remount_ro = !sb_rdonly(sb);
 932                }
 933        }
 934        shrink_dcache_sb(sb);
 935
 936        /* If we are reconfiguring to RDONLY and current sb is read/write,
 937         * make sure there are no files open for writing.
 938         */
 939        if (remount_ro) {
 940                if (force) {
 941                        sb->s_readonly_remount = 1;
 942                        smp_wmb();
 943                } else {
 944                        retval = sb_prepare_remount_readonly(sb);
 945                        if (retval)
 946                                return retval;
 947                }
 948        }
 949
 950        if (fc->ops->reconfigure) {
 951                retval = fc->ops->reconfigure(fc);
 952                if (retval) {
 953                        if (!force)
 954                                goto cancel_readonly;
 955                        /* If forced remount, go ahead despite any errors */
 956                        WARN(1, "forced remount of a %s fs returned %i\n",
 957                             sb->s_type->name, retval);
 958                }
 959        }
 960
 961        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 962                                 (fc->sb_flags & fc->sb_flags_mask)));
 963        /* Needs to be ordered wrt mnt_is_readonly() */
 964        smp_wmb();
 965        sb->s_readonly_remount = 0;
 966
 967        /*
 968         * Some filesystems modify their metadata via some other path than the
 969         * bdev buffer cache (eg. use a private mapping, or directories in
 970         * pagecache, etc). Also file data modifications go via their own
 971         * mappings. So If we try to mount readonly then copy the filesystem
 972         * from bdev, we could get stale data, so invalidate it to give a best
 973         * effort at coherency.
 974         */
 975        if (remount_ro && sb->s_bdev)
 976                invalidate_bdev(sb->s_bdev);
 977        return 0;
 978
 979cancel_readonly:
 980        sb->s_readonly_remount = 0;
 981        return retval;
 982}
 983
 984static void do_emergency_remount_callback(struct super_block *sb)
 985{
 986        down_write(&sb->s_umount);
 987        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 988            !sb_rdonly(sb)) {
 989                struct fs_context *fc;
 990
 991                fc = fs_context_for_reconfigure(sb->s_root,
 992                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
 993                if (!IS_ERR(fc)) {
 994                        if (parse_monolithic_mount_data(fc, NULL) == 0)
 995                                (void)reconfigure_super(fc);
 996                        put_fs_context(fc);
 997                }
 998        }
 999        up_write(&sb->s_umount);
1000}
1001
1002static void do_emergency_remount(struct work_struct *work)
1003{
1004        __iterate_supers(do_emergency_remount_callback);
1005        kfree(work);
1006        printk("Emergency Remount complete\n");
1007}
1008
1009void emergency_remount(void)
1010{
1011        struct work_struct *work;
1012
1013        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014        if (work) {
1015                INIT_WORK(work, do_emergency_remount);
1016                schedule_work(work);
1017        }
1018}
1019
1020static void do_thaw_all_callback(struct super_block *sb)
1021{
1022        down_write(&sb->s_umount);
1023        if (sb->s_root && sb->s_flags & SB_BORN) {
1024                emergency_thaw_bdev(sb);
1025                thaw_super_locked(sb);
1026        } else {
1027                up_write(&sb->s_umount);
1028        }
1029}
1030
1031static void do_thaw_all(struct work_struct *work)
1032{
1033        __iterate_supers(do_thaw_all_callback);
1034        kfree(work);
1035        printk(KERN_WARNING "Emergency Thaw complete\n");
1036}
1037
1038/**
1039 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1040 *
1041 * Used for emergency unfreeze of all filesystems via SysRq
1042 */
1043void emergency_thaw_all(void)
1044{
1045        struct work_struct *work;
1046
1047        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1048        if (work) {
1049                INIT_WORK(work, do_thaw_all);
1050                schedule_work(work);
1051        }
1052}
1053
1054static DEFINE_IDA(unnamed_dev_ida);
1055
1056/**
1057 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1058 * @p: Pointer to a dev_t.
1059 *
1060 * Filesystems which don't use real block devices can call this function
1061 * to allocate a virtual block device.
1062 *
1063 * Context: Any context.  Frequently called while holding sb_lock.
1064 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1065 * or -ENOMEM if memory allocation failed.
1066 */
1067int get_anon_bdev(dev_t *p)
1068{
1069        int dev;
1070
1071        /*
1072         * Many userspace utilities consider an FSID of 0 invalid.
1073         * Always return at least 1 from get_anon_bdev.
1074         */
1075        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1076                        GFP_ATOMIC);
1077        if (dev == -ENOSPC)
1078                dev = -EMFILE;
1079        if (dev < 0)
1080                return dev;
1081
1082        *p = MKDEV(0, dev);
1083        return 0;
1084}
1085EXPORT_SYMBOL(get_anon_bdev);
1086
1087void free_anon_bdev(dev_t dev)
1088{
1089        ida_free(&unnamed_dev_ida, MINOR(dev));
1090}
1091EXPORT_SYMBOL(free_anon_bdev);
1092
1093int set_anon_super(struct super_block *s, void *data)
1094{
1095        return get_anon_bdev(&s->s_dev);
1096}
1097EXPORT_SYMBOL(set_anon_super);
1098
1099void kill_anon_super(struct super_block *sb)
1100{
1101        dev_t dev = sb->s_dev;
1102        generic_shutdown_super(sb);
1103        free_anon_bdev(dev);
1104}
1105EXPORT_SYMBOL(kill_anon_super);
1106
1107void kill_litter_super(struct super_block *sb)
1108{
1109        if (sb->s_root)
1110                d_genocide(sb->s_root);
1111        kill_anon_super(sb);
1112}
1113EXPORT_SYMBOL(kill_litter_super);
1114
1115int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1116{
1117        return set_anon_super(sb, NULL);
1118}
1119EXPORT_SYMBOL(set_anon_super_fc);
1120
1121static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1122{
1123        return sb->s_fs_info == fc->s_fs_info;
1124}
1125
1126static int test_single_super(struct super_block *s, struct fs_context *fc)
1127{
1128        return 1;
1129}
1130
1131/**
1132 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1133 * @fc: The filesystem context holding the parameters
1134 * @keying: How to distinguish superblocks
1135 * @fill_super: Helper to initialise a new superblock
1136 *
1137 * Search for a superblock and create a new one if not found.  The search
1138 * criterion is controlled by @keying.  If the search fails, a new superblock
1139 * is created and @fill_super() is called to initialise it.
1140 *
1141 * @keying can take one of a number of values:
1142 *
1143 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1144 *     system.  This is typically used for special system filesystems.
1145 *
1146 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1147 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1148 *     key again will turn up the superblock for that key.
1149 *
1150 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1151 *     unkeyed.  Each call will get a new superblock.
1152 *
1153 * A permissions check is made by sget_fc() unless we're getting a superblock
1154 * for a kernel-internal mount or a submount.
1155 */
1156int vfs_get_super(struct fs_context *fc,
1157                  enum vfs_get_super_keying keying,
1158                  int (*fill_super)(struct super_block *sb,
1159                                    struct fs_context *fc))
1160{
1161        int (*test)(struct super_block *, struct fs_context *);
1162        struct super_block *sb;
1163
1164        switch (keying) {
1165        case vfs_get_single_super:
1166                test = test_single_super;
1167                break;
1168        case vfs_get_keyed_super:
1169                test = test_keyed_super;
1170                break;
1171        case vfs_get_independent_super:
1172                test = NULL;
1173                break;
1174        default:
1175                BUG();
1176        }
1177
1178        sb = sget_fc(fc, test, set_anon_super_fc);
1179        if (IS_ERR(sb))
1180                return PTR_ERR(sb);
1181
1182        if (!sb->s_root) {
1183                int err = fill_super(sb, fc);
1184                if (err) {
1185                        deactivate_locked_super(sb);
1186                        return err;
1187                }
1188
1189                sb->s_flags |= SB_ACTIVE;
1190        }
1191
1192        BUG_ON(fc->root);
1193        fc->root = dget(sb->s_root);
1194        return 0;
1195}
1196EXPORT_SYMBOL(vfs_get_super);
1197
1198int get_tree_nodev(struct fs_context *fc,
1199                  int (*fill_super)(struct super_block *sb,
1200                                    struct fs_context *fc))
1201{
1202        return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1203}
1204EXPORT_SYMBOL(get_tree_nodev);
1205
1206int get_tree_single(struct fs_context *fc,
1207                  int (*fill_super)(struct super_block *sb,
1208                                    struct fs_context *fc))
1209{
1210        return vfs_get_super(fc, vfs_get_single_super, fill_super);
1211}
1212EXPORT_SYMBOL(get_tree_single);
1213
1214#ifdef CONFIG_BLOCK
1215static int set_bdev_super(struct super_block *s, void *data)
1216{
1217        s->s_bdev = data;
1218        s->s_dev = s->s_bdev->bd_dev;
1219        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1220
1221        return 0;
1222}
1223
1224static int test_bdev_super(struct super_block *s, void *data)
1225{
1226        return (void *)s->s_bdev == data;
1227}
1228
1229struct dentry *mount_bdev(struct file_system_type *fs_type,
1230        int flags, const char *dev_name, void *data,
1231        int (*fill_super)(struct super_block *, void *, int))
1232{
1233        struct block_device *bdev;
1234        struct super_block *s;
1235        fmode_t mode = FMODE_READ | FMODE_EXCL;
1236        int error = 0;
1237
1238        if (!(flags & SB_RDONLY))
1239                mode |= FMODE_WRITE;
1240
1241        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1242        if (IS_ERR(bdev))
1243                return ERR_CAST(bdev);
1244
1245        /*
1246         * once the super is inserted into the list by sget, s_umount
1247         * will protect the lockfs code from trying to start a snapshot
1248         * while we are mounting
1249         */
1250        mutex_lock(&bdev->bd_fsfreeze_mutex);
1251        if (bdev->bd_fsfreeze_count > 0) {
1252                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1253                error = -EBUSY;
1254                goto error_bdev;
1255        }
1256        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1257                 bdev);
1258        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1259        if (IS_ERR(s))
1260                goto error_s;
1261
1262        if (s->s_root) {
1263                if ((flags ^ s->s_flags) & SB_RDONLY) {
1264                        deactivate_locked_super(s);
1265                        error = -EBUSY;
1266                        goto error_bdev;
1267                }
1268
1269                /*
1270                 * s_umount nests inside bd_mutex during
1271                 * __invalidate_device().  blkdev_put() acquires
1272                 * bd_mutex and can't be called under s_umount.  Drop
1273                 * s_umount temporarily.  This is safe as we're
1274                 * holding an active reference.
1275                 */
1276                up_write(&s->s_umount);
1277                blkdev_put(bdev, mode);
1278                down_write(&s->s_umount);
1279        } else {
1280                s->s_mode = mode;
1281                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1282                sb_set_blocksize(s, block_size(bdev));
1283                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1284                if (error) {
1285                        deactivate_locked_super(s);
1286                        goto error;
1287                }
1288
1289                s->s_flags |= SB_ACTIVE;
1290                bdev->bd_super = s;
1291        }
1292
1293        return dget(s->s_root);
1294
1295error_s:
1296        error = PTR_ERR(s);
1297error_bdev:
1298        blkdev_put(bdev, mode);
1299error:
1300        return ERR_PTR(error);
1301}
1302EXPORT_SYMBOL(mount_bdev);
1303
1304void kill_block_super(struct super_block *sb)
1305{
1306        struct block_device *bdev = sb->s_bdev;
1307        fmode_t mode = sb->s_mode;
1308
1309        bdev->bd_super = NULL;
1310        generic_shutdown_super(sb);
1311        sync_blockdev(bdev);
1312        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1313        blkdev_put(bdev, mode | FMODE_EXCL);
1314}
1315
1316EXPORT_SYMBOL(kill_block_super);
1317#endif
1318
1319struct dentry *mount_nodev(struct file_system_type *fs_type,
1320        int flags, void *data,
1321        int (*fill_super)(struct super_block *, void *, int))
1322{
1323        int error;
1324        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1325
1326        if (IS_ERR(s))
1327                return ERR_CAST(s);
1328
1329        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1330        if (error) {
1331                deactivate_locked_super(s);
1332                return ERR_PTR(error);
1333        }
1334        s->s_flags |= SB_ACTIVE;
1335        return dget(s->s_root);
1336}
1337EXPORT_SYMBOL(mount_nodev);
1338
1339static int reconfigure_single(struct super_block *s,
1340                              int flags, void *data)
1341{
1342        struct fs_context *fc;
1343        int ret;
1344
1345        /* The caller really need to be passing fc down into mount_single(),
1346         * then a chunk of this can be removed.  [Bollocks -- AV]
1347         * Better yet, reconfiguration shouldn't happen, but rather the second
1348         * mount should be rejected if the parameters are not compatible.
1349         */
1350        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1351        if (IS_ERR(fc))
1352                return PTR_ERR(fc);
1353
1354        ret = parse_monolithic_mount_data(fc, data);
1355        if (ret < 0)
1356                goto out;
1357
1358        ret = reconfigure_super(fc);
1359out:
1360        put_fs_context(fc);
1361        return ret;
1362}
1363
1364static int compare_single(struct super_block *s, void *p)
1365{
1366        return 1;
1367}
1368
1369struct dentry *mount_single(struct file_system_type *fs_type,
1370        int flags, void *data,
1371        int (*fill_super)(struct super_block *, void *, int))
1372{
1373        struct super_block *s;
1374        int error;
1375
1376        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1377        if (IS_ERR(s))
1378                return ERR_CAST(s);
1379        if (!s->s_root) {
1380                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1381                if (!error)
1382                        s->s_flags |= SB_ACTIVE;
1383        } else {
1384                error = reconfigure_single(s, flags, data);
1385        }
1386        if (unlikely(error)) {
1387                deactivate_locked_super(s);
1388                return ERR_PTR(error);
1389        }
1390        return dget(s->s_root);
1391}
1392EXPORT_SYMBOL(mount_single);
1393
1394/**
1395 * vfs_get_tree - Get the mountable root
1396 * @fc: The superblock configuration context.
1397 *
1398 * The filesystem is invoked to get or create a superblock which can then later
1399 * be used for mounting.  The filesystem places a pointer to the root to be
1400 * used for mounting in @fc->root.
1401 */
1402int vfs_get_tree(struct fs_context *fc)
1403{
1404        struct super_block *sb;
1405        int error;
1406
1407        if (fc->root)
1408                return -EBUSY;
1409
1410        /* Get the mountable root in fc->root, with a ref on the root and a ref
1411         * on the superblock.
1412         */
1413        error = fc->ops->get_tree(fc);
1414        if (error < 0)
1415                return error;
1416
1417        if (!fc->root) {
1418                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1419                       fc->fs_type->name);
1420                /* We don't know what the locking state of the superblock is -
1421                 * if there is a superblock.
1422                 */
1423                BUG();
1424        }
1425
1426        sb = fc->root->d_sb;
1427        WARN_ON(!sb->s_bdi);
1428
1429        if (fc->subtype && !sb->s_subtype) {
1430                sb->s_subtype = fc->subtype;
1431                fc->subtype = NULL;
1432        }
1433
1434        /*
1435         * Write barrier is for super_cache_count(). We place it before setting
1436         * SB_BORN as the data dependency between the two functions is the
1437         * superblock structure contents that we just set up, not the SB_BORN
1438         * flag.
1439         */
1440        smp_wmb();
1441        sb->s_flags |= SB_BORN;
1442
1443        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1444        if (unlikely(error)) {
1445                fc_drop_locked(fc);
1446                return error;
1447        }
1448
1449        /*
1450         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1451         * but s_maxbytes was an unsigned long long for many releases. Throw
1452         * this warning for a little while to try and catch filesystems that
1453         * violate this rule.
1454         */
1455        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1456                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1457
1458        return 0;
1459}
1460EXPORT_SYMBOL(vfs_get_tree);
1461
1462/*
1463 * Setup private BDI for given superblock. It gets automatically cleaned up
1464 * in generic_shutdown_super().
1465 */
1466int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1467{
1468        struct backing_dev_info *bdi;
1469        int err;
1470        va_list args;
1471
1472        bdi = bdi_alloc(GFP_KERNEL);
1473        if (!bdi)
1474                return -ENOMEM;
1475
1476        bdi->name = sb->s_type->name;
1477
1478        va_start(args, fmt);
1479        err = bdi_register_va(bdi, fmt, args);
1480        va_end(args);
1481        if (err) {
1482                bdi_put(bdi);
1483                return err;
1484        }
1485        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1486        sb->s_bdi = bdi;
1487
1488        return 0;
1489}
1490EXPORT_SYMBOL(super_setup_bdi_name);
1491
1492/*
1493 * Setup private BDI for given superblock. I gets automatically cleaned up
1494 * in generic_shutdown_super().
1495 */
1496int super_setup_bdi(struct super_block *sb)
1497{
1498        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1499
1500        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1501                                    atomic_long_inc_return(&bdi_seq));
1502}
1503EXPORT_SYMBOL(super_setup_bdi);
1504
1505/*
1506 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1507 * instead.
1508 */
1509void __sb_end_write(struct super_block *sb, int level)
1510{
1511        percpu_up_read(sb->s_writers.rw_sem + level-1);
1512}
1513EXPORT_SYMBOL(__sb_end_write);
1514
1515/*
1516 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1517 * instead.
1518 */
1519int __sb_start_write(struct super_block *sb, int level, bool wait)
1520{
1521        bool force_trylock = false;
1522        int ret = 1;
1523
1524#ifdef CONFIG_LOCKDEP
1525        /*
1526         * We want lockdep to tell us about possible deadlocks with freezing
1527         * but it's it bit tricky to properly instrument it. Getting a freeze
1528         * protection works as getting a read lock but there are subtle
1529         * problems. XFS for example gets freeze protection on internal level
1530         * twice in some cases, which is OK only because we already hold a
1531         * freeze protection also on higher level. Due to these cases we have
1532         * to use wait == F (trylock mode) which must not fail.
1533         */
1534        if (wait) {
1535                int i;
1536
1537                for (i = 0; i < level - 1; i++)
1538                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1539                                force_trylock = true;
1540                                break;
1541                        }
1542        }
1543#endif
1544        if (wait && !force_trylock)
1545                percpu_down_read(sb->s_writers.rw_sem + level-1);
1546        else
1547                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1548
1549        WARN_ON(force_trylock && !ret);
1550        return ret;
1551}
1552EXPORT_SYMBOL(__sb_start_write);
1553
1554/**
1555 * sb_wait_write - wait until all writers to given file system finish
1556 * @sb: the super for which we wait
1557 * @level: type of writers we wait for (normal vs page fault)
1558 *
1559 * This function waits until there are no writers of given type to given file
1560 * system.
1561 */
1562static void sb_wait_write(struct super_block *sb, int level)
1563{
1564        percpu_down_write(sb->s_writers.rw_sem + level-1);
1565}
1566
1567/*
1568 * We are going to return to userspace and forget about these locks, the
1569 * ownership goes to the caller of thaw_super() which does unlock().
1570 */
1571static void lockdep_sb_freeze_release(struct super_block *sb)
1572{
1573        int level;
1574
1575        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1576                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1577}
1578
1579/*
1580 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1581 */
1582static void lockdep_sb_freeze_acquire(struct super_block *sb)
1583{
1584        int level;
1585
1586        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1587                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1588}
1589
1590static void sb_freeze_unlock(struct super_block *sb)
1591{
1592        int level;
1593
1594        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1595                percpu_up_write(sb->s_writers.rw_sem + level);
1596}
1597
1598/**
1599 * freeze_super - lock the filesystem and force it into a consistent state
1600 * @sb: the super to lock
1601 *
1602 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1603 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1604 * -EBUSY.
1605 *
1606 * During this function, sb->s_writers.frozen goes through these values:
1607 *
1608 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1609 *
1610 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1611 * writes should be blocked, though page faults are still allowed. We wait for
1612 * all writes to complete and then proceed to the next stage.
1613 *
1614 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1615 * but internal fs threads can still modify the filesystem (although they
1616 * should not dirty new pages or inodes), writeback can run etc. After waiting
1617 * for all running page faults we sync the filesystem which will clean all
1618 * dirty pages and inodes (no new dirty pages or inodes can be created when
1619 * sync is running).
1620 *
1621 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1622 * modification are blocked (e.g. XFS preallocation truncation on inode
1623 * reclaim). This is usually implemented by blocking new transactions for
1624 * filesystems that have them and need this additional guard. After all
1625 * internal writers are finished we call ->freeze_fs() to finish filesystem
1626 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1627 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1628 *
1629 * sb->s_writers.frozen is protected by sb->s_umount.
1630 */
1631int freeze_super(struct super_block *sb)
1632{
1633        int ret;
1634
1635        atomic_inc(&sb->s_active);
1636        down_write(&sb->s_umount);
1637        if (sb->s_writers.frozen != SB_UNFROZEN) {
1638                deactivate_locked_super(sb);
1639                return -EBUSY;
1640        }
1641
1642        if (!(sb->s_flags & SB_BORN)) {
1643                up_write(&sb->s_umount);
1644                return 0;       /* sic - it's "nothing to do" */
1645        }
1646
1647        if (sb_rdonly(sb)) {
1648                /* Nothing to do really... */
1649                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1650                up_write(&sb->s_umount);
1651                return 0;
1652        }
1653
1654        sb->s_writers.frozen = SB_FREEZE_WRITE;
1655        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1656        up_write(&sb->s_umount);
1657        sb_wait_write(sb, SB_FREEZE_WRITE);
1658        down_write(&sb->s_umount);
1659
1660        /* Now we go and block page faults... */
1661        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1662        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1663
1664        /* All writers are done so after syncing there won't be dirty data */
1665        sync_filesystem(sb);
1666
1667        /* Now wait for internal filesystem counter */
1668        sb->s_writers.frozen = SB_FREEZE_FS;
1669        sb_wait_write(sb, SB_FREEZE_FS);
1670
1671        if (sb->s_op->freeze_fs) {
1672                ret = sb->s_op->freeze_fs(sb);
1673                if (ret) {
1674                        printk(KERN_ERR
1675                                "VFS:Filesystem freeze failed\n");
1676                        sb->s_writers.frozen = SB_UNFROZEN;
1677                        sb_freeze_unlock(sb);
1678                        wake_up(&sb->s_writers.wait_unfrozen);
1679                        deactivate_locked_super(sb);
1680                        return ret;
1681                }
1682        }
1683        /*
1684         * For debugging purposes so that fs can warn if it sees write activity
1685         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1686         */
1687        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1688        lockdep_sb_freeze_release(sb);
1689        up_write(&sb->s_umount);
1690        return 0;
1691}
1692EXPORT_SYMBOL(freeze_super);
1693
1694/**
1695 * thaw_super -- unlock filesystem
1696 * @sb: the super to thaw
1697 *
1698 * Unlocks the filesystem and marks it writeable again after freeze_super().
1699 */
1700static int thaw_super_locked(struct super_block *sb)
1701{
1702        int error;
1703
1704        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1705                up_write(&sb->s_umount);
1706                return -EINVAL;
1707        }
1708
1709        if (sb_rdonly(sb)) {
1710                sb->s_writers.frozen = SB_UNFROZEN;
1711                goto out;
1712        }
1713
1714        lockdep_sb_freeze_acquire(sb);
1715
1716        if (sb->s_op->unfreeze_fs) {
1717                error = sb->s_op->unfreeze_fs(sb);
1718                if (error) {
1719                        printk(KERN_ERR
1720                                "VFS:Filesystem thaw failed\n");
1721                        lockdep_sb_freeze_release(sb);
1722                        up_write(&sb->s_umount);
1723                        return error;
1724                }
1725        }
1726
1727        sb->s_writers.frozen = SB_UNFROZEN;
1728        sb_freeze_unlock(sb);
1729out:
1730        wake_up(&sb->s_writers.wait_unfrozen);
1731        deactivate_locked_super(sb);
1732        return 0;
1733}
1734
1735int thaw_super(struct super_block *sb)
1736{
1737        down_write(&sb->s_umount);
1738        return thaw_super_locked(sb);
1739}
1740EXPORT_SYMBOL(thaw_super);
1741